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Recurrence Extraction for FP

rec sort(xs) =
case xs of nil — nil

| cons(y, ys) — case ys of nil — cons(y, nil)
| cons(z, zs) — let g = divide(cons(y, ys)) in
merge(sort(m; q), sort(m; q))
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PCF

= simply-typed A-calculus + fixpoints (CBN & CBV)

Constants
neN I'kM,N:nat op€ {+,x, —,+, mod} Big-step rules
I'n:nat ' MopN : nat

Ml|*m N|°n
MopN | mopn

Function types

'z AFM: B 'FM:A—-B I'FN:A

'Xe. M :A— B I'FMN : B M]™Xe. P P|[N/z] "V
CBN recursion MN ¢m+n+1 14
'z AFM:A
'Ffixz. M: A Mlfixz. M/z| "V

fixz. M "1V



PCFc

= simply-typed A-calculus + fixpoints + costs (CBN only)

Constants
n €N ['FM,N :nat op € {+,*,—,+, mod}
I'n:nat ' MopN : nat

Function types

The Size Preorder
'z AFM: B 'FM:A—-B I'FN:A

TFAz. M:A— B CFMN:B 'F-FM<N:A
CBN recursion “considered as recurrences, M is
T z:AFM: A less than or equal to N at type A"
'Ffixz. M: A
Costs

ne{0,1} THFM:C T'FN:C
['Fn:C 'FMHBEN:C




Extraction for CBV

In CBV: < Variables carry values, which are fully evaluated: only use-cost, no direct cost

** All types are observable, e.g. evaluating a term at A -> B has direct cost

|. Translate each PCF type to two PCFc types:

Complexity of A Potential of A (nat)) def ot
cost of evaluation + potential size of output value, future use-cost e
N\ _ (A1 x Az)) = (A1) X (A2
|A| = C x (A) (A— B)=(A) — Bl

2. Extract a complexity from each term by induction on syntax.

Given potentials for the variables ,
this recurrence

\ / gives the complexity of M
. : . 4_/
Theorem: '+ M : A — <<F>> - HMH _ HAH



Extraction for CBN

In CBN: < Variables carry thunks, to be evaluated later.

* Only base types are observable, e.g. evaluating a term at A -> B has no cost
but evaluating a nat might trigger a cascade of thunk evaluations.

|. Translate each PCF type to a PCFc cost algebra, i.e. a type & a cost action on

def

Inat]] = € x nat (I|4]], cxa(c, z))

14y % Ao| 2 (| Ay || Az] i "
|A — B||“ |4l - |1B| c:C,z: ||Al| F aalc,z) - [|A]

Algebras are defined by induction on types; they push costs down to observable types.

2. Extract a complexity from each term by induction on syntax.

Given complexities for the inputs this recurrence

~ ¥
Theorem: [} M : A= ||T'|| F ||M]] : ||4]

gives the complexity of M

<_/



Proving this correct is nontrivial.

¢ Some difficult issues:

“* Handling nontermination is nontrivial.

* Translating CBV to CBN. Continuations?

* Function types -> need logical relation to state correctness.
The straightforward definition fails due to fixpoints.

“* How did we even come up with the extraction in the first place?



Two for the price of one: Call-by-Push-Value

* CBPV features modalities that control the evaluation of terms.

% We can embed both CBV and CBN in it.

CBN PCF
‘\(—)1
call-by-push-value _): recurrence 1_) PCFc [-]  sized
(CBPV) ] extraction , ~ (PCF with costs) domains
—
CBV PCF
denotational
source intermediate S s ,
language lancuace language semantics
guag (syntactic recurrence) (semantic

recurrence)



Call-by-Push-Value (CBPV)

"A value is, a computation does.” — Paul Blain Levy

thunks
rd

 Two kinds of t :
WO KINas O 1ypes A= nat\Al X Ao ‘ UB
B ::

* Terms of value types are... values.
=FA|B,&B,|A— B

% Terms of computation type can be effectful. /
Equip with one effect: charging a unit cost. returners
< Extraction: mix'n'match of CBV & CBN styles '-cM: B

** Value types -> potentials ['Fc charge. M : B

¢ Computation types -> PCFc cost algebras M |"T
charge. M "1 T




Proving correctness

M "™ return V

n<'aE = n<E M<%4s+E = E.l = dn,V. {n<E.
0 oy 5 2 [ E 25
Vo SU ma(EB) M< .5 EEVNSRX). MN<$ EX
thunk M SR E = M SG E y <5 m(B)
M<§1&§2 E = { << 7r2(E)

FVIA = VSR (V)
FM:B = M S5 ||M|

Theorem (Bounding Theorem):
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Proving the original theorems for CBN and CBV

* Use the Levy embedding of CBN and CBV into CBPV.

% Sprinkle occurrences of “charge. (-)" wherever cost should be incurred.

% Prove that the embedding is cost-preserving (a bisimulation-like result).

CBN PCF

\ Q
& e A s ds
call-by-push-value __): recurrence r_} PCFc [-1  sized
(CBPV)  extraction , ~ (PCF with costs) domains
— | )
CBV PCF
must be cost-preserving denotational
source intermediate rf:;rf:u;e COStt.
language language areh S
(syntactic recurrence) (semantic

recurrence)



Denotational semantics of PCFc

¢ A sized domain consists of a set D and

** An information order, i.e. a pointed w-cpo (D,LC, 1)

p JE—

* A size preorder (D’ < 0, \/) Why preorder? E.g. the lists
/ [1, 2, 3] and [4, 5, 6] are

such that least element “size-equal” but not identical.

chosen least upper bounds

* The chosen lubs are continuous w.r.t. the information order.

* A better-defined bound is a smaller bound: Ly — y <

* A recursively defined upper bound is an upper bound:
for a chain (z;)icw we have (Vi. z < z;) = z < Usew T;



Conclusions

* Recurrence extraction for both CBN and CBV with recursion:
obtained in a uniform way, and shown to be correct.

* The extracted recurrences are the expected ones.

* CBPV illuminates the basic concepts of cost, potential and complexity:
% cost is an effect
** values have potential (use-cost)
% computations have complexity (direct, or deferred cost)

% This is the beginning of a theory of higher-order recurrences.

* The analysis can easily be extended to CBV inductive types.

* Recursive types are harder—but we’ll get there!



