Recurrence Extraction for Functional Programs Through Call-by-Push-Value

Alex Kavvos

Department of Computer Science, Aarhus University

j.w.w. Edward Morehouse, Daniel Licata, and Norman Danner

47th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2020)

arXiv:1911.04588

Recurrence Extraction for Functional Programs Through Call-by-Push-Value

Alex Kavvos

Department of Mathematics and Computer Science, Wesleyan University

j.w.w. Edward Morehouse, Daniel Licata, and Norman Danner

47th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2020)

arXiv:1911.04588

```
\begin{array}{ll} \operatorname{rec\ sort}(xs) &= \\ \operatorname{case} xs \ \operatorname{of} & \operatorname{nil} \mapsto \operatorname{nil} \\ &| \operatorname{cons}(y,ys) \mapsto \operatorname{case} ys \ \operatorname{of} & \operatorname{nil} \mapsto \operatorname{cons}(y,\operatorname{nil}) \\ &| \operatorname{cons}(z,zs) \mapsto \operatorname{let} q = \operatorname{divide}(\operatorname{cons}(y,ys)) \ \operatorname{in} \\ & \operatorname{merge}(\operatorname{sort}(\pi_1 q),\operatorname{sort}(\pi_2 q)) \end{array}
```

```
rec sort(xs) =
case xs of nil \mapsto nil

|\cos(y, ys) \mapsto \operatorname{case} ys of nil \mapsto \cos(y, nil)

|\cos(z, zs) \mapsto \operatorname{let} q = \operatorname{divide}(\cos(y, ys)) in

\operatorname{merge}(\operatorname{sort}(\pi_1 q), \operatorname{sort}(\pi_2 q))
```

```
rec sort(xs) =
case xs of nil \mapsto nil
|\cos(y, ys) \mapsto \operatorname{case} ys \text{ of } \operatorname{nil} \mapsto \operatorname{cons}(y, \operatorname{nil})
|\cos(z, zs) \mapsto \operatorname{let} q = \operatorname{divide}(\cos(y, ys)) \text{ in }
\operatorname{merge}(\operatorname{sort}(\pi_1 q), \operatorname{sort}(\pi_2 q))
T(1) = 0
T(n) = 7 + (c + d)n + 2T(n/2)
```

```
rec sort(xs) = case xs of nil \mapsto nil | cons(y, ys) \mapsto case ys of nil \mapsto cons(y, nil) | cons(z, zs) \mapsto let q = divide(cons(y, ys)) in merge(sort(\pi_1 q), sort(\pi_2 q)) | T(n) = 7 + (c + d)n + 2T(n/2).
```

Can we do this automatically, and establish formal correctness?

```
rec sort(xs) =
case xs of nil \mapsto nil
|\cos(y, ys) \mapsto \cos ys \text{ of } \text{nil} \mapsto \cos(y, \text{nil})
|\cos(z, zs) \mapsto \text{let } q = \text{divide}(\cos(y, ys)) \text{ in } \text{merge}(\text{sort}(\pi_1 q), \text{sort}(\pi_2 q))
|\cos(z, zs) \mapsto \text{let } q = \text{divide}(\cos(y, ys)) \text{ in } \text{merge}(\text{sort}(\pi_1 q), \text{sort}(\pi_2 q))
```

Can we do this automatically, and establish formal correctness?


```
rec sort(xs) = case xs of nil \mapsto nil |\cos(y, ys)| \mapsto |\cos(y, ys)| \mapsto |\cot(z, zs)| \mapsto
```

- * Can we do this automatically, and establish formal correctness?
- Solved for inductive types in a total CBV language [Danner et al. @ ICFP 2015]


```
rec sort(xs) =
case xs of nil \mapsto nil
| cons(y, ys) \mapsto case \ ys \ of \quad nil \mapsto cons(y, nil)
| cons(z, zs) \mapsto let \ q = divide(cons(y, ys)) \ in
merge(sort(\pi_1 q), sort(\pi_2 q))
T(1) = 0
T(n) = 7 + (c + d)n + 2T(n/2).
```

- * Can we do this automatically, and establish formal correctness?
- Solved for inductive types in a total CBV language [Danner et al. @ ICFP 2015]
- ❖ Can we also do it for **recursive** functional programs CBN and CBV?


```
rec sort(xs) = case xs of nil \mapsto nil |\cos(y, ys) \mapsto \cos ys of nil \mapsto \cos(y, nil) |\cos(z, zs) \mapsto \det q = \operatorname{divide}(\cos(y, ys)) in \operatorname{merge}(\operatorname{sort}(\pi_1 q), \operatorname{sort}(\pi_2 q)) T(n) = 7 + (c + d)n + 2T(n/2).
```

- * Can we do this automatically, and establish formal correctness?
- Solved for inductive types in a total CBV language [Danner et al. @ ICFP 2015]
- * Can we also do it for **recursive** functional programs CBN and CBV?


```
rec sort(xs) = case xs of nil \mapsto nil |\cos(y, ys)| \mapsto |\cos(y, ys)| \mapsto |\cot(z, zs)| \mapsto
```

- * Can we do this automatically, and establish formal correctness?
- Solved for inductive types in a total CBV language [Danner et al. @ ICFP 2015]
- * Can we also do it for **recursive** functional programs CBN and CBV?


```
rec sort(xs) = case xs of nil \mapsto nil |\cos(y, ys)| \mapsto |\cos(y, ys)| \mapsto |\cot(z, zs)| \mapsto
```

- * Can we do this automatically, and establish formal correctness?
- Solved for inductive types in a total CBV language [Danner et al. @ ICFP 2015]
- * Can we also do it for **recursive** functional programs CBN and CBV?

PCF

= simply-typed λ -calculus + fixpoints (CBN & CBV)

Constants

$$\frac{n \in \mathbb{N}}{\Gamma \vdash \underline{n} : \mathsf{nat}} \quad \frac{\Gamma \vdash M, N : \mathsf{nat} \quad \mathsf{op} \in \{+, *, -, \div, \mathsf{mod}\}}{\Gamma \vdash \underline{n} : \mathsf{nat}}$$

Function types

CBN recursion

$$\frac{\Gamma, x : A \vdash M : A}{\Gamma \vdash \text{fix } x. \ M : A}$$

Big-step rules

$$\frac{M\downarrow^a\underline{m}\quad N\downarrow^b\underline{n}}{M\operatorname{op} N\downarrow^{a+b}\underline{m}\operatorname{op} n}$$

$$\frac{M\downarrow^m\lambda x.\ P\ P[N/x]\downarrow^n V}{MN\downarrow^{m+n+1}V}$$

$$\frac{M[\operatorname{fix} x.\ M/x]\downarrow^n V}{\operatorname{fix} x.\ M\downarrow^{n+1} V}$$

PCFc

= simply-typed λ -calculus + fixpoints + costs (CBN only)

Constants

$$n\in\mathbb{N}$$
 $\Gamma\vdash M,N:$ nat $\mathbf{op}\in\{+,*,-,\div,\mathrm{mod}\}$ $\Gamma\vdash n:$ nat $\Gamma\vdash M$ \mathbf{op} $N:$ nat

Function types

CBN recursion

$$\frac{\Gamma, x : A \vdash M : A}{\Gamma \vdash \mathsf{fix} \ x. \ M : A}$$

Costs

$$egin{array}{ccccc} \widehat{n} \in \{\mathbf{0},\mathbf{1}\} & \Gamma dash M : \mathbb{C} & \Gamma dash N : \mathbb{C} \ & \Gamma dash M \boxplus N : \mathbb{C} \ \end{array}$$

The Size Preorder

$$\Gamma \vdash M \leqslant N : A$$

"considered as recurrences, M is less than or equal to N at type A"

Extraction for CBV

- In CBV: * Variables carry values, which are fully evaluated: only use-cost, no direct cost
 - All types are observable, e.g. evaluating a term at A -> B has direct cost
- 1. Translate each PCF type to two PCFc types:

2. Extract a complexity from each term by induction on syntax.

Extraction for CBN

- In CBN: * Variables carry thunks, to be evaluated later.
 - **Only base types are observable**, e.g. evaluating a term at A -> B has no cost but evaluating a nat might trigger a cascade of thunk evaluations.
- 1. Translate each PCF type to a PCFc cost algebra, i.e. a type & a cost action on

$$\|\operatorname{\mathsf{nat}}\| \stackrel{ ext{def}}{=} \mathbb{C} imes \operatorname{\mathsf{nat}}$$
 $(\|A\|, lpha_A(c, x))$ $\|A_1 imes A_2\| \stackrel{ ext{def}}{=} \|A_1\| imes \|A_2\|$ $c: \mathbb{C}, x: \|A\| \vdash lpha_A(c, x): \|A\|$

Algebras are defined by induction on types; they push costs down to observable types.

2. Extract a complexity from each term by induction on syntax.

Proving this correct is nontrivial.

- Some difficult issues:
 - Handling nontermination is nontrivial.
 - Translating CBV to CBN. Continuations?
 - Function types -> need **logical relation** to state correctness. The straightforward definition fails due to fixpoints.
- How did we even come up with the extraction in the first place?

Two for the price of one: Call-by-Push-Value

- CBPV features modalities that control the evaluation of terms.
- ◆ We can embed both CBV and CBN in it.

Call-by-Push-Value (CBPV)

"A value is, a computation does." — Paul Blain Levy

- Two kinds of types:
 - Terms of value types are... values.
 - Terms of computation type can be effectful. Equip with one effect: charging a unit cost.
- Extraction: mix'n'match of CBV & CBN styles
 - Value types -> potentials
 - * Computation types -> PCFc cost algebras

thunks A::= nat $\mid A_1 imes A_2 \mid U \underline{B}$ $\underline{B}::=FA \mid \underline{B}_1 \& \underline{B}_2 \mid A o \underline{B}$ returners

$$\frac{\Gamma \vdash_{\mathsf{c}} M : \underline{B}}{\Gamma \vdash_{\mathsf{c}} \mathsf{charge}. M : \underline{B}}$$

$$\frac{M \Downarrow^n T}{\text{charge. } M \Downarrow^{n+1} T}$$

Proving correctness

$$\widetilde{n} \lesssim_{\mathsf{nat}}^{\mathsf{val}} E \stackrel{\mathsf{def}}{\equiv} \underline{n} \leqslant E$$
 $(V_1, V_2) \lesssim_{A_1 imes A_2}^{\mathsf{val}} E \stackrel{\mathsf{def}}{\equiv} \begin{cases} V_1 \lesssim_{A_1}^{\mathsf{val}} \pi_1(E) \\ V_2 \lesssim_{A_2}^{\mathsf{val}} \pi_2(E) \end{cases}$ thunk $M \lesssim_{U\underline{B}}^{\mathsf{val}} E \stackrel{\mathsf{def}}{\equiv} M \lesssim_{\underline{B}}^{\mathsf{c}} E$

$$M\lesssim_{FA}^{\mathsf{c}}E\stackrel{\mathrm{def}}{\equiv}E_{c}\downarrow \implies \exists n,V. egin{array}{c} M\downarrow^{n} ext{ return }V\ \widehat{n}\leqslant E_{c}\ V\lesssim_{A}^{\mathsf{val}}E_{p} \ M\lesssim_{A o\underline{B}}^{\mathsf{c}}E\stackrel{\mathrm{def}}{\equiv}orall (N\lesssim_{A}^{\mathsf{val}}X). \ MN\lesssim_{\underline{B}}^{\mathsf{c}}EX \ M\lesssim_{\underline{B}_{1}}^{\mathsf{c}}\&_{\underline{B}_{2}}E\stackrel{\mathrm{def}}{\equiv} egin{array}{c} \pi_{1}(M)\lesssim_{\underline{B}_{1}}^{\mathsf{c}}\pi_{1}(E)\ \pi_{2}(M)\lesssim_{B_{2}}^{\mathsf{c}}\pi_{2}(E) \ \end{array}$$

Theorem (Bounding Theorem):

$$\cdot \vdash V : A \implies V \lesssim_A^{\operatorname{val}} \langle\!\langle V \rangle\!\rangle$$
 $\cdot \vdash M : \underline{B} \implies M \lesssim_B^{\operatorname{c}} \|M\|$

Proving correctness

$$\widetilde{n} \lesssim_{\mathsf{nat}}^{\mathsf{val}} E \stackrel{\mathsf{def}}{\equiv} \underline{n} \leqslant E$$
 $(V_1, V_2) \lesssim_{A_1 \times A_2}^{\mathsf{val}} E \stackrel{\mathsf{def}}{\equiv} \begin{cases} V_1 \lesssim_{A_1}^{\mathsf{val}} \pi_1(E) \\ V_2 \lesssim_{A_2}^{\mathsf{val}} \pi_2(E) \end{cases}$ thunk $M \lesssim_{U\underline{B}}^{\mathsf{val}} E \stackrel{\mathsf{def}}{\equiv} M \lesssim_{\underline{B}}^{\mathsf{c}} E$

$$M\lesssim^{\mathtt{c}}_{FA}E\stackrel{ ext{def}}{\equiv} E_c\downarrow \implies \exists n,V. egin{array}{c} M \Downarrow^n ext{ return } V \ \widehat{n}\leqslant E_c \ V\lesssim^{ ext{val}}_A E_p \end{array}$$

$$M\lesssim_{A o \underline{B}}^{\mathtt{c}} E \stackrel{ ext{def}}{\equiv} orall (N\lesssim_{A}^{\mathrm{val}} X). \ M\, N\lesssim_{\underline{B}}^{\mathtt{c}} E\, X \ M\lesssim_{\underline{B}_{1}}^{\mathtt{c}} \&_{\underline{B}_{2}} E \stackrel{ ext{def}}{\equiv} \begin{cases} \pi_{1}(M)\lesssim_{\underline{B}_{1}}^{\mathtt{c}} \pi_{1}(E) \ \pi_{2}(M)\lesssim_{B_{2}}^{\mathtt{c}} \pi_{2}(E) \end{cases}$$

Theorem (Bounding Theorem):

$$\cdot \vdash V : A \implies V \lesssim_A^{\text{val}} \langle\!\langle V \rangle\!\rangle$$

$$\cdot \vdash M : \underline{B} \implies M \lesssim_B^{\mathsf{c}} ||M||$$

Proving the original theorems for CBN and CBV

- ◆ Use the Levy embedding of CBN and CBV into CBPV.
- Sprinkle occurrences of "charge. (-)" wherever cost should be incurred.
- Prove that the embedding is cost-preserving (a bisimulation-like result).

Denotational semantics of PCFc

- \clubsuit A sized domain consists of a set D and
 - \clubsuit An information order, i.e. a pointed ω -cpo (D,\sqsubseteq,\bot)

Why preorder? E.g. the lists [1, 2, 3] and [4, 5, 6] are "size-equal" but not identical.

- The chosen lubs are continuous w.r.t. the information order.
- \clubsuit A better-defined bound is a smaller bound: $x \sqsubseteq y \Longrightarrow y \leqslant x$
- **A** recursively defined upper bound is an upper bound: for a chain $(x_i)_{i\in\omega}$ we have $(\forall i.\ z\leqslant x_i)\Longrightarrow z\leqslant\sqcup_{i\in\omega}x_i$

Conclusions

- * Recurrence extraction for both CBN and CBV with recursion: obtained in a uniform way, and shown to be correct.
- The extracted recurrences are the expected ones.
- * CBPV illuminates the basic concepts of cost, potential and complexity:
 - * cost is an effect
 - * values have potential (use-cost)
 - * computations have complexity (direct, or deferred cost)
- This is the beginning of a theory of higher-order recurrences.
- The analysis can easily be extended to CBV inductive types.
- Recursive types are harder—but we'll get there!