Modalities, Cohesion, and Information Flow

Alex Kavvos

Department of Mathematics and Computer Science, Wesleyan University

46th ACM SIGPLAN Symposium on Principles of Programming Languages, 18 Jan 2019

arXiv:1809.07897

Language-based Information Flow Control

- ♣ General idea:
 - *types include annotations on the classification/sensitivity of data
 - Programs should type-check iff there is no unsafe information flow (e.g. from TOP SECRET to UNCLASSIFIED)
- \P Modalities = unary operations on types. T(A) $\square A$ $\blacklozenge A$ ||A||
- Modalities can be used to control information flow.
 One can copy techniques from the proof theory of modal logic.
- The hard part is proving **noninterference**:

```
[...] High-security data does not "interfere" with the calculation of low-security outputs [...]
```

Modalities for Information Flow: an example

- \clubsuit An example: for each type A, a type $\spadesuit A$ \longleftarrow "high security A"
- $lacktriangle ext{Can always get a} lacktriangle A: \frac{\Gamma dash M:A}{\Gamma dash [M]: lacktriangle A}$
- ❖ I can use a high-security value when computing another high-security value:

$$\frac{\Gamma \vdash M : \blacklozenge A \quad \Gamma, x : A \vdash N : \blacklozenge C}{\Gamma \vdash \mathsf{let} \times = M \mathsf{ in } N : \blacklozenge C}$$

- $ightharpoonup ext{Reduction:} \quad \text{let } \mathsf{x} = [M] \text{ in } N o N[M/x]$
- ♣ Noninterference:

a.k.a.
"Moggi's monadic
metalanguage"

If $x: \blacklozenge A \vdash E:$ Bool and $\vdash M, N: \blacklozenge A$ then E[M/x] and E[N/x] compute the same boolean value.

How can we go about proving this?

Proving noninterference

- This talk: using category theory to prove noninterference.
- A more principled attempt at a "theory of information flow."
- A Main claim: one can use basic axiomatic cohesion to reason about information flow, and prove noninterference results.
- Axiomatic cohesion: a theory developed by F. William Lawvere.
 - an axiomatic description of geometric/topological spaces.

CRIB U(X) = points of space X(forget cohesion) $\Delta(S)$ = discrete space on S (minimum cohesion) $\nabla(S) = \text{codiscrete space on } S$ (maximum cohesion) C(X) = connected components of X

ff

tt

ff

tt

Cohesion

tt—ff

 $\nabla(\mathbb{B})$

CRIB

U(X) = points of space X(forget cohesion)

 $\Delta(S)$ = discrete space on S (minimum cohesion)

 $\nabla(S)$ = codiscrete space on S (maximum cohesion)

C(X) = connected components of X

Cohesion

CLAIM: This is all one needs to reason about information flow.

Spaces

Sets

Axiom of CONTRACTIBLE CODISCRETENESS:

$$\forall S. |C(\nabla S)| \leq 1$$

(For category theorists: the canonical $C(\nabla S) \stackrel{!}{\to} \mathbf{1}$ is a monic arrow.)

Theorem: every $f : \blacklozenge X \to \Delta S$ is (maybe) a point of S

Proof: very simple—three lines of category theory

tt ff

tt—ff '(B)

$$egin{array}{ll} egin{array}{ll} \{\mathtt{tt}, \ \mathtt{ff} \} \ & C(
abla(\mathbb{B})) \end{array}$$

in the codiscrete space $\nabla(S)$ on S everything is "stuck together" \Rightarrow there is ≤ 1 connected component

CRIB

U(X) = points of space X

(forget cohesion)

Δ(S) = discrete space on S

(minimum cohesion)

V(S) = codiscrete space on S

(maximum cohesion)

C(X) = connected components of X

Classified sets

Set of classifications/labels: $\ell \in \mathcal{L}$

must be **reflexive**

Classified set: $X = (|X|, (R_{\ell} \subseteq |X| \times |X|)_{\ell \in \mathcal{L}})$

Cont. function: f:X o Y s.t. $orall \ell$. $aR_\ell b\Rightarrow f(a)R_\ell f(b)$

"f is continuous when it maps inputs indistinguishable at $\ell\in\mathcal{L}$ to outputs indistinguishable at $\ell\in\mathcal{L}$ "

Theorem: the category of classified sets is cartesian closed and cohesive over Sets, and it satisfies contractible codiscreteness.

Cohesion and non-interference

Recall what we were trying to prove:

If
$$x : \blacklozenge A \vdash E :$$
 Bool and $\vdash M, N : \blacklozenge A$ then $E[M/x]$ and $E[N/x]$ compute the same boolean value.

There is a way to map every term to a continuous function between classified sets—a categorical semantics:

$$x: \blacklozenge A \vdash E: \mathsf{Bool} \longmapsto \llbracket E \rrbracket : \blacklozenge \llbracket A \rrbracket o \Delta \mathbb{B}$$

- \clubsuit By the Theorem, this corresponds to an element of $\mathbb B$ So it is essentially a constant function!
- ❖ Use Adequacy (holds for strongly normalising languages) to lift to the language

Cohesion and non-interference

- This approach can be leveraged to prove noninterference for multiple type theories for secure information flow:
 - ♣ Moggi's monadic metalanguage [Moggi 1991]
 - ❖ Davies-Pfenning calculus (S4 modality) [D&Pf 2001]
 - ◆ Dependency Core Calculus [Abadi et al. 1999]
 - Sealing Calculus [Shikuma & Igarashi 2008]
- The last two are multi-modal type theories.

(A little bit of care is required here w.r.t. adequacy)

Cohesion and multi-modal type theories for information flow

Writing \mathbf{CSet}_{π} for the category of classified sets over $\pi\subseteq\mathcal{L}$

and
$$lpha:\pi\subseteq\pi'$$
 for the $eta:\pi'\subseteq\pi''$

unique morphisms in $\mathcal{P}(\mathcal{L})$ we have the two cohesive situations on the right.

It's a functor

$$\mathcal{P}(\mathcal{L})^{\operatorname{op}} \longrightarrow \operatorname{\mathbf{Coh}}$$

Theorem: the category of classified sets over $\mathcal{L} \cup \pi$ is **cohesive** over the category of classified sets over \mathcal{L} and satisfies **contractible codiscreteness**.

Three fundamental equations

Observation: These suffice to prove all the laws I have needed so far.

The laws for ∫ ¬ □ ¬ ♦

Proposition 21.

(1) If
$$\pi \cap \pi' = \emptyset$$
, then $\square_{\pi} \square_{\pi'} = \square_{\pi \cup \pi'}$.

(2) If
$$\pi \cap \pi' = \emptyset$$
, then $\blacklozenge_{\pi} \blacklozenge_{\pi'} = \blacklozenge_{\pi \cup \pi'}$.

$$(3) \ \square_{\pi}\square_{\pi'} = \square_{\pi\cup\pi'}$$

$$(4) \ \blacklozenge_{\pi} \blacklozenge_{\pi'} = \blacklozenge_{\pi \cup \pi'}$$

(5) If
$$\pi \subseteq \pi'$$
, then $\square_{\pi'} \blacklozenge_{\pi} = \square_{\pi'}$.

(6) If
$$\pi \subseteq \pi'$$
, then $\blacklozenge_{\pi'} \square_{\pi} = \blacklozenge_{\pi'}$.

(7) If
$$\pi \cap \pi' = \emptyset$$
, then $\square_{\pi} \blacklozenge_{\pi'} = \blacklozenge_{\pi'} \square_{\pi}$.

$$(8) \ \square_{\pi} \ \blacklozenge_{\pi'} = \blacklozenge_{\pi'-\pi} \ \square_{\pi}.$$

$$(9) \ \blacklozenge_{\pi} \ \square_{\pi'} = \square_{\pi'-\pi} \ \blacklozenge_{\pi}.$$

Conclusions

- One of the most abstract/philosophical parts of category theory, namely axiomatic cohesion, is a practical theory of information flow.
 - It can be used to prove properties of LBIFC...
 - ... and, hopefully, it can inspire new languages for LBIFC. (notice there were no integral signs in the previous slide)
- Despite the looks of it, the use of category theory to reason about programming languages has not been exhausted—far from it.
- ❖ Multi-modal type theories have intuitive categorical semantics.