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Equality

Recall that we could define

⊢ add = λx. λy. rec(x; y; n, c. succ(n)) : Nat → Nat → Nat

and compute that

y : Nat ⊢ add(zero)(y)≡ y : Nat

It is not the case that

x : Nat ⊢ add(x)(zero)≡ x : Nat

≡ only allows unfolding of definitions, not non-trivial theorems.

For that we need to introduce the identity type.



I. Identity Types



Intensional Identity Types

form.

Γ ⊢ M : A Γ ⊢ N : A

Γ ⊢ IdA(M,N) type

intro.

Γ ⊢ M : A

Γ ⊢ refl(M) : IdA(M,M)

elim.

Γ, x : A, y : A, p : IdA(x, y) ⊢ B type

Γ ⊢ P : IdA(M,N) Γ, z : A ⊢ Q : B[z, z, refl(z)/x, y, p]

Γ ⊢ J[x,y,p.B](P; z.Q) : B[M,N , P/x, y, p]

comp.

Γ, x : A, y : A, p : IdA(x, y) ⊢ B type

Γ, z : A ⊢ Q : B[z, z, refl(z)/x, y, p]

Γ ⊢ J(refl(M); z.Q) ≡ Q[M/z] : B[M,M, refl(M)/x, y, p]

Because of the type conversion and congruence rules we always have

Γ ⊢ M ≡ N : A

Γ ⊢ refl(M) : IdA(M,N)



Some examples (I)

▶ Let ⊢ A type and x : A ⊢ P(x) type. We have:

x, y : A, p : IdA(x, y) ⊢ transp(p)≡ J(p; z. λw.w) : B(x) → B(y)

Informally:

Let x, y : A and p : IdA(x, y). Wewant to construct a term of type

B(x) → B(y). By elimination we may assume that x ≡ y , so it

suffices to give a term B(x) → B(x). Take the identity function.

▶ Let x : A ⊢ f (x) : B. Then x, y : A ⊢ IdB(f (x), f (y)) type. We have

x, y : A, p : IdA(x, y) ⊢ apf (p)≡ J(p; x. refl(f (x))) : IdB(f (x), f (y))

Informally:

Let x, y : A and p : IdA(x, y). We want to show IdB(f (x), f (y)).
By elimination we may assume that x ≡ y , so it suffices to con-

struct a term of type IdB(f (x), f (x)). Take refl(f (x)).



Some examples (II)

Here is an informal proof that there is a term of type

x : Nat ⊢ IdNat(add(x)(zero), x) type

We proceed by induction on x : Nat.

▶ If x ≡ zero : Nat, then add(x)(zero)≡ add(zero)(zero)≡ zero.

Hence it suffices to construct refl(zero) : IdNat(zero, zero).

▶ If x ≡ succ(y) : Nat for some y : Nat, then

add(x)(zero)≡ add(succ(y))(zero)≡ succ(add(y)(zero))

By the IH we have p : IdNat(add(y)(zero), y). Hence

ap
succ(−)(p) : IdNat(succ(add(y)(zero))︸ ︷︷ ︸

≡ add(x)(zero)

, succ(y)︸ ︷︷ ︸
≡ x

)

So we have shown the inductive step.



Metatheory

Theorem

The following rule is admissible.

⊢ P : IdA(M,N)

⊢ M ≡ N : A

Any two propositionally equal terms in an empty context
are also definitionally equal. (Hence the name ‘intensional.’)

This did not apply to our previous proof because x : Nat was free.

Theorem

There is a set-theoretic model of MLTT with Π, Σ, Id, Nat, and+ types.



Extensional Identity Types

One might argue that x : Nat ⊢ . . . : IdNat(add(x)(zero), x) should
be promoted to a definitional equality

x : Nat ⊢ add(x)(zero) ≡ x : Nat

Add equality reflection rule:

Γ ⊢ P : IdA(M,N)

Γ ⊢ M ≡ N : A

We then say we have extensional identity types. But then
▶ normalization is no longer decidable, and hence

▶ type checking is no longer decidable
So we are stuck with the ‘bureaucracy’ of intensional identity types.

But this is a fine type theory for computing by hand.



II. Homotopy



Identity types are very mysterious

Let ⊢ M,N : A. Construct ⊢ IdA(M,N) type.

Now suppose ⊢ P,Q : IdA(M,N).

What is the meaning of the following type?

⊢ Id
IdA(M,N)(P,Q) type

Should the following Uniqueness of Identity Proofs (UIP)
principle be inhabited for any type Γ ⊢ A type?

⊢ (x, y : A) → (p, q : IdA(x, y)) → Id
IdA(x,y)(p, q) type (UIP)

It’s certainly true in the set-theoretic model!

Theorem (Hofmann-Streicher, 1998)

There is a model of MLTT in which the above principle of
uniqueness of identity proofs (UIP) is not true.



Groupoids

Definition

A groupoid G consists of

▶ a set of objects ob(G)
▶ for x, y ∈ ob(G) a set of isomorphisms Hom(x, y)

We write f : x
∼=−→ y if f ∈ Hom(x, y).

▶ for each x ∈ ob(G) an identity 1x ∈ Hom(x, x)
▶ for isos f : x

∼=−→ y and g : y
∼=−→ z a composite

g ◦ f : x
∼=−→ z

▶ for each iso f : x
∼=−→ y and inverse iso f −1 : y

∼=−→ x , such that

f −1 ◦ f = 1x : x
∼=−→ x f ◦ f −1 = 1y : y

∼=−→ y

A one-object groupoid is . . .

a group!

If |Hom(x, y)| ≤ 1 a groupoid is . . . an equivalence relation!
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The Hofmann-Streicher groupoid model of type theory

Hofmann and Streicher interpreted MLTT as follows:

▶ ⊢ A type is interpreted by a groupoid JAK.
▶ A type family/dependent type x : A ⊢ B type is interpreted by

a fibration JBK : JAK → GPD of groupoids.

▶ A term of type x : A ⊢ B type is a section of the fibration JBK.
▶ The identity type ⊢ IdA(M,N) type is interpreted by the set of

isomorphisms of the groupoid JAK, i.e.

HomJAK(JMK, JNK)

In this model there are types with non-trivial identity types.

But where do groupoids come from?



Paths

Let X be a (topological) space.

Definition

A path in space X is a continuous function p : [0, 1] → X .

Write p : x ⇝ y if p(0) = x and p(1) = y .

Given p : x ⇝ y let p−1 : y ⇝ x by p−1(t) def

= p(1− t).

Given p : x ⇝ y and q : y ⇝ z let

(p ■ q)(t) def

=

{
p(2t) if 0 ≤ t ≤ 1/2

q(2t − 1) if 1/2 ≤ t ≤ 1

Question: given

p : x ⇝ y q : y ⇝ z r : z ⇝ w

is the following true?

(p ■ q) ■ r ?
= p ■ (q ■ r)



Homotopy

Let f , g : X → Y be continuous functions.

Definition

A homotopy H from f to g is a continuous function

H : X × [0, 1] → Y

such that H(−, 0) = f and H(−, 1) = g.

Write f ∼ g if there is a homotopy from f to g.
∼ is an equivalence relation.



Associativity and Homotopy

Given

p : x ⇝ y q : y ⇝ z r : z ⇝ w

we have that

(p ■ q) ■ r ∼ p ■ (q ■ r) : x ⇝ w

If 1x : x ⇝ x and 1y : y ⇝ y are constant paths then p ■ 1y ∼ p ∼ 1x ■ p.



The Fundamental Groupoid

Let X be a space. Its fundamental groupoid π(X) consists of

objects the points of X

isomorphisms equiv. classes [p] of paths p : x ⇝ y up to ∼

Taking only equivalence classes of loops p : x ⇝ x at x ∈ X gives

the fundamental group π(X , x) of X at x .

These are essential algebraic invariants of the space X .

S1 def

= b

Theorem

π(S1, b) ∼= Z



∞-Groupoids

The fundamental insight:

Why quotient at all?

Definition

A groupoid G consists of

▶ a set of objects ob(G)
▶ for x, y ∈ ob(G) a set of isomorphisms Hom(x, y)

.

.

.

Definition (sort of)

An ∞-groupoid G consists of

▶ a set of 0-cells ob(G)
▶ for x, y ∈ ob(G) an∞-groupoid of 1-cells Hom(x, y)

.

.

.



The Fundamental∞-Groupoid

Let X be a space. Its fundamental ∞-groupoid π∞(X) consists of

0-cells) the points of X

1-cells) paths p : x ⇝ y between points

2-cells homotopies H : p ∼ q between paths

.

.

.

Exact definition(s) tiresome to describe analytically.

Grothendieck’s (1928–2014) dream, aka the homotopy hypothesis:

∞-groupoids = topological spaces up to homotopy



Identity Types and Homotopy

The intended pun:

types = spaces =∞-groupoids

elements of the identity type = paths in the space

For example, given ⊢ A type we can write down a term

■ : (x, y, z : A) → IdA(x, y) → IdA(y, z) → IdA(x, z)

Informal proof: Suppose x, y, z : A, p : IdA(x, y), and q : IdA(y, z).
By the elimination rule we may assume that x ≡ y and y ≡ z , so it
suffices to define a term of type IdA(x, x). Take refl(x).

Remember that because of the computation rule we have

refl(x) ■ refl(x)≡ refl(x)



Associativity of path composition

Given x, y, z : A we can then define a term

assocxyz : (p : IdA(x, y)) → (q : IdA(y, z)) → (r : IdA(z,w)) →
Id

IdA(x,w)((p ■ q) ■ r, p ■ (q ■ r))

Informal proof. Given p, q, r as above we may assume that x ≡ y ≡ z ≡w
and p≡ q ≡ r ≡ refl(x). Thus, we only need a term of type

Id
IdA(x,x)((p ■ q) ■ r︸ ︷︷ ︸

≡ refl(x)

, p ■ (q ■ r)︸ ︷︷ ︸
≡ refl(x)

)

and for that we may take refl(refl(x)).

This can be taken to its logical conclusion—see HoTT book:

The elimination rule of the identity type

generates the structure of an∞-groupoid.

In other words, MLTT is a synthetic theory of∞-groupoids.
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Summary

▶ Intensional identity types allow proofs of non-trivial,

non-definitional equalities in MLTT.

▶ Iterated identity types generate the structure of an

∞-groupoid.

▶ That is why sometimes the elimination rule for the identity

type is known as path induction.
▶ MLTT can be seen as a synthetic theory of∞-groupoids.

Tomorrow: homotopy levels; equivalence; higher inductive types.
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