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Equality

Recall that we could define
Fadd = Ax. Ay.rec(x; y; n, c. succ(n)) : Nat — Nat — Nat
and compute that
y : Nat - add(zero)(y) = y : Nat
It is not the case that
x : Nat - add(x)(zero) = x : Nat

= only allows unfolding of definitions, not non-trivial theorems.

For that we need to introduce the identity type.



. IDENTITY TYPES



Intensional Identity Types

FrEM:A FTEN:A

form.
orm I Ida(M, N) type
. Fr’=M:A
intro.
I E refl(M) : 1da(M, M)
Mx:Ay:Ap:lda(x,y) F Btype
. e P:lda(M, N) Mz:AF Q: Bz, zrefl(z)/x,y,p|
elim.
r FJ[x,y,p,B](P;Z- Q) . B[/\/t7 N7 P/X, y7 p]
Mx:Avy:Ap:lda(x,y) F Btype
Mz:AF Q: Bz, zrefl(z)/x,y, p|
comp.

I J(refl(M); z. Q) = Q[M/z] : BIM, M, refl(M)/x, y, p]
Because of the type conversion and congruence rules we always have

Fr’EkM=N:A
I refl(M) : 1da(M, N)




Some examples (1)

> LetF Atype and x : A P(x) type. We have:

x,y A p:lda(x, y) b transp(p) = J(p; z. \w. w) : B(x) — B(y)

Informally:
Let x,y : Aand p : I1ds(x, y). We want to construct a term of type
B(x) — B(y). By elimination we may assume that x = y, so it
suffices to give a term B(x) — B(x). Take the identity function.

> Letx:AF f(x):B. Thenx,y: AF Idg(f(x),f(y)) type. We have

X,y A p i 1da(x, y) = apy(p) =) (p: x. refl(7(x))) : 1ds(f (x), /(y))

Informally:
Let x,y : Aand p : Ids(x, y). We want to show Idg(f(x), f(y)).
By elimination we may assume that x = y, so it suffices to con-
struct a term of type Idg(f(x), f(x)). Take refl(f(x)).



Some examples (1)
Here is an informal proof that there is a term of type
x : Nat F ldnae(add(x)(zero), x) type

We proceed by induction on x : Nat.

» If x = zero : Nat, then add(x)(zero) = add(zero)(zero) = zero.
Hence it suffices to construct refl(zero) : Idyat(zero, zero).

» If x =succ(y) : Nat for some y : Nat, then
add(x)(zero) = add(succ(y))(zero) = succ(add(y)(zero))

By the IH we have p : Idnat(add(y)(zero), y). Hence

aPgyce(—)(P) © ldnat(succ(add(y)(zero)), succ(y))
= add(x)(zero) =x

So we have shown the inductive step.



Metatheory

Theorem
The following rule is admissible.

F P lda(M, N)
FM=N:A

Any two propositionally equal terms in an empty context
are also definitionally equal. (Hence the name ‘intensional’)

This did not apply to our previous proof because x : Nat was free.

Theorem
There is a set-theoretic model of MLTT with T, X, Id, Nat, and + types.



Extensional Identity Types

One might argue that x : Nat - ... : Idyat(add(x)(zero), x) should
be promoted to a definitional equality

x : Nat F add(x)(zero) = x : Nat
Add equality reflection rule:

I'E P:lda(M, N)
Fr’E-M=N:A

We then say we have extensional identity types. But then
» normalization is no longer decidable, and hence
> type checking is no longer decidable

So we are stuck with the ‘bureaucracy’ of intensional identity types.

But this is a fine type theory for computing by hand.
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Identity types are very mysterious

Let = M, N : A. Construct - Id4(M, N) type.
Now suppose = P, Q : Id4(M, N).
What is the meaning of the following type?

= 1dig,m,n) (P; Q) type

Should the following Uniqueness of Identity Proofs (UIP)
principle be inhabited for any type [ - A type?

F(xy A= (pg:1da(x, y)) = Idid,(x,y)(P; ) type  (UIP)

It’s certainly true in the set-theoretic model!

Theorem (Hofmann-Streicher, 1998)

There is a model of MLTT in which the above principle of
uniqueness of identity proofs (UIP) is not true.



Groupoids

Definition
A groupoid G consists of
> aset of objects ob(G)
» for x, y € ob(G) a set of isomorphisms Hom(x, y)
We write f : x — y if f € Hom(x, y).
» for each x € ob(G) an identity 1, € Hom(x, x)
» forisos f:x — yand g: y — za composite

gof x>z
» for eachiso f : x — y and inverse iso f ' : y = x, such that

flof=1:x>x fof*1:1y:yi>y

A one-object groupoid is ...
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Groupoids
Definition
A groupoid G consists of

> aset of objects ob(G)

» for x, y € ob(G) a set of isomorphisms Hom(x, y)
We write f : x — y if f € Hom(x, y).

» for each x € ob(G) an identity 1, € Hom(x, x)
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A one-object groupoid is ...a group!

If [Hom(x, y)| < 1a groupoid is ...an equivalence relation!



The Hofmann-Streicher groupoid model of type theory

Hofmann and Streicher interpreted MLTT as follows:
> I Atype is interpreted by a groupoid [A].
> A type family/dependent type x : A+ Btype is interpreted by
a fibration [B] : [A] — GPD of groupoids.
> Aterm of type x : AF Btype is a section of the fibration [B].

» The identity type F Ida(M, N) type is interpreted by the set of
isomorphisms of the groupoid [A], i.e.

Homg (IM], [N])

In this model there are types with non-trivial identity types.

But where do groupoids come from?



Paths
Let X be a (topological) space.

Definition
A path in space X is a continuous function p : [0, 1] — X.

Write p : x ~ y if p(0) = x and p(1) = y.
Given p:x~ ylet p~':y ~s x by p~'(£) < p(1— t).
Givenp:x~>yandq:y~ zlet
(pra)(t) = {28?_ 1 :]t?/i ;St 15/?
Question: given
pix~>y g:y~z r.z~w

is the following true?

?

(prq)=r=p=(q=r)



Homotopy
Let f,g: X — Y be continuous functions.

Definition
A homotopy H from f to g is a continuous function

H:Xx[0,1]—=Y

such that H(—,0) = f and H(—,1) = g.

Write f ~ g if there is a homotopy from f to g.
~ is an equivalence relation.



Associativity and Homotopy
Given

pix~~y q:y~z r:z~~w

we have that
(pra)ar~pe(qer):x—w

s

{ « B Y
o /ﬂ / Y

Ly L
[ 8 L
Lj T = I
1 1 3 1 .
4 2 4

If 1, : x ~ xand 1, : y ~» y are constant paths then ps 1, ~ p ~ 1, s p.



The Fundamental Groupoid

Let X be a space. Its fundamental groupoid 7(X) consists of
objects the points of X

isomorphisms equiv. classes [p] of paths p : x ~» y up to ~

Taking only equivalence classes of loops p : x ~» x at x € X gives
the fundamental group 7(X, x) of X at x.

These are essential algebraic invariants of the space X.

Theorem
7(S',b) X Z



oo-Groupoids
The fundamental insight:

Why quotient at all? I

Definition
A groupoid G consists of
> aset of objects ob(G)

» for x, y € ob(G) a set of isomorphisms Hom(x, y)

Definition (sort of)
An oco-groupoid G consists of
> aset of 0-cells ob(G)
» for x, y € ob(G) an co-groupoid of 1-cells Hom(x, y)



The Fundamental co-Groupoid

Let X be a space. Its fundamental oco-groupoid 7, (X) consists of
0-cells) the points of X
1-cells) paths p : x ~» y between points

2-cells homotopies H : p ~ g between paths

Exact definition(s) tiresome to describe analytically.

Grothendieck’s (1928-2014) dream, aka the homotopy hypothesis:

oo-groupoids = topological spaces up to homotopy I
PP OO




Identity Types and Homotopy

The intended pun:

types = spaces = co-groupoids
elements of the identity type = paths in the space

For example, given - A type we can write down a term

m_(x,y,z 0 A) = Ida(x, y) — 1da(y, z) — 1da(x, 2)

Informal proof: Suppose x,y,z : A, p: 1da(x, y), and g : 1da(y, 2).
By the elimination rule we may assume that x =y and y = z, so it
suffices to define a term of type Ida(x, x). Take refl(x).

Remember that because of the computation rule we have

refl(x) = refl(x) = refl(x)



Associativity of path composition
Given x, y, z : A we can then define a term
assoCyy; 1 (p: 1da(x,y)) = (q: 1da(y,z)) = (r: 1da(z, w)) —
Idid(xw) ((P= @) = r, p=(q=r))

Informal proof. Given p, g, r as above we may assume that x=y=z=w
and p = g = r = refl(x). Thus, we only need a term of type

Idig,(x,x)((P=q)=r,pu(g=r))
=refl(x) = refl(x)

and for that we may take refl(refl(x)).



Associativity of path composition
Given x, y, z : A we can then define a term
assoCyy; 1 (p: 1da(x,y)) = (q: 1da(y,z)) = (r: 1da(z, w)) —
Idid(xw) ((P= @) = r, p=(q=r))

Informal proof. Given p, g, r as above we may assume that x=y=z=w
and p = g = r = refl(x). Thus, we only need a term of type

Idig,(x,x)((P=q)=r,pu(g=r))
=refl(x) = refl(x)

and for that we may take refl(refl(x)).

This can be taken to its logical conclusion—see HoTT book:

The elimination rule of the identity type
generates the structure of an co-groupoid.

In other words, MLTT is a synthetic theory of co-groupoids.




Summary

> Intensional identity types allow proofs of non-trivial,
non-definitional equalities in MLTT.

> Iterated identity types generate the structure of an
oo-groupoid.

» That is why sometimes the elimination rule for the identity
type is known as path induction.

> MLTT can be seen as a synthetic theory of co-groupoids.

Tomorrow: homotopy levels; equivalence; higher inductive types.
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