Type Theory and Homotopy
 I. Constructions and Dependence

Alex Kavvos

Panhellenic Logic Symposium, 6-10 July 2022

I. Intuitionism and Constructions

Intuitionism, Constructivism, and Type Theory

- Many different philosophies: Brouwerian intuitionism, Heyting arithmetic, Russian constructivism, Bishop-style mathematics, etc. (see Stanford Encyclopedia of Philosophy entries)
- One common feature:

> To prove that a mathematical object exists you must show how to construct it.

- In particular, the details of the construction matter.
- Modern algebra: the structure of an isomorphism matters.
- Martin-Löf Type Theory (MLTT) was created as a formalization of Bishop-style constructive mathematics.
- Less focus on truth, more focus on proof.
- The law of the excluded middle (LEM) $\phi \vee \neg \phi$ is rejected.

Constructions

Let A, B, \ldots be sets.

$$
\begin{gathered}
\mathbf{0} \stackrel{\text { def }}{=} \emptyset \\
A \times B \stackrel{\mathbf{1}}{\stackrel{\text { def }}{=}}\{(a, b) \mid a \in A \text { and } b \in B\} \quad A \rightarrow B \stackrel{\text { def }}{=}\{f \mid f: A \rightarrow B\} \\
A+B \stackrel{\text { def }}{=}\{(1, a) \mid a \in A\} \cup\{(2, b) \mid b \in B\}
\end{gathered}
$$

Let $\neg A \stackrel{\text { def }}{=} A \rightarrow \mathbf{0}$.

Example

- $(x, y) \mapsto x \in(A \times B) \rightarrow A$
- $x \mapsto(y \mapsto(x, y)) \in A \rightarrow(B \rightarrow A \times B)$
- $\lambda x \cdot \lambda y \cdot(x, y) \in A \rightarrow(B \rightarrow A \times B)$
- $\lambda(x, v) .\left\{\begin{array}{ll}(1,(x, b)) & \text { if } v=(1, b) \\ (2,(x, c)) & \text { if } v=(2, c)\end{array} \in A \times(B+C) \rightarrow(A \times B)+(A \times C)\right.$
- $\lambda a . \lambda f . f(a) \in A \rightarrow \neg \neg A$

Dependence

Let $\left(B_{a}\right)_{a \in A}$ be a family of sets.
$(a: A) \times B_{a} \stackrel{\text { def }}{=} \sum_{a \in A} B_{a} \xlongequal{\text { def }}\left\{(a, b) \mid a \in A\right.$ and $\left.b \in B_{a}\right\}$
$(a: A) \rightarrow B_{a} \stackrel{\text { def }}{=} \prod_{a \in A} B_{a} \stackrel{\text { def }}{=}\left\{f: A \rightarrow \bigcup_{a \in A} B_{a} \mid f(a) \in B_{a}\right.$ for all $\left.a \in A\right\}$

Given a constant family of sets $(B)_{a \in A}$ we have

$$
(a: A) \times B=A \times B \quad(a: A) \rightarrow B=A \rightarrow B
$$

Example

Let $P_{n} \stackrel{\text { def }}{=} \begin{cases}\{*\} & \text { if } \mathrm{n} \text { is prime } \\ \emptyset & \text { otherwise }\end{cases}$
$-(11, *) \in(n: \mathbb{N}) \times P_{n}$, but $(4, *) \notin(n: \mathbb{N}) \times P_{n}$
$-\lambda n$. if n is prime then $(1, *)$ else $\left(2, \mathrm{id}_{\emptyset}\right) \in(n: \mathbb{N}) \rightarrow P_{n}+\neg P_{n}$
II. Martin-Löf Type Theory

Martin-Löf Type Theory (MLTT)

- Invented by Per Martin-Löf in the late 1960s.
- A formal theory in natural deduction style.
- Every term in the theory needs to have a type.
- There are no propositions, only types. Every term is a construction which proves its type.

```
types = predicates
    terms = proofs
```

- ZFC: engine (first-order logic) + fuel (axioms) MLTT: "engine and fuel all in one" (Pieter Hofstra, 1975-2022)

Judgements

Six distinct kinds of judgement:

Γ ctx	Γ is a context
$\Gamma \vdash A$ type	A is a type in context Γ
$\Gamma \vdash M: A$	M is a term of type A in context Γ

$\Gamma \equiv \Delta$ ctx $\quad \Gamma$ and Δ are definitionally equal contexts
$\Gamma \vdash A \equiv B$ type A and B are definitionally equal types
$\Gamma \vdash M \equiv N: A \quad M$ and N are definitionally equal terms
The equality judgements have rules that make them

- equivalence relations, e.g. $\frac{\Gamma \vdash A \equiv B \text { type }}{\Gamma \vdash B \equiv A \text { type }}$
- congruences, e.g.

$$
\frac{\Gamma \vdash A_{1} \equiv A_{2} \text { type } \quad \Gamma, x: A_{1} \vdash B_{1} \equiv B_{2} \text { type }}{\Gamma \vdash\left(x: A_{1}\right) \rightarrow B_{1} \equiv\left(x: A_{2}\right) \rightarrow B_{2} \text { type }}
$$

Contexts, variables, conversion

A context is a list of variables and their types.
$\overline{\cdot \operatorname{ctx}} \quad \frac{\Gamma \mathrm{ctx} \quad \Gamma \vdash A \text { type }}{\Gamma, x: A \operatorname{ctx}}$

Variables stand for terms.
If I have a variable I can use it as a term:

$$
\frac{\Gamma, x: A, \Delta \mathrm{ctx}}{\Gamma, x: A, \Delta \vdash x: A}
$$

We can always replace definitionally equals by equals.
The type conversion rule:

$$
\frac{\Gamma \vdash M: A \quad \Gamma \vdash A \equiv B \text { type }}{\Gamma \vdash M: B}
$$

What is a type?

It is a classifier of terms.
Terms of a certain type have an interface: a specification of how they can be created and consumed.

Ingredients of a type

- a formation rule (when can I form this type?)
- an introduction rule (how do I make terms of this type?)
- an elimination rule (how do I use terms of this type?)
- a computation rule (how do I calculate with its elements?)
- a uniqueness rule (what do terms of this type look like?)

Sometimes computation rules are called β rules and uniqueness rules η rules.

Dependent function types / П types

formation

$$
\begin{array}{lc}
\text { formation } & \frac{\Gamma, x: A \vdash B \text { type }}{\Gamma \vdash(x: A) \rightarrow B \text { type }} \\
\text { introduction } & \frac{\Gamma, x: A \vdash M: B}{\Gamma \vdash \lambda x: A \cdot M:(x: A) \rightarrow B} \\
\text { elimination } & \frac{\Gamma \vdash M:(x: A) \rightarrow B \quad \Gamma \vdash N: A}{\Gamma \vdash M(N): B[N / x]} \\
\text { computation } & \frac{\Gamma, x: A \vdash M: B \quad \Gamma \vdash N: A}{\Gamma \vdash(\lambda x: A \cdot M)(N) \equiv M[N / x]: B[N / x]} \\
\text { uniqueness } & \frac{\Gamma \vdash M:(x: A) \rightarrow B}{\Gamma \vdash M \equiv \lambda x: A \cdot M(x):(x: A) \rightarrow B}
\end{array}
$$

introduction
elimination
uniqueness

Dependent sum types / Σ types

formation

$$
\frac{\Gamma, x: A \vdash B \text { type }}{\Gamma \vdash(x: A) \times B \text { type }}
$$

introduction $\frac{\Gamma, x: A \vdash B \text { type } \quad \Gamma \vdash M: A \quad \Gamma \vdash N: B[M / x]}{\Gamma \vdash(M, N):(x: A) \times B}$
elimination

$$
\frac{\Gamma \vdash M:(x: A) \times B}{\Gamma \vdash \operatorname{pr}_{1}(M): A} \frac{\Gamma \vdash M:(x: A) \times B}{\Gamma \vdash \operatorname{pr}_{2}(M): B\left[\mathrm{pr}_{1}(M) / x\right]}
$$

computation

$$
\frac{\Gamma, x: A \vdash B \text { type } \quad \Gamma \vdash M: A \quad \Gamma \vdash N: B[M / x]}{\Gamma \vdash \operatorname{pr}_{1}((M, N)) \equiv M: A}
$$

$$
\frac{\Gamma, x: A \vdash B \text { type } \quad \Gamma \vdash M: A \quad \Gamma \vdash N: B[M / x]}{\Gamma \vdash \operatorname{pr}_{2}((M, N)) \equiv N: B[M / x]}
$$

$$
\frac{\Gamma \vdash M:(x: A) \times B}{\Gamma \vdash M \equiv\left(\operatorname{pr}_{1}(M), \operatorname{pr}_{2}(M)\right):(x: A) \times B}
$$

Coproducts (disjoint unions)

form.

$$
\frac{\Gamma \vdash A \text { type } \quad \Gamma \vdash B \text { type }}{\Gamma \vdash A+B \text { type }}
$$

$$
\text { intro. } \quad \frac{\Gamma \vdash M: A}{\Gamma \vdash \operatorname{inl}(M): A+B} \frac{\Gamma \vdash N: B}{\Gamma \vdash \operatorname{inr}(N): A+B}
$$

$$
\ulcorner\vdash \mathcal{M}: A+B \quad \Gamma, c: A+B \vdash C \text { type }
$$

$$
\text { elim. } \frac{\Gamma, x: A \vdash P: C[\operatorname{inl}(x) / c] \quad \Gamma, y: B \vdash Q: C[\operatorname{inr}(y) / c]}{\Gamma \vdash \operatorname{case}_{[c . C]}(M ; x . P ; y \cdot Q): C[M / c]}
$$

$$
\ulcorner\vdash M: A+B
$$

$$
\ulcorner, c: A+B \vdash C \text { type } \quad\ulcorner, x: A \vdash P: C[\operatorname{inl}(x) / c]
$$

comp.

$$
\Gamma, y: B \vdash Q: C[\operatorname{inr}(y) / c] \quad \Gamma \vdash E: A
$$

$$
\overline{\Gamma \vdash \operatorname{case}_{[c . C]}(\operatorname{inl}(E) ; x . P ; y . Q) \equiv P[E / x]: C[\operatorname{inl}(E) / c]}
$$

Natural numbers

form.
intro.

$$
\overline{\Gamma \vdash \text { Nat type }}
$$

intro.

$$
\overline{\Gamma \vdash \text { zero }: \text { Nat }} \frac{\Gamma \vdash N: N a t}{\Gamma \vdash \operatorname{succ}(N): \text { Nat }}
$$

elim.

$$
\begin{gathered}
\Gamma \vdash N: \text { Nat } \quad \Gamma, n: \text { Nat } \vdash C \text { type } \\
\Gamma \vdash P: C[\text { zero } / n] \quad \Gamma, n: \text { Nat, } c: C \vdash Q: C[\operatorname{succ}(n) / n] \\
\Gamma \vdash \operatorname{rec}_{[c . C]}(N ; P ; n, c . Q): C[N / n]
\end{gathered}
$$

comp.

$$
\overline{\Gamma \vdash \operatorname{rec}_{[c . C]}(\text { zero; } P ; n, c . Q) \equiv P: C[\text { zero } / n]}
$$

$\Gamma \vdash \operatorname{rec}_{[c . C]}(\operatorname{succ}(x) ; P ; n, c . Q) \equiv Q[x, \operatorname{rec}(x ; P ; n, c . Q) / n, c]: C[\operatorname{succ}(x) / n]$

Metatheory (I)

Let \mathcal{J} stand for either A type or M : A.
Theorem (Weakening)
The following rule is admissible: $\frac{\Gamma, \Delta \vdash \mathcal{J} \quad \Gamma \vdash A \text { type }}{\Gamma, x: A, \Delta \vdash \mathcal{J}}$
Theorem (Substitution / Cut)
The following rule is admissible: $\frac{\Gamma \vdash \mathcal{M}: A \quad \Gamma, x: A, \Delta \vdash \mathcal{J}}{\Gamma, \Delta[\mathcal{M} / x] \vdash \mathcal{J}[M / x]}$
Theorem
There is a set-theoretic model of MLTT with $\Pi, \Sigma, \mathrm{Nat}$, and + types.
The model can also be constructed in CZF (constructive ZF).
Corollary: the theory is consistent (if the ambient metatheory is).

Metatheory (II)

Theorem (Canonicity)
Let \vdash M : C. Then:

- if $C \equiv A+B$ then either $\vdash M \equiv \operatorname{inl}(P): A+B$ for some $\vdash P: A$ or $\vdash N \equiv \operatorname{inr}(Q): A+B$ for some $\vdash Q: B$,
- if $C \equiv$ Nat then $\vdash M \equiv \operatorname{succ}^{n}$ (zero) : Nat for some $n \in \mathbb{N}$
- if $C \equiv(x: A) \times B$ then $\vdash M \equiv(P, Q):(x: A) \times B$ for some $\vdash P: A$ and $\vdash Q: B[P / x]$
Moreover, finding the "canonical form" of such terms is computable.
Theorem (Normalization)
Given Γ, M, N and A, it is decidable whether $\Gamma \vdash M \equiv N: A$.
Theorem (Decidability)
Given Γ, and any judgement \mathcal{J}, it is decidable whether $\Gamma \vdash \mathcal{J}$.
These properties give MLTT its computational flavour.

III. Examples

Propositional constructions

> Types are propositions. Terms are proofs.

Define:

$$
\wedge \stackrel{\text { def }}{=} \times \quad \vee \stackrel{\text { def }}{=}+
$$

Given $\vdash A$, B type we have
$-\vdash \lambda x . \lambda y \cdot x: A \rightarrow B \rightarrow A$
$-\vdash \lambda x \cdot \lambda y \cdot(x, y): A \rightarrow B \rightarrow A \wedge B$
$-\vdash \lambda p \cdot\left(\operatorname{pr}_{2}(p), \operatorname{pr}_{1}(p)\right): A \wedge B \rightarrow B \wedge A$
$-\vdash \lambda u$. case $(u ; x \cdot \operatorname{inr}(x) ; y \cdot \operatorname{inl}(y)): A \vee B \rightarrow B \vee A$
Theorem (Curry-Howard correspondence) All intuitionistically valid formulas/types are inhabited.

Addition

Let $\Gamma \stackrel{\text { def }}{=} x:$ Nat, $y:$ Nat.
$\frac{\overline{\Gamma \vdash x: \mathrm{Nat}} \quad \overline{\Gamma \vdash y: \mathrm{Nat}} \frac{\overline{\Gamma, n: \mathrm{Nat}, c: \mathrm{Nat} \vdash n: \mathrm{Nat}}}{\Gamma, n: \mathrm{Nat}, c: \mathrm{Nat} \vdash \operatorname{succ}(n): \mathrm{Nat}}}{\Gamma \vdash \operatorname{rec}_{[\ldots \mathrm{Nat}]}(x ; y ; n, c . \operatorname{succ}(c)): \mathrm{Nat}}$

So we can define

$$
\vdash \operatorname{add}=\lambda x \cdot \lambda y \cdot \operatorname{rec}(x ; y ; n, c . \operatorname{succ}(n)): \mathrm{Nat} \rightarrow \mathrm{Nat} \rightarrow \mathrm{Nat}
$$

and compute

$$
\begin{aligned}
& y: \operatorname{Nat} \vdash \operatorname{add}(\text { zero })(y) \equiv y: \text { Nat } \\
& y: \operatorname{Nat} \vdash \operatorname{add}(\operatorname{succ}(z e r o))(y) \equiv \operatorname{succ}(y): \operatorname{Nat}
\end{aligned}
$$

and so on.

A familiar construction (I)

Let $\Gamma \vdash A, B$ type, and $x: A, y: B \vdash R(x, y)$ type. Then

$$
\frac{\frac{x: A, y: B \vdash R(x, y) \text { type }}{x: A \vdash(y: B) \times R(x, y) \text { type }}}{\vdash(x: A) \rightarrow(y: B) \times R(x, y) \text { type }}
$$

This is essentially $\forall x: A . \exists y: B . R(x, y)$.
Similarly, recalling that $A \rightarrow B \stackrel{\text { def }}{=}(x: A) \rightarrow B$, we have

$$
\frac{\overline{f: A \rightarrow B, x: A \vdash R(x, f(x)) \text { type }}}{\vdash(f: A \rightarrow B) \times((x: A) \rightarrow R(x, f(x))) \text { type }}
$$

This is essentially $\exists f: A \rightarrow B . \forall x: A . R(x, f(x))$.

A familiar construction (II)

Let $\Gamma \vdash A, B$ type, and $x: A, y: B \vdash R(x, y)$ type. Then

$$
\vdash(x: A) \rightarrow(y: B) \times R(x, y) \text { type }
$$

This is essentially $\forall x: A$. $\exists y: B . R(x, y)$. Similarly, recalling that $A \rightarrow B \stackrel{\text { def }}{=}(x: A) \rightarrow B$, we have

$$
\vdash(f: A \rightarrow B) \times((x: A) \rightarrow R(x, f(x))) \text { type }
$$

This is essentially $\exists f: A \rightarrow B . \forall x: A . R(x, f(x))$.

$$
\begin{aligned}
\Gamma \vdash ?:((x: A) \rightarrow & (y: B) \times R(x, y)) \\
& \rightarrow((f: A \rightarrow B) \times((x: A) \rightarrow R(x, f(x))))
\end{aligned}
$$

A familiar construction (II)

Let $\Gamma \vdash A, B$ type, and $x: A, y: B \vdash R(x, y)$ type. Then

$$
\vdash(x: A) \rightarrow(y: B) \times R(x, y) \text { type }
$$

This is essentially $\forall x: A . \exists y: B . R(x, y)$. Similarly, recalling that $A \rightarrow B \stackrel{\text { def }}{=}(x: A) \rightarrow B$, we have

$$
\vdash(f: A \rightarrow B) \times((x: A) \rightarrow R(x, f(x))) \text { type }
$$

This is essentially $\exists f: A \rightarrow B . \forall x: A . R(x, f(x))$.

$$
\begin{aligned}
\Gamma \vdash ?:((x: A) \rightarrow & (y: B) \times R(x, y)) \\
& \rightarrow((f: A \rightarrow B) \times((x: A) \rightarrow R(x, f(x))))
\end{aligned}
$$

Indeed, this is the type-theoretic "axiom" of choice:

$$
\begin{aligned}
\Gamma \vdash \lambda g \cdot\left(\lambda x \cdot \operatorname{pr}_{1}(g(x))\right. & \left., \lambda x \cdot \operatorname{pr}_{2}(g(x))\right):((x: A) \rightarrow(y: B) \times R(x, y)) \\
& \rightarrow((f: A \rightarrow B) \times((x: A) \rightarrow R(x, f(x))))
\end{aligned}
$$

The type-theoretic "axiom" of choice

Let $\Gamma \vdash A, B$ type, and $x: A, y: B \vdash R(x, y)$ type. Then

$$
\begin{aligned}
\Gamma \vdash \lambda g \cdot\left(\lambda x \cdot \operatorname{pr}_{1}(g(x))\right. & \left., \lambda x \cdot \operatorname{pr}_{2}(g(x))\right):((x: A) \rightarrow(y: B) \times R(x, y)) \\
\rightarrow & ((f: A \rightarrow B) \times((x: A) \rightarrow R(x, f(x))))
\end{aligned}
$$

Suppose $g:(x: A) \rightarrow(y: B) \times R(x, y)$. Then clearly

$$
\begin{aligned}
& f_{g} \stackrel{\text { def }}{=} \lambda x: A \cdot \underbrace{\operatorname{pr}_{1}(\overbrace{g(x)}^{(y: B) \times R(x, y)})}_{B}: A \rightarrow B \\
& h_{g} \stackrel{\text { def }}{=} \lambda x: A \cdot \underbrace{\operatorname{pr}_{2}(\overbrace{g(x)})}_{R\left(x, \mathrm{pr}_{1}(g(x))\right)}:(x: A) \rightarrow R\left(x, \operatorname{pr}_{1}(g(x))\right)
\end{aligned}
$$

But $f(x) \equiv \operatorname{pr}_{1}(g(x))$, so this type is equal to $(x: A) \rightarrow R(x, f(x))$. Hence λg. $\left(f_{g}, h_{g}\right)$ has the right type.

Summary

- MLTT is a formal theory of constructions and dependence.
- It has very good metatheoretic and computational properties.
- It is inherently "constructive" (for some sense of the word).

Tomorrow: equality as a proposition/type.

References

－Martin Hofmann，Syntax and Semantics of Dependent Types， Semantics and Logics of Computation（Andrew M．Pitts and P．Dybjer，eds．），Cambridge University Press，1997，pp．79－130．
國 Per Martin－Löf，An Intuitionistic Theory of Types：Predicative Part，Logic Colloquium＇73（H．E．Rose and J．C．Shepherdson， eds．），Studies in Logic and the Foundations of Mathematics， no．80，Elsevier，Bristol，1975，pp．73－118．
图 Constructive mathematics and computer programming， Philosophical Transactions of the Royal Society of London． Series A，Mathematical and Physical Sciences 312 （1984）， no．1522，501－518．
圊 Bengt Nordström，Kent Petersson，and Jan M．Smith， Programming in Martin－Löf＇s Type Theory：an Introduction， Oxford University Press， 1990.

