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I. Intuitionism and Constructions



Intuitionism, Constructivism, and Type Theory

▶ Many different philosophies: Brouwerian intuitionism, Heyting

arithmetic, Russian constructivism, Bishop-style mathematics,

etc. (see Stanford Encyclopedia of Philosophy entries)

▶ One common feature:

To prove that a mathematical object exists

you must show how to construct it.

▶ In particular, the details of the construction matter.

▶ Modern algebra: the structure of an isomorphism matters.

▶ Martin-Löf Type Theory (MLTT) was created as a

formalization of Bishop-style constructive mathematics.

▶ Less focus on truth, more focus on proof.
▶ The law of the excluded middle (LEM) ϕ ∨ ¬ϕ is rejected.



Constructions

Let A,B, . . . be sets.

0 def

= ∅ 1 def

= {∗}

A× B def

= {(a, b) | a ∈ A and b ∈ B} A → B def

= {f | f : A → B}

A+ B def

= {(1, a) | a ∈ A} ∪ {(2, b) | b ∈ B}

Let ¬A def

= A → 0.

Example

▶ (x, y) 7→ x ∈ (A× B) → A

▶ x 7→ (y 7→ (x, y)) ∈ A → (B → A× B)

▶ λx. λy. (x, y) ∈ A → (B → A× B)

▶ λ(x, v).

{
(1, (x, b)) if v = (1, b)

(2, (x, c)) if v = (2, c)
∈ A×(B+C) → (A×B)+(A×C)

▶ λa. λf . f (a) ∈ A → ¬¬A



Dependence

Let (Ba)a∈A be a family of sets.

(a : A)× Ba
def

=
∑
a∈A

Ba
def

= {(a, b) | a ∈ A and b ∈ Ba}

(a : A) → Ba
def

=
∏
a∈A

Ba
def

=

{
f : A →

⋃
a∈A

Ba | f (a) ∈ Ba for all a ∈ A

}

Given a constant family of sets (B)a∈A we have

(a : A)× B = A× B (a : A) → B = A → B

Example

Let Pn
def

=

{
{∗} if n is prime

∅ otherwise

▶ (11, ∗) ∈ (n : N)× Pn, but (4, ∗) ̸∈ (n : N)× Pn
▶ λn. if n is prime then (1, ∗) else (2, id∅) ∈ (n : N) → Pn + ¬Pn



II. Martin-Löf Type Theory



Martin-Löf Type Theory (MLTT)

▶ Invented by Per Martin-Löf in the late 1960s.

▶ A formal theory in natural deduction style.

▶ Every term in the theory needs to have a type.
▶ There are no propositions, only types.

Every term is a construction which proves its type.

types = predicates

terms = proofs

▶ ZFC: engine (first-order logic) + fuel (axioms)

MLTT: “engine and fuel all in one” (Pieter Hofstra, 1975–2022)



Judgements

Six distinct kinds of judgement:

Γ ctx Γ is a context

Γ ⊢ A type A is a type in context Γ
Γ ⊢ M : A M is a term of type A in context Γ

Γ ≡ ∆ ctx Γ and∆ are definitionally equal contexts

Γ ⊢ A ≡ B type A and B are definitionally equal types

Γ ⊢ M ≡ N : A M and N are definitionally equal terms

The equality judgements have rules that make them

▶ equivalence relations, e.g.

Γ ⊢ A ≡ B type

Γ ⊢ B ≡ A type

▶ congruences, e.g.

Γ ⊢ A1 ≡ A2 type Γ, x : A1 ⊢ B1 ≡ B2 type

Γ ⊢ (x : A1) → B1 ≡ (x : A2) → B2 type



Contexts, variables, conversion

A context is a list of variables and their types.

· ctx
Γ ctx Γ ⊢ A type

Γ, x : A ctx

Variables stand for terms.

If I have a variable I can use it as a term:

Γ, x : A,∆ ctx

Γ, x : A,∆ ⊢ x : A

We can always replace definitionally equals by equals.

The type conversion rule:

Γ ⊢ M : A Γ ⊢ A ≡ B type

Γ ⊢ M : B



What is a type?

It is a classifier of terms.

Terms of a certain type have an interface: a specification of how

they can be created and consumed.

Ingredients of a type

▶ a formation rule (when can I form this type?)

▶ an introduction rule (how do I make terms of this type?)

▶ an elimination rule (how do I use terms of this type?)

▶ a computation rule (how do I calculate with its elements?)

▶ a uniqueness rule (what do terms of this type look like?)

Sometimes computation rules are called β rules
and uniqueness rules η rules.



Dependent function types / Π types

formation

Γ, x : A ⊢ B type

Γ ⊢ (x : A) → B type

introduction

Γ, x : A ⊢ M : B

Γ ⊢ λx : A.M : (x : A) → B

elimination

Γ ⊢ M : (x : A) → B Γ ⊢ N : A

Γ ⊢ M(N) : B[N/x]

computation

Γ, x : A ⊢ M : B Γ ⊢ N : A

Γ ⊢ (λx : A.M)(N) ≡ M[N/x] : B[N/x]

uniqueness

Γ ⊢ M : (x : A) → B

Γ ⊢ M ≡ λx : A.M(x) : (x : A) → B



Dependent sum types / Σ types

formation

Γ, x : A ⊢ B type

Γ ⊢ (x : A)× B type

introduction

Γ, x : A ⊢ B type Γ ⊢ M : A Γ ⊢ N : B[M/x]

Γ ⊢ (M,N) : (x : A)× B

elimination

Γ ⊢ M : (x : A)× B

Γ ⊢ pr
1
(M) : A

Γ ⊢ M : (x : A)× B

Γ ⊢ pr
2
(M) : B[pr

1
(M)/x]

computation

Γ, x : A ⊢ B type Γ ⊢ M : A Γ ⊢ N : B[M/x]

Γ ⊢ pr
1
((M,N)) ≡ M : A

Γ, x : A ⊢ B type Γ ⊢ M : A Γ ⊢ N : B[M/x]

Γ ⊢ pr
2
((M,N)) ≡ N : B[M/x]

uniqueness

Γ ⊢ M : (x : A)× B

Γ ⊢ M ≡ (pr
1
(M), pr

2
(M)) : (x : A)× B



Coproducts (disjoint unions)

form.

Γ ⊢ A type Γ ⊢ B type

Γ ⊢ A+ B type

intro.

Γ ⊢ M : A

Γ ⊢ inl(M) : A+ B

Γ ⊢ N : B

Γ ⊢ inr(N) : A+ B

elim.

Γ ⊢ M : A+ B Γ, c : A+ B ⊢ C type

Γ, x : A ⊢ P : C[inl(x)/c] Γ, y : B ⊢ Q : C[inr(y)/c]

Γ ⊢ case[c.C](M; x. P; y.Q) : C[M/c]

comp.

Γ ⊢ M : A+ B
Γ, c : A+ B ⊢ C type Γ, x : A ⊢ P : C[inl(x)/c]

Γ, y : B ⊢ Q : C[inr(y)/c] Γ ⊢ E : A

Γ ⊢ case[c.C](inl(E); x. P; y.Q) ≡ P[E/x] : C[inl(E)/c]



Natural numbers

form.

Γ ⊢ Nat type

intro.

Γ ⊢ zero : Nat

Γ ⊢ N : Nat

Γ ⊢ succ(N) : Nat

elim.

Γ ⊢ N : Nat Γ, n : Nat ⊢ C type

Γ ⊢ P : C[zero/n] Γ, n : Nat, c : C ⊢ Q : C[succ(n)/n]

Γ ⊢ rec[c.C](N ; P; n, c.Q) : C[N/n]

comp.

. . .

Γ ⊢ rec[c.C](zero; P; n, c.Q) ≡ P : C[zero/n]

. . .

Γ ⊢ rec[c.C](succ(x); P; n, c.Q) ≡ Q[x, rec(x; P; n, c.Q)/n, c] : C[succ(x)/n]



Metatheory (I)

Let J stand for either A type or M : A.

Theorem (Weakening)

The following rule is admissible:
Γ,∆ ⊢ J Γ ⊢ A type

Γ, x : A,∆ ⊢ J

Theorem (Substitution / Cut)

The following rule is admissible:
Γ ⊢ M : A Γ, x : A,∆ ⊢ J

Γ,∆[M/x] ⊢ J [M/x]

Theorem

There is a set-theoretic model of MLTT with Π, Σ, Nat, and + types.

The model can also be constructed in CZF (constructive ZF).

Corollary: the theory is consistent (if the ambient metatheory is).



Metatheory (II)

Theorem (Canonicity)

Let ⊢ M : C. Then:
▶ if C ≡ A+ B then either ⊢ M ≡ inl(P) : A+ B for some ⊢ P : A

or ⊢ N ≡ inr(Q) : A+ B for some ⊢ Q : B,
▶ if C ≡ Nat then ⊢ M ≡ succn(zero) : Nat for some n ∈ N
▶ if C ≡ (x : A)× B then ⊢ M ≡ (P,Q) : (x : A)× B for some

⊢ P : A and ⊢ Q : B[P/x]

Moreover, finding the “canonical form” of such terms is computable.

Theorem (Normalization)

Given Γ, M, N and A, it is decidable whether Γ ⊢ M ≡ N : A.

Theorem (Decidability)

Given Γ, and any judgement J , it is decidable whether Γ ⊢ J .

These properties give MLTT its computational flavour.



III. Examples



Propositional constructions

Types are propositions. Terms are proofs.

Define:

∧ def

= × ∨ def

= +

Given ⊢ A,B type we have

▶ ⊢ λx. λy. x : A → B → A
▶ ⊢ λx. λy. (x, y) : A → B → A ∧ B
▶ ⊢ λp. (pr

2
(p), pr

1
(p)) : A ∧ B → B ∧ A

▶ ⊢ λu. case(u; x. inr(x); y. inl(y)) : A ∨ B → B ∨ A

Theorem (Curry-Howard correspondence)

All intuitionistically valid formulas/types are inhabited.



Addition

Let Γ
def

= x : Nat, y : Nat.

Γ ⊢ x : Nat Γ ⊢ y : Nat

Γ, n : Nat, c : Nat ⊢ n : Nat

Γ, n : Nat, c : Nat ⊢ succ(n) : Nat

Γ ⊢ rec[ .Nat](x; y; n, c. succ(c)) : Nat

So we can define

⊢ add = λx. λy. rec(x; y; n, c. succ(n)) : Nat → Nat → Nat

and compute

y : Nat ⊢ add(zero)(y)≡ y : Nat

y : Nat ⊢ add(succ(zero))(y)≡ succ(y) : Nat

and so on.



A familiar construction (I)

Let Γ ⊢ A,B type, and x : A, y : B ⊢ R(x, y) type. Then

x : A, y : B ⊢ R(x, y) type

x : A ⊢ (y : B)× R(x, y) type

⊢ (x : A) → (y : B)× R(x, y) type

This is essentially ∀x : A. ∃y : B. R(x, y).

Similarly, recalling that A → B def

= (x : A) → B, we have

.

.

.

f : A → B, x : A ⊢ R(x, f (x)) type

⊢ (f : A → B)× ((x : A) → R(x, f (x))) type

This is essentially ∃f : A → B. ∀x : A. R(x, f (x)).



A familiar construction (II)

Let Γ ⊢ A,B type, and x : A, y : B ⊢ R(x, y) type. Then

⊢ (x : A) → (y : B)× R(x, y) type

This is essentially ∀x : A. ∃y : B. R(x, y).
Similarly, recalling that A → B def

= (x : A) → B, we have

⊢ (f : A → B)× ((x : A) → R(x, f (x))) type

This is essentially ∃f : A → B. ∀x : A. R(x, f (x)).

Γ ⊢ ? : ((x : A) → (y : B)× R(x, y))

→ ((f : A → B)× ((x : A) → R(x, f (x))))

Indeed, this is the type-theoretic “axiom” of choice:

Γ ⊢ λg. (λx. pr
1
(g(x)), λx. pr

2
(g(x))) : ((x : A) → (y : B)×R(x, y))

→ ((f : A → B)× ((x : A) → R(x, f (x))))



A familiar construction (II)

Let Γ ⊢ A,B type, and x : A, y : B ⊢ R(x, y) type. Then

⊢ (x : A) → (y : B)× R(x, y) type

This is essentially ∀x : A. ∃y : B. R(x, y).
Similarly, recalling that A → B def

= (x : A) → B, we have

⊢ (f : A → B)× ((x : A) → R(x, f (x))) type

This is essentially ∃f : A → B. ∀x : A. R(x, f (x)).

Γ ⊢ ? : ((x : A) → (y : B)× R(x, y))

→ ((f : A → B)× ((x : A) → R(x, f (x))))

Indeed, this is the type-theoretic “axiom” of choice:

Γ ⊢ λg. (λx. pr
1
(g(x)), λx. pr

2
(g(x))) : ((x : A) → (y : B)×R(x, y))

→ ((f : A → B)× ((x : A) → R(x, f (x))))



The type-theoretic “axiom” of choice

Let Γ ⊢ A,B type, and x : A, y : B ⊢ R(x, y) type. Then

Γ ⊢ λg. (λx. pr
1
(g(x)), λx. pr

2
(g(x))) : ((x : A) → (y : B)×R(x, y))

→ ((f : A → B)× ((x : A) → R(x, f (x))))

Suppose g : (x : A) → (y : B)× R(x, y). Then clearly

fg
def

= λx : A. pr
1
(

(y:B)×R(x,y)︷︸︸︷
g(x) )︸ ︷︷ ︸
B

: A → B

hg
def

= λx : A. pr
2
(

(y:B)×R(x,y)︷︸︸︷
g(x) )︸ ︷︷ ︸

R(x,pr
1
(g(x)))

: (x : A) → R(x, pr
1
(g(x)))

But f (x) ≡ pr
1
(g(x)), so this type is equal to (x : A) → R(x, f (x)).

Hence λg. (fg, hg) has the right type.



Summary

▶ MLTT is a formal theory of constructions and dependence.
▶ It has very good metatheoretic and computational properties.

▶ It is inherently “constructive” (for some sense of the word).

Tomorrow: equality as a proposition/type.
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