
Type Theory and Homotopy

I. Constructions and Dependence

Alex Kavvos

Panhellenic Logic Symposium, 6–10 July 2022

I. Intuitionism and Constructions

Intuitionism, Constructivism, and Type Theory

▶ Many different philosophies: Brouwerian intuitionism, Heyting

arithmetic, Russian constructivism, Bishop-style mathematics,

etc. (see Stanford Encyclopedia of Philosophy entries)

▶ One common feature:

To prove that a mathematical object exists

you must show how to construct it.

▶ In particular, the details of the construction matter.

▶ Modern algebra: the structure of an isomorphism matters.

▶ Martin-Löf Type Theory (MLTT) was created as a

formalization of Bishop-style constructive mathematics.

▶ Less focus on truth, more focus on proof.
▶ The law of the excluded middle (LEM) ϕ ∨ ¬ϕ is rejected.

Constructions

Let A,B, . . . be sets.

0 def

= ∅ 1 def

= {∗}

A× B def

= {(a, b) | a ∈ A and b ∈ B} A → B def

= {f | f : A → B}

A+ B def

= {(1, a) | a ∈ A} ∪ {(2, b) | b ∈ B}

Let ¬A def

= A → 0.

Example

▶ (x, y) 7→ x ∈ (A× B) → A

▶ x 7→ (y 7→ (x, y)) ∈ A → (B → A× B)

▶ λx. λy. (x, y) ∈ A → (B → A× B)

▶ λ(x, v).

{
(1, (x, b)) if v = (1, b)

(2, (x, c)) if v = (2, c)
∈ A×(B+C) → (A×B)+(A×C)

▶ λa. λf . f (a) ∈ A → ¬¬A

Dependence

Let (Ba)a∈A be a family of sets.

(a : A)× Ba
def

=
∑
a∈A

Ba
def

= {(a, b) | a ∈ A and b ∈ Ba}

(a : A) → Ba
def

=
∏
a∈A

Ba
def

=

{
f : A →

⋃
a∈A

Ba | f (a) ∈ Ba for all a ∈ A

}

Given a constant family of sets (B)a∈A we have

(a : A)× B = A× B (a : A) → B = A → B

Example

Let Pn
def

=

{
{∗} if n is prime

∅ otherwise

▶ (11, ∗) ∈ (n : N)× Pn, but (4, ∗) ̸∈ (n : N)× Pn
▶ λn. if n is prime then (1, ∗) else (2, id∅) ∈ (n : N) → Pn + ¬Pn

II. Martin-Löf Type Theory

Martin-Löf Type Theory (MLTT)

▶ Invented by Per Martin-Löf in the late 1960s.

▶ A formal theory in natural deduction style.

▶ Every term in the theory needs to have a type.
▶ There are no propositions, only types.

Every term is a construction which proves its type.

types = predicates

terms = proofs

▶ ZFC: engine (first-order logic) + fuel (axioms)

MLTT: “engine and fuel all in one” (Pieter Hofstra, 1975–2022)

Judgements

Six distinct kinds of judgement:

Γ ctx Γ is a context

Γ ⊢ A type A is a type in context Γ
Γ ⊢ M : A M is a term of type A in context Γ

Γ ≡ ∆ ctx Γ and∆ are definitionally equal contexts

Γ ⊢ A ≡ B type A and B are definitionally equal types

Γ ⊢ M ≡ N : A M and N are definitionally equal terms

The equality judgements have rules that make them

▶ equivalence relations, e.g.

Γ ⊢ A ≡ B type

Γ ⊢ B ≡ A type

▶ congruences, e.g.

Γ ⊢ A1 ≡ A2 type Γ, x : A1 ⊢ B1 ≡ B2 type

Γ ⊢ (x : A1) → B1 ≡ (x : A2) → B2 type

Contexts, variables, conversion

A context is a list of variables and their types.

· ctx
Γ ctx Γ ⊢ A type

Γ, x : A ctx

Variables stand for terms.

If I have a variable I can use it as a term:

Γ, x : A,∆ ctx

Γ, x : A,∆ ⊢ x : A

We can always replace definitionally equals by equals.

The type conversion rule:

Γ ⊢ M : A Γ ⊢ A ≡ B type

Γ ⊢ M : B

What is a type?

It is a classifier of terms.

Terms of a certain type have an interface: a specification of how

they can be created and consumed.

Ingredients of a type

▶ a formation rule (when can I form this type?)

▶ an introduction rule (how do I make terms of this type?)

▶ an elimination rule (how do I use terms of this type?)

▶ a computation rule (how do I calculate with its elements?)

▶ a uniqueness rule (what do terms of this type look like?)

Sometimes computation rules are called β rules
and uniqueness rules η rules.

Dependent function types / Π types

formation

Γ, x : A ⊢ B type

Γ ⊢ (x : A) → B type

introduction

Γ, x : A ⊢ M : B

Γ ⊢ λx : A.M : (x : A) → B

elimination

Γ ⊢ M : (x : A) → B Γ ⊢ N : A

Γ ⊢ M(N) : B[N/x]

computation

Γ, x : A ⊢ M : B Γ ⊢ N : A

Γ ⊢ (λx : A.M)(N) ≡ M[N/x] : B[N/x]

uniqueness

Γ ⊢ M : (x : A) → B

Γ ⊢ M ≡ λx : A.M(x) : (x : A) → B

Dependent sum types / Σ types

formation

Γ, x : A ⊢ B type

Γ ⊢ (x : A)× B type

introduction

Γ, x : A ⊢ B type Γ ⊢ M : A Γ ⊢ N : B[M/x]

Γ ⊢ (M,N) : (x : A)× B

elimination

Γ ⊢ M : (x : A)× B

Γ ⊢ pr
1
(M) : A

Γ ⊢ M : (x : A)× B

Γ ⊢ pr
2
(M) : B[pr

1
(M)/x]

computation

Γ, x : A ⊢ B type Γ ⊢ M : A Γ ⊢ N : B[M/x]

Γ ⊢ pr
1
((M,N)) ≡ M : A

Γ, x : A ⊢ B type Γ ⊢ M : A Γ ⊢ N : B[M/x]

Γ ⊢ pr
2
((M,N)) ≡ N : B[M/x]

uniqueness

Γ ⊢ M : (x : A)× B

Γ ⊢ M ≡ (pr
1
(M), pr

2
(M)) : (x : A)× B

Coproducts (disjoint unions)

form.

Γ ⊢ A type Γ ⊢ B type

Γ ⊢ A+ B type

intro.

Γ ⊢ M : A

Γ ⊢ inl(M) : A+ B

Γ ⊢ N : B

Γ ⊢ inr(N) : A+ B

elim.

Γ ⊢ M : A+ B Γ, c : A+ B ⊢ C type

Γ, x : A ⊢ P : C[inl(x)/c] Γ, y : B ⊢ Q : C[inr(y)/c]

Γ ⊢ case[c.C](M; x. P; y.Q) : C[M/c]

comp.

Γ ⊢ M : A+ B
Γ, c : A+ B ⊢ C type Γ, x : A ⊢ P : C[inl(x)/c]

Γ, y : B ⊢ Q : C[inr(y)/c] Γ ⊢ E : A

Γ ⊢ case[c.C](inl(E); x. P; y.Q) ≡ P[E/x] : C[inl(E)/c]

Natural numbers

form.

Γ ⊢ Nat type

intro.

Γ ⊢ zero : Nat

Γ ⊢ N : Nat

Γ ⊢ succ(N) : Nat

elim.

Γ ⊢ N : Nat Γ, n : Nat ⊢ C type

Γ ⊢ P : C[zero/n] Γ, n : Nat, c : C ⊢ Q : C[succ(n)/n]

Γ ⊢ rec[c.C](N ; P; n, c.Q) : C[N/n]

comp.

. . .

Γ ⊢ rec[c.C](zero; P; n, c.Q) ≡ P : C[zero/n]

. . .

Γ ⊢ rec[c.C](succ(x); P; n, c.Q) ≡ Q[x, rec(x; P; n, c.Q)/n, c] : C[succ(x)/n]

Metatheory (I)

Let J stand for either A type or M : A.

Theorem (Weakening)

The following rule is admissible:
Γ,∆ ⊢ J Γ ⊢ A type

Γ, x : A,∆ ⊢ J

Theorem (Substitution / Cut)

The following rule is admissible:
Γ ⊢ M : A Γ, x : A,∆ ⊢ J

Γ,∆[M/x] ⊢ J [M/x]

Theorem

There is a set-theoretic model of MLTT with Π, Σ, Nat, and + types.

The model can also be constructed in CZF (constructive ZF).

Corollary: the theory is consistent (if the ambient metatheory is).

Metatheory (II)

Theorem (Canonicity)

Let ⊢ M : C. Then:
▶ if C ≡ A+ B then either ⊢ M ≡ inl(P) : A+ B for some ⊢ P : A

or ⊢ N ≡ inr(Q) : A+ B for some ⊢ Q : B,
▶ if C ≡ Nat then ⊢ M ≡ succn(zero) : Nat for some n ∈ N
▶ if C ≡ (x : A)× B then ⊢ M ≡ (P,Q) : (x : A)× B for some

⊢ P : A and ⊢ Q : B[P/x]

Moreover, finding the “canonical form” of such terms is computable.

Theorem (Normalization)

Given Γ, M, N and A, it is decidable whether Γ ⊢ M ≡ N : A.

Theorem (Decidability)

Given Γ, and any judgement J , it is decidable whether Γ ⊢ J .

These properties give MLTT its computational flavour.

III. Examples

Propositional constructions

Types are propositions. Terms are proofs.

Define:

∧ def

= × ∨ def

= +

Given ⊢ A,B type we have

▶ ⊢ λx. λy. x : A → B → A
▶ ⊢ λx. λy. (x, y) : A → B → A ∧ B
▶ ⊢ λp. (pr

2
(p), pr

1
(p)) : A ∧ B → B ∧ A

▶ ⊢ λu. case(u; x. inr(x); y. inl(y)) : A ∨ B → B ∨ A

Theorem (Curry-Howard correspondence)

All intuitionistically valid formulas/types are inhabited.

Addition

Let Γ
def

= x : Nat, y : Nat.

Γ ⊢ x : Nat Γ ⊢ y : Nat

Γ, n : Nat, c : Nat ⊢ n : Nat

Γ, n : Nat, c : Nat ⊢ succ(n) : Nat

Γ ⊢ rec[.Nat](x; y; n, c. succ(c)) : Nat

So we can define

⊢ add = λx. λy. rec(x; y; n, c. succ(n)) : Nat → Nat → Nat

and compute

y : Nat ⊢ add(zero)(y)≡ y : Nat

y : Nat ⊢ add(succ(zero))(y)≡ succ(y) : Nat

and so on.

A familiar construction (I)

Let Γ ⊢ A,B type, and x : A, y : B ⊢ R(x, y) type. Then

x : A, y : B ⊢ R(x, y) type

x : A ⊢ (y : B)× R(x, y) type

⊢ (x : A) → (y : B)× R(x, y) type

This is essentially ∀x : A. ∃y : B. R(x, y).

Similarly, recalling that A → B def

= (x : A) → B, we have

.

.

.

f : A → B, x : A ⊢ R(x, f (x)) type

⊢ (f : A → B)× ((x : A) → R(x, f (x))) type

This is essentially ∃f : A → B. ∀x : A. R(x, f (x)).

A familiar construction (II)

Let Γ ⊢ A,B type, and x : A, y : B ⊢ R(x, y) type. Then

⊢ (x : A) → (y : B)× R(x, y) type

This is essentially ∀x : A. ∃y : B. R(x, y).
Similarly, recalling that A → B def

= (x : A) → B, we have

⊢ (f : A → B)× ((x : A) → R(x, f (x))) type

This is essentially ∃f : A → B. ∀x : A. R(x, f (x)).

Γ ⊢ ? : ((x : A) → (y : B)× R(x, y))

→ ((f : A → B)× ((x : A) → R(x, f (x))))

Indeed, this is the type-theoretic “axiom” of choice:

Γ ⊢ λg. (λx. pr
1
(g(x)), λx. pr

2
(g(x))) : ((x : A) → (y : B)×R(x, y))

→ ((f : A → B)× ((x : A) → R(x, f (x))))

A familiar construction (II)

Let Γ ⊢ A,B type, and x : A, y : B ⊢ R(x, y) type. Then

⊢ (x : A) → (y : B)× R(x, y) type

This is essentially ∀x : A. ∃y : B. R(x, y).
Similarly, recalling that A → B def

= (x : A) → B, we have

⊢ (f : A → B)× ((x : A) → R(x, f (x))) type

This is essentially ∃f : A → B. ∀x : A. R(x, f (x)).

Γ ⊢ ? : ((x : A) → (y : B)× R(x, y))

→ ((f : A → B)× ((x : A) → R(x, f (x))))

Indeed, this is the type-theoretic “axiom” of choice:

Γ ⊢ λg. (λx. pr
1
(g(x)), λx. pr

2
(g(x))) : ((x : A) → (y : B)×R(x, y))

→ ((f : A → B)× ((x : A) → R(x, f (x))))

The type-theoretic “axiom” of choice

Let Γ ⊢ A,B type, and x : A, y : B ⊢ R(x, y) type. Then

Γ ⊢ λg. (λx. pr
1
(g(x)), λx. pr

2
(g(x))) : ((x : A) → (y : B)×R(x, y))

→ ((f : A → B)× ((x : A) → R(x, f (x))))

Suppose g : (x : A) → (y : B)× R(x, y). Then clearly

fg
def

= λx : A. pr
1
(

(y:B)×R(x,y)︷︸︸︷
g(x))︸ ︷︷ ︸
B

: A → B

hg
def

= λx : A. pr
2
(

(y:B)×R(x,y)︷︸︸︷
g(x))︸ ︷︷ ︸

R(x,pr
1
(g(x)))

: (x : A) → R(x, pr
1
(g(x)))

But f (x) ≡ pr
1
(g(x)), so this type is equal to (x : A) → R(x, f (x)).

Hence λg. (fg, hg) has the right type.

Summary

▶ MLTT is a formal theory of constructions and dependence.
▶ It has very good metatheoretic and computational properties.

▶ It is inherently “constructive” (for some sense of the word).

Tomorrow: equality as a proposition/type.

References

Martin Hofmann, Syntax and Semantics of Dependent Types,
Semantics and Logics of Computation (Andrew M. Pitts and

P. Dybjer, eds.), Cambridge University Press, 1997, pp. 79–130.

Per Martin-Löf, An Intuitionistic Theory of Types: Predicative
Part, Logic Colloquium ’73 (H. E. Rose and J. C. Shepherdson,

eds.), Studies in Logic and the Foundations of Mathematics,

no. 80, Elsevier, Bristol, 1975, pp. 73–118.

, Constructive mathematics and computer programming,
Philosophical Transactions of the Royal Society of London.

Series A, Mathematical and Physical Sciences 312 (1984),

no. 1522, 501–518.

Bengt Nordström, Kent Petersson, and Jan M. Smith,

Programming in Martin-Löf’s Type Theory: an Introduction,
Oxford University Press, 1990.

	Intuitionism and Constructions
	Martin-Löf Type Theory
	Examples

