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What this talk is about

• It is about using modal logic, to present a 
typing discipline for programs-as-data. 

• It is about investigating the central rule/
axiom of provability logic in this setting.
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Programs-as-data

• More than just ‘functions as first-class-citizens.’ 

The extensional paradigm: a program can call a functional 

argument at a finite set of points. 

• Instead, very close to the idea of Gödel numbering. 

The intensional paradigm: a program can inspect the source 
code of its functional argument, and can do rather arbitrary 

things with it (inspect, simulate, deconstruct, count its symbols…). 

• Non-functional operations. 

• Homoiconicity: when one does not need coding at all; e.g. LISP.
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argument at a finite set of points. 

• Instead, very close to the idea of Gödel numbering. 

The intensional paradigm: a program can inspect the source 
code of its functional argument, and can do rather arbitrary 

things with it (inspect, simulate, deconstruct, count its symbols…). 

• Non-functional operations. 

• Homoiconicity: when one does not need coding at all; e.g. LISP.

How can we do this in a typed, well-
structured, safe, coding-free manner?



Intensional Recursion

• A very strong kind of recursion, discovered by Kleene in 

1938. For CS, lost in the mists of time (Abramsky). 

• In the untyped λ-calculus: 

First Recursion Theorem 
Second Recursion Theorem 
Enumeration Theorem 

Given EN, the SRT implies the FRT, hence it is stronger.  
But what does it really do?

p q
E E p q



Types for Intensionality

• Strangely, intensionality follows a typing discipline. 

• Suppose         ; let’s say 

• Then well-known combinators of λ-calculus that perform 

operations on Gödel numbers acquire types; e.g.  

p q ⇤

gnum p q pp qq

app p q p q p q

E p q
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• Strangely, intensionality follows a typing discipline. 

• Suppose         ; let’s say 

• Then well-known combinators of λ-calculus that perform 

operations on Gödel numbers acquire types; e.g.  

p q ⇤

gnum ⇤ ⇤⇤
gnum p q pp qq

app p q p q p q
app ⇤ ⇤ ⇤

E ⇤
E p q

It’s S4!
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Prospectus

• We will first revisit Davies & Pfenning’s S4. 

• We will add intensional operations to it. 

• Then we will add intensional recursion. 

• The resulting system is called Intensional PCF. 

THEOREM. 
‘Full’ reduction of Intensional PCF is confluent. 

Hence, Intensional PCF is consistent. 



I. Curry-Howard and S4



Curry-Howard

Annotate sequents with proof terms (= ‘summary’ of derivation). 
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Dual-context systems

• A kind of natural deduction with two contexts, introduced 

by Girard, developed by many over the 1990s (Davies and 

Pfenning, Andreoli, Wadler, Barber and Plotkin, …) 

• Judgments: 
 
 
 
 
 
In our setting Δ = code/intensional variables,  
              Γ = value/extension variables.

modal assumptions

intuitionistic assumptions



The Modal Rules

• Hiding Δ, it looks just like simply-typed λ-calculus. 

• This is augmented with the reduction 
 
 

⇤
box ⇤

⇤
⇤

let box in

⇤var
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The Modal Rules

• Hiding Δ, it looks just like simply-typed λ-calculus. 

• This is augmented with the reduction 
 
 

⇤
box ⇤

⇤
⇤

let box in

⇤var

let box box in

THEOREM (Davies-Pfenning). This system 
captures S4; satisfies all the expected structural 
rules; and is confluent and strongly normalising. 



Example

app box box box

app let box in let box in box

app ⇤ ⇤ ⇤



S4

• Davies and Pfenning defined the above system for 

homogeneous, staged metaprogramming (POPL 1996), 

which was also implemented and tested. 

• The purpose of that language was to separate the static 

and dynamic phases: some (modal) things would happen at 

compile-time, some (intuitionistic) things at run-time. 

• But, even though mentioned in the paper (MSCS 2001), 

intensionality is completely absent! Everything is functional.



II. Intensional operations



Intensional Operations

The quintessential example: is the term an application? 

This function can almost be considered a  
criterion of intensionality.

is-app box true

if is-app box false



Intensional Operations: 
first attempt 

• Let’s suppose any function on terms 
can can be included as a constant ⇤ ⇤

box box

let box box in is-app box

is-app box

true

let box box in false

false

This is not confluent.



Intensional Operations, 
second attempt 

• The problem:             yet 

• Violated because of constants like is-app. 

• How to fix? Consider substitutive intensional operations  

• Indeed a fix. But a standard naturality argument yields 

• So already defined by  

• … so we have achieved precisely nothing.

let box in box

box box box box

such that



Intensional Operations, 
with success

• Solution: restrict everything to closed terms: 

• ... and for each  
add a constant 
with reduction 
which happens only when M is closed. 

• It so happens that this is confluent! Will see in a moment.

⇤ ⇤
box box



III. Intensional Recursion



Löb’s rule

Without further ado: 
 
 
 
 
Observation by Abramsky: if one erases the boxes, it’s PCF! 

We use this form, prompted by proof-theoretic considerations 

(see K, LICS 2017).

⇤
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An objection

“But Löb’s rule, in conjunction with S4,  
means that every type is inhabited!” 

Indeed, if we let 

 
then               and hence 

with                           and 

Answer: It’s OK. If we want general recursion, which the SRT 

gives, there will be non-normalising terms. Like PCF, not a 

logic but a programming language: the terms still matter.

eval let box in

fix in box eval

⇤

box eval

eval eval

eval



Confluence

• As long as we do not admit                     ,  

• The proof uses the standard parallel reduction method of 
Tait and Martin-Löf. 

• The fact that intensional operations only reduce when the 
term is closed is crucial to the argument.

THEOREM. The resulting system is 
confluent, and hence consistent.

box box



Conclusions
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Thank you for your attention.


