Intensionality,
Intensional Recursion,

and the Godel-Lob axiom

Alex Kavvos

Department of Computer Science, University of Oxford

IMLA 2017, 18 July 2017

arXiv:1702.01288

What this talk is about

e [t is about using modal logic, to present a
typing discipline for programs-as-data.

e |t is about investigating the central rule/
axiom of provability logic in this setting.

What this talk is about

Curry-Howard isomorphism

for intensional programming

e [t is about using modal logic, to present a
typing discipline for programs-as-data.

e |t is about investigating the central rule/
axiom of provability logic in this setting.

What this talk is about

Curry-Howard isomorphism

for intensional programming

e [t is about using modal logic, to present a
typing discipline for programs-as-data.

e |t is about investigating the central rule/
axiom of provability logic in this setting.

intensional

recursion

Programs-as-data

More than just ‘functions as first-class-citizens.’

The extensional paradigm: a program can call a functional
argument af o finite set of points.

Instead, very close to the idea of Godel numbering.

The intensional paradigm: a program can inspect the source
code of its functional argument, and can do rather arbitrary
things with it (inspect, simulate, deconstruct, count its symbols...).

Non-functional operations.

Homoiconicity: when one does not need coding at all; e.g. LISP.

Programs-as-data

 More than just ‘functions as first-class-citizens.’

- The extensional paradigm: a program can call a functional
argument at a finite set of points.

* Instead, very close to the idea of Godel numbering.

- The intensional paradigm: a program can inspect the source
code of its functional argument, and can do rather arbitrary
things with it (inspect, simulate, deconstruct, count its symbols...).

How can we do this in a typed, well-

structured, safe, coding-free manner?

Intensional Recursion

* A very strong kind of recursion, discovered by Kleene in
1938. For CS, lost in the mists of time (Abramsky).

* In the untyped A-calculus:

First Recursion Theorem VieEA Jue A u=fu
Second Recursion Theorem Vf e A. Jue A.u=f"u'

Enumeration Theorem dE € A. Vu € AP ETul=u

Given EN, the SRT implies the FRT, hence it is stronger.
But what does it really do?

Types for Intensionality

e Strangely, intensionality follows a typing discipline.

* Suppose u: A ;let'ssay "y 1:[A

* Then well-known combinators of A-calculus that perform
operations on Godel numbers acquire types; e.qg.

gnum I_M_I — I_I_M_I_I E I_M_I — M

app I_M_I I_N_I — I_M N_I

Types for Intensionality

e Strangely, intensionality follows a typing discipline.

* Suppose u: A ;let'ssay "y 1:[A

* Then well-known combinators of A-calculus that perform
operations on Godel numbers acquire types; e.qg.

gnum : [JA — A
gnum I_M—I — I_I_M—I—l E I_M_I — M

app I_M_I I_N_I — I_M N_I

Types for Intensionality

e Strangely, intensionality follows a typing discipline.

* Suppose u: A ;let'ssay "y 1:[A

* Then well-known combinators of A-calculus that perform
operations on Godel numbers acquire types; e.qg.

gnum : [JA — A
gnum I_M—I — I_I_M—I—l E I_M_I — M

app :U(A— B) - [UA — B
appl_ _||_N_|:|_M N_l

Types for Intensionality

e Strangely, intensionality follows a typing discipline.

* Suppose u: A ;let'ssay "y 1:[A

* Then well-known combinators of A-calculus that perform
operations on Godel numbers acquire types; e.qg.

gnum : [JA — A E :[IA—- A
gnum I_M_I — I_I_M_I_I E I_M_I —_ M

app :U(A— B) - [UA — B
app |_M_| |_N_| — I_M N_l

Types for Intensionality

e Strangely, intensionality follows a typing discipline.

* Suppose u: A ;let'ssay "y 1:[A

* Then well-known combinators of A-calculus that perform
operations on Godel numbers acquire types; e.qg.

egnum : [JA — A E :[IA—- A
gnum I_M_I — I_I_M_I_I E I_M_I —_ M

app :U(A— B) - UA— UB :
FAST TN — T 5 It's S4!
app M ''N M N

Types for Intensional Recursion

Types for Intensional Recursion

o Take u : A so that u = f "o

Types for Intensional Recursion

o Take u : A so that u = f "o

e Then it is forced that f:OA— A

Types for Intensional Recursion

o Take u : A so that u = f "o

e Then it is forced that f:OA— A

* Yields the following

Types for Intensional Recursion

o Take u : A so that u = f "o

e Then it is forced that f:OA— A

* Yields the following

Logical interpretation of the Second Recursion Theorem

f:HA—= A
u: A

Types for Intensional Recursion

o Take u : A so that u = f "o

e Then it is forced that f:OA— A

* Yields the following

Logical interpretation of the Second Recursion Theorem

f:HA—= A
u: A

..such that u=f"u'

Types for Intensional Recursion

o Take u : A so that u = f "o

e Then it is forced that f:OA— A

* Yields the following

Logical interpretation of the Second Recursion Theorem

F:0A > A

LA

..such that u=f"u'

Prospectus

We will first revisit Davies & Pfenning’s S4.
We will add intensional operations to it.
Then we will add intensional recursion.

The resulting system is called Intensional PCF.

Prospectus

 We will first revisit Davies & Pfenning’'s S4.
* We will add intensional operations to it.
* Then we will add intensional recursion.

* The resulting system is called Intensional PCF.

THEOREM.

'Full’ reduction of Intensional PCF is confluent.
Hence, Intensional PCF is consistent.

|. Curry-Howard and S4

Curry-Howard

Annotate sequents with proof terms (= ‘summary’ of derivation).

'FA '+ B 'FM:A I'N:B
I'-ANB I'-(M,N): Ax B
['FAXxB '-M:AxB

' A 'Fm(M): A

m({(M,N)) - M

Curry-Howard

Annotate sequents with proof terms (= ‘summary’ of derivation).

I'ArFB ''z: AF-M: B
I'-A— B I'FkXe.M: A— B
I'-A— B ['F A I'-M:A— B I'FN:A
I'+ B I'-MN : B

(Az.M)N — M|N/z]

Dual-context systems

e A kind of natural deduction with two contexts, introduced

by Girard, developed by many over the 1990s (Davies and
Pfenning, Andreoli, Wadler, Barber and Plotkin, ...)

* Judgments:

' intuitionistic assumptions

A;T'EFM:A
modal assumptions "

In our setting A = code/intensional variables,
[= value/extension variables.

The Modal Rules

A;-FM: A
A;I'Ebox M : LA

(

A;T'EM:

1)

A

AuwA N ; T'Fu: A

ANuA;'FN:C

A:I'Fletboxu<=MinN:C

 Hiding A, it looks just like simply-typed A-calculus.

* This is augmented with the reduction

(

£)

let box u &< box M in N — N[M/u]

(

var)

The Modal Rules

A;-FM: A

A;T'F box M : A(

A;T'EM:

1)

(Cvar)

AuwA N ; T'Fu: A

A ANuA;'FN:C

(

A:I'Fletboxu<=MinN:C

THEOREM (Davies-Pfenning). This system

£)

captures S4; satisfies all the expected structural
rules; and is confluent and strongly normalising.

let box u &< box M in N — N[M/u]

Example

app = Af. Az. let box u <= f in let box v <= z in box (u v)

-app (A — B) —» A — B

app (box F')(box M) —™ box (F' M)

S4

* Davies and Pfenning defined the above system for
homogeneous, staged metaprogramming (POPL 1996),
which was also implemented and tested.

* The purpose of that language was to separate the static
and dynamic phases: some (modal) things would happen at
compile-time, some (intuitionistic) things at run-time.

e But, even though mentioned in the paper (MSCS 2001),
intensionality is completely absent! Everything is functional.

Il. Intensional operations

Intensional Operations

The quintessential example: is the term an application?

is-app (box PQ)) — true
is-app (box M) — false if M # PQ

This function can almost be considered a
criterion of intensionality.

Intensional Operations:
first attempt

* Let's suppose any function on terms f :T(A) — T(B)

can can be included as a constant

~

f(box M) — box f(M)

This is not confluent.

~

f:

A— 1B

let box u < box PQ in is-app (box u)

/\

is-app (box PQ)

l

true

let box u <= box P() in false

\ 4

false

Intensional Operations,
second attempt

The problem: M — N yet M|P/u| /— N|P/u]
Violated because of constants like is-app.

How to fix? Consider substitutive intensional operations

f:T(A) = T(B) such that f(N[P/u]) = f(N)[P/u]

Indeed a fix. But a standard naturality argument yields
f(P) = f(u[P/u]) = f(u)|P/uy]

So already defined by f = Az. let box u <= z in box f(u)

f(box M) —* box f(u)[M/u] = box f(u[M/u]) = box f(M)

.. so we have achieved precisely nothing.

Intensional Operations,
with success

e Solution: restrict everything to closed terms:
TAA={M|-;-F-M:A}

* ... and for each f:T(A) — T(B)
add a constant f :[JA — OB

~

with reduction f(box M) — box f(M)

which happens only when M is closed.

* |t so happens that this is confluent! Will see in a moment.

lll. Intensional Recursion

|.Ob’'s rule

Without further ado:
A OAF A
AT+ A

Observation by Abramsky: if one erases the boxes, it's PCFI

We use this form, prompted by proof-theoretic considerations

(see K, LICS 2017).

|.Ob’'s rule

Without further ado:
A;z:UUAFM: A
A;T'Ffixzinbox M : LA

Observation by Abramsky: if one erases the boxes, it's PCFI

We use this form, prompted by proof-theoretic considerations

(see K, LICS 2017).

|.Ob’'s rule

Without further ado:
A;z:UUAFM: A
A;T'Ffixzinbox M : LA

fix z in box M — box M|fix z in box M/z]

Observation by Abramsky: if one erases the boxes, it's PCFI

We use this form, prompted by proof-theoretic considerations

(see K, LICS 2017).

|.Ob’'s rule

Without further ado:
N;z: AFM:A
AT fix zin M. A

fix z in M — M fix z in M/z]|
Observation by Abramsky: if one erases the boxes, it's PCFI

We use this form, prompted by proof-theoretic considerations

(see K, LICS 2017).

An objection

"But Lob’s rule, in conjunction with S4,
means that every type is inhabited!”

Indeed, if we let evalg = Az. let boxu < z inu
Q4 = fixzin boxevaly 2

then = €l4 :[JA and hence Fevaly 24 : A

with Q4 — box (evaly Q4) and evala24 =" evaly Q4

Answer: It's OK. If we want general recursion, which the SRT
gives, there will be non-normalising terms. Like PCF, not a
logic but a programming language: the terms still matter.

Confluence

M — N

* As long as we do not admit

box M —» box N
THEOREM. The resulting system is

confluent, and hence consistent.

* The proof uses the standard parallel reduction method of
"ait and Martin-Lof.

* The fact that intensional operations only reduce when the
term is closed is crucial to the argument.

Conclusions

Conclusions

* We have constructed a modal A-calculus, inspired by S4 and GL,
with intensional (non-functional) operations, and intensional recursion.

Conclusions

* We have constructed a modal A-calculus, inspired by S4 and GL,
with intensional (non-functional) operations, and intensional recursion.

e We proved that it is confluent, and hence consistent. Price to pay:

intensional operations on closed terms only (a thorn known to
metaprogrammers...).

Conclusions

* We have constructed a modal A-calculus, inspired by S4 and GL,
with intensional (non-functional) operations, and intensional recursion.

e We proved that it is confluent, and hence consistent. Price to pay:

intensional operations on closed terms only (a thorn known to
metaprogrammers...).

* The type of the Godel-Lob axiom is inhabited by an an intensional

fixed point combinator. The standard fixed point combinator (Y) is
definable in the system.

Conclusions

We have constructed a modal A-calculus, inspired by S4 and GL,
with intensional (non-functional) operations, and intensional recursion.

We proved that it is confluent, and hence consistent. Price to pay:

intensional operations on closed terms only (a thorn known to
metaprogrammers...).

The type of the Godel-Lob axiom is inhabited by an an intensional
fixed point combinator. The standard fixed point combinator (Y) is
definable in the system.

Open questions:

Conclusions

We have constructed a modal A-calculus, inspired by S4 and GL,
with intensional (non-functional) operations, and intensional recursion.

We proved that it is confluent, and hence consistent. Price to pay:

intensional operations on closed terms only (a thorn known to
metaprogrammers...).

The type of the Godel-Lob axiom is inhabited by an an intensional
fixed point combinator. The standard fixed point combinator (Y) is
definable in the system.

Open questions:

e which are the correct primitives?

Conclusions

We have constructed a modal A-calculus, inspired by S4 and GL,
with intensional (non-functional) operations, and intensional recursion.

We proved that it is confluent, and hence consistent. Price to pay:

intensional operations on closed terms only (a thorn known to
metaprogrammers...).

The type of the Godel-Lob axiom is inhabited by an an intensional
fixed point combinator. The standard fixed point combinator (Y) is
definable in the system.

Open questions:
e which are the correct primitives?

e what is the expressivity of this system? what does it do?

Conclusions

We have constructed a modal A-calculus, inspired by S4 and GL,
with intensional (non-functional) operations, and intensional recursion.

We proved that it is confluent, and hence consistent. Price to pay:

intensional operations on closed terms only (a thorn known to
metaprogrammers...).

The type of the Godel-Lob axiom is inhabited by an an intensional
fixed point combinator. The standard fixed point combinator (Y) is
definable in the system.

Open questions:
e which are the correct primitives?

e what is the expressivity of this system? what does it do?

Thank you for your attention.

