
Intensionality, 
Intensional Recursion, 
and the Gödel-Löb axiom

Alex Kavvos

Department of Computer Science, University of Oxford

IMLA 2017, 18 July 2017

arXiv:1702.01288

What this talk is about

• It is about using modal logic, to present a
typing discipline for programs-as-data.

• It is about investigating the central rule/
axiom of provability logic in this setting.

What this talk is about

• It is about using modal logic, to present a
typing discipline for programs-as-data.

• It is about investigating the central rule/
axiom of provability logic in this setting.

Curry-Howard isomorphism
for intensional programming

What this talk is about

• It is about using modal logic, to present a
typing discipline for programs-as-data.

• It is about investigating the central rule/
axiom of provability logic in this setting.

Curry-Howard isomorphism
for intensional programming

intensional 
recursion

Programs-as-data

• More than just ‘functions as first-class-citizens.’

The extensional paradigm: a program can call a functional

argument at a finite set of points.

• Instead, very close to the idea of Gödel numbering.

The intensional paradigm: a program can inspect the source
code of its functional argument, and can do rather arbitrary

things with it (inspect, simulate, deconstruct, count its symbols…).

• Non-functional operations.

• Homoiconicity: when one does not need coding at all; e.g. LISP.

Programs-as-data

• More than just ‘functions as first-class-citizens.’

The extensional paradigm: a program can call a functional

argument at a finite set of points.

• Instead, very close to the idea of Gödel numbering.

The intensional paradigm: a program can inspect the source
code of its functional argument, and can do rather arbitrary

things with it (inspect, simulate, deconstruct, count its symbols…).

• Non-functional operations.

• Homoiconicity: when one does not need coding at all; e.g. LISP.

How can we do this in a typed, well-
structured, safe, coding-free manner?

Intensional Recursion

• A very strong kind of recursion, discovered by Kleene in

1938. For CS, lost in the mists of time (Abramsky).

• In the untyped λ-calculus:

First Recursion Theorem 
Second Recursion Theorem 
Enumeration Theorem

Given EN, the SRT implies the FRT, hence it is stronger.  
But what does it really do?

p q
E E p q

Types for Intensionality

• Strangely, intensionality follows a typing discipline.

• Suppose ; let’s say

• Then well-known combinators of λ-calculus that perform

operations on Gödel numbers acquire types; e.g.

p q ⇤

gnum p q pp qq

app p q p q p q

E p q

Types for Intensionality

• Strangely, intensionality follows a typing discipline.

• Suppose ; let’s say

• Then well-known combinators of λ-calculus that perform

operations on Gödel numbers acquire types; e.g.

p q ⇤

gnum ⇤ ⇤⇤
gnum p q pp qq

app p q p q p q

E p q

Types for Intensionality

• Strangely, intensionality follows a typing discipline.

• Suppose ; let’s say

• Then well-known combinators of λ-calculus that perform

operations on Gödel numbers acquire types; e.g.

p q ⇤

gnum ⇤ ⇤⇤
gnum p q pp qq

app p q p q p q
app ⇤ ⇤ ⇤

E p q

Types for Intensionality

• Strangely, intensionality follows a typing discipline.

• Suppose ; let’s say

• Then well-known combinators of λ-calculus that perform

operations on Gödel numbers acquire types; e.g.

p q ⇤

gnum ⇤ ⇤⇤
gnum p q pp qq

app p q p q p q
app ⇤ ⇤ ⇤

E ⇤
E p q

Types for Intensionality

• Strangely, intensionality follows a typing discipline.

• Suppose ; let’s say

• Then well-known combinators of λ-calculus that perform

operations on Gödel numbers acquire types; e.g.

p q ⇤

gnum ⇤ ⇤⇤
gnum p q pp qq

app p q p q p q
app ⇤ ⇤ ⇤

E ⇤
E p q

It’s S4!

Types for Intensional Recursion

Types for Intensional Recursion

• Take so that p q

Types for Intensional Recursion

• Take so that

• Then it is forced that

p q

⇤

Types for Intensional Recursion

• Take so that

• Then it is forced that

• Yields the following

p q

⇤

Types for Intensional Recursion

• Take so that

• Then it is forced that

• Yields the following

Logical interpretation of the Second Recursion Theorem

p q

⇤

⇤

Types for Intensional Recursion

• Take so that

• Then it is forced that

• Yields the following

Logical interpretation of the Second Recursion Theorem

 
… such that

p q

⇤

⇤

p q

Types for Intensional Recursion

• Take so that

• Then it is forced that

• Yields the following

Logical interpretation of the Second Recursion Theorem

 
… such that

p q

⇤

⇤

p q

⇤
p q ⇤

Prospectus

• We will first revisit Davies & Pfenning’s S4.

• We will add intensional operations to it.

• Then we will add intensional recursion.

• The resulting system is called Intensional PCF.

Prospectus

• We will first revisit Davies & Pfenning’s S4.

• We will add intensional operations to it.

• Then we will add intensional recursion.

• The resulting system is called Intensional PCF.

THEOREM. 
‘Full’ reduction of Intensional PCF is confluent. 

Hence, Intensional PCF is consistent.

I. Curry-Howard and S4

Curry-Howard

Annotate sequents with proof terms (= ‘summary’ of derivation).

 

Curry-Howard

Annotate sequents with proof terms (= ‘summary’ of derivation).

 

Dual-context systems

• A kind of natural deduction with two contexts, introduced

by Girard, developed by many over the 1990s (Davies and

Pfenning, Andreoli, Wadler, Barber and Plotkin, …)

• Judgments: 
 
 
 
 
 
In our setting Δ = code/intensional variables,  
 Γ = value/extension variables.

modal assumptions

intuitionistic assumptions

The Modal Rules

• Hiding Δ, it looks just like simply-typed λ-calculus.

• This is augmented with the reduction 
 
 

⇤
box ⇤

⇤
⇤

let box in

⇤var

let box box in

The Modal Rules

• Hiding Δ, it looks just like simply-typed λ-calculus.

• This is augmented with the reduction 
 
 

⇤
box ⇤

⇤
⇤

let box in

⇤var

let box box in

THEOREM (Davies-Pfenning). This system
captures S4; satisfies all the expected structural
rules; and is confluent and strongly normalising.

Example

app box box box

app let box in let box in box

app ⇤ ⇤ ⇤

S4

• Davies and Pfenning defined the above system for

homogeneous, staged metaprogramming (POPL 1996),

which was also implemented and tested.

• The purpose of that language was to separate the static

and dynamic phases: some (modal) things would happen at

compile-time, some (intuitionistic) things at run-time.

• But, even though mentioned in the paper (MSCS 2001),

intensionality is completely absent! Everything is functional.

II. Intensional operations

Intensional Operations

The quintessential example: is the term an application?

This function can almost be considered a  
criterion of intensionality.

is-app box true

if is-app box false

Intensional Operations:
first attempt

• Let’s suppose any function on terms 
can can be included as a constant ⇤ ⇤

box box

let box box in is-app box

is-app box

true

let box box in false

false

This is not confluent.

Intensional Operations,
second attempt

• The problem: yet

• Violated because of constants like is-app.

• How to fix? Consider substitutive intensional operations  

• Indeed a fix. But a standard naturality argument yields

• So already defined by

• … so we have achieved precisely nothing.

let box in box

box box box box

such that

Intensional Operations,
with success

• Solution: restrict everything to closed terms:

• ... and for each  
add a constant 
with reduction 
which happens only when M is closed.

• It so happens that this is confluent! Will see in a moment.

⇤ ⇤
box box

III. Intensional Recursion

Löb’s rule

Without further ado: 
 
 
 
 
Observation by Abramsky: if one erases the boxes, it’s PCF!

We use this form, prompted by proof-theoretic considerations

(see K, LICS 2017).

⇤
fix in box ⇤

Löb’s rule

Without further ado: 
 
 
 
 
Observation by Abramsky: if one erases the boxes, it’s PCF!

We use this form, prompted by proof-theoretic considerations

(see K, LICS 2017).

⇤
fix in box ⇤

Löb’s rule

Without further ado: 
 
 
 
 
Observation by Abramsky: if one erases the boxes, it’s PCF!

We use this form, prompted by proof-theoretic considerations

(see K, LICS 2017).

⇤
fix in box ⇤

fix in box box fix in box

Löb’s rule

Without further ado: 
 
 
 
 
Observation by Abramsky: if one erases the boxes, it’s PCF!

We use this form, prompted by proof-theoretic considerations

(see K, LICS 2017).

⇤
fix in box ⇤

fix in box box fix in box

An objection

“But Löb’s rule, in conjunction with S4,  
means that every type is inhabited!”

Indeed, if we let

 
then and hence

with and

Answer: It’s OK. If we want general recursion, which the SRT

gives, there will be non-normalising terms. Like PCF, not a

logic but a programming language: the terms still matter.

eval let box in

fix in box eval

⇤

box eval

eval eval

eval

Confluence

• As long as we do not admit ,

• The proof uses the standard parallel reduction method of
Tait and Martin-Löf.

• The fact that intensional operations only reduce when the
term is closed is crucial to the argument.

THEOREM. The resulting system is
confluent, and hence consistent.

box box

Conclusions

Conclusions

• We have constructed a modal λ-calculus, inspired by S4 and GL, 
with intensional (non-functional) operations, and intensional recursion.

Conclusions

• We have constructed a modal λ-calculus, inspired by S4 and GL, 
with intensional (non-functional) operations, and intensional recursion.

• We proved that it is confluent, and hence consistent. Price to pay:
intensional operations on closed terms only (a thorn known to
metaprogrammers…).

Conclusions

• We have constructed a modal λ-calculus, inspired by S4 and GL, 
with intensional (non-functional) operations, and intensional recursion.

• We proved that it is confluent, and hence consistent. Price to pay:
intensional operations on closed terms only (a thorn known to
metaprogrammers…).

• The type of the Gödel-Löb axiom is inhabited by an an intensional
fixed point combinator. The standard fixed point combinator (Y) is
definable in the system.

Conclusions

• We have constructed a modal λ-calculus, inspired by S4 and GL, 
with intensional (non-functional) operations, and intensional recursion.

• We proved that it is confluent, and hence consistent. Price to pay:
intensional operations on closed terms only (a thorn known to
metaprogrammers…).

• The type of the Gödel-Löb axiom is inhabited by an an intensional
fixed point combinator. The standard fixed point combinator (Y) is
definable in the system.

• Open questions:

Conclusions

• We have constructed a modal λ-calculus, inspired by S4 and GL, 
with intensional (non-functional) operations, and intensional recursion.

• We proved that it is confluent, and hence consistent. Price to pay:
intensional operations on closed terms only (a thorn known to
metaprogrammers…).

• The type of the Gödel-Löb axiom is inhabited by an an intensional
fixed point combinator. The standard fixed point combinator (Y) is
definable in the system.

• Open questions:

• which are the correct primitives?

Conclusions

• We have constructed a modal λ-calculus, inspired by S4 and GL, 
with intensional (non-functional) operations, and intensional recursion.

• We proved that it is confluent, and hence consistent. Price to pay:
intensional operations on closed terms only (a thorn known to
metaprogrammers…).

• The type of the Gödel-Löb axiom is inhabited by an an intensional
fixed point combinator. The standard fixed point combinator (Y) is
definable in the system.

• Open questions:

• which are the correct primitives?

• what is the expressivity of this system? what does it do?

Conclusions

• We have constructed a modal λ-calculus, inspired by S4 and GL, 
with intensional (non-functional) operations, and intensional recursion.

• We proved that it is confluent, and hence consistent. Price to pay:
intensional operations on closed terms only (a thorn known to
metaprogrammers…).

• The type of the Gödel-Löb axiom is inhabited by an an intensional
fixed point combinator. The standard fixed point combinator (Y) is
definable in the system.

• Open questions:

• which are the correct primitives?

• what is the expressivity of this system? what does it do?

Thank you for your attention.

