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What is intensionality”?

Extensional equality is something we pick:
see e.g. constructive mathematics...

e for sefts:
A=B<+—Ve.x e A+— € B

e for functions:
f=9g:A— B<«<=VrecA f(x)=g(x)
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Extensional equality is something we pick:
see e.g. constructive mathematics...

e for sefts:
A=B<+—Ve.x e A+— € B

e for functions:
f=9g:A—- B<VrecA f(zr)=g()

To be intensional is to be

finer than extensional equality.




What is intensionality”?

“The notions of intensionality and extensionality carry
symmetric-sounding names, but this apparent symmetry
IS misleading. Extensionality Is enshrined In
mathematically precise axioms with a clear conceptua
meaning. Intensionality, by contrast, remains elusive. [t
is a “loose baggy monster” into which all manner of
notions may be stuffed, and a compelling and coherent
general framework for intensional concepts is still to
emerge.”

— Samson Abramsky
“Intensionality, Definability and Computation” (2014)



A framework for
INntensionality

I've been looking for a mathematical setting, in terms of
category theory, where the same mathematical objects
can be seen both extensionally and intensionally.

Why?
e a categorical approach to Godel numbering
* intensional recursion

* non-functional computation



Vignette no 1
Categorical Godel numbering

Lawvere’s classic paper from 1969.
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Reprints in Theory and Applications of Categories, No. 15, 2006, pp. 1-13.

Lawve DIAGONAL ARGUMENTS

AND
CARTESIAN CLOSED CATEGORIES

F. WILLIAM LAWVERE

Author Commentary

In May 1967 I had suggested in my Chicago lectures certain applications of category
theory to smooth geometry and dynamics, reviving a direct approach to function spaces
and therefore to functionals. Making that suggestion more explicit led later to elementary
topos theory as well as to the line of research now known as synthetic differential geometry.
The fuller development of those subjects turned out to involve a truth value object that
classifies subobjects, but in the present paper (presented in the 1968 Battelle conference
in Seattle) I refer only to weak properties of such an object; it is the other axiom, cartesian
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Categorical Godel numbering
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with domain 1; for example if (as in the next section) X and Z are set-valued functors,
then a natural transformation g is point-surjective if every element of the inverse limit of
Z comes from an element of the inverse limit of X. In case Z is of the form Y4, an even
weaker notion of surjectivity can be considered, which in fact suffices for our fixed point
theorem. Namely

X —2-Y4
will be called weakly point-surjective iff for every f : A —— Y there is x such that for
everya:1——A

(a,zg)e =a.f
Finally we say that an object Y has the fized point property iff for every endomorphism
t:Y ——=Y thereisy:1——=Y with y.t = y.
1.1. THEOREM. In any cartesian closed category, if there exists an object A and a weakly
point-surjective morphism

A—2.y4

then Y has the fized noint nropertuy.




theorem. Namely
X —2>Yv4

will be called weakly point-surjective iff for every f : A —— Y there is « such that for
everya:1——=A

(a,zg9)e =a.f

Finally we say that an object Y has the fized point property iff for every endomorphism
t:Y —=Y thereisy:1——=Y with y.t = .

1.1. THEOREM. In any cartesian closed category, if there exists an object A and a weakly
point-surjective morphism

A—2L-Y4
then Y has the fized point property.

PROOF. Let g be the morphism whose A-transform is g. Then for any f : A——=Y there
isx:1—— Asuch that foralla:1——A

(CL, .’C>§ = a.f.
Now consider any endomorphism ¢ of ¥ and let f be the composition
A elise A D i Lo

thus there is = such that for all a



A2 wilised D ai ol
thus there is = such that for all a

<a'a :B)g =~ (a’, a)gt
since a(Ad) = (a,a). But then y = (x, )7 is clearly a fixed point for ¢. =

The famed “diagonal argument” is of course just the contrapositive of our theorem.
Cantor’s theorem follows with ¥ = 2.

1.2. COROLLARY. If there existst:Y ——=Y such that yt #vy for ally:1——=Y then
for no A does there exist a point-surjective morphism

A—Y4

(or even a weakly point-surjective morphism,).



Vignette no 1
Categorical Godel numbering

Lawvere proves a version of
Godel’s First Incompleteness Theorem:

Theorem. |f satisfaction (= weak point-surjection)
s definable, then — has a fixed point

So Lawvere’s fixed points oughtn't exist.

Can we tell a story about what ought to exist”



Vignette no 2
Intensional Recursion

In the untyped A-calculus, there are two ways to
obtain recursion. Let "« ' be the Gddel number of u.

First Recursion Theorem (FRT) VieAJue A, u= fu
Second Recursion Theorem (SRT) Vf e AdJue A, u= fTu’

Enumeration Theorem (EN) JENVu e A’ ETu = u

Given EN, the SRT implies the FRT.
But is the SRT really stronger? What does it do”?




Vignette n°o 3
Non-functional computation

From the perspective of extensional equality, being intensional
entails being non-functional. This is an open issue in higher-
order computability.
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From the perspec
entails being non
order computabill

NOTIONS OF COMPUTABILITY AT HIGHER TYPES I
JOHN R. LONGLEY

Abstract. This is the first of a series of three articles devoted to the conceptual problem of
identifying the natural notions of computability at higher types (over the natural numbers) and
establishing the relationships between these notions. Inthe present paper, we undertake an extended
survey of the different strands of research to date on higher type computability, bringing together
material from recursion theory, constructive logic and computer science, and emphasizing the
historical development of the ideas. The paper thus serves as a reasonably comprehensive survey
of the literature on higher type computability.

CONTENTS
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1.1. Constructive logic and metamathematics

1.2. Descriptive and admissible set theory

1.3. Abstract computability theories

.1.4. Semantics and logic of programming languages
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1.7. Computability in physics
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Vignette n°o 3
Non-functional computation

F rO m t h e p e rS p e C NOTIONS OF COMPUTABILITY AT HIGHER TYPES I 83

. . play a central role in the work of Scott and his colleagues (Bauer, Birkedal,

e n 'I:a | | S b e I n g n O nI and Scott [2001]), who exploit the observation that PERs on Pw are equiva-
lent to countably based T} spaces equipped with an equivalence relation (such

- objects are termed equilogical spaces). The work of van Oosten and Longley

o rd e r co m p u ta b I ‘ on sequential realizability (Section 4.4) has shown that certain categories of
sequential algorithms and hypercoherences arise as subcategories of PER(B).

Finally, Bauer has recently shown (Bauer [2001]) that much of the work of

Weihrauch et al on representations of spaces via type two effectivity (Sec-

tion 3.3.5) can be naturally understood in terms of the categories PER(K;),

PER(Kjrec). All these results suggest that realizability models can provide an
attractive setting for describing and relating many other kinds of models.

§6. Non-functional notions of computability. Thus far we have concentrated
almost entirely on extensional notions of computability — that is, on notions
of computable functional. One can also ask whether there are reasonable non-
extensional notions of “computable operation” at higher types. Such notions
have received relatively little attention by comparison with the extensional
notions — perhaps because the very idea of an “intensional operation” seems
rather hazy, and it is unclear a priori whether it is amenable to a precise
mathematical formulation. We here briefly survey some known ideas that
relate to this problem.

We have seen how notions of computable functional may be naturally em-
bodied by extensional type structures (or substructures thereof). As a first
attempt, therefore, we might propose that more general notions of computable
operation could be identified simply with type structures without the exten-
sionality requirement. A typical example would be the structure HRO of Def-

LEECE L SIENEAF, T [, SR §f pNTSMERTRINTY SRS R PO et RUDER  PET T (RIS OO aNs | [SOTCon WLaDTpRE ) SR k. T




objects are termed equilogical spaces). 1he work of van Oosten and Longley
on sequential realizability (Section 4.4) has shown that certain categories of
sequential algorithms and hypercoherences arise as subcategories of PER(B).
Finally, Bauer has recently shown (Bauer [2001]) that much of the work of
Weihrauch et al on representations of spaces via type two effectivity (Sec-
tion 3.3.5) can be naturally understood in terms of the categories PER(K>),
PER(K>rec). All these results suggest that realizability models can provide an
attractive setting for describing and relating many other kinds of models.

§6. Non-functional notions of computability. Thus far we have concentrated
almost entirely on extensional notions of computability — that is, on notions
of computable functional. One can also ask whether there are reasonable non-
extensional notions of “computable operation” at higher types. Such notions
have received relatively little attention by comparison with the extensional
notions — perhaps because the very idea of an “intensional operation” seems
rather hazy, and it is unclear a priori whether it 1s amenable to a precise
mathematical formulation. We here briefly survey some known ideas that
relate to this problem.

We have seen how notions of computable functional may be naturally em-
bodied by extensional type structures (or substructures thereof). As a first
attempt, therefore, we might propose that more general notions of computable
operation could be identified simply with type structures without the exten-
sionality requirement. A typical example would be the structure HRO of Def-
inition 3.17. Many other examples arise from (non-well-pointed) cartesian
closed categories: given any object X corresponding to N or N, interpret
the simple types by repeated exponentiation and then apply the global ele-
ments functor Hom(1, —). This view seems somewhat unsatisfactory in that
1t 1s too concrete: for instance. different Godel-numbering schemes can give



Code as a type tormer,
or: modality-as-intension

For each type A

let there be a type A

whose elements can be understood as:
e programs that—when run—will yield objects of that type
e “codes” of objects of that type

* “intensions” of objects of that type



Modaality-as-Intension
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From code for a function,
to a map on codes: intensional
(A — B) — A —=UB substitution, a.k.a. the s-m-n
theorem
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Modality-as-Intension and
Intensional Recursion

Discovered by Neil Jones in the 1990s (underbar types).

Staged metaprogramming by Davies and Pfenning: a
modal A-calculus for S4 (POPL 1996, MSCS 2001).

But suppose we have u = f'u

If w: A thensurely "o ': A and hence f :

The SRT then says:

“foreach f :

A— A wehavea T¢7: A"

A— A



The type of the
Second Recursion Theorem
IS the Godel-Ldb axiom

* |t's Lob’s rule, from provability logic!

A— A
A

* Equivalent to the Godel-Lob axiom:

(

A—A) —

A



All 1s well, except
N category theory

e Categories are not intensional

e Lawvere (1969): some categories are not well-pointed.

Vr:1— A foxr=gox yet f#g:A— B

e But, in general, the arrows will be distinguishable.

 Modality is a functor, but intension isn't!

« Categorical semantics of modal logic (S4):

a cartesian closed category C and a monoidal comonad

= Id)

(d:C—0C,0:

» Unfortunate conclusion: f = g —

—

2

,E

f

g



All 1s well, except
N category theory

e Categories are not intensional

e Lawvere (1
Vr:1— A.

We cannot use

e But, in gen

 Modality is a

» Categorical semantics of modal logic (S4):

ordinary category theory.

pointed:

ble.

a cartesian closed category C and a monoidal comonad

(d:C—0C,0:

» Unfortunate conclusion: f = g —

—

, €

— g

= Id)




Enter P-categories

symmetric

e P-sets: sets, up to a partial equivalence relation (PER) and
transitive
A = (|A],~a4)

* For T,y < \A| the relation T ~ 4 Y intuitively means:
T and y are well-defined and extensionally equal.

P-categories are ‘categories’ with P-sets
C(A,B) = (IC(A, B)|,~c(a,B))

instead of hom-sets. The laws of categories hold up to the PERs;
e.g.

(hog)o f ~ciacyhol(go f)



What about the modality”

* The modality is almost a functor, but not: we might

want Of « Og evenif f~g.

* We will call this an exposure: it's a functor-like map

that reflects the PER. In symbols,
Q : (%7N) T (Q:, N)

Q9°N~Q9°Qf 104 0F . Og — f ~ g

such that Qlidy) ~ idos
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What about the modality”

* The modality is almost a functor, but not: we might

want f7é g € 't exposes the

iImplementation.

* We will call this an exposure:|it's a functor-like map

Intensional equality

that reflects the PER. In symbols, ol
Q : (% N) Q- (Q: N) extensional equality.

Q(gof) ~QgoQf
Qlidy) ~ idoy and| Qf ~Qg = f ~g

such that




Comonadic Exposures

There is a notion of natural transformation of
exposures, so we can mimic (strong monoidal)
comonads. For that, we also need isomorphisms:

m()ZQ]_%]_
map:QAxQB — Q(Ax B)

guoting
a:1— A Qaomg:1— QA



Intensional Fixpoints

“The notions of intensionality and extensionality carry symmetric-
sounding names, but this apparent symmetry is misleading.”

— Samson Abramsky

An intensional fixed pointof f: QA — A

is a point y:1—=A
such that 1% 4=1"%Q1°%% QAQA
Ct. Lawvere’s fixed points 1 L5 A=12L A Q A

which oughtn’t exist:



Intensional Fixpoints

“The notions of intensionality and extensionality carry symmetric-
sounding names, but this apparent symmetry is misleading.”

— Samson Abramsky

An intensional fixed pointof f: QA — A

is a point y:1— A
such that 145 A4=1"%012% Q4L 4

PA F fix (1) < (" fix()") A Fu= fTu’ de(x) =~ f(e, x)



Intensional FiXpoints

Theorem. There is an exposure corresponding to a Gddel numbering of PA.

Leads to abstract analogues of G6del Incompleteness Theorem
and Tarski’'s Undefinability Theorem.

An intensional fixed pointof f: QA — A

is a point y:1— A
such that 145 A4=1"%012% 045 4

PA F fix (1) < (" fix()") A Fu= fTu’ de(x) ~ f(e, o)




Kleene & Lawvere

Definition 45. An arrow r : X X A — Y is a (cartesian) weak point-surjection if,

for every f: A — Y, there exists a s : 1 — X such that

Va:1— A.ro(zsa)=foa

Theorem 44 (Lawvere). If r : A X A — Y is a weak-point surjection, then every
arrowt :Y — Y has a fized point.

Theorem 45. Let Q) : (B,~) & (2B, ~) be a cartesian exposure, and let 4 : QA —
Q%A be a reasonable quoting device. If 7 : QA x QA —'Y is a weak-point surjection,
then every arrow t : QY — Y has an intensional fixed point.
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Kleene & Lawvere

Definition 45. An arrow r : X X A — Y is a (cartesian) weak point-surjection if,
for every f: A = Y, there exists a s : 1 — X such that

Va:1— A.ro(z;a)=foa Construct a P-category

where...

Theorem 44 (Lawvere). If r : A X A = Y is a weak-point surjection, then every

arrowt : Y — Y has a fixed point. : _
Kleene’s First Recursion Theorem

Theorem 45. Let Q : (B,~) & (B, ~) be a cartesian exposure, and let §4 : QA —
Q%A be a reasonable quoting device. If 7 : QA x QA — 'Y is a weak-point surjection,
then every arrow t : QY — Y has an intensional fixed point.

Kleene’s Second Recursion Theorem




P-category of assemblies

 Assembly = a set with realisers (drawn from a PCA)
* The P-category [Ism(A)for a PCA A has
* objects: assemblies X = (| X|, ||| : | X| — P(A))
element x € | X| isrealised by [|z|| C A
« morphisms (f : |X|—= Y], reAd): X —-Y
where “rtracksf: a € ||x|| = 7-a € ||f(2)|

« (f,7) ~(g,5) whenever f =g
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* The P-category [Usm(A)for a PCA A has
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« morphisms (f : |X|—= Y], reAd): X —-Y
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EXposure on assemblies

Define X = (|1 X/, [-]|) QX = (1QX], [I-)
RQX| = {(z,a) | ac x|}
|(z,a)|| = {a;
(f,r): X =Y (fr,7r) : QX = QY

fr(mva) — (f(.CL‘),T ' a)
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EXposure on assemblies

Define X = (| X|,||||) —¥ QX = (|QX],]||)
QX| ={(z,a)|ac |z}
|(z,a)|| = {a}
(f,r): X =Y —p (fr,7) : QX = QY
fr(z,a) = (f(z),7-a)

Theorem. This is a comonadic exposure.

In fact, in this P-category for the PCA K1, with this exposure:
First Recursion Theorem = extensional (Lawvere) fixed points
Second Recursion Theorem = intensional fixed points
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extension.
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More generally: modalities can keep data from flowing from one
place to another. This is a reusable pattern: see (GAK, LICS 2017).
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language, for intensional/non-functional programming, and with
intensional recursion (GAK, IMLA 2017).



