
On the Semantics of
Intensionality

Alex Kavvos
Department of Computer Science, University of Oxford

FoSSaCS 2017
Uppsala, Sweden, 26 April 2017

EXTENSION INTENSION

What is intensionality?

• for sets:

• for functions:

Extensional equality is something we pick:
see e.g. constructive mathematics…

A = B () 8x. x 2 A ! x 2 B

f = g : A ! B () 8x 2 A. f(x) = g(x)

What is intensionality?

• for sets:

• for functions:

Extensional equality is something we pick:
see e.g. constructive mathematics…

A = B () 8x. x 2 A ! x 2 B

f = g : A ! B () 8x 2 A. f(x) = g(x)

To be intensional is to be
finer than extensional equality.

What is intensionality?
“The notions of intensionality and extensionality carry
symmetric-sounding names, but this apparent symmetry
is misleading. Extensional i ty is enshrined in
mathematically precise axioms with a clear conceptual
meaning. Intensionality, by contrast, remains elusive. It
is a “loose baggy monster” into which all manner of
notions may be stuffed, and a compelling and coherent
general framework for intensional concepts is still to
emerge.”

— Samson Abramsky
“Intensionality, Definability and Computation” (2014)

A framework for
intensionality

I’ve been looking for a mathematical setting, in terms of
category theory, where the same mathematical objects
can be seen both extensionally and intensionally.

Why?

• a categorical approach to Gödel numbering

• intensional recursion

• non-functional computation

Vignette no 1
Categorical Gödel numbering

Lawvere’s classic paper from 1969.

Vignette no 1
Categorical Gödel numbering

Lawvere’s classic paper from 1969.

Vignette no 1
Categorical Gödel numbering

Lawvere’s classic paper from 1969.

Vignette no 1
Categorical Gödel numbering

Lawvere’s classic paper from 1969.

Vignette no 1
Categorical Gödel numbering

Lawvere’s classic paper from 1969.

Vignette no 1
Categorical Gödel numbering

Lawvere proves a version of
Gödel’s First Incompleteness Theorem:

Theorem. If satisfaction (= weak point-surjection)
is definable, then has a fixed point

So Lawvere’s fixed points oughtn’t exist.

Can we tell a story about what ought to exist?

¬

Vignette no 2
Intensional Recursion

In the untyped λ-calculus, there are two ways to
obtain recursion. Let be the Gödel number of u.

First Recursion Theorem (FRT)

Second Recursion Theorem (SRT)

Enumeration Theorem (EN)

Given EN, the SRT implies the FRT.
But is the SRT really stronger? What does it do?

puq

8f 2 ⇤.9u 2 ⇤. u = f u

8f 2 ⇤.9u 2 ⇤. u = f puq

9E.8u 2 ⇤0. E puq = u

Vignette no 3
Non-functional computation

From the perspective of extensional equality, being intensional
entails being non-functional. This is an open issue in higher-
order computability.

Vignette no 3
Non-functional computation

From the perspective of extensional equality, being intensional
entails being non-functional. This is an open issue in higher-
order computability.

Vignette no 3
Non-functional computation

From the perspective of extensional equality, being intensional
entails being non-functional. This is an open issue in higher-
order computability.

Vignette no 3
Non-functional computation

From the perspective of extensional equality, being intensional
entails being non-functional. This is an open issue in higher-
order computability.

Code as a type former,
or: modality-as-intension

For each type

let there be a type

whose elements can be understood as:

• programs that—when run—will yield objects of that type

• “codes” of objects of that type

• “intensions” of objects of that type

A

⇤A

Modality-as-Intension

Modality-as-Intension
Let’s look at axioms of modal logic!

Modality-as-Intension
Let’s look at axioms of modal logic!

⇤A ! A

Modality-as-Intension
Let’s look at axioms of modal logic!

⇤A ! A From intension to extension:
Interpreter, or evaluator.

Modality-as-Intension
Let’s look at axioms of modal logic!

⇤A ! A From intension to extension:
Interpreter, or evaluator.

⇤A ! ⇤⇤A

Modality-as-Intension
Let’s look at axioms of modal logic!

⇤A ! A From intension to extension:
Interpreter, or evaluator.

⇤A ! ⇤⇤A
From code to code-for-code:

quoting (something that is already
quoted).

Modality-as-Intension
Let’s look at axioms of modal logic!

⇤A ! A From intension to extension:
Interpreter, or evaluator.

⇤A ! ⇤⇤A
From code to code-for-code:

quoting (something that is already
quoted).

⇤(A ! B) ! ⇤A ! ⇤B

Modality-as-Intension
Let’s look at axioms of modal logic!

⇤A ! A From intension to extension:
Interpreter, or evaluator.

⇤A ! ⇤⇤A
From code to code-for-code:

quoting (something that is already
quoted).

⇤(A ! B) ! ⇤A ! ⇤B
From code for a function,

to a map on codes: intensional
substitution, a.k.a. the s-m-n

theorem

Modality-as-Intension
Let’s look at axioms of modal logic!

⇤A ! A From intension to extension:
Interpreter, or evaluator.

⇤A ! ⇤⇤A
From code to code-for-code:

quoting (something that is already
quoted).

⇤(A ! B) ! ⇤A ! ⇤B
From code for a function,

to a map on codes: intensional
substitution, a.k.a. the s-m-n

theorem

Modality-as-Intension and
Intensional Recursion

Modality-as-Intension and
Intensional Recursion

• Discovered by Neil Jones in the 1990s (underbar types).

Modality-as-Intension and
Intensional Recursion

• Discovered by Neil Jones in the 1990s (underbar types).

• Staged metaprogramming by Davies and Pfenning: a
modal λ-calculus for S4 (POPL 1996, MSCS 2001).

Modality-as-Intension and
Intensional Recursion

• Discovered by Neil Jones in the 1990s (underbar types).

• Staged metaprogramming by Davies and Pfenning: a
modal λ-calculus for S4 (POPL 1996, MSCS 2001).

• But suppose we have u = f puq

Modality-as-Intension and
Intensional Recursion

• Discovered by Neil Jones in the 1990s (underbar types).

• Staged metaprogramming by Davies and Pfenning: a
modal λ-calculus for S4 (POPL 1996, MSCS 2001).

• But suppose we have

• If then surely and hence

u = f puq

u : A puq : ⇤A f : ⇤A ! A

Modality-as-Intension and
Intensional Recursion

• Discovered by Neil Jones in the 1990s (underbar types).

• Staged metaprogramming by Davies and Pfenning: a
modal λ-calculus for S4 (POPL 1996, MSCS 2001).

• But suppose we have

• If then surely and hence

• The SRT then says:

u = f puq

u : A puq : ⇤A f : ⇤A ! A

Modality-as-Intension and
Intensional Recursion

• Discovered by Neil Jones in the 1990s (underbar types).

• Staged metaprogramming by Davies and Pfenning: a
modal λ-calculus for S4 (POPL 1996, MSCS 2001).

• But suppose we have

• If then surely and hence

• The SRT then says:

“for each we have a ”

u = f puq

u : A puq : ⇤A f : ⇤A ! A

f : ⇤A ! A puq : ⇤A

The type of the
Second Recursion Theorem

is the Gödel-Löb axiom

• It’s Löb’s rule, from provability logic!

• Equivalent to the Gödel-Löb axiom:

⇤A ! A

⇤A

⇤(⇤A ! A) ! ⇤A

All is well, except
in category theory

• Categories are not intensional

• Lawvere (1969): some categories are not well-pointed:
 yet

• But, in general, the arrows will be distinguishable.

• Modality is a functor, but intension isn’t!

• Categorical semantics of modal logic (S4):
a cartesian closed category and a monoidal comonad

• Unfortunate conclusion:

C
(⇤ : C �! C, � : ⇤) ⇤2, ✏ : ⇤) Id)

f = g =) ⇤f = ⇤g

f 6= g : A ! B8x : 1 ! A. f � x = g � x

All is well, except
in category theory

• Categories are not intensional

• Lawvere (1969): some categories are not well-pointed:
 yet

• But, in general, the arrows will be distinguishable.

• Modality is a functor, but intension isn’t!

• Categorical semantics of modal logic (S4):
a cartesian closed category and a monoidal comonad

• Unfortunate conclusion:

C
(⇤ : C �! C, � : ⇤) ⇤2, ✏ : ⇤) Id)

f = g =) ⇤f = ⇤g

f 6= g : A ! B8x : 1 ! A. f � x = g � x
We cannot use

ordinary category theory.

Enter P-categories
• P-sets: sets, up to a partial equivalence relation (PER)

• For the relation intuitively means:
 and are well-defined and extensionally equal.

P-categories are ‘categories’ with P-sets

instead of hom-sets. The laws of categories hold up to the PERs;
e.g.

symmetric
and

transitive
A = (|A| ,⇠A)

x, y 2 |A| x ⇠A y
x y

C(A,B) = (|C(A,B)| ,⇠C(A,B))

(h � g) � f ⇠C(A,C) h � (g � f)

What about the modality?
• The modality is almost a functor, but not: we might

want even if .

• We will call this an exposure: it’s a functor-like map
that reflects the PER. In symbols,

such that and

⇤f 6⇠ ⇤g f ⇠ g

Q : (B,⇠) # (C,⇠)

Q(g � f) ⇠ Qg �Qf

Q(idA) ⇠ idQA
Qf ⇠ Qg =) f ⇠ g

What about the modality?
• The modality is almost a functor, but not: we might

want even if .

• We will call this an exposure: it’s a functor-like map
that reflects the PER. In symbols,

such that and

⇤f 6⇠ ⇤g f ⇠ g

Q : (B,⇠) # (C,⇠)

Q(g � f) ⇠ Qg �Qf

Q(idA) ⇠ idQA
Qf ⇠ Qg =) f ⇠ g

It exposes the
implementation.

What about the modality?
• The modality is almost a functor, but not: we might

want even if .

• We will call this an exposure: it’s a functor-like map
that reflects the PER. In symbols,

such that and

Intensional equality
implies

extensional equality.

⇤f 6⇠ ⇤g f ⇠ g

Q : (B,⇠) # (C,⇠)

Q(g � f) ⇠ Qg �Qf

Q(idA) ⇠ idQA
Qf ⇠ Qg =) f ⇠ g

It exposes the
implementation.

Comonadic Exposures

There is a notion of natural transformation of
exposures, so we can mimic (strong monoidal)
comonads. For that, we also need isomorphisms:

mA,B : QA⇥QB ! Q(A⇥B)

m0 : Q1 ! 1

a : 1 ! A Qa �m0 : 1 ! QA
quoting

Intensional Fixpoints
“The notions of intensionality and extensionality carry symmetric-
sounding names, but this apparent symmetry is misleading.”

— Samson Abramsky

An intensional fixed point of

is a point

such that

Cf. Lawvere’s fixed points
which oughtn’t exist:

f : QA ! A

1
y�! A = 1

m0��! Q1
Qy��! QA

f�! A

1
y�! A = 1

y�! A
f�! A

y : 1 ! A

Intensional Fixpoints
“The notions of intensionality and extensionality carry symmetric-
sounding names, but this apparent symmetry is misleading.”

— Samson Abramsky

An intensional fixed point of

is a point

such that

Cf. Lawvere’s fixed points
which oughtn’t exist:

f : QA ! A

1
y�! A = 1

m0��! Q1
Qy��! QA

f�! A

1
y�! A = 1

y�! A
f�! APA ` fix() $ (pfix()p) �� ` u = fpuq �e(x) ' f(e, x)

y : 1 ! A

Intensional Fixpoints
“The notions of intensionality and extensionality carry symmetric-
sounding names, but this apparent symmetry is misleading.”

— Samson Abramsky

An intensional fixed point of

is a point

such that

Cf. Lawvere’s fixed points
which oughtn’t exist:

f : QA ! A

1
y�! A = 1

m0��! Q1
Qy��! QA

f�! A

1
y�! A = 1

y�! A
f�! A

Theorem. There is an exposure corresponding to a Gödel numbering of PA.

Leads to abstract analogues of Gödel Incompleteness Theorem
and Tarski’s Undefinability Theorem.

PA ` fix() $ (pfix()p) �� ` u = fpuq �e(x) ' f(e, x)

y : 1 ! A

Kleene & Lawvere

Kleene & Lawvere

Construct a P-category
where…

Kleene & Lawvere

Construct a P-category
where…

Kleene’s First Recursion Theorem

Kleene & Lawvere

Construct a P-category
where…

Kleene’s First Recursion Theorem

Kleene’s Second Recursion Theorem

P-category of assemblies
• Assembly = a set with realisers (drawn from a PCA)

• The P-category for a PCA has

• objects: assemblies

element is realised by

• morphisms

where “r tracks f”:

• whenever

Asm(A) A

X = (|X| , k·k : |X| ! P(A))

x 2 |X| kxk ✓ A

(f : |X| ! |Y | , r 2 A) : X ! Y

a 2 kxk) r · a 2 kf(x)k

(f, r) ⇠ (g, s) f = g

P-category of assemblies
• Assembly = a set with realisers (drawn from a PCA)

• The P-category for a PCA has

• objects: assemblies

element is realised by

• morphisms

where “r tracks f”:

• whenever

Asm(A) A

X = (|X| , k·k : |X| ! P(A))

x 2 |X| kxk ✓ A

(f : |X| ! |Y | , r 2 A) : X ! Y

a 2 kxk) r · a 2 kf(x)k

(f, r) ⇠ (g, s) f = g

partial combinatory algebra

Exposure on assemblies
Define

X ⇤X

f : X ! Y

fr : ⇤X ! ⇤Y

X = (|X| , k·k) QX = (|QX| , k·k)
|QX| = {(x, a) | a 2 kxk}

k(x, a)k = {a}
(f, r) : X ! Y (fr, r) : QX ! QY

fr(x, a) = (f(x), r · a)

Exposure on assemblies
Define

X ⇤X

f : X ! Y

fr : ⇤X ! ⇤Y
Theorem. This is a comonadic exposure.

X = (|X| , k·k) QX = (|QX| , k·k)
|QX| = {(x, a) | a 2 kxk}

k(x, a)k = {a}
(f, r) : X ! Y (fr, r) : QX ! QY

fr(x, a) = (f(x), r · a)

Exposure on assemblies
Define

X ⇤X

f : X ! Y

fr : ⇤X ! ⇤Y
Theorem. This is a comonadic exposure.

X = (|X| , k·k) QX = (|QX| , k·k)
|QX| = {(x, a) | a 2 kxk}

k(x, a)k = {a}
(f, r) : X ! Y (fr, r) : QX ! QY

fr(x, a) = (f(x), r · a)

In fact, in this P-category for the PCA K1, with this exposure:
First Recursion Theorem = extensional (Lawvere) fixed points

Second Recursion Theorem = intensional fixed points

Coda

Coda
• To obtain ‘intensionality,’ we need P-categories.

Coda
• To obtain ‘intensionality,’ we need P-categories.

• Gödel numberings then are exposures,
which are functor-like structures, which do not ‘respect’ equality.

Coda
• To obtain ‘intensionality,’ we need P-categories.

• Gödel numberings then are exposures,
which are functor-like structures, which do not ‘respect’ equality.

• Exposures provide a nice & general way to talk about intension vs.
extension.

Coda
• To obtain ‘intensionality,’ we need P-categories.

• Gödel numberings then are exposures,
which are functor-like structures, which do not ‘respect’ equality.

• Exposures provide a nice & general way to talk about intension vs.
extension.

• Asymmetric, intensional fixed points can be captured abstractly.

Coda
• To obtain ‘intensionality,’ we need P-categories.

• Gödel numberings then are exposures,
which are functor-like structures, which do not ‘respect’ equality.

• Exposures provide a nice & general way to talk about intension vs.
extension.

• Asymmetric, intensional fixed points can be captured abstractly.

• More generally: modalities can keep data from flowing from one
place to another. This is a reusable pattern: see (GAK, LICS 2017).

Coda
• To obtain ‘intensionality,’ we need P-categories.

• Gödel numberings then are exposures,
which are functor-like structures, which do not ‘respect’ equality.

• Exposures provide a nice & general way to talk about intension vs.
extension.

• Asymmetric, intensional fixed points can be captured abstractly.

• More generally: modalities can keep data from flowing from one
place to another. This is a reusable pattern: see (GAK, LICS 2017).

• Recent development: a modal λ-calculus / prototype programming
language, for intensional/non-functional programming, and with
intensional recursion (GAK, IMLA 2017).

Coda
• To obtain ‘intensionality,’ we need P-categories.

• Gödel numberings then are exposures,
which are functor-like structures, which do not ‘respect’ equality.

• Exposures provide a nice & general way to talk about intension vs.
extension.

• Asymmetric, intensional fixed points can be captured abstractly.

• More generally: modalities can keep data from flowing from one
place to another. This is a reusable pattern: see (GAK, LICS 2017).

• Recent development: a modal λ-calculus / prototype programming
language, for intensional/non-functional programming, and with
intensional recursion (GAK, IMLA 2017).

Thank you.

