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• for sets: 

• for functions:  

Extensional equality is something we pick: 
see e.g. constructive mathematics…

A = B () 8x. x 2 A ! x 2 B

f = g : A ! B () 8x 2 A. f(x) = g(x)

To be intensional is to be 
finer than extensional equality.



What is intensionality?
“The notions of intensionality and extensionality carry 
symmetric-sounding names, but this apparent symmetry 
is misleading. Extensional i ty is enshrined in 
mathematically precise axioms with a clear conceptual 
meaning. Intensionality, by contrast, remains elusive. It 
is a “loose baggy monster” into which all manner of 
notions may be stuffed, and a compelling and coherent 
general framework for intensional concepts is still to 
emerge.” 

— Samson Abramsky  
“Intensionality, Definability and Computation” (2014)



A framework for 
intensionality

I’ve been looking for a mathematical setting, in terms of 
category theory, where the same mathematical objects 
can be seen both extensionally and intensionally.

Why?

• a categorical approach to Gödel numbering

• intensional recursion

• non-functional computation
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Vignette no 1 
Categorical Gödel numbering

Lawvere proves a version of 
Gödel’s First Incompleteness Theorem: 

Theorem. If satisfaction (= weak point-surjection) 
is definable, then       has a fixed point 

So Lawvere’s fixed points oughtn’t exist. 

Can we tell a story about what ought to exist? 

¬



Vignette no 2 
Intensional Recursion

In the untyped λ-calculus, there are two ways to 
obtain recursion. Let        be the Gödel number of u. 

First Recursion Theorem (FRT) 

Second Recursion Theorem (SRT) 

Enumeration Theorem (EN) 

Given EN, the SRT implies the FRT. 
But is the SRT really stronger? What does it do?

puq

8f 2 ⇤.9u 2 ⇤. u = f u

8f 2 ⇤.9u 2 ⇤. u = f puq

9E.8u 2 ⇤0. E puq = u
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Non-functional computation

From the perspective of extensional equality, being intensional 
entails being non-functional. This is an open issue in higher-
order computability.



Code as a type former, 
or: modality-as-intension

For each type 

let there be a type 

whose elements can be understood as: 

• programs that—when run—will yield objects of that type 

• “codes” of objects of that type 

• “intensions” of objects of that type

A

⇤A
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Modality-as-Intension and 
Intensional Recursion

• Discovered by Neil Jones in the 1990s (underbar types).

• Staged metaprogramming by Davies and Pfenning: a 
modal λ-calculus for S4 (POPL 1996, MSCS 2001). 

• But suppose we have

• If             then surely                   and hence 

• The SRT then says:

“for each                           we have a                  ”      

u = f puq

u : A puq : ⇤A f : ⇤A ! A

f : ⇤A ! A puq : ⇤A



The type of the 
Second Recursion Theorem 

is the Gödel-Löb axiom

• It’s Löb’s rule, from provability logic! 
 
 
 

• Equivalent to the Gödel-Löb axiom:

⇤A ! A

⇤A

⇤(⇤A ! A) ! ⇤A



All is well, except 
in category theory 

• Categories are not intensional 

• Lawvere (1969): some categories are not well-pointed: 
                                      yet 

• But, in general, the arrows will be distinguishable. 

• Modality is a functor, but intension isn’t! 

• Categorical semantics of modal logic (S4): 
a cartesian closed category     and a monoidal comonad 

• Unfortunate conclusion: 

C
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All is well, except 
in category theory 

• Categories are not intensional 

• Lawvere (1969): some categories are not well-pointed: 
                                      yet 

• But, in general, the arrows will be distinguishable. 

• Modality is a functor, but intension isn’t! 

• Categorical semantics of modal logic (S4): 
a cartesian closed category     and a monoidal comonad 

• Unfortunate conclusion: 

C
(⇤ : C �! C, � : ⇤ ) ⇤2, ✏ : ⇤ ) Id)

f = g =) ⇤f = ⇤g

f 6= g : A ! B8x : 1 ! A. f � x = g � x
We cannot use 

ordinary category theory.



Enter P-categories
• P-sets: sets, up to a partial equivalence relation (PER) 

• For                     the relation                 intuitively means: 
    and    are well-defined and extensionally equal. 
 
P-categories are ‘categories’ with P-sets 
 
 
instead of hom-sets. The laws of categories hold up to the PERs; 
e.g. 
 
 

symmetric 
and 

transitive
A = (|A| ,⇠A)

x, y 2 |A| x ⇠A y
x y

C(A,B) = (|C(A,B)| ,⇠C(A,B))

(h � g) � f ⇠C(A,C) h � (g � f)



What about the modality?
• The modality is almost a functor, but not: we might 

want                   even if           .  

• We will call this an exposure: it’s a functor-like map 
that reflects the PER. In symbols, 
 
such that                             and 

⇤f 6⇠ ⇤g f ⇠ g

Q : (B,⇠) # (C,⇠)

Q(g � f) ⇠ Qg �Qf

Q(idA) ⇠ idQA
Qf ⇠ Qg =) f ⇠ g
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What about the modality?
• The modality is almost a functor, but not: we might 

want                   even if           .  

• We will call this an exposure: it’s a functor-like map 
that reflects the PER. In symbols, 
 
such that                             and 

Intensional equality
implies

extensional equality.

⇤f 6⇠ ⇤g f ⇠ g

Q : (B,⇠) # (C,⇠)

Q(g � f) ⇠ Qg �Qf

Q(idA) ⇠ idQA
Qf ⇠ Qg =) f ⇠ g

It exposes the 
implementation.



Comonadic Exposures

There is a notion of natural transformation of 
exposures, so we can mimic (strong monoidal) 
comonads. For that, we also need isomorphisms:

mA,B : QA⇥QB ! Q(A⇥B)

m0 : Q1 ! 1

a : 1 ! A Qa �m0 : 1 ! QA
quoting



Intensional Fixpoints
“The notions of intensionality and extensionality carry symmetric-
sounding names, but this apparent symmetry is misleading.”  
 
— Samson Abramsky 

An intensional fixed point of 
 
is a point 
 
such that 

Cf. Lawvere’s fixed points 
which oughtn’t exist:
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1
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Intensional Fixpoints
“The notions of intensionality and extensionality carry symmetric-
sounding names, but this apparent symmetry is misleading.”  
 
— Samson Abramsky 

An intensional fixed point of 
 
is a point 
 
such that 

Cf. Lawvere’s fixed points 
which oughtn’t exist:

f : QA ! A

1
y�! A = 1

m0��! Q1
Qy��! QA

f�! A

1
y�! A = 1

y�! A
f�! A

Theorem. There is an exposure corresponding to a Gödel numbering of PA. 

Leads to abstract analogues of Gödel Incompleteness Theorem 
and Tarski’s Undefinability Theorem.

PA ` fix( ) $  (pfix( )p) �� ` u = fpuq �e(x) ' f(e, x)

y : 1 ! A
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Construct a P-category 
where…

Kleene’s First Recursion Theorem

Kleene’s Second Recursion Theorem
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• Assembly = a set with realisers (drawn from a PCA) 
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• objects: assemblies  
 
element                   is realised by  

• morphisms 
 
where   “r tracks f”: 

•                             whenever  

Asm(A) A

X = (|X| , k·k : |X| ! P(A))

x 2 |X| kxk ✓ A

(f : |X| ! |Y | , r 2 A) : X ! Y
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P-category of assemblies
• Assembly = a set with realisers (drawn from a PCA) 

• The P-category                 for a PCA      has 

• objects: assemblies  
 
element                   is realised by  

• morphisms 
 
where   “r tracks f”: 

•                             whenever  

Asm(A) A

X = (|X| , k·k : |X| ! P(A))

x 2 |X| kxk ✓ A

(f : |X| ! |Y | , r 2 A) : X ! Y

a 2 kxk ) r · a 2 kf(x)k

(f, r) ⇠ (g, s) f = g

partial combinatory algebra



Exposure on assemblies
Define 

X ⇤X

f : X ! Y

fr : ⇤X ! ⇤Y

X = (|X| , k·k) QX = (|QX| , k·k)
|QX| = {(x, a) | a 2 kxk}

k(x, a)k = {a}
(f, r) : X ! Y (fr, r) : QX ! QY

fr(x, a) = (f(x), r · a)
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Exposure on assemblies
Define 

X ⇤X

f : X ! Y

fr : ⇤X ! ⇤Y
Theorem. This is a comonadic exposure.

X = (|X| , k·k) QX = (|QX| , k·k)
|QX| = {(x, a) | a 2 kxk}

k(x, a)k = {a}
(f, r) : X ! Y (fr, r) : QX ! QY

fr(x, a) = (f(x), r · a)

In fact, in this P-category for the PCA K1, with this exposure:
First Recursion Theorem = extensional (Lawvere) fixed points

Second Recursion Theorem = intensional fixed points
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Coda
• To obtain ‘intensionality,’ we need P-categories.

• Gödel numberings then are exposures, 
which are functor-like structures, which do not ‘respect’ equality.

• Exposures provide a nice & general way to talk about intension vs. 
extension.

• Asymmetric, intensional fixed points can be captured abstractly.

• More generally: modalities can keep data from flowing from one 
place to another. This is a reusable pattern: see (GAK, LICS 2017).

• Recent development: a modal λ-calculus / prototype programming 
language, for intensional/non-functional programming, and with 
intensional recursion (GAK, IMLA 2017).

Thank you.


