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Defining functions by recursion

Let

fact : N→ N

fact(n)
def
= if n = 0 then 1 else n × fact(n − 1)

Is this well-defined?

Operational solution: write an interpreter.

Mathematical solutions:

1. Postulate that “definition by induction” is a thing.

But what about the following function?

f (n)
def
= if n = 1 then 1 elsif even(n) then f (n/2) else f (3n+1)

2. Write down a little abstract machine. (Implicitly just like 1.)

3. Do a little bit of domain theory. Fun for the whole family!



Embracing higher-order functions

Use λ-abstraction:

fact = λn. if n = 0 then 1 else n × fact(n − 1)

A very common form: a function defined in terms of itself.

Abstract the recursive call:

fact = (λf .λn. if n = 0 then 1 else n × f (n − 1)) fact

This is of the form fact = F (fact), where

F : (N⇀ N)→ (N⇀ N)

F (f ) = λn. if n = 0 then 1 else n × f (n − 1)

where N⇀ N is the set of partial functions on N.

fact is a fixed point of F .



Partiality & Approximation I

F : (N⇀ N)→ (N⇀ N)

F (f ) = λn. if n = 0 then 1 else n × f (n − 1)

A curious phenomenon. If ⊥ : N⇀ N is the undefined function, let

f0
def
= ⊥ def

= ∅ fn+1
def
= F (fn)

Observe that

f1 = {(0, 1)}
f2 = {(0, 1), (1, 1)}
f3 = {(0, 1), (1, 1), (2, 2)}
f4 = {(0, 1), (1, 1), (2, 2), (3, 6)}
...



Partiality & Approximation II

F : (N⇀ N)→ (N⇀ N)

F (f ) = λn. if n = 0 then 1 else n × f (n − 1)

f0 = ∅
f1 = {(0, 1)}
f2 = {(0, 1), (1, 1)}
f3 = {(0, 1), (1, 1), (2, 2)}
f4 = {(0, 1), (1, 1), (2, 2), (3, 6)}

Intuitively, fact is the limit of this sequence. Some observations:

1. fi+1 is consistent with fi .

2. fi+1 is more defined than fi .



The Subset Order

1. fi+1 is consistent with fi .

2. fi+1 is more defined than fi .

Recall the subset relation between partial functions:

f ⊆ g
def≡ ∀x , y ∈ N. (x , y) ∈ f =⇒ (x , y) ∈ g

g is possibly more defined than f , and agrees with it wherever

both are defined. Writing E ' E ′ for Kleene equality:

f ⊆ g
def≡ ∀x , y ∈ N. f (x) ' y =⇒ g(x) ' y

⊆ is a relation on (N⇀ N). It is a partial order:

reflexive f ⊆ f

transitive f ⊆ g ∧ g ⊆ h =⇒ f ⊆ h

antisymmetric f ⊆ g ∧ g ⊆ f =⇒ f = g



ω-chains

Notice that F (f ) = λn. if n = 0 then 1 else n × f (n − 1) is

monotonic: a more defined input leads to a more defined output.

f ⊆ g =⇒ F (f ) ⊆ F (g)

We prove by induction that the sequence

f0
def
= ⊥ fn+1

def
= F (fn)

is an ω-chain:

f0 ⊆ f1 ⊆ f2 ⊆ f3 ⊆ . . .

BC: f0
def
= ∅ ⊆ f1 whatever f1 is.

IS: if fi ⊆ fi+1 then fi+1 = F (fi ) ⊆ F (fi+1) = fi+2 by monotonicity.



Limits

Recap. To define the factorial function:

1. We characterised it as the fixed point of

F (f ) = λn. if n = 0 then 1 else n × f (n − 1).

2. We produced a sequence (fi )i∈ω of approximations to it.

3. These approximations have a sense of purpose: they become

progressively more defined, without contradicting previous

information.

If we take the set

f
def
=
⋃
i∈ω

fi

we find that it is a partial function itself. (Why?)

f is the limit of the sequence (fi )i∈ω



The Smoking Gun I

It remains to prove that f
def
=
⋃

i∈ω fi is a fixed point of F .

F (f ) = F

(⋃
i∈ω

fi

)
= ???

Something is missing.

• f =
⋃

i∈ω fi is a huge object: it is defined at all natural

numbers.

• But F (f )(n)
def
= if n = 0 then 1 else n × f (n − 1) uses the

value of f at a finite number of points.

F does not make any “decisions” based on the entirety of f .

We say that F is continuous.



Continuity

Definition
A monotonic functional F : (N⇀ N)→ (N⇀ N) is continuous if

for any ω-chain (fi )i∈ω we know that

F

(⋃
i∈ω

fi

)
=
⋃
i∈ω

F (fi )

By monotonicity, we always have
⋃

i∈ω F (fi ) ⊆ F
(⋃

i∈ω fi
)
. It

suffices to check

F

(⋃
i∈ω

fi

)
⊆
⋃
i∈ω

F (fi )

That is: F cannot make any decisions based on the whole limit!

Example
F (f ) = if (f = idN) then λn. 1 else λn. 0 is not continuous.



The Smoking Gun II

The functional

F (f ) = λn. if n = 0 then 1 else n × f (n − 1)

is “obviously” continuous: it uses f at a finite number of points.

It remains to prove that f
def
=
⋃

i∈ω fi is a fixed point of F .

F (f ) = F

(⋃
i∈ω

fi

)
=
⋃
i∈ω

F (fi ) =
⋃
i∈ω

fi+1 =
⋃
i∈ω

fi

(The first term of an ω-chain can be skipped in the union.)

So f is a fixed point.

We may take it as the definition of the factorial function.



This covers all recursive definitions

Let g : N→ N be a total computable function.

Given the Gödel number 〈M〉 of a Turing machine M, read g(〈M〉)
as the Gödel number 〈N〉 of another TM N (quite possibly

gibberish).

Suppose g is extensional: if TMs M and N compute the same

function, then so do the TMs encoded by g(〈M〉) and g(〈N〉).

Example
The function that writes out the source code of

λn. if n = 0 then 1 else n × f (n − 1) when given the source of f .

This defines a functional

Fg : (N⇀ N)→ (N⇀ N)

We call this an effective operation.



This covers all recursive definitions

Theorem (Myhill & Sherpherdson, 1955)
Every effective operation Fg : (N⇀ N)→ (N⇀ N) is

1. monotonic

2. continuous

3. effective on finite functions

Moreover, every such functional is an effective operation.

The last condition means: there is a program that given the full

list of input-output pairs of a finite function

θ
def
= {(x1, y1), . . . , (xn, yn)} and some input x computes F (θ)(x).

Thus, any reasonable template/specification has a fixed point.

(Reasonable = there is a TM that when given code meant to run

at the time of a recursive call outputs code for the entire function

definition.)



Abstracting partial functions away

Save the last bit, nothing so far depends on partial functions.

Let v be a partial order on a set D: a reflexive, transitive,

antisymmetric relation. The following is akin to a limit.

Definition (Least upper bound)
The least upper bound of S ⊆ D is an element

⊔
S ∈ D such that

1. ∀x ∈ S . x v
⊔
S

2. if ∀x ∈ S . x v z then
⊔
S v z

Example
Let W ⊆ P(X ). The least upper bound of W in (P(X ),⊆) is

given by the union⋃
W

def
= {x ∈ X | ∃S ∈W. x ∈ S}

It is the least set that contains all the sets in W.



ω-complete partial orders

Definition (ω-complete partial order)
A partial order (D,v) is ω-complete just if

1. it has a least element ⊥, so that ∀x ∈ D. ⊥ v x

2. every ω-chain (xi )i∈ω has a least upper bound
⊔

i∈ω xi ∈ D.

Let D and E be ω-cpos.

Definition
A function f : D → E is monotonic if x v y =⇒ f (x) v f (y)

Definition
A function f : D → E is continuous if for every ω-chain (xi )i∈ω

f

(⊔
i∈ω

xi

)
=
⊔
i∈ω

f (xi )



The Fixed Point Theorem

Theorem (Kleene ≈1935, Tarski 1939)
Let f : D → D be a continuous function on an ω-cpo D. Then f

has a least fixed point given by

lfp(f )
def
=
⊔
i∈ω

f i (⊥)

Proof.
Induction:

(
f i (⊥)

)
i∈ω is an ω-chain. The lub is a fixed point:

f

(⊔
i∈ω

f i (⊥)

)
=
⊔
i∈ω

f (f i (⊥)) =
⊔
i∈ω

f i+1(⊥) =
⊔
i∈ω

f i (⊥)

It is the least one. Suppose f (x) = x . Then f k(⊥) v x by

induction. So x is an upper bound for
(
f k(⊥)

)
i∈ω. Hence⊔

i∈ω f
i (⊥) v x .



Examples of ω-cpos

powersets (P(X ),⊆). Least upper bounds = unions.

partial functions (N⇀ N,⊆). A sub-cpo of P(N× N).

flat nats N⊥
def
= {⊥} ∪ N. x v y

def≡ x = ⊥ ∨ x = y

ω-chain are of two forms:

⊥ v ⊥ v ⊥ v . . . (with lub ⊥)

⊥ v ⊥ v · · · v n v n v . . . (with lub n)

streams Σ∞
def
= finite or infinite sequences over Σ. w v v iff

w is a prefix of v . An ω-chain over Σ = B def
= {0, 1}:

ε v 〈0〉 v 〈0, 0〉 v 〈0, 0, 0〉 v . . .

Lub: the infinite sequence 0ω.



Examples of monotonic and continuous functions

Flat booleans: B⊥
def
= {⊥} ∪ B. x v y

def≡ x = ⊥ ∨ x = y

Define three functions f1, f2, f3 : B∞ → B⊥.

f1(w)
def
=

1 if w contains a 1

⊥ otherwise
f2(w)

def
=


1 if w contains a 1

0 if w = 0ω

⊥ otherwise

f3(w)
def
=

1 if w contains a 1

0 otherwise

• f1 is continuous: it examines the stream element-by-element.

• f2 is monotonic but not continuous: it makes a decision by

looking at the entirety of an infinite stream.

• f3 is just awful.



Summary

Goal: mathematically defining functions by recursion.

Main ideas:

• recursive definitions as fixed points

• the partial order of definedness

• least upper bounds (lub) as limits/completed objects

• monotonic and continuous functions as (i) computational

functions and (ii) acceptable templates for recursive definitions

• the fixed point theorem: constructing fixed points by

iterating continuous functions (can be generalised: if just

monotone, we can iterate transfinitely).



Beyond

• The semantics of PCF: simply-typed λ-calculus + recursion.

• Program logics for recursion: computational induction.

• So far: convergence. But equally important is

approximation. For example, partial functions are algebraic:

f =
⋃
θ⊆finf

θ. ω-cpos that are continuous, algebraic, . . .

• Semantics of recursive types. In Haskell:

data Tree = Leaf Int | Node Tree Int Tree

Must construct a mathematical ‘space’ X that provides a

solution to the recursive domain equation

X ∼= N⊥ ⊕ (X × N⊥ × X )⊥

• Information Systems: an equivalent presentation.

• Synthetic Domain Theory: a closer connection with

computabiltity.



Synthetic Guarded Domain Theory

There is another way: take step-indexing seriously. Replace

ω-cpos with sets constructed over time:

P = P(0)
r0←− P(1)

r1←− P(2)
r2←− . . .

P(i) = values at time i . ri : P(i + 1)→ P(i) trims values.

Delaying a computation:

IP = {∗} !←− P(0)
r0←− P(1)

r1←− P(2)
r2←− . . .

A causal function f : P → Q consists of a family fi : P(i)→ Q(i)

of functions that is ‘compatible’ with trimming.

Theorem
Every causal function f : IP → P has a guarded fixed point.

Often just as good as domain theory. Excellent for recursive types!
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