How to define things by recursion

?ﬂ\T IN N
0,

%,

>

n-So
o}\“ Lip,
%
Ysis_gian

(7\
K TAS ARYS

Alex Kavvos

LoGSEM seminar, 11 May 2020

Institut for Datalogi, Aarhus Universitet

Defining functions by recursion

Let

fact:N - N

fact(n) = if n = 0 then 1 else n x fact(n — 1)

Is this well-defined?

Operational solution: write an interpreter.

Mathematical solutions:

1.

Postulate that “definition by induction” is a thing.
But what about the following function?

def

f(n) = if n = 1 then 1 elsif even(n) then f(n/2) else f(3n+1)

Write down a little abstract machine. (Implicitly just like 1.)
Do a little bit of domain theory. Fun for the whole family!

Embracing higher-order functions

Use A-abstraction:
fact = An. if n =0 then 1 else n x fact(n — 1)

A very common form: a function defined in terms of itself.
Abstract the recursive call:

fact = (Af.An. if n =0 then 1 else n x f(n— 1)) fact

This is of the form fact = F(fact), where
F:(N—=N)— (N—=N)
F(f) = An.if n=0 then 1 else n x f(n —1)

where N — N is the set of partial functions on N.

fact is a fixed point of F. I

Partiality & Approximation |

F:N—=N)—> (N—=N)
F(f)=An.if n=0then 1 else n x f(n—1)

A curious phenomenon. If L : N — N is the undefined function, let

h= L=0 for1 & F(£)
Observe that
fi={(0,1)}
fo ={(0,1),(1,1)}
fs ={(0,1),(1,1),(2,2)}
fa ={(0,1),(1,1),(2,2),(3,6)}

Partiality & Approximation Il

F:(N—=N)— (N—~N)
F(f)=An.if n=0then 1 else n x f(n—1)

fo=10
i =1{(0,1)}
fo={(0,1),(1,1)}

s ={(0,1),(1,1),(2,2)}

fa = {(Oa 1)7(171)7()),(3,6)}

Intuitively, fact is the limit of this sequence. Some observations:

1. fii1 is consistent with f;.
2. fiy1 is more defined than f;.

The Subset Order

1. fii1 is consistent with f;.
2. fiy1 is more defined than f;.

Recall the subset relation between partial functions:
fCg = Vx,y e N. (x,y) e f = (x,y) € g

g is possibly more defined than f, and agrees with it wherever
both are defined. Writing E ~ E’ for Kleene equality:

L8

de

fCg = Vx,yeN f(x)xy = g(x)~y
C is a relation on (N — N). It is a partial order:

reflexive f C f
transitive f Cg AN gCh = fCh
antisymmetric f C g AN gCf — f=g

w-chains

Notice that F(f) = An. if n=0then 1 else n x f(n—1) is
monotonic: a more defined input leads to a more defined output.

fCg = F(f) C F(g)

We prove by induction that the sequence

def def

fo=1 far1 = F(f)

is an w-chain:
hChChCHhC...

BC: fy & () C f; whatever f; is.

IS: if f; C fiyq then i1 = F(f;) C F(fi+1) = fiy2 by monotonicity.

Recap. To define the factorial function:

1. We characterised it as the fixed point of
F(f)=An.if n=0 then 1 else n x f(n—1).

2. We produced a sequence (f;);c., of approximations to it.

3. These approximations have a sense of purpose: they become
progressively more defined, without contradicting previous
information.

If we take the set
FEA
icw

we find that it is a partial function itself. (Why?)

f is the limit of the sequence (f;)icw

The Smoking Gun |

It remains to prove that f o Uie., fi is a fixed point of F.

F(f)=F (U f,-) =777

IEw
Something is missing.

o f=Jc, fi is a huge object: it is defined at all natural

numbers.
e But F(f)(n) £if n=0 then 1 else n x f(n— 1) uses the
value of f at a finite number of points.

F does not make any “decisions” based on the entirety of f.

We say that F is continuous. I

Continuity

Definition
A monotonic functional F : (N = N) — (N — N) is continuous if
for any w-chain (f;);c,, we know that

F(U f;) =JF()

iCw iCw

By monotonicity, we always have |, F(f) € F (U;e, fi)- It

suffices to check
F <U f;) cUF)

iEw i€w
That is: F cannot make any decisions based on the whole limit!

Example
F(f) =if (f = idy) then An. 1 else An. 0 is not continuous.

The Smoking Gun Il

The functional
F(f)=An.if n=0then 1 else n x f(n—1)

is “obviously” continuous: it uses f at a finite number of points.

It remains to prove that f o Uic, fi is a fixed point of F.

F(f)=F<Uf,-> =UJFrH=Ufa=U*
i€w i€w i€w i€w
(The first term of an w-chain can be skipped in the union.)

So f is a fixed point.

We may take it as the definition of the factorial function.

This covers all recursive definitions

Let g : N — N be a total computable function.

Given the Godel number (M) of a Turing machine M, read g({M))
as the Godel number (N) of another TM N (quite possibly
gibberish).

Suppose g is extensional: if TMs M and N compute the same
function, then so do the TMs encoded by g({(M)) and g((N)).

Example
The function that writes out the source code of

An. if n =0 then 1 else n x f(n — 1) when given the source of f.

This defines a functional

Feg:(N—=N)— (N—~N)

We call this an effective operation.

This covers all recursive definitions

Theorem (Myhill & Sherpherdson, 1955)

Every effective operation Fg : (N = N) — (N = N) is
1. monotonic
2. continuous

3. effective on finite functions

Moreover, every such functional is an effective operation.

The last condition means: there is a program that given the full
list of input-output pairs of a finite function
0= {(x1,y1), .-, (xXn, yn)} and some input x computes F(6)(x).

Thus, any reasonable template/specification has a fixed point.
(Reasonable = there is a TM that when given code meant to run
at the time of a recursive call outputs code for the entire function
definition.)

Abstracting partial functions away

Save the last bit, nothing so far depends on partial functions.

Let C be a partial order on a set D: a reflexive, transitive,
antisymmetric relation. The following is akin to a limit.

Definition (Least upper bound)
The least upper bound of S C D is an element | |S € D such that

1. VxeS. xC|]S

2. ifVxeS. xC zthen||SCz
Example
Let 20 C P(X). The least upper bound of 25 in (P(X),C) is
given by the union

JWE{xeXx|3ScWw xS}

It is the least set that contains all the sets in 20.

w-complete partial orders

Definition (w-complete partial order)
A partial order (D, C) is w-complete just if

1. it has a least element L, so that Vx € D. 1 C x

2. every w-chain (X;)ie. has a least upper bound | |, x; € D.

Let D and E be w-cpos.

Definition
A function f : D — E is monotonic if x C y = f(x) C f(y)

Definition
A function f : D — E is continuous if for every w-chain (x;)icw

f <|_|x,-> = |_| f(x;)

The Fixed Point Theorem

Theorem (Kleene ~1935, Tarski 1939)
Let f : D — D be a continuous function on an w-cpo D. Then f

has a least fixed point given by

Ifp(F) = | | F1(1L)

IEw

Proof. '
Induction: (f’(J_))’.ew is an w-chain. The lub is a fixed point:
f <|_| f’(L)) = |feF) = | = | | F)
i€Ew i€Ew iEw IEw

It is the least one. Suppose f(x) = x. Then () C x by

induction. So x is an upper bound for (fk(J_))I.EW. Hence
Liew F/(L) E x. O

Examples of w-cpos

powersets (P(X),C). Least upper bounds = unions.

partial functions (N — N, C). A sub-cpo of P(N x N).

flat nats N; = {1}UN. xCy £ x=1lvx=y
w-chain are of two forms:

LClClC... (withlub 1)
lC1lC---CnCnC... (withlub n)

def go @
streams Y °° = finite or infinite sequences over Y. w C v iff
def

w is a prefix of v. An w-chain over ¥ =B = {0,1}:

Lub: the infinite sequence 0.

Examples of monotonic and continuous functions

des

Flat booleans: B, £ {1}UB. xCy = x=1Vx=y

-

Define three functions fi, f>, 3 : B — B .

1 if wcontainsal

1 if wcontainsal G
=<0 ifw=0Q

1 otherwise)
1 otherwise

s | 1 if w containsal

f3(w) =
0 otherwise

e fi is continuous: it examines the stream element-by-element.
e f» is monotonic but not continuous: it makes a decision by
looking at the entirety of an infinite stream.

e f3 is just awful.

Goal: mathematically defining functions by recursion.

Main ideas:

e recursive definitions as fixed points
e the partial order of definedness
e least upper bounds (lub) as limits/completed objects

e monotonic and continuous functions as (i) computational
functions and (ii) acceptable templates for recursive definitions
e the fixed point theorem: constructing fixed points by

iterating continuous functions (can be generalised: if just
monotone, we can iterate transfinitely).

e The semantics of PCF: simply-typed A-calculus + recursion.

e Program logics for recursion: computational induction.

e So far: convergence. But equally important is
approximation. For example, partial functions are algebraic:
= UGQﬁnf 0. w-cpos that are continuous, algebraic, ...

e Semantics of recursive types. In Haskell:

data Tree = Leaf Int | Node Tree Int Tree
Must construct a mathematical ‘space’ X that provides a
solution to the recursive domain equation

X%NLEB(XXNLXX)L

e Information Systems: an equivalent presentation.
e Synthetic Domain Theory: a closer connection with
computabiltity.

Synthetic Guarded Domain Theory

There is another way: take step-indexing seriously. Replace
w-cpos with sets constructed over time:

r

P=P(0) & P(1) & PR)&E ...
P(i) = values at time i. r; : P(i + 1) — P(i) trims values.
Delaying a computation:
b P = {x} < P(0) <2 P(1) <X P(2) & ...
A causal function f : P — Q consists of a family f; : P(i) — Q(/)

of functions that is ‘compatible’ with trimming.

Theorem
Every causal function f : » P — P has a guarded fixed point.

Often just as good as domain theory. Excellent for recursive types!

References i

This presentation is based on lecture notes by Samson Abramsky.
(~2007).

The history of the fixed point theorem:

e J.-L. Lassez, V.L. Nguyen, and E.a. Sonenberg (1982). “Fixed
point theorems and semantics: a folk tale". In: Information
Processing Letters 14.3, pp. 112-116. DOI:
10.1016/0020-0190(82)90065-5

Standard references on domain theory—a book and a survey:

e V. Stoltenberg-Hansen, |. Lindstrom, and E. R. Griffor

(1994). Mathematical Theory of Domains. Cambridge:
Cambridge University Press

https://doi.org/10.1016/0020-0190(82)90065-5

References ii

e Samson Abramsky and Achim Jung (1994). "Domain
Theory”. In: Handbook of Logic in Computer Science. Ed. by
Samson Abramsky, Dov M. Gabbay, and
Thomas S. E. Maibaum. Vol. 3. Oxford University Press,
pp. 1-168

Possibly the most clear and concise reference to PCF/LCF:

e Thomas Streicher (2006). Domain-theoretic Foundations of

Functional Programming. \World Scientific

References iii

A really unusual and fascinating book on (a) the connections of
domain theory with topology, and (b) the intuitive meanings of
many domain-theoretic and topological concepts in Haskell:

e M Escardo (Nov. 2004). “Synthetic Topology of Data Types
and Classical Spaces”. en. In: Electronic Notes in Theoretical
Computer Science 87, pp. 21-156. DOI:
10.1016/81571-0661(04)05135-7

A very similar blog post:

http://math.andrej.com/2008/11/21/

a-haskell-monad-for-infinite-search-in-finite-time/

https://doi.org/10.1016/S1571-0661(04)05135-7
http://math.andrej.com/2008/11/21/a-haskell-monad-for-infinite-search-in-finite-time/
http://math.andrej.com/2008/11/21/a-haskell-monad-for-infinite-search-in-finite-time/

References iv

The source of all synthetic guarded domain theory:

e Lars Birkedal et al. (2012). “First steps in synthetic guarded
domain theory: step-indexing in the topos of trees”. In:
Logical Methods in Computer Science 8.4. DOI:
10.2168/LMCS-8(4:1)2012

https://doi.org/10.2168/LMCS-8(4:1)2012

