Curry-Howard for Modal Logic

Alex Kavvos

Department of Mathematics and Computer Science, Wesleyan University

CUNY Computational Logic Seminar, 30 Oct 2018

Outline

🕽 Curry-Howard

- Hilbert systems
- Natural deduction
- The Curry-Howard correspondence

Normal Modal Logic

- Modalities and Axioms
- Hilbert systems for modal logic
- Bierman and de Paiva's system for S4
- The Pfenning-Davies system for S4
- Programming applications

Cutting-edge work

Curry-Howard

The Curry-Howard-Lambek correspondence

For the connection "logic \leftrightarrow computation" perhaps the most seminal reference of all (at least in France and the UK) is

• Jean-Yves Girard, Yves Lafont, and Paul Taylor (1989). *Proofs and Types.* Cambridge University Press

For the relationship to categories, perhaps

• Samson Abramsky and Nikos Tzevelekos (2011). "Introduction to Categories and Categorical Logic". In: *New Structures for Physics*. Ed. by Bob Coecke. Springer-Verlag, pp. 3–94. DOI: 10.1007/978-3-642-12821-9_1. arXiv: 1102.1313

What is logic about?

Traditionally,

- which sentences are **true**?
- can I split them into axioms, which are evidently true, and
- a few simple inference rules, that preserve truth?

A bit arbitrary. To make it less so,

- can I find a yardstick, maybe human language, or another mathematical theory that I feel I understand well, i.e. a semantics,
- into which I can **translate** my *axioms* and my *inference rules*, and find that they look good (**soundness**),
- and also hopefully prove that everything that the translation says looks good ('is true') is provable in my system? (completeness)

What is logic about?

Beginning in the 1930s, some of the focus shifts to

- what follows from what? what is a proof?
- can I isolate the structural rules that generate my notion of proof?
- can I explain what it means for a proof to be **normal**, i.e. as simple as possible? can I simplify proofs?

Also a bit arbitary. To make it less so,

- can I find a **yardstick**, maybe another mathematical theory that I feel I understand well, i.e. a **semantics**,
- into which I can **translate** my *structural rules* to this theory, and find that they look good (**soundness**),
- and also hopefully prove that everything that the translation says is a proof is expressible in my system? (full completeness)

Hilbert systems

An example of each: (I) Hilbert systems for prop. logic

Judgements: $\Gamma \vdash A$

- *contexts*: $\Gamma = A_1, \ldots, A_n$ is a finite list, where the A_i are formulas of propositional logic
- axioms: pick some (without excluded middle); e.g. for conjunction:

$$A \to (B \to A \land B)$$
$$A \land B \to A$$
$$A \land B \to B$$

• *rules*: axiom, assumption, modus ponens:

$$\frac{1}{\Gamma, A, \Delta \vdash A} \quad \frac{A \text{ is an axiom}}{\Gamma \vdash A} \quad \frac{\Gamma \vdash A \to B \quad \Gamma \vdash A}{\Gamma \vdash B}$$

An example of each: (I) Hilbert systems for prop. logic

A is an axiom $\Gamma \vdash A \rightarrow B$ $\Gamma \vdash A$ $\Gamma, A, \Delta \vdash A \qquad \Gamma \vdash A$ $\Gamma \vdash B$ For this system we can prove theorems. For example: Theorem (Deduction) The following rule is admissible: $\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B}$ Т. Note: a rule $\stackrel{\mathcal{L}}{-}$ is *admissible* if from a proof $\stackrel{\cdot}{-}$ we can construct a proof $\stackrel{\cdot}{-}$ (in \mathcal{T}_{\cdot} the metatheory!).

An example of each: (II) Gentzen natural deduction

Gentzen's thesis, ca. 1934-5: *natural deduction* and *sequent calculus* Main ideas:

- connectives as structural elements;
- each connective has an introduction rule,
- and an elimination rule.
- E.g. the axioms

are replaced by

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} (\land \mathcal{I}) \quad \frac{\Gamma \vdash A \land B}{\Gamma \vdash A} (\land \mathcal{E}_1) \quad \frac{\Gamma \vdash A \land B}{\Gamma \vdash B} (\land \mathcal{E}_2)$$

An example of each: (II) Gentzen natural deduction

Natural Deduction (NJ) for intuitionistic propositional logic

Judgements: $\Gamma \vdash A$ again

$$\frac{\overline{\Gamma, A, \Delta \vdash A} \text{ (assn)}}{\overline{\Gamma \vdash \top} (\top \mathcal{I}) \qquad \frac{\Gamma \vdash \bot}{\Gamma \vdash A} (\bot \mathcal{E})}$$

$$\frac{\overline{\Gamma \vdash A} \qquad \Gamma \vdash B}{\Gamma \vdash A \land B} (\land \mathcal{I}) \qquad \frac{\Gamma \vdash A \land B}{\Gamma \vdash A} (\land \mathcal{E}_{1}) \qquad \frac{\Gamma \vdash A \land B}{\Gamma \vdash B} (\land \mathcal{E}_{2})$$

$$\frac{\Gamma, A \vdash C \qquad \Gamma, B \vdash C \qquad \Gamma \vdash A \lor B}{\Gamma \vdash C} (\lor \mathcal{E}) \qquad \frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} (\lor \mathcal{I}_{1}) \qquad \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B} (\lor \mathcal{I}_{2})$$

$$\frac{\overline{\Gamma, A \vdash B}}{\Gamma \vdash A \rightarrow B} (\rightarrow \mathcal{I}) \qquad \frac{\Gamma \vdash A \rightarrow B \qquad \Gamma \vdash A}{\Gamma \vdash B} (\rightarrow \mathcal{E})$$

An example of each: (II) Gentzen natural deduction

Theorem (Equivalence)

There is a proof $\underline{\vdots}$ in the Hilbert system (without excluded middle) if and $\Gamma \vdash A$ only if there is a proof $\underline{\vdots}$ in natural deduction. $\Gamma \vdash A$

(Can be extended to cover excluded middle, but we do not want it.)

Theorem (Cut)

The following rule is admissible:

$$\Gamma \vdash A \quad \Gamma, A, \Delta \vdash C$$

$$\Gamma, \Delta \vdash C$$

Very easy to prove: just a simple induction!

Natural deduction

Doing silly things

- You can do silly things in natural deduction.
- (You can do silly things in Hilbert systems too...
- but NJ has a lot of **symmetry**, so can tell when one is being silly.)

Suppose there is a proof
$$\frac{\frac{\mathcal{D}}{\Gamma \vdash A}}{\frac{\Gamma \vdash A \land B}{\Gamma \vdash A}} (\land \mathcal{I}). \text{ Isn't this just } \frac{\mathcal{D}}{\Gamma \vdash A}?$$

Natural deduction

Proof dynamics

We can introduce a *dynamics* on proofs, i.e. a *reduction* relation:

$$\frac{\frac{\mathcal{D}}{\Gamma \vdash A}}{\frac{\Gamma \vdash A \land B}{\Gamma \vdash A}} (\land \mathcal{I}) \longrightarrow \frac{\mathcal{D}}{\Gamma \vdash A}$$

Similarly:

where $\mathcal{D}[\mathcal{D}'/A]$ is \mathcal{D} with every use of assumption A is replaced by \mathcal{D}' .

- We are now studying proofs as mathematical objects!
- But the notation is very cumbersome.
- Why don't we *linearise* it?

formulæ = types
proofs (in natural deduction) = programs
reduction (simplification of proofs) = computation
the proof term M in
$$\Gamma \vdash M : A$$
 is a summary of
a derivation with conclusion $\Gamma \vdash A$

Recall the reduction

$$\frac{\mathcal{D}}{\Gamma \vdash A} \stackrel{\vdots}{\Gamma \vdash B} \longrightarrow \qquad \frac{\mathcal{D}}{\Gamma \vdash A}$$

We now write it as a reduction of *proof terms*:

$$\pi_1(\langle M,N\rangle)\longrightarrow M$$

Natural Deduction (NJ) for intuitionistic propositional logic

Judgements:
$$\Gamma \vdash A$$

 $\overline{\Gamma, A, \Delta \vdash A}$ (assn)
 $\overline{\Gamma \vdash T}$ ($\top \mathcal{I}$) $\frac{\Gamma \vdash \bot}{\Gamma \vdash A}$ ($\bot \mathcal{E}$)
 $\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B}$ ($\land \mathcal{I}$) $\frac{\Gamma \vdash A \land B}{\Gamma \vdash A}$ ($\land \mathcal{E}_1$) $\frac{\Gamma \vdash A \land B}{\Gamma \vdash B}$ ($\land \mathcal{E}_2$)
 $\frac{\Gamma, A \vdash C \quad \Gamma, B \vdash C \quad \Gamma \vdash A \lor B}{\Gamma \vdash C}$ ($\lor \mathcal{E}$) $\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B}$ ($\lor \mathcal{I}_1$) $\frac{\Gamma \vdash B}{\Gamma \vdash A \lor B}$ ($\lor \mathcal{I}_2$)
 $\frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B}$ ($\rightarrow \mathcal{I}$) $\frac{\Gamma \vdash A \rightarrow B \quad \Gamma \vdash A}{\Gamma \vdash B}$ ($\rightarrow \mathcal{E}$)

The simply-typed λ -calculus

Judgements: $\Gamma \vdash M : A$

$$\frac{\overline{(\top, x : A, \Delta \vdash x : A} (\operatorname{assn})}{\overline{(\top, x : A, \Delta \vdash x : A}} (\bot \mathcal{E}) \\
\frac{\overline{(\top \vdash x : \top} (\top \mathcal{I}) (\top \mathcal{I}) (\top \vdash \operatorname{absurd}(M) : A)}{\overline{(\top \vdash \operatorname{absurd}(M) : A}} (\bot \mathcal{E}) \\
\frac{\overline{(\top \vdash M : A (\top \vdash N : B)} (\times \mathcal{I}) (\times \mathcal{I}) (\top \vdash M : A \times B)}{\overline{(\top \vdash \pi_1(M) : A}} (\times \mathcal{E}_1) (\top \vdash M : A \times B)} (\times \mathcal{E}_2) \\
\frac{\overline{(\neg u : A \vdash M : C (\top, v : B \vdash N : C (\top \vdash P : A + B))}}{\overline{(\top \vdash \operatorname{match}_C(P, u. M, v. N) : C}} (+ \mathcal{E}) (+ \mathcal{E}) (+ \operatorname{cond}(M) : A + B) \\
\frac{\overline{(\neg \vdash \lambda x : A, M : A \to B}}{\overline{(\top \vdash \lambda x : A, M : A \to B}} (\to \mathcal{I}) (+ \operatorname{cond}(N) : B) (+ \operatorname{cond}(A) : B) (+ \operatorname{cond}(A) : B)$$

Dynamics of the simply-typed $\lambda\text{-calculus}$

The main principle is:

Elimination is post-inverse to introduction

Take the rules for implication:

$$\frac{\vdots}{\Gamma, x : A \vdash M : B} (\to \mathcal{I}) \qquad \frac{\vdots}{\Gamma \vdash \lambda x : A. M : A \to B} (\to \mathcal{I}) \qquad \frac{\vdots}{\Gamma \vdash N : A} (\to \mathcal{E})$$
$$\frac{\Gamma \vdash (\lambda x : A. M)(N) : B}{\Gamma \vdash (\lambda x : A. M)(N) : B}$$

The dynamics specifies that

$$(\lambda x: A. M)(N) \longrightarrow M[N/x]$$

Moreover, the dynamics is a **congruence**; e.g.

$$\langle (\lambda x: A. M)(N), \pi_1(P) \rangle \longrightarrow \langle M[N/x], \pi_1(P) \rangle$$

Alex Kavvos

Reasoning about proofs

The three pillars of the Curry-Howard correspondence:

- confluence, a.k.a. the Church-Rosser property
 - proofs are mathematical expressions: their meaning is determined by their parts, and the order of reductions is irrelevant
- strong normalisation, due to Tait (1967)
 - if $\Gamma \vdash M_1$: A then there is no infinite reduction sequence

$$M_1 \longrightarrow M_2 \longrightarrow \ldots$$

- the subformula property, due to Prawitz (1965)
 - if Γ ⊢ N : A is normal, i.e. there is no reduction step N → N', then the derivation of Γ ⊢ N : A can only mention subformulas of A and subformulas of assumptions in Γ (no irrelevant stuff, no detours)

To sum up,

one can eliminate detours from a proof in finite time

Extending Curry-Howard

- Classical logic?
 - Works, but is not nice and easy.
 - Seems to cause *non-local control flow*, related in particular to *continuations*.
 - See the following notes for pointers:
 - Stéphane Graham-Lengrand (2015). "The Curry-Howard view of classical logic". In:
- First-order logic? Yes, in Howard's paper.
- More interestingly, higher-order logic:
 - The most active community works on Martin-Löf type theory, also known as dependent type theory. See
 - Bengt Nordström, Kent Petersson, and Jan M. Smith (1990). Programming in Martin-Löf's Type Theory: an Introduction. Oxford University Press. DOI: 10.1016/0377-0427(91)90052-L

and also homotopy type theory.

Some references

Noticed by Curry and Feys in terms of combinators. First openly stated in 1969 by W. A. Howard in:

 William A Howard (1980). "The formulae-as-types notion of construction". In: To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. Ed. by Jonathan P. Seldin and J. Roger Hindley. Boston, MA: Academic Press, pp. 479–490

Books:

- Jean-Yves Girard, Yves Lafont, and Paul Taylor (1989). *Proofs and Types*. Cambridge University Press
 - Morten Heine Sørensen and Pawel Urzyczyn (2006). Lectures on the Curry-Howard Isomorphism. Elsevier

And an interesting paper on natural deduction:

• Per Martin-Löf (1996). "On the meanings of the logical constants and the justification of the logical laws". In: *Nordic Journal of Philosophy* 1.1, pp. 11–60

Normal Modal Logic

Modal Logic

In the most general sense,

modality = a unary operation on formulæ

- Some common notations: $\Box A$, $\Diamond A$, T(A), F(A), ||A||, ...
- A very rich theory developed following the discovery of *Kripke semantics* (Kripke, 1963).

By using Kripke semantics we have already accepted the K axiom:

$$\Box(A \to B) \to \Box A \to \Box B$$

which in category theory we like to write as

$$\Box(A\times B)\cong \Box A\times \Box B$$

We will focus on the necessity fragment with K for now.

Alex Kavvos

Some common axioms

$$\begin{array}{ccc} \mathsf{CK} \stackrel{\mathrm{def}}{=} (\mathsf{IPL}_{\Box}) \oplus (\mathsf{K}) \\ (\mathsf{K}) & \Box(\mathsf{A} \to \mathsf{B}) \to (\Box \mathsf{A} \to \Box \mathsf{B}) \\ (\mathsf{4}) & \Box \mathsf{A} \to \Box \Box \mathsf{A} \\ (\mathsf{T}) & \Box \mathsf{A} \to \mathsf{A} \\ (\mathsf{GL}) & \Box(\Box \mathsf{A} \to \mathsf{A}) \to \Box \mathsf{A} \end{array} \qquad \begin{array}{c} \mathsf{CK} \stackrel{\mathrm{def}}{=} (\mathsf{IPL}_{\Box}) \oplus (\mathsf{K}) \oplus (\mathsf{4}) \\ \mathsf{CT} \stackrel{\mathrm{def}}{=} (\mathsf{IPL}_{\Box}) \oplus (\mathsf{K}) \oplus (\mathsf{T}) \\ \mathsf{CS4} \stackrel{\mathrm{def}}{=} (\mathsf{IPL}_{\Box}) \oplus (\mathsf{K}) \oplus (\mathsf{4}) \oplus (\mathsf{T}) \\ \mathsf{CGL} \stackrel{\mathrm{def}}{=} (\mathsf{IPL}_{\Box}) \oplus (\mathsf{K}) \oplus (\mathsf{4}) \oplus (\mathsf{T}) \\ \mathsf{CGL} \stackrel{\mathrm{def}}{=} (\mathsf{IPL}_{\Box}) \oplus (\mathsf{K}) \oplus (\mathsf{GL}) \end{array}$$

 $(IPL_{\Box}) \stackrel{\text{def}}{=}$ axioms of int. prop. logic, but over syntax with \Box $\oplus \stackrel{\text{def}}{=}$ union followed by closure under deduction

Hilbert systems for normal modal logic

Judgements: $\Gamma \vdash A$

- contexts: Γ = A₁,..., A_n is a finite list, where the A_i are formulas of propositional logic
- axioms: as in the previous slide, for each logic
- *rules*: axiom, assumption, modus ponens and necessitation:

$$\frac{1}{\Gamma, A, \Delta \vdash A} \quad \frac{A \text{ is an axiom}}{\Gamma \vdash A} \quad \frac{\Gamma \vdash A \to B \quad \Gamma \vdash A}{\Gamma \vdash B} \quad \boxed{\frac{\vdash A}{\Gamma \vdash \Box A}}$$

A wayward rule; see

 Raul Hakli and Sara Negri (2012). "Does the deduction theorem fail for modal logic?" In: Synthese 187.3, pp. 849–867. DOI: 10.1007/s11229-011-9905-9

Hilbert systems for modal logic

Theorem (Deduction)

The following rule is admissible:

Let $\Box(A_1,\ldots,A_n) \stackrel{\text{\tiny def}}{=} \Box A_1,\ldots,\Box A_n$.

Theorem (Scott's rule)

The following rule is admissible:

$$\frac{\Gamma \vdash A}{\Box \Gamma \vdash \Box A}$$

 $\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B}$

Theorem (Four rule)

If axiom 4 is included, the following rule is admissible:

 $\Box \Gamma, \Gamma \vdash A$

 $\Box \Gamma \vdash \Box A$

Hilbert systems for modal logic

Theorem (Löb's rule)

If axiom GL is included, the following rule is admissible: $\frac{\Box \Gamma, \Gamma, \Box A \vdash A}{\Box \Gamma \vdash \Box A}$

Theorem (T rule)

If axiom T is included, the following rule is admissible: $\frac{\Gamma \vdash A}{\Box \Gamma \vdash A}$

Natural deduction for modal logic?

- Not easy, especially if we want Curry-Howard + three pillars.
- Many attempts, appearing as early as the seminar work of Prawitz (1965, 1971) on natural deduction.
- I wrote a long (unpublished) survey on this:
 - G. A. Kavvos (2016). "The Many Worlds of Modal Lambda Calculi: I. Curry-Howard for Necessity, Possibility and Time". In: *CoRR*. arXiv: 1605.08106

As of Oct 2018 I consider this draft inaccurate and incomplete.

• The first prim and proper extension of Curry-Howard to any modal logic is the crowning achievement of Bierman and Paiva (1996, 2000).

A trick that often works in passing from Hilbert systems to the natural deduction system:

does not even satisfy basic correctness properties (in particular, subject reduction—a.k.a closure under substitution—fails).

Alex Kavvos

Bierman and de Paiva's solution:

 $\Gamma \vdash M_1 : \Box A_1 \quad \dots \quad \Gamma \vdash M_n : \Box A_n \qquad x_1 : \Box A_1, \dots, x_n : \Box A_n \vdash N : B$

 $\Gamma \vdash \text{box } N \text{ with } M_1, \ldots, M_n \text{ for } x_1, \ldots x_n : \Box B$

Like the rule, but including 'substitutes' for all x_i (*explicit substitutions*). The elimination rule is:

 $\frac{\Gamma \vdash M : \Box A}{\Gamma \vdash \text{unbox } M : A}$

along with dynamics:

unbox (box N with M_1, \ldots, M_n for x_1, \ldots, x_n) $\longrightarrow N[M_1/x_1, \ldots, M_n/x_n]$

Theorem (Bierman, de Paiva, Goubault-Larrecq)

The above coincides with the Hilbert system, and satisfies the three pillars.

Alex Kavvos

$$\Gamma \vdash M_1 : \Box A_1 \quad \dots \quad \Gamma \vdash M_n : \Box A_n \qquad x_1 : \Box A_1, \dots, x_n : \Box A_n \vdash N : B$$

 $\Gamma \vdash \text{box } N \text{ with } M_1, \ldots, M_n \text{ for } x_1, \ldots x_n : \Box B$

- the third pillar (subformula property) works only if we add many commuting conversions, i.e. extra 'non-logical' reductions
- some harmony, but still a bit dissonant: the connective that is being introduced (□) already appears in the premise!

$$\Gamma \vdash M_1 : \Box A_1 \quad \dots \quad \Gamma \vdash M_n : \Box A_n \qquad x_1 : \Box A_1, \dots, x_n : \Box A_n \vdash N : B$$

 $\Gamma \vdash \text{box } N \text{ with } M_1, \ldots, M_n \text{ for } x_1, \ldots x_n : \Box B$

- the third pillar (subformula property) works only if we add many commuting conversions, i.e. extra 'non-logical' reductions
- some harmony, but still a bit dissonant: the connective that is being introduced (□) already appears in the premise!

$$\Gamma \vdash M_1 : \Box A_1 \quad \dots \quad \Gamma \vdash M_n : \Box A_n \qquad x_1 : \Box A_1, \dots, x_n : \Box A_n \vdash N : B$$

 $\Gamma \vdash \text{box } N \text{ with } M_1, \ldots, M_n \text{ for } x_1, \ldots x_n : \Box B$

- the third pillar (subformula property) works only if we add many commuting conversions, i.e. extra 'non-logical' reductions
- some harmony, but still a bit dissonant: the connective that is being introduced (□) already appears in the premise!

 $\Gamma \vdash M_1 : \Box A_1 \quad \dots \quad \Gamma \vdash M_n : \Box A_n \qquad x_1 : \Box A_1, \dots, x_n : \Box A_n \vdash N : B$

 $\Gamma \vdash \text{box } N \text{ with } M_1, \ldots, M_n \text{ for } x_1, \ldots x_n : \Box B$

- the third pillar (subformula property) works only if we add many commuting conversions, i.e. extra 'non-logical' reductions
- some harmony, but still a bit dissonant: the connective that is being introduced (□) already appears in the premise!

Another idea, due to Pfenning and Davies (2001)

Consider the following version of the Four rule (missing an extra Γ):

Dataflow interpretation: if all the assumptions are *modal*, then we can modalise the conclusion. There are two **modes**.

We make up a new type of judgement:

Davies and Pfenning (2001) also call the assumptions Δ *valid*.

Another idea, due to Pfenning and Davies (2001)

We can now do the following:

$$\frac{\Box \Delta \vdash A}{\Box \Delta \vdash \Box A} \implies \frac{\Box \Delta \vdash A}{\Box \Delta, \Gamma \vdash \Box A} \implies \frac{\Delta; \cdot \vdash A}{\Delta; \Gamma \vdash \Box A}$$
If $\Delta = \cdot$ this is just necessitation: $\frac{\cdot; \cdot \vdash A}{\cdot; \Gamma \vdash \Box A}$

As for elimination, forget unbox. Take a horrible cut rule instead, along with a rule for using/unboxing a modal assumption:

$$\frac{\Delta; \Gamma \vdash \Box A \quad \Delta, A; \Gamma \vdash C}{\Delta; \Gamma \vdash C} (\Box \mathcal{E}) \quad \frac{\Delta, A, \Delta'; \Gamma \vdash A}{\Delta, A, \Delta'; \Gamma \vdash A} (\Box \text{var})$$

Another idea, due to Pfenning and Davies (ibid.)

It is straightforward to turn this into a λ -calculus for S4:

$$\frac{\Delta; \cdot \vdash M: A}{\Delta; \Gamma \vdash \text{box } M: \Box A} (\Box \mathcal{I}) \quad \frac{\Delta; \Gamma \vdash M: \Box A}{\Delta; \Gamma \vdash \text{let box } u \Leftarrow M \text{ in } N: C} (\Box \mathcal{E})$$

along with dynamics

let box
$$u \leftarrow box M$$
 in $N \longrightarrow N[M/u]$

Theorem (K., LICS 2017)

The above coincides with the Hilbert system, and satisfies the three pillars.

I may have done the formal work, but the ideas are all in

• Frank Pfenning and Rowan Davies (2001). "A judgmental reconstruction of modal logic". In: *Mathematical Structures in Computer Science* 11.4, pp. 511–540. DOI: 10.1017/S0960129501003322

Reusing this idea

This idea can be adapted. In the case of K:

	$\Delta \vdash A$		$\Delta \vdash A$		\cdot ; $\Delta \vdash A$	
	$\Box \Delta \vdash \Box A$	$\sim \rightarrow$	$\Box \Delta, \Gamma \vdash \Box A$	$\sim \rightarrow$	Δ ; Γ \vdash [$\exists A$
If $\Gamma = $	• this is just Sco	tt's rule:	$\frac{\cdot; \Delta \vdash A}{\Delta : \Box \Box A}$	Cf.	$\frac{\Delta \vdash A}{\Box \Delta \vdash \Box A}$	

Reusing this idea

К, Т	$\frac{\Delta \vdash A}{\Box \Delta \vdash \Box A}$	$\rightsquigarrow \frac{\Delta \vdash A}{\Box \Delta, \Gamma \vdash \Box A}$	$\rightsquigarrow \frac{\cdot ; \Delta \vdash A}{\Delta ; \Gamma \vdash \Box A}$
K4	$\frac{\Box \Delta, \Delta \vdash A}{\Box \Delta \vdash \Box A}$	$\rightsquigarrow \frac{\Box \Delta, \Delta \vdash A}{\Box \Delta, \Gamma \vdash \Box A}$	$\rightsquigarrow \frac{\Delta \ ; \ \Delta \vdash A}{\Delta \ ; \ \Gamma \vdash \Box A}$
GL	$\frac{\Box \Delta, \Delta, \Box A \vdash A}{\Box \Delta \vdash \Box A}$	$\rightsquigarrow \frac{\Box \Delta, \Delta, \Box A \vdash A}{\Box \Delta, \Gamma \vdash \Box A}$	$\rightsquigarrow \frac{\Delta \text{ ; } \Delta, \Box A \vdash A}{\Delta \text{ ; } \Gamma \vdash \Box A}$
S4	$\frac{\Box \Delta \vdash A}{\Box \Delta \vdash \Box A}$	$\rightsquigarrow \frac{\Box \Delta \vdash A}{\Box \Delta, \Gamma \vdash \Box A}$	$\rightsquigarrow \frac{\Delta ; \cdot \vdash A}{\Delta ; \Gamma \vdash \Box A}$

Reusing this idea

$$\frac{\cdot ; \Delta \vdash M : A}{\Delta ; \Gamma \vdash \text{box } M : \Box A} (\Box_{\mathsf{K}} \mathcal{I}) \qquad \frac{\Delta ; \Delta^{\perp} \vdash M^{\perp} : A}{\Delta ; \Gamma \vdash \text{box } M : \Box A} (\Box_{\mathsf{K4}} \mathcal{I})$$
$$\frac{\Delta ; \Delta^{\perp}, z^{\perp} : \Box A \vdash M^{\perp} : A}{\Delta ; \Gamma \vdash \text{fix } z \text{ in box } M : \Box A} (\Box_{\mathsf{GL}} \mathcal{I}) \qquad \frac{\Delta ; \Gamma \vdash M : \Box A \quad \Delta, u : A ; \Gamma \vdash N : C}{\Delta ; \Gamma \vdash \text{let box } u \Leftarrow M \text{ in } N : C}$$
Each of these leads to a λ -calculus with the same elim. rule. Dynamics:
let box $u \Leftarrow \text{box } M \text{ in } N \longrightarrow N[M/u]$

and, in the case of GL,

let box $u \leftarrow \text{fix } z \text{ in box } M \text{ in } N \longrightarrow N[M[\text{fix } z \text{ in box } M/z]/u]$

Theorem (K., LICS 2017)

The above coincide with the corresponding Hilbert systems, and satisfy the three pillars.

Alex Kavvos

Consider the closed term

 $ax_{K} \stackrel{\text{\tiny def}}{=} \lambda f : \Box (A \to B). \ \lambda x : \Box A. \text{ let box } g \Leftarrow f \text{ in let box } y \Leftarrow x \text{ in box } (g y)$

which has type $\Box(A \rightarrow B) \rightarrow \Box A \rightarrow \Box B$. This satisfies

$$\operatorname{ax}_{\mathsf{K}}(\operatorname{box} F)(\operatorname{box} M) \longrightarrow^{*} \operatorname{box}(FM) : \Box B$$

If we read

box
$$F : \Box(A \to B)$$
code F of type $A \to B$ box $M : \Box A$ code M of type A

then ax_K takes *code for a function*, and *code for an argument*, and produces *code for its result*. It's **metaprogramming**! Cf. **subst** : $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ on Gödel numbering:

subst
$$(\lceil \phi(x) \rceil) (\lceil t \rceil) = \lceil \phi(t) \rceil$$

Consider the closed term

 $ax_{K} \stackrel{\text{\tiny def}}{=} \lambda f : \Box (A \to B). \ \lambda x : \Box A. \text{ let box } g \Leftarrow f \text{ in let box } y \Leftarrow x \text{ in box } (g y)$

which has type $\Box(A \rightarrow B) \rightarrow \Box A \rightarrow \Box B$. This satisfies

$$\operatorname{ax}_{\mathsf{K}}(\operatorname{box} F)(\operatorname{box} M) \longrightarrow^{*} \operatorname{box}(FM) : \Box B$$

If we read

box
$$F : \Box(A \to B)$$
code F of type $A \to B$ box $M : \Box A$ code M of type A

then ax_K takes *code for a function*, and *code for an argument*, and produces *code for its result*. It's **metaprogramming**! Cf. **subst** : $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ on Gödel numbering:

subst
$$(\lceil \phi(x) \rceil) (\lceil t \rceil) = \lceil \phi(t) \rceil$$

Consider the closed term

 $ax_{K} \stackrel{\text{\tiny def}}{=} \lambda f : \Box (A \to B). \ \lambda x : \Box A. \text{ let box } g \Leftarrow f \text{ in let box } y \Leftarrow x \text{ in box } (g y)$

which has type $\Box(A \rightarrow B) \rightarrow \Box A \rightarrow \Box B$. This satisfies

$$\operatorname{ax}_{\mathsf{K}}(\operatorname{box} F)(\operatorname{box} M) \longrightarrow^{*} \operatorname{box}(FM) : \Box B$$

If we read

box
$$F : \Box(A \to B)$$
code F of type $A \to B$ box $M : \Box A$ code M of type A

then ax_K takes *code for a function*, and *code for an argument*, and produces *code for its result*. It's **metaprogramming**! Cf. **subst** : $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ on Gödel numbering:

subst
$$(\lceil \phi(x) \rceil) (\lceil t \rceil) = \lceil \phi(t) \rceil$$

A metaprogramming example

From Davies and Pfenning (2001):

$$power \equiv \mathbf{fix} \ p:\mathsf{nat} \to \Box(\mathsf{nat} \to \mathsf{nat}).$$

$$\lambda n:\mathsf{nat.} \ \mathbf{case} \ n$$

$$\mathbf{of} \ \mathbf{z} \ \Rightarrow \mathbf{box} \ (\lambda x:\mathsf{nat.} \ \mathbf{s} \ \mathbf{z})$$

$$\mid \ \mathbf{s} \ m \Rightarrow \mathbf{let} \ \mathbf{box} \ q = p \ m \ \mathbf{in}$$

$$\mathbf{box} \ (\lambda x:\mathsf{nat.} \ times \ x \ (q \ x))$$

$$power \mathbf{z} \hookrightarrow \mathbf{box} (\lambda x:\mathsf{nat. s z})$$

$$power (\mathbf{s z}) \hookrightarrow \mathbf{box} (\lambda x:\mathsf{nat. times } x ((\lambda x:\mathsf{nat. s z})x))$$

$$power (\mathbf{s (s z)}) \hookrightarrow \mathbf{box} (\lambda x:\mathsf{nat. times } x$$

$$((\lambda x:\mathsf{nat. times } x ((\lambda x:\mathsf{nat. s z})x))x))$$

Some recent work:

- Ranald Clouston (2018). "Fitch-Style Modal Lambda Calculi". In: *Proceedings of FoSSaCS 2018*. Vol. 10803. Lecture Notes in Computer Science. DOI: 10.1007/978-3-319-89366-2.14. arXiv: 1710.08326. Tense logic!
- Michael Shulman (2018). "Brouwer's fixed-point theorem in real-cohesive homotopy type theory". In: *Mathematical Structures in Computer Science* 28.6, pp. 856–941. DOI: 10.1017/S0960129517000147. arXiv: 1509.07584
- Ranald Clouston et al. (2016). "The guarded lambda calculus: Programming and reasoning with guarded recursion for coinductive types". In: *Logical Methods in Computer Science* 12.3, pp. 1–39. DOI: 10.2168/LMCS-12(3:7)2016
- Neelakantan R. Krishnaswami (2013). "Higher-order functional reactive programming without spacetime leaks". In: Proceedings of the 18th ACM SIGPLAN international conference on Functional programming - ICFP '13. ACM. New York, New York, USA: ACM Press, p. 221. DOI: 10.1145/2500365.2500588
- Pierre-Louis Curien, Marcelo Fiore, and Guillaume Munch-Maccagnoni (2016). "A theory of effects and resources: adjunction models and polarised calculi". In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages - POPL 2016. New York, New York, USA: ACM Press, pp. 44–56. DOI: 10.1145/2837614.2837652
- Tomas Petricek, Dominic Orchard, and Alan Mycroft (2014). "Coeffects: A calculus of context-dependent computation". In: Proceedings of the 19th ACM SIGPLAN international conference on Functional programming - ICFP '14, pp. 123–135. DOI: 10.1145/2628136.2628160
- Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese (Aug. 2017). "Parametric quantifiers for dependent type theory". In: Proceedings of the ACM on Programming Languages 1.ICFP. DOI: 10.1145/3110276

Alex Kavvos

Cutting-edge work

Cutting-edge work

- A new multi-modal framework:
 - Daniel R. Licata, Michael Shulman, and Mitchell Riley (2017). "A Fibrational Framework for Substructural and Modal Logics". In: 2nd International Conference on Formal Structures for Computation and Deduction (FSCD 2017). Ed. by Dale Miller. Vol. 84. Leibniz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 25:1–25:22. DOI: 10.4230/LIPICS.FSCD.2017.25
 - **Idea**: define the *modes* and their *relationship*. *Modalities* (operations that change mode) are then induced.
- An application to language-based security:
 - G. A. Kavvos (2018b). "Modalities, Cohesion, and Information Flow". In: arXiv: 1809.07897 To appear in: POPL 2019.

References I

- Abramsky, Samson and Nikos Tzevelekos (2011). "Introduction to Categories and Categorical Logic". In: *New Structures for Physics*. Ed. by Bob Coecke. Springer-Verlag, pp. 3–94. DOI: 10.1007/978-3-642-12821-9_1. arXiv: 1102.1313.
- Bierman, Gavin M. and Valeria de Paiva (1996). *Intuitionistic Necessity Revisited.* Tech. rep. University of Birmingham.
 - (2000). "On an Intuitionistic Modal Logic". In: *Studia Logica* 65.3, pp. 383–416. DOI: 10.1023/A:1005291931660.
- Clouston, Ranald (2018). "Fitch-Style Modal Lambda Calculi". In: Proceedings of FoSSaCS 2018. Vol. 10803. Lecture Notes in Computer Science. DOI: 10.1007/978-3-319-89366-2_14. arXiv: 1710.08326.

References II

- Clouston, Ranald et al. (2016). "The guarded lambda calculus: Programming and reasoning with guarded recursion for coinductive types". In: *Logical Methods in Computer Science* 12.3, pp. 1–39. DOI: 10.2168/LMCS-12(3:7)2016.
- Curien, Pierre-Louis, Marcelo Fiore, and Guillaume Munch-Maccagnoni (2016). "A theory of effects and resources: adjunction models and polarised calculi". In: *Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages -POPL 2016*. New York, New York, USA: ACM Press, pp. 44–56. DOI: 10.1145/2837614.2837652.
- Davies, Rowan and Frank Pfenning (2001). "A modal analysis of staged computation". In: *Journal of the ACM* 48.3, pp. 555–604. DOI: 10.1145/382780.382785.
- Girard, Jean-Yves, Yves Lafont, and Paul Taylor (1989). *Proofs and Types*. Cambridge University Press.

References III

- Graham-Lengrand, Stéphane (2015). "The Curry-Howard view of classical logic". In:
- Hakli, Raul and Sara Negri (2012). "Does the deduction theorem fail for modal logic?" In: *Synthese* 187.3, pp. 849–867. DOI: 10.1007/s11229-011-9905-9.
- Howard, William A (1980). "The formulae-as-types notion of construction".
 In: To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. Ed. by Jonathan P. Seldin and J. Roger Hindley. Boston, MA: Academic Press, pp. 479–490.
- Kavvos, G. A. (2016). "The Many Worlds of Modal Lambda Calculi: I. Curry-Howard for Necessity, Possibility and Time". In: *CoRR*. arXiv: 1605.08106.
- (Aug. 2018a). "Dual-Context Calculi for Modal Logic". In: *CoRR*. arXiv: 1602.04860.

References IV

- Kavvos, G. A. (2018b). "Modalities, Cohesion, and Information Flow". In: arXiv: 1809.07897.
- Kripke, Saul A. (1963). "Semantical Analysis of Modal Logic I. Normal Modal Propositional Calculi". In: Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 9.5-6, pp. 67–96. DOI: 10.1002/malq.19630090502.
- Krishnaswami, Neelakantan R. (2013). "Higher-order functional reactive programming without spacetime leaks". In: *Proceedings of the 18th ACM SIGPLAN international conference on Functional programming - ICFP '13.* ACM. New York, New York, USA: ACM Press, p. 221. DOI: 10.1145/2500365.2500588.

References V

Licata, Daniel R., Michael Shulman, and Mitchell Riley (2017). "A Fibrational Framework for Substructural and Modal Logics". In: 2nd International Conference on Formal Structures for Computation and Deduction (FSCD 2017). Ed. by Dale Miller. Vol. 84. Leibniz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 25:1–25:22. DOI: 10.4230/LIPICS.FSCD.2017.25.

- Martin-Löf, Per (1996). "On the meanings of the logical constants and the justification of the logical laws". In: *Nordic Journal of Philosophy* 1.1, pp. 11–60.
- Nordström, Bengt, Kent Petersson, and Jan M. Smith (1990). *Programming in Martin-Löf's Type Theory: an Introduction*. Oxford University Press. DOI: 10.1016/0377-0427(91)90052-L.
- Nuyts, Andreas, Andrea Vezzosi, and Dominique Devriese (Aug. 2017). "Parametric quantifiers for dependent type theory". In: *Proceedings of the ACM on Programming Languages* 1.ICFP. DOI: 10.1145/3110276.

References VI

- Petricek, Tomas, Dominic Orchard, and Alan Mycroft (2014). "Coeffects: A calculus of context-dependent computation". In: *Proceedings of the 19th ACM SIGPLAN international conference on Functional programming ICFP* '14, pp. 123–135. DOI: 10.1145/2628136.2628160.
- Pfenning, Frank and Rowan Davies (2001). "A judgmental reconstruction of modal logic". In: *Mathematical Structures in Computer Science* 11.4, pp. 511–540. DOI: 10.1017/S0960129501003322.
- Prawitz, Dag (1965). *Natural Deduction: a proof-theoretical study.* Almquist and Wiksell.
- (1971). "Ideas and Results in Proof Theory". In: Proceedings of the Second Scandinavian Logic Symposium. Ed. by J. E. Fenstad. Vol. 63. Studies in logic and the foundations of mathematics. Amsterdam: North-Holland.

References VII

- Shulman, Michael (2018). "Brouwer's fixed-point theorem in real-cohesive homotopy type theory". In: *Mathematical Structures in Computer Science* 28.6, pp. 856–941. DOI: 10.1017/S0960129517000147. arXiv: 1509.07584.
- Sørensen, Morten Heine and Pawel Urzyczyn (2006). Lectures on the Curry-Howard Isomorphism. Elsevier.
- Tait, W. W. (1967). "Intensional Interpretations of Functionals of Finite Type I". In: *Journal of Symbolic Logic* 32.2, pp. 198–212.