
Client-Server Sessions in Linear Logic

Zesen Qian
1 Alex Kavvos 2

Lars Birkedal
1

1
Aarhus University

2
University of Bristol

Proofs and Algorithms Seminar

Laboratoire d’informatique de l’École Polytechnique

23 June 2021

Concurrency through Logic

Objective: to understand and reason about concurrency.

Many approaches:

I process calculus (e.g. CSP, CCS, π-calculus, …)

I concurrent separation logic (e.g. Iris)

I Petri nets

I event structures

and so on.

In the early 1990s, Samson Abramsky asked:

Is there a Curry-Howard correspondence for concurrency?

The answer was meant to be

process calculus ≈ proofs in Girard’s Classical Linear Logic

Proofs as processes

Early a�empts: Abramsky (circa 1991), Bellin and Sco� (TCS 1994).

2010s: a breakthrough.

I ILL: Caires and Pfenning (CONCUR 2010, MSCS 2016)

I CLL: Wadler (ICFP 2012, JFP 2014)

I Hypersequent CLL: Kokke et al. (POPL 2019)

These term assignment systems are compelling process calculi.

Benefits:
I deadlock-freedom (≈ progress)

I session fidelity/polite conversation (≈ preservation)

I livelock-freedom (≈ termination)

Drawbacks: one thing in common:

the expressivity of these systems is remarkably poor

Programme: increase expressivity, without losing good properties.

Table of Contents

Classical Processes

Fixed points, exponentials, and coexponentials

Client-Server Linear Logic

Examples

Related and future work

I. Classical Processes

Classical Processes

CP: a typed π-calculus. Type system: Classical Linear Logic (CLL).

Formulas of CLL are session types.

A,B, . . . ::= ⊥ (receive end-of-session signal)

| 1 (send end-of-session signal)

| A O B (input A and continue as B)

| A⊗ B (output A and continue as B)

| A N B (o�er choice of A or B)

| A⊕ B (select one of A or B)

| ?A (�?)

| !A (�?)

Duality:

(A⊗ B)⊥
def

= A
⊥ O B

⊥ (A⊕ B)⊥
def

= A
⊥ N B

⊥ (?A)⊥
def

= !A
⊥

We have A
⊥⊥

= A.

Type system: classical linear logic

P ` x : A “P will communicate along channel x according to A.”

P ` Γ, x : A Q ` ∆, x : A⊥

νx. (P | Q) ` Γ,∆ x ↔ y ` x : A⊥, y : A

P ` Γ, x : A, y : B

y(x). P ` Γ, y : A O B

P ` Γ, x : A Q ` ∆, y : B

y[x]. (P | Q) ` Γ,∆, y : A⊗ B

P ` Γ, x : A

x[inl]. P ` Γ, x : A⊕ B

Q ` Γ, y : B

y[inr].Q ` Γ, y : A⊕ B

P ` Γ, x : A Q ` Γ, x : B

x.case{P;Q} ` Γ, x : A N B

A O B input A and continue as B connected concurrency
A⊗ B output A and continue as B disjoint concurrency

Exponentials

P ` Γ

P ` Γ, x : ?A

P ` Γ, x : ?A, y : ?A

P[x/y] ` Γ, x : ?A

P ` Γ, y : A

?x[y]. P ` Γ, x : ?A

P ` ?Γ, y : A

!x(y). P ` ?Γ, x : !A

Wadler’s interpretation: ! means server, ? means client

I weakening = no clients

I dereliction = one client

I contraction = many clients

I promotion = server

I !A = replicable service obeying protocol A

I ?A = pool of clients, each of which obeys protocol A

Exponentials: not server-client

P ` Γ

P ` Γ, x : ?A

“No clients in pool”?

But there is at least one process here!

P ` Γ, x : ?A, y : ?A

P[x/y] ` Γ, x : ?A

“More than one clients in the pool”?

But there is only one process here!

Suppose I have

{
P ` z : A

Q ` w : A
. How to combine them into a pool?

P ` z : A

?x[z]. P ` x : ?A
?d

Q ` w : A

?y[w]. P ` y : ?A
?d

?x[z]. P | ?y[w].Q ` x : ?A, y : ?A
Mix

?x[z]. P | ?x[w].Q ` x : ?A
?c

Mix and co.

To accommodate client pools, Wadler is forced to admit Mix.

P ` Γ Q ` ∆

P | Q ` Γ,∆
Mix

stop ` ·
Mix0

Cf. with tensor rule, the term for which is x[y]. (P | Q).

Mix0 looks like inconsistency. It allows for an empty client pool:

stop ` ·
Mix0

stop ` x : ?A
?w

Surprisingly, this allows some client/server-like behaviour.

What’s the deal with Mix?

Girard wavered on whether it should be included in CLL.

Theorem

The following are logically interderivable.

1. ⊥(1 and Mix.

2. 1 (⊥ and Mix0.

3. A⊗ B (A O B and Mix.

In terms of propositions as sessions:

I 1+2 conflate the units (OK)

I 3 states that output implies input (�?)

But there is also another thing. . .

A Slippery Slope

Suppose we have two clients

P ` z : A Q ` w : A

Using Mix: P | Q ` z : A,w : A. So w(z). (P | Q) ` w : A O A.

A corresponding server that we can cut with this must have type

S ` v : A⊥ ⊗ A
⊥

∴ The two clients will be served by disjoint server components!

Solution: to write stateful server code we must also accept

A O B (A⊗ B

Then ⊗ = O, which is a compact closed se�ing =⇒ Deadlock

II. Fixed points, exponentials, and

coexponentials

Exponentials as Fixed Points

We o�en think of !A as an infinite supply of A’s.

Can the exponential !A be given as a fixed point?

!A
∼= 1 N A N (!A⊗ !A) (∗)

Certainly a logical equivalence (by the structural rules; circa 1987).

But can it be an isomorphism on the level of proofs?

The rules of !A ensure that the exponential is uniform.

In other words: each dereliction to A evaluates to same proof of A.

Cf. the embedding of intuitionistic logic into linear logic:

(A→ B)?
def

= !A
? (B

?

It would be unacceptable if the various uses of !A
?

were not uniform.

. . . yet nothing in (∗) guarantees uniformity!

Ignoring uniformity

That does not stop us from considering a non-uniform exponential!

Take Baelde’s system for LL with fixed points (ACM ToCL 2012).

Specializing it to the LFP given by ?A
∼= ⊥⊕ A⊕ (?A O ?A):

` Γ

` Γ, ?A

Γ, ?A, ?A

Γ, ?A

` Γ,A

` Γ, ?A

These are the usual rules.

Specializing it to the GFP given by !A
∼= 1 N A N (!A⊗ !A):

` Γ,B ` B
⊥, 1 ` B

⊥,A ` B
⊥,B⊗ B

` Γ, !A

Not promotion; looks like a comonoid instead. Coinductive!

Upside down

!A
∼= 1 N A N (!A⊗ !A)

It is the consumer’s choice (N) to pick one of three:

I nothing, i.e. 1
I just an A

I recursively obtain two disjoint components of that type

∴ !A cannot be a stateful server.

What if the components were not disjoint, but connected?

¡A
∼= ⊥N A N (¡A O ¡A)

It is the consumer’s choice (N) to pick one of three:

I nothing, i.e. ⊥
I just an A

I recursively obtain two connected components of that type

Coexponentials

Specializing Baelde’s system to

¿A
∼= 1⊕ A⊕ (¿A⊗ ¿A) ¡A

∼= ⊥N A N (¡A O ¡A)

we obtain the following rules.

` ¿A

¿w

` Γ,A

` Γ, ¿A
¿d

` Γ, ¿A ` ∆, ¿A

` Γ,∆, ¿A
¿c

` Γ,B ` B
⊥,⊥ ` B

⊥,A ` B
⊥,B O B

` Γ, ¡A
¡

¿ means client

¡ means server

III. Client-Server Linear Logic

Clients and Servers

Seeking a “linear logic” that can model client/server interactions.

I A server with state, and

I a pool of clients,
I which races to nondeterministically connect to the server

I at a unique endpoint,
I holding atomic access to the server state.

I No Mix

We will use coexponentials, but with a twist: lists instead of trees.

The server rule

Original tree-shaped rule:

` Γ,B ` B
⊥,⊥ ` B

⊥,A ` B
⊥,B O B

` Γ, ¡A

Replace with a list-shaped rule:

` Γ,B ` B
⊥,⊥ ` B

⊥,A O B

` Γ, ¡A

Simplify, and replace ⊥ with an arbitrary ∆ (logically equivalent):

` Γ,B ` B
⊥,∆ ` B

⊥,A,B

` Γ,∆, ¡A

Reasons for the list-shape:

I there is a single global ‘logical’ server state

I servers don’t (always) fork children to serve clients

The client rules

Original tree-shaped rules:

` ¿A

¿w

` Γ,A

` Γ, ¿A
¿d

` Γ, ¿A ` ∆, ¿A

` Γ,∆, ¿A
¿c

To correspond with the list-like ¡ rule we must use

` ¿A

` Γ, ¿A ` ∆,A

` Γ,∆, ¿A

To generate nondeterminism we quotient the permutations away:

` Γ, ¿A ` ∆,A

` Γ,∆, ¿A ` Σ,A

` Γ,∆,Σ, ¿A
≡

` Γ, ¿A ` Σ,A

` Γ,Σ, ¿A ` ∆,A

` Γ,∆,Σ, ¿A

This last is included as a structural equivalence.

Clients and Servers

` ¿A

` Γ, ¿A ` ∆,A

` Γ,∆, ¿A

` Γ,B ` B
⊥,∆ ` B

⊥,A,B

` Γ,∆, ¡A

Cu�ing a (non-empty) ¿A with a ¡A causes the following events:

I The “state’ B spawns an A session and a ‘next state’ B.

I The spawned A nondeterministically connects to some client.

I The server is re-initialised with the next B state. . .

I . . . and re-connected to the remaining pool (minus one client).

When there are no clients le� ` B
⊥,∆ is used to ‘terminate.’

Client-Server Linear Logic

CSLL is based on Kokke, Montesi and Peressoti’s HCP (POPL 2019).

It uses hyperenvironments to decompose the terms of CP.

P ` G | Γ, x : A | ∆, y : A⊥

νxy. P ` G | Γ,∆
Cut

P ` Γ, x : A | ∆, y : B

y[x]. P ` Γ,∆, y : A⊗ B

Tensor

P ` G
¿x[]. P ` G | x : ¿A

QueW

P ` G | Γ, x : ¿A | ∆, y : A

¿x[y]. P ` G | Γ,∆, x : ¿A
QueA

P ` G | Γ, i : B | ∆, f : B⊥
Q ` z : B⊥, z ′ : B, y ′ : A

¡y{z, z ′, y ′.Q}(i, f). P ` G | Γ,∆, y : ¡A
Claro

These come with a reaction relation P −→ Q.

Theorem: −→ satisfies progress and preservation.

IV. Examples

Compare-and-Set (CAS)

A very powerful concurrent primitive!

Definition

A register implements compare-and-set if:

I There is an instruction Cas(e, d). (e = expected, d = desirable)

I When a thread runs Cas(e, d):

I If the register equals e: it is set to d , and the inst. returns True.

I If not: register stays put, the function returns False.

I Threads race to perform Cas(ei, di) atomically.

Server = register. Client pool = threads racing to perform a Cas.

Le�ing 2 def

= 1⊕ 1, the client protocol is

¿(2⊗ 2⊗ 2⊥ O 1)

(The server protocol is the dual of this.)

Access to CAS register is not atomic, but causally atomic.

CSGV = linear FP + session types + clients and servers

CSLL is a low-level language. Need higher-level notation.

T , . . . ::= T (T | T → T | T + T | T ⊗ T | Unit | TS

TS, . . . ::= !T .TS (output value of type T , then behave as TS)

| ?T .TS (input value of type T , then behave as TS)

| TS ⊕ TS | TS N Ts (select from options, o�er choice)

| end? | end! (end-of-session)

| ¿TS | ¡Ts (request or serve TS session)

We can write programs that

I control access to a shared functional data structure
I implement nondeterministic choice
I implement fork-join parallelism
I implement Keynes’ beauty contest

=⇒ sharing and nondeterminism, without deadlock!

V. Related and future work

Client/Server interaction

All previous CLL-based approaches use Mix.

(Wadler, JFP 2014; Atkey et al, WadlerFest 2016; Caires and Pérez,

ESOP 2017; Kokke et al, POPL 2019)

Outlier: Kokke, Morris and Wadler (LMCS 2020) use bounded
linear logic (# of clients in pool bounded).

Two totally di�erent approaches:

I multiparty session types
I Kobayashi’s (priority-based) type systems for the π-calculus

Some deep connections to di�erential linear logic; add rules

` Γ, !A ` ∆, !A

` Γ,∆, !A

` Γ,A

` Γ, !A ` !A

` Γ . . . ` Γ

` Γ

DILL can embed finitary π-calculus (Ehrhard and Laurent, IC 2010)

. . . but criticized by Mazza (MSCS 2018) for being confusion-free.

Future work

I Weakening the coexponential rule to ‘match’ promotion gives

`
⊗

¿Γ,A

`
⊗

¿Γ, ¡A
¡

How to eliminate cuts?
I Develop a logical relations toolkit for CLL and CSLL, with a

view to reasoning about programs (and proving termination)

Thank you!

	Classical Processes
	Fixed points, exponentials, and coexponentials
	Client-Server Linear Logic
	Examples
	Related and future work

