Client-Server Sessions in Linear Logic

1

Zesen Qjan Alex Kavvos > Lars Birkedal !

Aarhus University

2University of Bristol

Proofs and Algorithms Seminar
Laboratoire d’informatique de I’Ecole Polytechnique
23 June 2021

Concurrency through Logic

Objective: to understand and reason about concurrency.

Many approaches:
> process calculus (e.g. CSP, CCS, m-calculus, ...)
> concurrent separation logic (e.g. Iris)
» Petri nets
P> event structures

and so on.

In the early 1990s, Samson Abramsky asked:

Is there a Curry-Howard correspondence for concurrency? I

The answer was meant to be

process calculus = proofs in Girard’s Classical Linear Logic

Proofs as processes
Early attempts: Abramsky (circa 1991), Bellin and Scott (TCS 1994).
2010s: a breakthrough.
» [LL: Caires and Pfenning (CONCUR 2010, MSCS 2016)
» CLL: Wadler (ICFP 2012, JFP 2014)
> Hypersequent CLL: Kokke et al. (POPL 2019)
These term assignment systems are compelling process calculi.
Benefits:
» deadlock-freedom (= progress)
> session fidelity/polite conversation (= preservation)
» livelock-freedom (= termination)

Drawbacks: one thing in common:

the expressivity of these systems is remarkably poor I

Programme: increase expressivity, without losing good properties.

Table of Contents

Classical Processes

Fixed points, exponentials, and coexponentials

Client-Server Linear Logic

Examples

Related and future work

I. CLAsSICAL PROCESSES

Classical Processes
CP: a typed m-calculus. Type system: Classical Linear Logic (CLL).

Formulas of CLL are session types.

AB, ... =

Duality:

I
1
| A% B
|A® B
|A&B
|A&® B
| 2A
1A

(receive end-of-session signal)
(send end-of-session signal)
(input A and continue as B)

(output A and continue as B)
(offer choice of A or B)
(select one of A or B)

77

(2?7

(A@B)r €At o Bt (A@B)F EAtg Bt (24)F Eiat

We have ALL = A

Type system: classical linear logic

“P will communicate along channel x according to A”

PHT,x:A QF A, x: A"

vx. (Pl QET,A xoybEx:Aby A
PFEIT,x:Ay:B PHEI,x:A QFA,y:B
y(x).PET,y:A®B yIx|.(P|QFT,Aly:A® B
PET,x: A QFT,y:B
x[inl. PET,x: A® B ylint.QFT,y: A®B

PET,x:A QFT,x:B
x.case{P;Q} FT,x: A&B

A’® B input A and continue as B connected concurrency

A® B output A and continue as B disjoint concurrency

Exponentials

PET PET,x:?A,y 1 ?A PET,y:A
PHT,x:?A Plx/y]FT,x:?A x[yl. PET,x:?A
PEI,y: A

Ix(y). PET,x 1A

Wadler’s interpretation: | means server, ? means client
> weakening = no clients

dereliction = one client

contraction = many clients

promotion = server

!A = replicable service obeying protocol A

vVvYyyvy

?A = pool of clients, each of which obeys protocol A

Exponentials: not server-client

PET “No clients in pool”?
PET x %A But there is at least one process here!
X T
PET,x:2A,y: 24 “More than one clients in the pool”?

Plx/y|FT,x:?A But there is only one process here!

PHz:A))
Suppose | have . How to combine them into a pool?
Fw:A
PrFz:A QFw: A
?d ?d
?x[z]. P+ x: ?A ?y[w]. Py :?A
IX

?2x[z]. P ?y[w]. QF x : A,y 1 ?A ,

’c

?x[z]. P | ?x[w]. QF x : ?A

Mix and co.

To accommodate client pools, Wadler is forced to admit Mix.

PET QFA

M Mix0
PlQET,A stop k- -

Cf. with tensor rule, the term for which is x[y]. (P | Q).

Mix0 looks like inconsistency. It allows for an empty client pool:

Mix0

?
stopkx: ?A

stop F -

Surprisingly, this allows some client/server-like behaviour.

What’s the deal with Mix?

Girard wavered on whether it should be included in CLL.
Theorem
The following are logically interderivable.

1. L —o 1 and Mix.

2. 1 — 1 and Mixo.

3. AQ B— A’® B and Mix.

In terms of propositions as sessions:
» 1+2 conflate the units (OK)
> 3 states that output implies input (???)

But there is also another thing...

A Slippery Slope

Suppose we have two clients
PEZz:A QFw: A
UsingMix: P| QF z: Aw:A Sow(z).(P|Q)Fw:A®%A
A corresponding server that we can cut with this must have type
Skv:At @At
.. The two clients will be served by disjoint server components!

Solution: to write stateful server code we must also accept
A®B—oAR®B

Then ® = *®, which is a compact closed setting = DEADLOCK

[I. FIXED POINTS, EXPONENTIALS, AND
COEXPONENTIALS

Exponentials as Fixed Points
We often think of !A as an infinite supply of A’s.

Can the exponential !A be given as a fixed point?
A= 1&A&(IA®A) (%)

Certainly a logical equivalence (by the structural rules; circa 1987).
But can it be an isomorphism on the level of proofs?

The rules of !A ensure that the exponential is uniform. I

In other words: each dereliction to A evaluates to same proof of A.
Cf. the embedding of intuitionistic logic into linear logic:

(A— B)* £1A* — B

It would be unacceptable if the various uses of | A* were not uniform.
...yet nothing in (x) guarantees uniformity!

[gnoring uniformity

That does not stop us from considering a non-uniform exponential!
Take Baelde’s system for LL with fixed points (ACM ToCL 2012).
Specializing it to the LFP given by ?A = 1 & A® (?PA9 ?A):

T [2A,2A T, A
FT,24A r,2A FT,2A

These are the usual rules.

Specializing it to the GFP given by !1A =2 1 & A& (A ® !A):

-r,B +BY1 +BY A +BY.B®B
HT,1A

Not promotion; looks like a comonoid instead. Coinductive!

Upside down

A =2 1&A&(IA®!A)
It is the consumer’s choice (&) to pick one of three:
» nothing, i.e. 1
> justan A
> recursively obtain two disjoint components of that type

1A cannot be a stateful server.

What if the components were not disjoint, but connected?
A2 L&AK(ARA)

It is the consumer’s choice (&) to pick one of three:
» nothing, ie. L
> justan A

> recursively obtain two connected components of that type

Coexponentials
Specializing Baelde’s system to
AZ1DAB (AR A) A 1&A&R (AR A)
we obtain the following rules.

FT,A FT A FAGA

iC

d
- A T, A FT,A, A

-r,B FBY1L +B A B B®B
1A ‘

{ means client
| means server

I1l. CLIENT-SERVER LINEAR LoOGIC

Clients and Servers

Seeking a “linear logic” that can model client/server interactions.

> A server with state, and

a pool of clients,

which races to nondeterministically connect to the server
at a unique endpoint,

holding atomic access to the server state.

No Mix

vVvyYyyvyy

We will use coexponentials, but with a twist: lists instead of trees.

The server rule
Original tree-shaped rule:
-r,B FBY1L +B" A +B-.B®B
FT,A

Replace with a list-shaped rule:

LB +BY, 1L FBYA®B
FT,A

Simplify, and replace _L with an arbitrary A (logically equivalent):

LB +FBYA +BYAB
FTLA A

Reasons for the list-shape:
> there is a single global ‘logical’ server state

> servers don’t (always) fork children to serve clients

The client rules
Original tree-shaped rules:

FT,A FI,;A FAGA

.C

W

o d
- A FT, A FT, A, A
To correspond with the list-like ; rule we must use

FT, A FAA
F A FI,A A

To generate nondeterminism we quotient the permutations away:

FT A FALA T A FTLA
T, A, A FE,A L FLE A FAA
FLLAY A B FTLAY A

This last is included as a structural equivalence.

Clients and Servers

T A FAA
Y FT,A, A

Fr,B +FBYA +BYAB
FI,AGA

Cutting a (non-empty) ;A with a jA causes the following events:
» The “state’ B spawns an A session and a ‘next state’ B.
» The spawned A nondeterministically connects to some client.
» The server is re-initialised with the next B state...

» ...and re-connected to the remaining pool (minus one client).

When there are no clients left - B+, A is used to ‘terminate’

Client-Server Linear Logic

CSLL is based on Kokke, Montesi and Peressoti’s HCP (POPL 2019).
It uses hyperenvironments to decompose the terms of CP.

PEG|T,x:AlA,y: At

Cut
vxy.PHG|T,A
PET,x:A|A,y:B PEHG
TENSOR QUEW
yIx. PET, Ay - A® B X[].PHEG | x: A
P+ Mx:A|Ay: A
G T, x:AlA,y QUEA

x|y PEG|T, A x: A

PHG|T,i:B|Af:BY QFz:BY7Z By A
iz, 2y Qi f). PEGIT, Ay A

CLARO

These come with a reaction relation P — Q.
Theorem: — satisfies progress and preservation.

V. EXAMPLES

Compare-and-Set (CAS)

A very powerful concurrent primitive!

Definition

A register implements compare-and-set if:
» There is an instruction Cas(e, d). (e = expected, d = desirable)
» When a thread runs Cas(e, d):

> If the register equals e: it is set to d, and the inst. returns TRUE.
> If not: register stays put, the function returns FALSE.

» Threads race to perform Cas(e;, d;) atomically.

Server = register. Client pool = threads racing to perform a Cas.
def

Letting 2 = 1 @ 1, the client protocol is
(2e2@2t91)

(The server protocol is the dual of this.)
Access to CAS register is not atomic, but causally atomic.

CSGV = linear FP + session types + clients and servers

CSLL is a low-level language. Need higher-level notation.
T,...:= T—T|T>T|T+T|T®T]|Unit| Ts

Ts,... == IT.Ts (output value of type T, then behave as Ts)
| ?T.Ts (input value of type T, then behave as Ts)
| Ts® Ts | Ts & T; (select from options, offer choice)
| end> | end, (end-of-session)

| ¢Ts | iTs (request or serve T session)

We can write programs that
» control access to a shared functional data structure
» implement nondeterministic choice
» implement fork-join parallelism
» implement Keynes’ beauty contest

— sharing and nondeterminism, without deadlock!

V. RELATED AND FUTURE WORK

Client/Server interaction

All previous CLL-based approaches use Mix.
(Wadler, JFP 2014; Atkey et al, WadlerFest 2016; Caires and Pérez,
ESOP 2017; Kokke et al, POPL 2019)

Outlier: Kokke, Morris and Wadler (LMCS 2020) use bounded
linear logic (# of clients in pool bounded).

Two totally different approaches:
> multiparty session types

» Kobayashi’s (priority-based) type systems for the m-calculus
Some deep connections to differential linear logic; add rules

FTIA FALIA FT,A B U o
FT,A A FTLIA FIA T

DILL can embed finitary m-calculus (Ehrhard and Laurent, IC 2010)
...but criticized by Mazza (MSCS 2018) for being confusion-free.

Future work

» Weakening the coexponential rule to ‘match’ promotion gives

Q). A
i
&)l iA
How to eliminate cuts?

» Develop a logical relations toolkit for CLL and CSLL, with a
view to reasoning about programs (and proving termination)

Thank you!

	Classical Processes
	Fixed points, exponentials, and coexponentials
	Client-Server Linear Logic
	Examples
	Related and future work

