Two-dimensional Kripke Semantics II. Stability and Completeness

Alex Kavvos

University of Bristol

Mathematical Foundations of Programming Semantics (MFPS XL) Oxford, 21 June 2024

Kripke semantics vs. type theory

Modal logic is important in Computer Science:

- temporal logic
- epistemic logic
- dynamic logic
- Hennessy-Milner logic

In most cases, it is given a Kripke semantics.

But in type theory proofs are important (Curry-Howard-Lambek).

Type-theoretic **modalities** arise *everywhere*:

- 'logical' time
- proof-irrelevance
- globality
- information flow

How can we connect these two worlds?

$$w \vDash \bot \stackrel{\text{def}}{=} \text{never}$$
$$w \vDash \varphi \to \psi \stackrel{\text{def}}{=} \forall v. \ w \sqsubseteq v \text{ and } v \vDash \varphi \text{ imply } v \vDash \psi$$

Monotonicity: $w \vDash \varphi$ and $w \sqsubseteq v$ imply $v \vDash \varphi$

Prime algebraic lattices: from space to algebra

Let (W, \sqsubseteq) be a **Kripke frame**, and $2 \stackrel{\text{def}}{=} \{0 \sqsubseteq 1\}$.

[W, 2] (= monotone maps $W \rightarrow 2$) has many curious properties:

- $[W, 2] \cong Up(W)$ where the order is inclusion
- It is a complete Heyting algebra (arbitrary joins and meets)
- ► The **principal upper set** embedding $\uparrow : W^{op} \rightarrow [W, 2]$ given by $w \mapsto \{v \mid w \sqsubseteq v\}$ preserves meets and exponentials.
- ▶ An element is a **prime** ($p \sqsubseteq \bigsqcup_i d_i \Rightarrow \exists i. p \sqsubseteq d_i$) iff it is $\uparrow w$.
- Every upper set *S* is a join of primes:

$$S = \bigsqcup \{ P \mid P \text{ prime}, P \subseteq S \} = \bigsqcup \{ \uparrow w \mid w \in S \}$$

In short: [W, 2] is a prime algebraic lattice [Win09].

There is a **duality**: $Pos^{op} \simeq PrAlgLatt$.

Intuitionistic logic: from space to category

Play the same trick as before, but replace 2 by Set [Law73].

The category $[\mathcal{C}, \mathbf{Set}]$ of presheaves $\mathcal{C} \longrightarrow \mathbf{Set}$:

- ► is a (co)complete cartesian closed category
- ► The Yoneda embedding y : C^{op} → [C, Set] given by y(w) ^{def} Hom(w, -) preserves products and exponentials.
- ► A presheaf P is tiny just if Hom(P, -) preserves colimits. All representables are tiny [and vice versa if C is Cauchy-complete].
- Every presheaf $P : \mathcal{C} \longrightarrow \mathbf{Set}$ is a colimit of tiny objects:

$$P = \varinjlim_{(w,x) \in \text{el } P} \mathbf{y}(w)$$

There is a duality: $Cat_{cc}^{op} \simeq PshCat$ (Bunge's theorem).

2D Kripke semantics = semantics in [C, Set].

Extensions

Let W' be a **complete lattice**, and let $f : W \to W'$ be monotone.

 f_1 : the **unique join-preserving** map satisfying $f_1(\uparrow w) = f(w)$.

$$f_!(S) \stackrel{\text{\tiny def}}{=} \bigsqcup \{f(w) \mid w \in S\}$$

As both lattices are complete, this has a right adjoint f^* . Explicitly:

$$f^{\star}(w') \stackrel{\text{\tiny def}}{=} \{w \mid f(w) \sqsubseteq w'\}$$

Then

$$f_!(S) \sqsubseteq w' \iff S \subseteq f^*(w')$$

Bimodules and Extensions

Let (W, \sqsubseteq) be a Kripke frame. $R \subseteq W \times W$ is a **bimodule** just if

$$w' \sqsubseteq w R v \sqsubseteq v' \Longrightarrow w' R v'$$

Equivalently: $R: W^{op} \times W \to 2$. Now extend $\Lambda R: W^{op} \to [W, 2]$:

Concretely: $\begin{cases} \blacklozenge_R(S) \stackrel{\text{\tiny def}}{=} \{ w \in W \mid \exists v. \ v \ R \ w \text{ and } v \in S \} \\ \Box_R(S) \stackrel{\text{\tiny def}}{=} \{ w \in W \mid \forall v. \ w \ R \ v \text{ implies } v \in S \} \end{cases}$

Every such adjunction on [W, 2] corresponds to a bimodule! Duality: **EBimod**^{op} \simeq **PrAlgLattO**.

Lifting to categories

Replace bimodules by profunctors

► Use **left Kan extension** along Yoneda This leads to a duality **EProf**^{op}_{cc} ~ **PshCatO**.

Modalities on presheaves $P : \mathcal{C} \longrightarrow \mathbf{Set}$:

$$(\blacklozenge P)(w) = \int_{v \in \mathcal{C}}^{v \in \mathcal{C}} R(v, w) \times P(v)$$
$$(\Box P)(w) = \int_{v \in \mathcal{C}} R(w, v) \to P(v) \cong \operatorname{Hom}_{[\mathcal{C}, \operatorname{Set}]}(R(w, -), \llbracket \varphi \rrbracket)$$

Theorem

A two-dimensional Kripke semantics over C uniquely corresponds to

$$w \vDash \bot \stackrel{\text{def}}{=} \text{never}$$
$$w \vDash \varphi \to \psi \stackrel{\text{def}}{=} \forall v. \ w \sqsubseteq v \text{ and } v \vDash \varphi \text{ imply } v \vDash \psi$$

Monotonicity: $w \vDash \varphi$ and $w \sqsubseteq v$ imply $v \vDash \varphi$

Completeness?

The developments so far only prove relative completeness:

- Suppose a formula is valid in all Heyting algebras.
- ▶ Then it is valid in all prime algebraic lattices.
- Then it is valid in all Kripke semantics
- \therefore the algebraic semantics is as complete as the Kripke semantics.

How to get the opposite direction?

The classic proof (Gehrke and van Gool [Gv24, §4.4]):

• Make a Kripke frame of **prime filters** of the algebra.

Show relative completeness with respect to that.

For this logic: Dzik, Järvinen, and Kondo [DJK10, §5].

But this is non-constructive, and also not very nice.

Stable semantics

Replace

- the poset of worlds by a **distributive lattice** (W, \sqsubseteq)
- upper sets by (non-prime) filters
- $F \subseteq W$ is a **filter** just if it is an upper set and

$$I \in F$$
, $x \in F$ and $y \in F$ imply $x \land y \in F$

$$w \vDash p \stackrel{\text{def}}{=} w \in V(p) \in \text{Filt}(W)$$

$$w \vDash \bot \stackrel{\text{def}}{=} (1 \le w) \qquad (i.e. \ w = 1)$$

$$w \vDash \varphi \land \psi \stackrel{\text{def}}{=} w \vDash \varphi \text{ and } v \vDash \psi$$

$$w \vDash \varphi \lor \psi \stackrel{\text{def}}{=} \exists v_1, v_2. \ v_1 \land v_2 \sqsubseteq w \text{ and } v_1 \vDash \varphi, v_2 \vDash \psi$$

$$w \vDash \varphi \rightarrow \psi \stackrel{\text{def}}{=} \forall v. \ w \sqsubseteq v \text{ and } v \vDash \varphi \text{ imply } v \vDash \psi$$

This semantics is also sound and complete for intuitionistic logic!

Spectral locales: from space to algebra

Let (W, \sqsubseteq) be a **distributive lattice**, and $2 \stackrel{\text{def}}{=} \{0 \sqsubseteq 1\}$.

 $[W, 2]_{\wedge}$ (= \wedge -preserving $W \rightarrow 2$) has many curious properties:

- $[W, 2]_{\wedge} \cong \operatorname{Filt}(W)$ where the order is inclusion
- It is a complete Heyting algebra (arbitrary joins and meets)
- The principal filter embedding ↑ : W^{op} → [W, 2]_∧ preserves finite meets, finite joins, and exponentials. Hence for any Heyting algebra H

$$H \hookrightarrow [H^{\mathrm{op}}, 2]_{\wedge}$$

An elt. is compact (*p* ⊑ □[↑] *X* ⇒ ∃*d* ∈ *X*. *p* ⊑ *d*) iff it is ↑ *w*.
Every filter *F* is a directed supremum of compact ones:

$$F = \bigsqcup^{\uparrow} \{ S \mid S \text{ compact}, S \subseteq F \} = \bigsqcup^{\uparrow} \{ \uparrow w \mid w \in F \}$$

In short: [W, 2] is a **spectral locale** (or a **coherent frame**) (= algebraic cHA whose compact elts form a sub-lattice).

Prime algebraic lattices: from space to algebra

Let (W, \sqsubseteq) be a **Kripke frame**, and $2 \stackrel{\text{def}}{=} \{0 \sqsubseteq 1\}$.

[W, 2] (= monotone maps $W \rightarrow 2$) has many curious properties:

- $[W, 2] \cong Up(W)$ where the order is inclusion
- It is a complete Heyting algebra (arbitrary joins and meets)
- ► The **principal upper set** embedding $\uparrow : W^{op} \rightarrow [W, 2]$ given by $w \mapsto \{v \mid w \sqsubseteq v\}$ preserves meets and exponentials.
- ▶ An element is a **prime** ($p \sqsubseteq \bigsqcup_i d_i \Rightarrow \exists i. p \sqsubseteq d_i$) iff it is $\uparrow w$.
- Every upper set *S* is a join of primes:

$$S = \bigsqcup \{ P \mid P \text{ prime}, P \subseteq S \} = \bigsqcup \{ \uparrow w \mid w \in S \}$$

In short: [W, 2] is a prime algebraic lattice [Win09].

There is a **duality**: $Pos^{op} \simeq PrAlgLatt$.

Dualities and modalities

The main duality is now

$Stable^{op} \simeq Coh$

between

- ▶ distributive lattices and stable (= ∧-preserving) maps
- ► coherent frames and Scott-continuous, ¬-preserving maps (not the usual category from Stone duality)

Then

The stable semantics and the Heyting algebra semantics are **equi-complete**, **constructively**.

All previous work on modalities carries through, nearly verbatim.

Categorifying the stable semantics

Let C be a category with finite products and coproducts, which is also a **co-distributive category**: $a + (c \times d) \cong (a + c) \times (a + d)$.

A two-dimensional stable semantics is a categorical semantics in a **category of algebras**.

Why? Because 'filters' are product-preserving presheaves over C!

Seeing C as a Lawvere theory, the category of **product-preserving presheaves** $[C, \mathbf{Set}]_{\times} \cong \operatorname{Sind}(\mathcal{C}^{\operatorname{op}})$ is that of **algebras over** C.

Fact: C is co-distributive iff $[C, Set]_{\times}$ is cartesian closed.

For any bi-ccc C we have a bi-ccc functor $C \hookrightarrow [C^{op}, \mathbf{Set}]_{\times}$. Hence

Theorem

The category $[\mathcal{C}, \mathbf{Set}]_{\times}$ of product-preserving presheaves over a co-distributive \mathcal{C} is complete for typed λ -calculus with sums.

References I

[Clo18]

Ranald Clouston. "Fitch-Style Modal Lambda Calculi". In: Foundations of Software Science and Computation Structures. Ed. by Christel Baier and Ugo Dal Lago. Vol. 10803. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018, pp. 258–275. DOI: 10.1007/978-3-319-89366-2_14 (cit. on pp. 4–8).

[DJK10] Wojciech Dzik, Jouni Järvinen, and Michiro Kondo.
"Intuitionistic propositional logic with Galois connections". In: Logic Journal of IGPL 18.6 (2010), pp. 837–858. DOI: 10.1093/jigpal/jzp057 (cit. on p. 15).

References II

[Gv24] Mai Gehrke and Sam van Gool. Topological Duality for Distributive Lattices: Theory and Applications. Cambridge Tracts in Theoretical Computer Science 61. Cambridge University Press, 2024. URL: http://arxiv.org/abs/2203.03286 (cit. on p. 15).

- [Law73] F. William Lawvere. "Metric spaces, generalized logic, and closed categories". In: *Rendiconti del Seminario Matematico e Fisico di Milano* 43.1 (1973), pp. 135–166. DOI: 10.1007/BF02924844 (cit. on p. 10).
- [Win09] Glynn Winskel. "Prime algebraicity". In: *Theoretical Computer Science* 410.41 (2009), pp. 4160–4168. DOI: 10.1016/j.tcs.2009.06.015 (cit. on pp. 9, 18).