Two-dimensional Kripke Semantics

I. Presheaves

Alex Kayvos

University of Bristol

Formal Structures for Computation and Deduction (FSCD 2024)
Talinn, 13 July 2024

Kripke semantics vs. type theory

Modal logic is important in Computer Science:

- temporal logic
- epistemic logic
- dynamic logic
- Hennessy-Milner logic

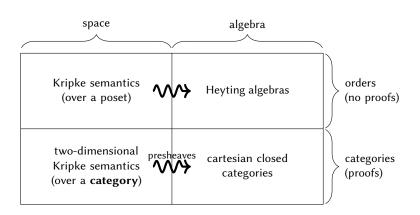
In most cases, it is given a Kripke semantics.

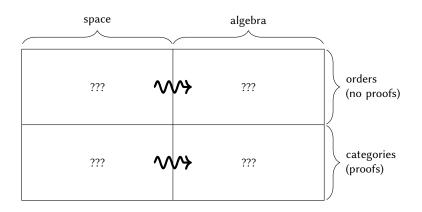
But in type theory **proofs are important** (Curry-Howard-Lambek).

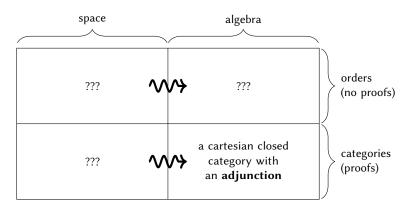
Type-theoretic **modalities** arise *everywhere*:

- ► 'logical' time
- proof-irrelevance
- globality
- information flow

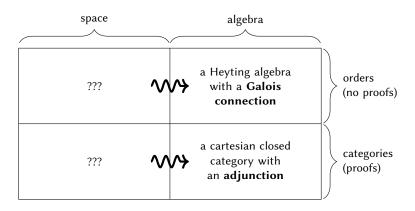
How can we connect these two worlds?



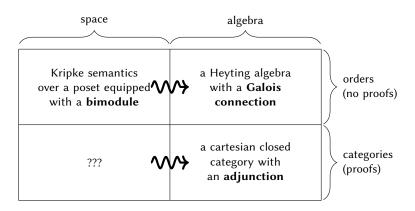




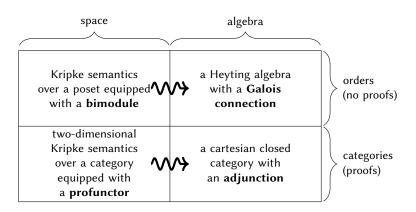
Using an adjunction was proposed by Clouston [Clo18]. It has proven remarkably robust in modal type theory. This is an **objective** answer in the sense of Lawvere [Law94; LS09].



Using an adjunction was proposed by Clouston [Clo18]. It has proven remarkably robust in modal type theory. This is an **objective** answer in the sense of Lawvere [Law94; LS09].



Using an adjunction was proposed by Clouston [Clo18]. It has proven remarkably robust in modal type theory. This is an **objective** answer in the sense of Lawvere [Law94; LS09].



Using an adjunction was proposed by Clouston [Clo18]. It has proven remarkably robust in modal type theory. This is an **objective** answer in the sense of Lawyere [Law94; LS09].

Kripke semantics of intuitionistic logic

Let (W, \sqsubseteq) be a **Kripke frame**, i.e. a partial order.

$$Up(W) = \mathbf{upper sets} \ S \subseteq W \text{ (where } w \in S \text{ and } w \sqsubseteq v \text{ imply } v \in S)$$

Let $V : Var \rightarrow Up(W)$ map each proposition to an upper set. Define

$$w \vDash \rho \stackrel{\text{def}}{\equiv} w \in V(\rho)$$

$$w \vDash \bot \stackrel{\text{def}}{\equiv} \text{never}$$

$$w \vDash \varphi \land \psi \stackrel{\text{def}}{\equiv} w \vDash \varphi \text{ and } v \vDash \psi$$

$$w \vDash \varphi \lor \psi \stackrel{\text{def}}{\equiv} w \vDash \varphi \text{ or } v \vDash \psi$$

$$w \vDash \varphi \to \psi \stackrel{\text{def}}{\equiv} \forall v. \ w \sqsubseteq v \text{ and } v \vDash \varphi \text{ imply } v \vDash \psi$$

Monotonicity: $w \models \varphi$ and $w \sqsubseteq v$ imply $v \models \varphi$

Theorem (Kripke)

A formula is valid (in all frames and all words) iff it is a theorem.

Algebraic semantics of intuitionistic logic

A **Heyting algebra** (H, \leq) is a lattice (has finite meets and joins) such that for every $x, y \in H$ there exists $x \Rightarrow y \in H$ with

$$c \land x \le y \iff c \le x \Rightarrow y$$
 for all $c \in H$

Suppose that for each proposition p we have an element $[p] \in H$. Intuitionistic logic can then be interpreted into H compositionally:

$$\begin{split} & \begin{bmatrix} \bot \end{bmatrix} \stackrel{\text{def}}{=} 0 \\ & \begin{bmatrix} \varphi \wedge \psi \end{bmatrix} \stackrel{\text{def}}{=} \begin{bmatrix} \varphi \end{bmatrix} \wedge \begin{bmatrix} \psi \end{bmatrix} \\ & \begin{bmatrix} \varphi \vee \psi \end{bmatrix} \stackrel{\text{def}}{=} \begin{bmatrix} \varphi \end{bmatrix} \vee \begin{bmatrix} \psi \end{bmatrix} \\ & \begin{bmatrix} \varphi \to \psi \end{bmatrix} \stackrel{\text{def}}{=} \begin{bmatrix} \varphi \end{bmatrix} \Rightarrow \begin{bmatrix} \psi \end{bmatrix} \end{split}$$

Theorem

A formula is valid (= 1 in all algebras) iff it is a theorem.

Prime algebraic lattices: from space to algebra

Let (W, \sqsubseteq) be a **Kripke frame**, and $2 \stackrel{\text{def}}{=} \{0 \sqsubseteq 1\}$.

[W,2] (= monotone maps $W \rightarrow 2$) has many curious properties:

- ▶ $[W, 2] \cong Up(W)$ where the order is inclusion
- ▶ It is a **complete Heyting algebra** (arbitrary joins and meets)
- ► The **principal upper set** embedding \uparrow : $W^{op} \rightarrow [W, 2]$ given by $w \mapsto \{v \mid w \sqsubseteq v\}$ preserves meets and exponentials.
- ▶ An element is a **prime** $(p \sqsubseteq \bigsqcup_i d_i \Rightarrow \exists i. \ p \sqsubseteq d_i)$ iff it is $\uparrow w$.
- ► Every upper set *S* is a join of primes:

$$S = \bigsqcup \{P \mid P \text{ prime}, P \subseteq S\} = \bigsqcup \{\uparrow w \mid w \in S\}$$

In short: [W, 2] is a **prime algebraic lattice** [Win09].

There is a **duality**: $Pos^{op} \simeq PrAlgLatt$.

Intuitionistic logic: from space to category

Play the same trick as before, but replace 2 by **Set** [Law73].

The category $[C, \mathbf{Set}]$ of presheaves $C \longrightarrow \mathbf{Set}$:

- ▶ is a (co)complete cartesian closed category
- ► The Yoneda embedding $y : \mathcal{C}^{op} \longrightarrow [\mathcal{C}, \mathbf{Set}]$ given by $\mathbf{y}(w) \stackrel{\text{def}}{=} \mathrm{Hom}(w, -)$ preserves products and exponentials.
- ▶ A presheaf P is **tiny** just if Hom(P, -) preserves colimits. All representables are tiny [and vice versa if C is Cauchy-complete].
- **Every presheaf** $P: \mathcal{C} \longrightarrow \mathbf{Set}$ is a colimit of tiny objects:

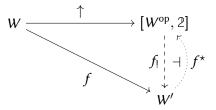
$$P = \varinjlim_{(w,x) \in \mathsf{el}\, P} \mathsf{y}(w)$$

There is a duality: $Cat_{cc}^{op} \simeq PshCat$ (Bunge's theorem).

2D Kripke semantics = semantics in $[C, \mathbf{Set}]$.

Extensions

Let W' be a **complete lattice**, and let $f:W\to W'$ be monotone.



 $f_!$: the **unique join-preserving** map satisfying $f_!(\uparrow w) = f(w)$.

$$f_!(S) \stackrel{\text{def}}{=} | \{f(w) \mid w \in S\}$$

As both lattices are complete, this has a right adjoint f^* . Explicitly:

$$f^{\star}(w') \stackrel{\text{def}}{=} \{ w \mid f(w) \sqsubseteq w' \}$$

Then

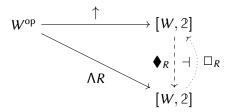
$$f_!(S) \sqsubseteq w' \iff S \subseteq f^*(w')$$

Bimodules and Extensions

Let (W, \sqsubseteq) be a Kripke frame. $R \subseteq W \times W$ is a **bimodule** just if

$$w' \sqsubseteq w R v \sqsubseteq v' \Longrightarrow w' R v'$$

Equivalently: $R: W^{op} \times W \to 2$. Now extend $\Lambda R: W^{op} \to [W, 2]$:



Concretely:
$$\begin{cases} \oint_R(S) \stackrel{\text{def}}{=} \{ w \in W \mid \exists v. \ v \ R \ w \ \text{and} \ v \in S \} \\ \square_R(S) \stackrel{\text{def}}{=} \{ w \in W \mid \forall v. \ w \ R \ v \ \text{implies} \ v \in S \} \end{cases}$$

Every such adjunction on [W, 2] corresponds to a bimodule!

Duality: **EBimod**^{op} \simeq **PrAlgLattO**.

The logic of Dzik, Järvinen, and Kondo [DJK10]

A very simple **tense logic** with two modalities, \blacklozenge and \Box .

Kripke semantics:

$$w \vDash \phi \varphi \stackrel{\text{def}}{\equiv} \exists v. \ v \ R \ w \ \text{and} \ v \vDash \varphi$$

 $w \vDash \Box \varphi \stackrel{\text{def}}{\equiv} \forall v. \ w \ R \ v \ \text{implies} \ v \vDash \varphi$

Algebraic semantics: a Heyting algebra with a Galois connection.

$$egin{array}{ll} lacksq arphi
ightarrow \psi \ arphi
ightarrow \Box \psi \end{array} \qquad \qquad ext{and} \qquad \qquad rac{arphi
ightarrow \Box \psi}{lacksq arphi
ightarrow \psi}$$

Some derivable rules:

$$\begin{array}{cccc} \varphi \to \psi & & \varphi & & \frac{\varphi}{\Box \varphi} & & \frac{\varphi \bot}{\Box \top} & & \frac{\psi \bot}{\bot} & & \frac{\varphi \to \psi}{\blacklozenge \varphi \to \blacklozenge \psi} \end{array}$$

The usual \Diamond is **not monotonic** in this setting.

Lifting to categories

- Replace bimodules by profunctors
- ► Use **left Kan extension** along Yoneda

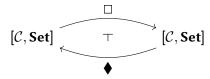
This leads to a duality $\mathbf{EProf}^{op}_{cc} \simeq \mathbf{PshCatO}$.

Modalities on presheaves $P: \mathcal{C} \longrightarrow \mathbf{Set}$:

$$(\blacklozenge P)(w) = \int_{v \in \mathcal{C}}^{v \in \mathcal{C}} R(v, w) \times P(v)$$
$$(\Box P)(w) = \int_{v \in \mathcal{C}} R(w, v) \to P(v) \cong \operatorname{Hom}_{[\mathcal{C}, \mathbf{Set}]}(R(w, -), \llbracket \varphi \rrbracket)$$

Theorem

A two-dimensional Kripke semantics over $\mathcal C$ uniquely corresponds to



Key facts

- ► The Kripke semantics (over a poset) and the algebraic semantics of intuitionistic (modal) logic are related by a **duality**.
- ► The interpretation of modalities arises canonically by extension (from a bimodule).
- These dualities can be restricted to 'truth-preserving' and 'deduction-preserving' morphisms respectively.
- ► They can also be **categorified**, relating 2D Kripke semantics (over a category) with cartesian closed categories.
- ► The interpretation of modalities arises canonically by **Kan extension** (from a profunctor).

References I

- [Clo18] Ranald Clouston. "Fitch-Style Modal Lambda Calculi". In: Foundations of Software Science and Computation Structures. Ed. by Christel Baier and Ugo Dal Lago. Vol. 10803. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018, pp. 258–275. DOI: 10.1007/978-3-319-89366-2_14 (cit. on pp. 4-8).
- [DJK10] Wojciech Dzik, Jouni Järvinen, and Michiro Kondo.

 "Intuitionistic propositional logic with Galois connections".

 In: Logic Journal of IGPL 18.6 (2010), pp. 837–858. DOI:

 10.1093/jigpal/jzp057 (cit. on p. 15).

References II

- [Law94] F William Lawvere. "Tools for the Advancement of Objective Logic: Closed Categories and Toposes". In: *The Logical Foundations of Cognition*. Ed. by John Macnamara and Gonzalo E Reyes. Oxford University Press, 1994, pp. 43–56. DOI: 10.1093/oso/9780195092158.003.0004 (cit. on pp. 4–8).
- [Law73] F. William Lawvere. "Metric spaces, generalized logic, and closed categories". In: *Rendiconti del Seminario Matematico e Fisico di Milano* 43.1 (1973), pp. 135–166. DOI: 10.1007/BF02924844 (cit. on p. 12).
- [LS09] F. William Lawvere and Stephen H. Schanuel. Conceptual Mathematics: A First Introduction to Categories. 2nd ed. Cambridge University Press, 2009. DOI: 10.1017/CB09780511804199 (cit. on pp. 4–8).

References III

[Win09] Glynn Winskel. "Prime algebraicity". In: *Theoretical Computer Science* 410.41 (2009), pp. 4160–4168. DOI: 10.1016/j.tcs.2009.06.015 (cit. on p. 11).