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Kripke semantics vs. type theory

Modal logic is important in Computer Science:

▶ temporal logic

▶ epistemic logic

▶ dynamic logic

▶ Hennessy-Milner logic

In most cases, it is given a Kripke semantics.

But in type theory proofs are important (Curry-Howard-Lambek).

Type-theoreticmodalities arise everywhere:
▶ ‘logical’ time

▶ proof-irrelevance

▶ globality

▶ information flow

How can we connect these two worlds?
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Using an adjunction was proposed by Clouston [Clo18].

It has proven remarkably robust in modal type theory.

This is an objective answer in the sense of Lawvere [Law94; LS09].
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Kripke semantics of intuitionistic logic

Let (W ,⊑) be a Kripke frame, i.e. a partial order.

Up(W ) = upper sets S ⊆ W (where w ∈ S and w ⊑ v imply v ∈ S)

Let V : Var → Up(W ) map each proposition to an upper set. Define

w ⊨ p
def≡ w ∈ V (p)

w ⊨ ⊥ def≡ never

w ⊨ φ ∧ ψ def≡ w ⊨ φ and v ⊨ ψ

w ⊨ φ ∨ ψ def≡ w ⊨ φ or v ⊨ ψ

w ⊨ φ→ ψ
def≡ ∀v. w ⊑ v and v ⊨ φ imply v ⊨ ψ

Monotonicity: w ⊨ φ and w ⊑ v imply v ⊨ φ

Theorem (Kripke)

A formula is valid (in all frames and all words) iff it is a theorem.



Algebraic semantics of intuitionistic logic

A Heyting algebra (H,≤) is a lattice (has finite meets and joins)

such that for every x, y ∈ H there exists x ⇒ y ∈ H with

c ∧ x ≤ y ⇐⇒ c ≤ x ⇒ y for all c ∈ H

Suppose that for each proposition p we have an element JpK ∈ H.
Intuitionistic logic can then be interpreted into H compositionally:

J⊥K def

= 0

Jφ ∧ ψK def

= JφK ∧ JψK

Jφ ∨ ψK def

= JφK ∨ JψK

Jφ→ ψK def

= JφK ⇒ JψK

Theorem

A formula is valid (= 1 in all algebras) iff it is a theorem.



Prime algebraic lattices: from space to algebra

Let (W ,⊑) be a Kripke frame, and 2 def

= {0 ⊑ 1}.

[W ,2] (= monotone mapsW → 2) has many curious properties:

▶ [W ,2] ∼= Up(W ) where the order is inclusion

▶ It is a complete Heyting algebra (arbitrary joins and meets)

▶ The principal upper set embedding ↑ : W op → [W ,2] given by

w 7→ {v | w ⊑ v} preserves meets and exponentials.

▶ An element is a prime (p ⊑
⊔

i di ⇒ ∃i. p ⊑ di) iff it is ↑w .
▶ Every upper set S is a join of primes:

S =
⊔

{P | P prime, P ⊆ S} =
⊔

{↑w | w ∈ S}

In short: [W ,2] is a prime algebraic lattice [Win09].

There is a duality: Posop ≃ PrAlgLatt.



Intuitionistic logic: from space to category

Play the same trick as before, but replace 2 by Set [Law73].

The category [C, Set] of presheaves C −→ Set:
▶ is a (co)complete cartesian closed category
▶ The Yoneda embedding y : Cop −→ [C, Set] given by

y(w) def

= Hom(w,−) preserves products and exponentials.

▶ A presheaf P is tiny just if Hom(P,−) preserves colimits. All

representables are tiny [and vice versa if C is Cauchy-complete].

▶ Every presheaf P : C −→ Set is a colimit of tiny objects:

P = lim−→(w,x)∈el P y(w)

There is a duality: Catopcc ≃ PshCat (Bunge’s theorem).

2D Kripke semantics = semantics in [C, Set].



Extensions

Let W ′
be a complete lattice, and let f : W → W ′

be monotone.

W [W op, 2]

W ′

↑

f
f! ⊣ f ⋆

f!: the unique join-preserving map satisfying f!(↑w) = f (w).

f!(S)
def

=
⊔

{f (w) | w ∈ S}

As both lattices are complete, this has a right adjoint f ⋆. Explicitly:

f ⋆(w ′)
def

= {w | f (w) ⊑ w ′}

Then

f!(S) ⊑ w ′ ⇐⇒ S ⊆ f ⋆(w ′)



Bimodules and Extensions

Let (W ,⊑) be a Kripke frame. R ⊆ W ×W is a bimodule just if

w ′ ⊑ w R v ⊑ v ′ =⇒ w ′ R v ′

Equivalently: R : W op ×W → 2. Now extend ΛR : W op → [W , 2]:

W op [W , 2]

[W , 2]

↑

ΛR
♦R ⊣ 2R

Concretely:

{
♦R(S)

def

= {w ∈ W | ∃v. v R w and v ∈ S}
2R(S)

def

= {w ∈ W | ∀v. w R v implies v ∈ S}

Every such adjunction on [W ,2] corresponds to a bimodule!

Duality: EBimodop ≃ PrAlgLattO.



The logic of Dzik, Järvinen, and Kondo [DJK10]

A very simple tense logic with two modalities, ♦ and 2.

Kripke semantics:

w ⊨ ♦φ
def≡ ∃v. v R w and v ⊨ φ

w ⊨ 2φ
def≡ ∀v. w R v implies v ⊨ φ

Algebraic semantics: a Heyting algebra with a Galois connection.

♦φ→ ψ

φ→ 2ψ
and

φ→ 2ψ

♦φ→ ψ

Some derivable rules:

φ→ ψ

2φ→ 2ψ

φ

2φ 2⊤
♦⊥
⊥

φ→ ψ

♦φ→ ♦ψ

The usual ♢ is not monotonic in this setting.



Lifting to categories

▶ Replace bimodules by profunctors
▶ Use left Kan extension along Yoneda

This leads to a duality EProfopcc ≃ PshCatO.

Modalities on presheaves P : C −→ Set:

(♦P)(w) =
∫ v∈C

R(v,w)× P(v)

(2P)(w) =
∫
v∈C

R(w, v) → P(v) ∼= Hom[C,Set](R(w,−), JφK)

Theorem

A two-dimensional Kripke semantics over C uniquely corresponds to

[C, Set] [C, Set]

2

♦

⊣



Key facts

▶ The Kripke semantics (over a poset) and the algebraic semantics

of intuitionistic (modal) logic are related by a duality.
▶ The interpretation of modalities arises canonically by extension

(from a bimodule).

▶ These dualities can be restricted to ‘truth-preserving’ and

‘deduction-preserving’ morphisms respectively.

▶ They can also be categorified, relating 2D Kripke semantics

(over a category) with cartesian closed categories.

▶ The interpretation of modalities arises canonically by Kan
extension (from a profunctor).
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