A QUANTUM OF DIRECTION

G. A. KAVVOS

ABSTRACT. I argue that the correct primitives for abstract directed homotopy
theory have not yet been identified. This assertion is corroborated by examin-
ing the directed structure of small categories qua directed homotopy 1-types.
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Despite the enormous success that the research programme of Homotopy Type
Theory (HoTT) [Thel3] has met with over the last decade, the solution to an im-
portant problem remains elusive: we are not yet in posession of a fully satisfying
account of directed type theory. There are many reasons to wish for such an ac-

count:

(i) There is a well-known connection between directed algebraic topology
and concurrency theory: see e.g. [Faj+16]. One would hope that a di-
rected type theory may somehow provide new means of reasoning about

(i)

concurrent programs.

Some forms of directed type theory can be used in order to provide a
synthetic presentation of co-categories. This presentation may be non-
model-specific, and/or hide a number of frightful technical details under
the lustre of type-theoretic principles. For this approach, see the work of

Riehl and Shulman [RS17].

(iii) A directed type theory that supports a directed univalence axiom would
provide powerful new reasoning principles. One of them, which Ilearned
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2 G. A. KAVVOS

from Dan Licata, is the following. Assume an (internal) ‘type constructor’
F :U — U in book HoTT. Given an equivalence A ~ B, univalence yields
A =y B. Applying F yields F'(A) =, F(B), which then induces an equiv-
alence F(A) ~ F(B). Thus, univalence implies that type constructors pre-
serve equivalence, which has the potential to save work in theorem prov-
ing. In analogy with the above, directed univalence would assert that all
the functions A — B can be cast as “directed paths” A ~~~» B (which may
or may not be all functions) induce a function F(A) — F(B). That is: di-
rected univalence implies that type constructors preserve (well-behaved)
functions.

(iv) Finally, one may imagine that a form of directed higher inductive types
(dHITs) may lead to all sorts of interesting new mathematics. For exam-
ple, one may axiomatize reduction in the A-calculus by a dHIT which in-
cludes the path (Az.M)N «~~» M[N/z], and hence conduct a ‘directed
homotopical’ study of reduction. We are free to dream!

There have been a few attempts to formulate a directed type theory. Amongst
others, they include the unpublished work of Michael Warren [Warl1], the 2-
dimensional type theory of Licata and Harper [LH11; Lic11], the master’s thesis of
Nuyts [Nuy15], the type theory of Riehl and Shulman [RS17] and the type theory
of Paige North [Nor19c]. With the exception of [RS17], none of these type theories
have a semantics in higher-dimensional category theory.

One cannot help but notice that—at least when compared with the explosive
development of HoTT—the rate of progress in this topic is rather slow. The pur-
pose of this article is to examine the root causes of this delay. I will implicitly
try to argue that the fundamental issue is that we have failed to identify the cor-
rect primitives of directed homotopy theory, and hence do not have the correct
semantic tools that would help us guide the development of good syntax.

Perhaps the greatest insight that propelled the development of HoTT is the
relationship between identity types and model categories, as first described by
Awodey and Warren [AW09]. In an attempt to point towards a parallel develop-
ment, I will argue that the primitives of model categories do not adapt well to
the directed setting. There are a few constructions of model categories for di-
rected homotopy, see e.g. [Gau03; Gaul9]. However, these constructions are
more about generating a

directed [homotopy theory]
i.e. a homotopy theory of directed spaces. Instead, I propose that we need a new
[directed homotopy] theory

i.e. a theory that contains fundamentally contains direction."

To corroborate this argument, one must provide it with a firm footing in a
specific model of directed homotopy. While there are many models of directed
topology that one could employ—see e.g. Grandis’ book [Gra09]—I will err on the
side of simplicity and concentrate on the category Cat of categories. This choice
is historically informed: the pre-history of HoTT begins with the groupoid model
of Hofmann and Streicher [HS98]. It is also topologically informed: there is a
well-known model structure on groupoids—see e.g. [JT08, §2.2]—which shows
that they are a presentation of homotopy 1-types. It is thus conceivable that
(some subcategory of) Cat may act as both a toy model of directed type theory,
but also a model of directed homotopy 1-types.

After introducing some preliminary material in §1, I will argue in §2 that the
technology of model categories is inherently undirected. This argument will be

Tam grateful to Paige North for this parenthesisation.
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corroborated by demonstrating that what we intuitively understand as the ba-
sic building blocks of directed homotopy—i.e. directed cylinders, directed path
spaces, and so on—are very much at odds with what we understand as intuitive
categorical notions of cofibrations, fibrations, etc. Thus, the need for some new
primitives will arise.

In order to identify those primitives, in §3 I turn to study of the directed re-
finements of the weak factorisation systems found in the model structure on
groupoids. While these do demonstrate many interesting directed patterns—
including a directed notion filling—they by no means suffice to replicate even
standard arguments from model categories. The reason is the same as that given
in §2, viz. that there is no good notion of ‘class of morphisms’ to which directed
cylinders and paths belong. Instead, they seem to belong to well-behaved classes
of spans and cospans.

Hence, to regain those standard arguments we turn to the study of well-behaved
(co)spans in §4. Two candidate notions immediately arise, one homotopical and
one geometric. The first one is well-known in 2-category theory, and is that of
two-sided (co)fibrations. The second one is also known—mainly through the
work of Lawvere—and it is that of adjoint cylinders and adjoint reflexive graphs.
We demonstrate that both of these are useful: in §4.6 we prove a novel fwo-sided
lifting result, which shows that adjoint cylinders (‘good cospans’) lift against two-
sided discrete fibrations (‘very good spans’) in a specific way. This result is just
powerful enough to replicate the standard abstract argument that left homotopy
implies right homotopy in model categories.

1. PRELIMINARY MATERIAL

This section covers some necessary preliminary material on weak factorisa-
tion systems and model categories. The definitions and theorems in this section
can be found most standard presentations of model categories: see e.g. [Hov07],
[JT08, §A.2.1], or [Cis19, §2.1]. A particularly lucid and comprehensive exposition
of weak factorisation systems can be found in [Nor17, §1].

Definition 1.1. A lifting problem in a category £ is a commuting diagram

A solution to this lifting problem is a diagonal filler, i.e. a (non-unique) mor-
phism d such that

4
Jl 4. lf
k
commutes.
Throughout this paper, we will use dashed lines - ----- > - to denote unique
arrows that make a diagram commute, and dotted lines - » - todenote the

existence of an arrow that makes a diagram commute, but which is not necessary
unique.
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Definition 1.2. Let £ and R be classes of morphisms of £. If every lifting problem

ai | ‘< lf

.
k

where j € £ and f € R has a filler d, then we write LAR.

We say that £ has the left lifting property against R, and that R has the right
lifting property against L.
Definition 1.3. Let £, R be classes of morphisms of a category £.

(1) The class of morphisms that have the left lifting property against R is
denoted by "R.

(2) The class of morphisms that have the left lifting property against £ is de-
noted by £*.

Definition 1.4. A weak factorisation system in a category & is a pair (A, B) of
classes of morphisms of £ such that

(1) any f : A — B canbe factorised as f =boawhereae Aandbe B

(2) (A, B) are a lifting pair; that is, A = "Band A" = B

Given any category X we can construct its arrow category X2, whose objects
are morphisms « : z — y of X, and whose morphisms are pairs (A, k) that fitin a
commutative square between objects, i.e.

h ’
a/

/

Q
L8

T
T y
In other words, X? is the comma category {Idx,Idx}. An object « € X2 is a

retract of an object 3 exactly when it is a retract in X2. This amounts to the exis-
tence of a commuting diagram

e
Lol b
\/
in X, where the top and bottom rows compose to identities.

Proposition 1.5. If(A, B) are a weak factorisation system, then both A and B are
closed under composition and retracts; A is closed under pushouts and coprod-
ucts; and B is closed under pullbacks and products.

For a proof see e.g. [Nor17, Lemma 1.1.5].

Definition 1.6. A model category is a category C that has finite limits and colimits,
and which comes with three distinguished classes of morphisms: the fibrations
F, the cofibrations C, and the weak equivalences V. These classes must satisfy
the following properties:
(1) W has the 2-out-of-3 property: if any two of f, g and g o f are in W, then
so is the third.
(2) (CnW,F)and (C,F n W) are weak factorisation systems.

Recall that morphisms in C n W are called acyclic cofibrations (or trivial cofibra-
tions), and morphisms in F nW are called acyclic fibrations (or trivial fibrations).
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2. MODEL CATEGORIES ARE NOT DIRECTED

Speaking very broadly, categorical homotopy theory begins as soon as we have
the structure of a homotopical category: that is, a category C with a distinguished
wide (i.e. including all objects) subcategory W of weak equivalences, which sat-
isfy a 2-out-of-6 property (which implies the 2-out-of-3 property). For details,
see [Riel4, §2.1]. As soon as we have these maps, we may localise at them to
obtain the homotopy category Ho(C) of C, in which the hom-sets have been re-
placed by homotopy classes of morphisms. The additional classes of fibrations
and cofibrations provided in a model category are not necessary for this con-
struction, but merely provide a certain amount of technology, which—amongst
other things—allows us to state when two homotopy theories are “the same.”

The fact that homotopic maps can be collapsed without providing an explicit
relation of homotopy between morphisms pinpoints a salient feature of homo-
topy theory, viz. that it is internal: the fact that a morphism f : X — Y is homo-
topicto g : X — Y is evidenced by a third morphism in the very same category.
In classical homotopy theory [Ark11, §1.3] this evidence is a continuous function
H: X x[0,1] = Y such that H(—,0) = fand H(—,1) = g. The space X x [0,1]
is called the cylinder of X. The key thing to notice is that there is a homotopy
equivalence between X and its cylinder X x [0, 1]. This is a weak equivalence in
the Quillen model structure on topological spaces, so when we localise W it so
happens that f and g fall in the same homotopy class, and are formally identified;
see e.g. [Cis19, Cor 2.2.18].

The axiomatic approach of model category aims to replicate this situation in
other settings. We define a cylinder object of A to be a factorisation

PR L R LN (P R

of the codiagonal into a cofibration [ig, i;] : A+ A — I(A) and aweak equivalence
w : I(A) — A The idea is that the cospan [ig, ] is a ‘good inclusion’ at the
two ends of the cylinder, and w is an ‘abstract homotopy equivalence’ between
the cylinder object I(A) and A. When we localise at WV, the latter turns into an
isomorphism. Of course, there is a dual story to be told about the path objects of
X, which are defined to be factorisations

X <ldx,ldx> X % X _ X LP(X) <p0:p1> X % X

of the diagonal into a weak equivalence w : X — P(X) and a fibration (pg,p;) :
P(X) - X x X. Again, the idea is P(X) is the path space of X, p, and p; project
the endpoints of a path, and w witnesses a homotopy equivalence between P(X)
and X.

Whether homotopies are expressed through a cylinder object or a path object
is irrelevant—see e.g. [Cis19, Lemma 2.2.12]: if A is cofibrant and X is fibrant,
these two coincide; if they are not, we can replace them with a cofibrant and
fibrant object respectively. This argument is carried entirely through factorisa-
tions of morphisms. It does not require that /(—) and P(—) are given functorially,
nor that I be left adjoint to P.

The aim is to capture the simplicity and succinctness of this approach in a di-
rected setting. Unfortunately, most of the aforementioned patterns immediately
break down. We will illustrate this with two intuitive examples in the category of

3IDs9s) only require w to be a weak equivalence. When [io, 41 ] is a cofibration they use the name
good cylinder. If w is also a fibration, they call it a very good cylinder.
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FIGURE 1. A cylinder and a directed cylinder for the space X.

categories. The first one shows that weak equivalences are no longer the right re-
lationship between a space and its cylinder/path object. The second one shows
that fibrations and cofibrations are more complex objects than before.

Let

1=o0 2 =0—1 | =01

be the terminal category, the walking arrow, and the walking isomorphism re-
spectively. The walking isomorphism | is a groupoid. It is easy to see that, if X is
a groupoid, X x | has the flavour of a cylinder: any functor ' : X x | — Y en-

codes a natural isomorphism F'(—,0) = F (—, 1), and any natural isomorphism
(cf. homotopy) can be encoded that way. In fact, it is easy to check that X x lisa
cylinder object in the model structure on groupoids,’ as X x | is equivalent to X.
One can picture X x | as the left object in Figure 1.

If anything deserves to be called a ‘directed cylinder’ in Cat, it is definitely the
category X x 2: as before, functors F' : X x 2 — Y uniquely encode natural
transformations F(—,0) = F(—,1). However, it is difficult to picture a notion of
‘weak equivalence’ between X and X x 2. Taking X = 1, a categorical equiv-
alence would assert that 1 ~ 1 x 2 =~ 2 which would amount to a categorical
equivalence between the terminal category and the walking arrow. Intuitively,
taking the product of a category with 2 introduces a quantum of direction, which
is directed-homotopically non-trivial. Grandis [Gra05; Gra09] has developed no-
tions of equivalence for categories seen as directed spaces, which he callls past
and future equivalences (pf-equivalences). For example, in [Gra05, §3.8] he notes
that the inclusion X — X? is a special kind of such an equivalence, namely a
structural pf-injection.

Dually, if anything deserves to be called a ‘directed path space’ in Cat, that
must be the arrow category X2, which we incidentally defined in §1. We would
then expect the arrow (dom, cod) : X2 — X to be a ‘fibration.” What this should
mean is also not evident, but it is clear that there should be some form of lifts: if
(p:x — 2,q:w — y) e X, so that an object o : x — y of X? is above it with
respect to {dom, cod), then there should be a way to lift (p, ¢) to an arrow (h, k) :
o — a of X? so that {dom,cod) (h,k) = (p,q). This lift may also have other
properties: for example it could be cartesian, which would make (dom, cod) a
Grothendieck fibration. However, the mere existence of such lifts is enough to
guarantee that X is a groupoid, i.e. an undirected 1-type.

Proposition 2.1. If{dom, cod) : X? — X x X has any form of lifts at all, then X
is a groupoid.

5The model structure on groupoids has categorical equivalences as weak equivalences,
Grothendieck fibrations (= isofibrations) as fibrations, and functors that are injective on objects as
cofibrations. See e.g. [JT08, §2.2] has
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Proof. We want to show that every arrow « : * — y of X is invertible. We have
that (id, : y — y,a : * — y) isamorphism (y,z) — (y,y) of X x X, andid, : y —» y
is above its codomain. Hence, there is an object 3 : y — = of X? that makes the
following diagram commute:

y — y
o

~

T —y

A similar argument gives us that there is a v : # — y that makes the following
diagram commute:

X

Y

~

—
by =7

Thus 3 has a left inverse  and a right inverse «, so a = . O

X

Hence, (dom, cod) cannot be a ‘fibration,” in the sense of having any form of
lifts for all arrows, so is not a Grothendieck fibration. In the folk model structure
on Cat [Rez00] this is resolved by taking fibrations to be the isofibrations, i.e. the
functors for which isomorphisms in the base lift to isomorphisms in the total
category. Considering the case of an isomorphism (p, ¢) : (z,y) = (u,v) € X x X,
and an object « : u — v above its codomain w.r.t. ({dom, cod), it is easy to see that
it lifts to a morphism o/ — « in X. In fact, this amounts to computing the lid of
the ‘open box’

Indeed, we can put ¢! o a o p for the dotted arrow, which relies on the invert-

ibility of ¢. The invertibility of p is required for the resultant lift (p, ¢) to be an
isomorphism itself.

Nevertheless, it is easy to prove that isofibrations and Grothendieck fibrations
coincide on groupoids: a lift that is an isomorphism is automatically cartesian.
This makes it clear that the folk model structure on Cat once again encodes a
homotopy theory of directed spaces: it merely repurposes a well-behaved tool
for groupoids (= undirected spaces) in the world of categories (= directed spaces).

It is thus evident that we have to search beyond the usual axioms of model
categories in order to formulate a truly directed theory.

3. ONE-SIDED STRUCTURE

We can perhaps learn more about basic directional strucure by examining how
the factorisations used in the model structure on groupoids adapt when we relax
them to categories.

3.1. The firstfactorisation. Inorder to constructthe (CnW, F) WES on groupoids,
which is a kind of mapping path space factorisation, we factor any functor f as

A / B

{B, [}
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where ¢ is an injective-on-objects (C) categorical equivalence (W), and p is a
Grothendieck fibration (F). {B, f} is the usual comma category: its objects are
‘paths’ p : y — f(z) of B, and its morphisms are commutative squares’
h /
Yy —Yy
/
f(z) W f(@’)
{B, f} can also be described as the pullback of the codomain functor along f:
{Ba f} — BZ
1 qJ{ - J{cod

A f} B
p : {B,f} — B is defined to be the composite {B, f} — B2 dom, B More
explicitly, p maps

_ !

<

h
Y
aJ{ o — y—uy
/
f(z) W f(z')
p is sometimes called the free fibration on f. It is not hard to show that it is a
Grothendieck fibration.
The functor i : A — {B, f} is constructed through the universal property of
the pullback, where refl : B — B? is the functor that maps y to id, : y — v:

/

A .—> B refl

(B, f} —%» p2 43 p

| |

AﬁB

8

2

Thus, ¢ is a section of ¢q. Explicitly, ¢ sendsapath @ : y — f(z)toz € A, and ¢
sends v : x — 2’ € A to the ‘degeneracy square’

F(v)
—

—
()

Clearly, poi =domowvoi=domoreflo f = f. Asiis a section, it is faithful, and
injective-on-objects. Finally, it is full.

Thus, i is an embedding: it witnesses A as a subcategory of {B, f}. However,
the most important property of i is that ¢ H i. In the terminology of John Gray
[Gra66] it is a rari, i.e. a right-adjoint-right-inverse. Thus, i essentially demon-
strates that A is a reflective subcategory of {B, f}. The following depiction of a

5More rigorously: tuples (x € A,y € B,a: x — f(y)).
"More rigorously: tuples (h : y — 3’ € B,k : © — a’ € A) suchthata’ o h = f(k) o o
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morphism o — i(z') in {B, f} suffices to convince us that morphisms o — i(z’)
and x — 2’ naturally correspond:
B ot
y —— @)
| H
/
f@) == (@)
Indeed, j is determined as f(v) o «, so the only non-trivial datum is v : z — a’.
We have so far only assumed that A and B are categories. In order to obtain
the (C n W, F) factorisation system for groupoids, let us assume that A and B are
groupoids. It is then easy to see that i : A — {B, f} is a categorical equivalence,
as it is additionally essentially surjective: we can recover every object o : y —»
f(x) asi(z) = id, up to the isomorphism « itself, now seen as a morphism:

Hence, taking C to be functors injective on objects, WV to be categorical equiva-
lences, and F to be Grothendieck fibrations (which coincide with isofibrations
in groupoids), this would conclude the argument.

In order to adapt this to a directed setting, we need to identify the left and
right classes of morphisms that turn this factorization into a WES. The most nat-

ural choice would be £ % right adjoint right inverses, and R & Grothendieck
fibrations. However, neither of those classes are closed under retraction.” We must
hence weaken both of these classes in order to define a WFS.

There are a couple of simpler alternative solutions. We could notice that the
above factorisation naturally forms an algebraic weak factorisation system: see
[GTO6, §4.4], [Gar09, §5§2.10-2.13, 2.16] and [BG16, Ex. 29] for this particular ex-
ample. An only slightly weaker one would be to notice that it forms a cloven WFS,
as in [BG12, Def. 3.2.1]. Each of these structures generates an ‘underlying WFS’
by essentially taking the classes to be morphisms for which there exists some ad-
ditional algebraic structure, which amounts to a ‘witnessed’ form of retract clo-
sure. However, we prefer to spell out the details of the morphism classes, as they
lead to certain geometric intuitions.

3.1.1. The missing classes. We begin with the left class, as it is simpler.
Suppose r - i. It then follows that we have a coherent unit# : Id4 = i o r and
counit € : r o i = Idx such that the triangle identities

. n*i . . %N .
] —————> 707101 r ————— roior

hold. Our case is special, in that we know two extra facts: not only is r o i =
Id 4, but we also have that the components of € consist of identities. The triangle
identities therefore reduce to

nwi=1 ren =1,

9This is well-known for fibrations; see e.g. [LR19, Rem. 2.2.6].



10 G. A. KAVVOS

Suppose now that j : B — Y isaretractof i : A — X. We can leverage
r: X — A to construct a retraction ¢ : Y — B to j, and ‘transport’ 7 to a unit
7' : Idg = j o q. However, only one of these coherence conditions holds of 7}/, i.e.
the first one. We hence define the left class to be the following class.

Definition 3.1. i : A — X is a future section if there exists a retractionr : X —
Aandan:ldx =iorsuchthatn=*i:i=iisequaltol;:i=> 1.

The fibrations are a little more difficult to capture. North has described them
as arising from a strictly symmetric internal relation [Nor17, Example 3.2.7], and
also as those having the enriched right lifting property'' [Nor19b] with respect to

1 *
[ AN
2 00— 1

We unfold this property. First, recall that Grothendieck fibrations satisfy a lifting
property.

Definition 3.2 (Liftings). Letp: F — B, and let o : i = j be a natural transfor-
mation for functors i,j : A — B. Letv : A — E be over j, in the sense that

powv = j. A lifting of o along p consists of a functor u : A — FE over ¢, and a
& :u => v over o, in the sense that p x & = o.

Pictorially:

i~

The following lemma is given in [Pav90, §I1.1.7], and is a simplified version of a
much stronger result which can be found in the seminal paper of Gray [Gra66,
Theorem 2.10].

Lemma 3.3 (Gray). A functorp : E — B is a (cloven) Grothendieck fibration
iffeveryoc : i = jandv : A — E withv over j has a lifting & along p which
is cartesian, in the sense that every component of & is a cartesian morphism in E
with respect to p.

Thus, Grothendieck fibrations are the fibrations that have cartesian liftings.
This is the basis for Street’s abstract definition of a fibration internal to a 2-category
[Str74; LR19]. By relaxing the requirement that the lift is cartesian we arrive at the
following definition.

Definition 3.4 (Basic fibration). A basic fibration is a functor p : E — B along
which chosen liftings of any o : i = jand v : A — B over j exist. Moreover, these
liftings are required to be

(1) natural, in that for any w : C — A we have 0 ¥ w = & * w, and

(2) normalised, in that 1Vj =1,.

UThe enriched lifting property holds whenever diagonal fillers are given naturally with respect to
an enrichment—in this particular case, the cartesian product. See [Riel4, Exercise 11.1.9] or [Awo018,
Lemma 2.15] for more details.



A QUANTUM OF DIRECTION!2 11

In pictures:

It follows immediately by Gray’s result that
Corollary 3.5. Every Grothendieck fibration is a basic fibration.
This definition of the right class is sufficiently weak so that
Lemma 3.6. The class of basic fibrations is closed under retraction.

Proof. Suppose

Given v over j and o : i = j, we whisker with s to obtain
S*¥0:1801=50]

Thenpo (fov) =sogov=so0j,sowecanliftsxoctos*o:h = fowvforsome
h:A— Eoversoi,withpss%o =s=*0. Then

gxs¥o:goh=go fou
But go f o v = v, which is over j (w.r.t q), and
go(goh)=ropoh=rosoi=i1
S0 g o h is over i (w.r.t q), and
qx(gxs*xo)=(qgog)*sxo=(rop)xsxo=rx*(pxsxo)=rx*(s*x0)=0
It is clear that this construction is natural. O

Letting F be the class of basic fibrations, we can now show that FSH.F.

Theorem 3.7. Ifi is a future section, p is a basic fibration, and

A", F

1]

C’TB

commutes, there is a diagonal filler d that makes the diagram commute.
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Proof. Letroi =Idandn : Ide = ior, so k=n : k = koior. But, as po(hor) = koior,
we can lift k£ + n along the fibration:

y E

bS]

k
koior

This gives us the requisite filler d, with p o d = k. It remains to show that d o i = h;
but—noting that h o r o i = h—we can also pre-whisker & = 7 by i to get

As p is a basic fibration, we have the following naturality equation:
k\ﬂ)*izkmi:d':h

Thus d o i = d’. But recall that, by the definition of future section, n = i = 1;, so

—_—

kensi=ksnsi=ksl;=1p;=1,:d =h
which is an identity, hence do i = d’ = h. O
Thus,
Theorem 3.8. (FS, F) is a weak factorisation system on Cat.

Precedents in homotopy theory. To those familiar with classical homotopy theory,
this factorisation is no surprise.

To begin, the comma category {B, f} is a direct categorification of the map-
ping path space: see e.g. [Arkl1, §3.5] and [May99, §7.2], where it is also defined
as a pullback similar to the one in (1). One then directly proceeds to give an anal-
ogous factorisation of continuous maps through it.

Furthermore, the definition of basic fibration is essentially a categorification
of notion of Hurewicz fibration, i.e. a surjective continuous function satisfying
the covering homotopy property [Arkll, Def. 3.3.4] [May99, §7.1]. Interestingly,
these are not the fibrations in the Quillen model structure on topological spaces.
However, there is an alternative model structure on topological spaces, the Strom
model structure, for which they are. Its construction is technically challenging,
but has been abstracted and generalised: see [BR13].

This sort of factorization also appears in more modern work on abstract ho-
motopy theory. van den Berg and Garner [BG12] have shown that the same steps
can be ‘replayed’ in any path object category. Such a category is equipped with
a functorially given choice of ‘path space object,” i.e. an internal category with
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an involution on paths, along with a mechanism for contracting every path to its
endpoint. It is worth noticing that at no point during the construction of their
cloven WES do they use the involution structure, and hence that the construc-
tion can be carried through in directed settings too. Finally, they use enrichment
to derive the same definition of basic fibration as we have: see [BG12, Prop 6.1.5].

In a slightly different setting, Williamson builds a model category out of struc-
tured abstractions, such as cylinders, path objects and intervals. The above fac-
torisation is given in [Wil13, §IX], and attributed to [BG12].

Both sources call future sections by the name of strong deformation retrac-
tion. Williamson calls basic fibrations by the name of normally cloven fibrations
[Wil13, Def. VIII.33].

3.1.2. Geometric intuitions. It is worth considering for a moment the geometric
intuitions that underpin the class of future sections.

To begin, suppose that A is a full subcategory of X. We speak of a (co)reflection
whenever there exists a left (right) adjoint to the inclusion A < X. In that case,
A is a reflective subcategory of X . Since (co)reflections involve an adjunction, an
attendant universal property is induced. If we consider a category as a directed
space, this universal property carries very strong spatial intuitions.

First, the components 7, :  — r(x) of the unit 7 : Idx = ior provide a chosen
path from z to its retracted image i(r(z)) = r(z) in the reflective subcategory
A. Moreover, this choice of paths is continuous: if we think of a morphism p :
x — y € X as a directed path in X, naturality amounts to commutation of the
following square:

r r(z)
pl 7(p)
[ 7(y)

That is: r also reflects the path p to the path r(p) : »(x) — r(y) in a coherent way.
Second, the components of the unit are universal; this is to say that for each
directed path p : « — a with a € A, we have a unique factorisation

BN

Soeachpathp : z — a intothe reflective subcategory factorises uniquely through
the chosen path 7, : z — r(z) from the domain into its reflected image.

Finally, it is easy to see that the components of the counit are identities. As in
§3.1.1, this means that the triangle equations reduce to

I
|
~
a

nxi=1, and r=xn=1,
Let us write out the first one: if a is an object of A, we have that
Ni(ay = idi(a) : i(a) — i(a)

Thus, for a given point a of the subspace, the chosen path that retracts its image
i(a) under the inclusion to itself is the constant path that stays put on i(a) itself.

The other triangle identity says that for every = € X we have

r(Nerx —i(r(x))) =idy () : r(x) = r(z)

That is: if we retract the chosen path n, : z — i(r(z)) into the subspace A, we

obtain the constant path on r(z). Geometrically, this essentially means that we
are retracting 7, along itself.
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Reflective subcategories can thus be seen as a very orderly subspace of a cat-
egory: not only can the entire category be retracted towards to the subcategory
along the collection of paths 7, : + — r(z), but also every path into it can be
factored through such paths.

Future sections i : A — X are weaker than reflective subcategories. First,
they are not necessarily full. However, they are sections, so they are faithful and
injective on objects. They only come equipped with a ‘unit’  : Id = i o r. This
still satisfies the equation 7 = ¢ = 1;, which is to say that the chosen paths on the
subcategory induced by ¢ are constant. If we think of paths as being something
we can walk along through time in a non-reversible manner, then a future section
shows that we can retract the whole of X to A through a natural choice of paths
along each point (object of the category). Moreover, the path given on points of
the subcategory induced by : stay put during this retraction.

Regarding the universal property, we have that for each path p : + — i(a) with
an endpoint in the image of 7 (i.e. in the induced ‘subcategory’) can be factored
as the chosen path followed by a path in the subcategory, but not uniquely. In
the diagram

Nx .
r — rlx

(
N e

(
i(a) a

r(z)

)
) P

we can put p & r(f) : r(z) — r(i(a)) = a, which makes the triangle commute by
the naturality of n and n = i = 1,.

Notice how we have started employing directional language in the description
of future sections: as » is not invertible, X can be retracted to i(A), but is not ‘ho-
motopy equivalent’ to it. It would thus be an error to employ the terminology of
homotopy theory by following [BG12] in calling a future section a ‘strong defor-
mation retract’: it is a directed analogue of it. Grandis [Gra09, §1.3.1] calls them
strong future deformation retracts.

Furthermore, notice that this directionality was entirely arbitrary.

3.1.3. Invertingthedirection, I. Unlike strong deformation retracts, whose atten-
dant ‘homotopy’ Id = i or is invertible, the quantum of direction involved in the
definition of a future section is entirely arbitrary. In fact, we are free to invert it.

Definition 3.9. i : A — X is a past section if there exists aretractionr : X — A
andae:ior = Idx suchthate*i:i=iisequaltol; :i=> 1.

Past sections are the directional dual (‘co’) to future sections: they demon-
strate how going against the grain and ‘running time backwards’ allows a cate-
gory X to recede back into a quasi-coreflective subcategory A. We may analo-
gously ask for opfibrations, which come with chosen opliftings.

Definition 3.10 (Oplifting). Letp : F — B, andlet o : ¢ = j be a natural
transformation for functorsi,j : A — B. Letu : A — F be over i, in the sense
that p o u = 4. An oplifting of o along p consists of a functorv : A — F over j,
and a o : u = v over o, in the sense thatp x & = o.

Definition 3.11 (Basic opfibration). A basic opfibration is a functorp : E — B
along which opliftings of any o : ¢ = jand u : A — F over i exist. Moreover,
these liftings are required to be

(1) natural, in that for w: C — Awehaves*w = & * w, and
(2) normalised, in that1; = 1,,.
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B

C——— Ay,

In pictures:

J

Wrting PS for the class of past sections and F°P for the class of opfibrations'*
The results of §3.1 immediately dualise to past sections and basic opfibrations:
both classes are closed under retraction, and form a lifting pair. It follows that

Theorem 3.12. (PS, F°P) is a weak factorisation system on Cat.

We thus discover that in the presence of directionality the previously used fac-
torisation now splits into two distinct ones!

3.1.4. Strengthening the classes, 1. It is interesting to examine when the class of
future (past) sections coincides with the more common categorical concept of
inclusion of a (co)reflective subcategory. In fact, there is a very simple criterion
that one can demand of a category, which makes the two classes coincide:

Definition 3.13. A spacelike category is one where all idempotents are identities.

This criterion may strike one as a bit arbitrary. It seems less so if we recall
that something stronger holds in all groupoids: if e o e = ¢, then e = id. Also,
it encodes a somewhat intuitive geometric intuition: if walking twice along the
‘directed homotopy class’ e is the same as walking along it once, then we have
enough freedom to unfold the loop e, so nothing stops us from doing this un-
folding again.

If we have a future section i : A — X, then there existsar : X — Aanda
n : Idx = iorsuch thatn i = 1;. By considering the naturality square at the
component 7,, we see that

oo (@)

commutes. The right hand side of this diagram is the component 7;(,(,)), which
is merely the identity, as = ¢ = 1;. If we apply r to this square, we obtain

T(le) © 7‘(%) = 7‘(%)
which is to say that r(n, ) is an idempotent in A. Recall that the missing coherence
condition is r(7,) = id,(,): it follows that if our category is spacelike we obtain

this coherence for free, and r - i. Nevertheless, we can still generate the missing
coherence by replacing r, as long as idempotents split.

Theorem 3.14. Ifi : A — X is a future section and all idempotents in A split,
then i is right-adjoint-right-inverse ¢ — i to someq : X — A.

l4The ‘op’ superscript is simply a symbol, and has no formal meaning here.
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Proof. Leti : A — X be a future section with respecttor : X — A and

: Id = i o r, satisfying n = i = 1,. We already know that r(7, ) is an idempotent,
we use the axiom of choice to split it, thus obtaining a functor ¢ : X — A with
the requisite properties:

o) @) g o(x)
r(z)

We have to exercise some care in splitting identities here: if x = i(a), thenr(n,) =
T(??i(a)) = T(ldz(a)) = ida, and we ple Ti(a) = Si(a) = ida.
This defines the object part of a functor ¢ : X — A. The morphism part is
e ld — @) @) A @) 2 @)
This assignment is functorial: letting f : + — 2/ and ¢ : 2’ — 2", we calculate

q(g) 0 q(f) =rar0r(g) 085 0rar 07(f) 055
=rgr or(g) or(na) or(f) o sa
=7y or(g)or(ne o f)o sy

=rgror(g) or(ir(f)omn.) o sy
)or(

=rgror(g)or(f)or(n.) o ss

=rgror(go f)oszoryos,
—rpor(go f)os,
=dq(go f)
Obv10uslyq( (fra—a)) =1riyqyor(i(f))osia = fr 80 qoi=1d. It remains to

definen’ : Id = i 0 q. We let
o, a  i(r(@) S ()
Evidently, n;(a) = i(74a) © Mia = 1d;(q). To prove naturality, consider the diagram

f
_—

S e N

i(q(x)) ——— ilr(@)) 7 ilr(@) ——— ila(2"))

i(r(f i(ryr)
The bottom row is i(¢(f)), and it commutes: the central square is a naturality
square for 7, the right triangle commutes by definition, and

i(sz)

i(52) 0my = i(52) 0i(rz) 0Ny = 1(r(Nx)) © N = N
where the last equality is one we showed before, by the naturality of » at 7, itself.
It remains to show the ‘problematic’ triangle identity: we calculate
q(n;) = q(i(ra) © nz)

=1z 0q(n)

=Tz OTi(r(z)) © (1) © Sz

=71, 07(Ng) 0 Sz

=Tz 083z 0Tg OS5y

= ldr(z) O
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The above result can be adapted to show that a past sectioni : A — X canbe
strengthened to a left-adjoint-right-inverse whenever idempotents split. More-
over, Paige North has shown'® that Grothendieck fibrations are closed under re-
traction under the same condition. I believe this would imply that basic fibra-
tions collapse to Grothendieck fibrations, though I shall leave that discussion to
future work.

3.2. The second factorisation. To construct the (C, F n W) WFS on groupoids,
which mimics to mapping cylinder factorisation, we seek to factor any functor
f+tA— Bas

A—L B

Ef
where ¢ is injective-on-objects, and r is both a fibration and a categorical equiv-

alence. The objects of the category E7 are the disjoint union of the objects of A
and B. The hom-sets are defined by

Az, y) ife,ye A
El(x,y) ¥ { B(f(x),y) ifreAyeB
B(z,y) ifr,ye B

This category may also be obtained as the pushout

A—L B

o

E is shaped like a barrel: the top of the barrel is A and the bottom is B. A and
B are ‘connected’ by some ‘diagonal’ morphisms that cross from top to bottom.
Such a diagonal morphism ¢ — b where « € A and b € Bisapath f(a) — bin
B. Composition follows A at the top of the barrel, and B at the bottom. Post-
composition at the diagonals is the same as in B, but pre-composition acts with
frifu:d - a,v:b—1¥,andp: a — b, then writing o for composition in B we
have
vopouvogpog f(u): fla') — b € E(d,b)
The factorisation is obtained by the universal property of the pushout:

A—L B

W

ALAXZTEJC
sl A

We define the functor i & koiy : A x 2 — E7. Intuitively, the ‘reflector’ r :
E/ — Bisdefined to be f at the top of the barrel (the ‘A part’), and the identity
elsewhere. It follows that

roi=rokoiy=fomoig=f

16private communication.
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The functor j : B — E/ includes B into the ‘B part’ fully and faithfully, and has
aretraction r. We can construct a natural transformation

n:ldg=jor

Forxz € A, n, : * — f(z) ‘crosses’ from = € A to f(z) € B. Hence it must be a
morphism in B(f(x), f(x)), and we pick idy(,). Fory € B, n, o idy 1y — y. Itis
not hard to verify that » - j.

Again, we have so far only assumed that A and B are categories. The con-
struction of E/ when A and B are groupoids is even simpler: see [JT08, §2.2].
This more general case for arbitrary categories has been described in a blog post
of Shulman [Shul2]. However, even in this more general setting it is not hard to
see thatr : Ef — B is a categorical equivalence if B is a groupoid, and also an
isofibration. Moreover, it is evident thati : A — E is injective-on-objects, so
that it is a cofibration in the model structure on groupoids.

However, if we seek to adapt this to a directed setting we run into the same
problem as before. While the natural choice for a left class (injective-on-objects
functors) is fine, the candidate right class of left adjoint left inverses, is not closed
under retraction. Fortunately, dualising our approach in §3.1.1 solves this.

In order to obtain closure under retraction, we will take the dual (‘op’) of the
notions in §3.1.1. First, the left class will be that of cofibrations, i.e. the functors
that have opextensions.

Definition 3.15 (Extension). Let: : A — C, and let 7 : ; = k be a natural
transformation for functors j,k : A — B. Letwv : C — B be under k, in the
sense that v o i = k. An extension of T along i consists of a functor v : C — B
under j, and a 7 : v = v under 7, in the sense that 7 =i = 7.

Definition 3.16 (Basic cofibration). A basic cofibration is a functori : A — C
along which extensions ofany 7 : j = kand v : C — B under k exist. Moreover,
these extensions are required to be

(1) natural, in thatforw : B — Dwehavew*7 = w = 7, and

(2) normalised, in that 1, = 1,,.

In pictures:

It is not immediately obvious that basic cofibrations are a bigger class than the
one we initially envisioned, namely that of embeddings. However, we may adapt
a well-known exercise in classical homotopy theory to show that this is indeed
the case: see e.g. [Arkl1, Prop. 3.2.6].

Lemma 3.17. Any basic cofibrationi : A — C' is a (non-full) embedding.

Proof. Leti : A — C be a basic cofibration. Define the category Cocone(A) to
consist of A with an ‘extra’ terminal object * added, along with a unique path
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!, : a —> = from every objecta € A. Let ky : A — Cocone(A) be the inclusion, and
let K, : A — Cocone(A) be the functor that collapses all of A to =.

The unique arrows to = evidently form a natural transformation! : ky = K,.
Moreover, K, can be trivially extended to all of C. Thus, we can extend ! along i
to obtain a natural transformation ! : r = K. %

/—\
A J Cocone(A)

Thus we obtain » : C — Cocone(A) such that r o i = ko, so ¢ is faithful and
injective on objects, as ko(f :a — a’) = f :a —> d'. O

It may seem odd that a cofibration is not only injective on objects—as in the
model structure on groupoids—but also faithful. Here is a way to think about
that: cofibrations in groupoids are injective on objects, for they are not allowed to
collapse different ‘connected components.” However, if we think of cofibrations
as inclusions into a space where more cells have been attached, it is clear that for
groupoids they need not be faithful. For example, going from A to C' may in-
volve attaching a cell that allows us to homotopically contract a non-trivial loop
into the identity. However, in the directed case we need to be careful to not go
against the grain: there might be some directionality about which the 1-type has
forgotten. In particular, we are not free to attach any cell we please.

In §4.4 we will prove that the functor i : A — E/ defined before is a basic
cofibration. Intuitively, this is easy to see: given any natural transformation 7 :
j = kwithv : Ef — C under k, we may define u : B/ — C to be precisely j
on the ‘A part’ of E/, and v everywhere else. Then there isa 7 : v = v, which
follows 7 on the ‘A part’ and is the identity on v everywhere else.

For the right class we will again weaken the definition of a left-adjoint-right-
inverse, this time by dropping the other coherence condition.

Definition 3.18. r : X — A s a future retraction if there exists a sectioni: A —
Xandan:Idx = iorsuchthatr=n:r = risequaltol,.

We write C for the class of basic cofibrations, and FR for the class of future
retractions. We immediately obtain duals of all the results in §3.1, so that

Theorem 3.19. (C, FR) is a weak factorisation system on Cat.

Precedents in homotopy theory. This factorisation is also not surprising from the
point of view of classical homotopy theory.

The barrel E7 is a direct categorification of the mapping cylinder [Ark11, Def.
3.5.1] [May99, §6.2], where it is also defined as a pushout. Analogously, basic cofi-
brations are a categorification of Hurewicz cofibrations, i.e. a continuous maps
satisfying the homotopy extension property [Arkl1, Def. 3.2.1] [May99, §6.1].

In the process of building a model category from structured abstractions (cylin-
ders, path objects, etc.), Williamson builds an abstract version of this factorisa-
tion in [Wil13, §IX]. Therein future retractions are called strong deformation re-
tractions, and basic cofibrations are called normally cloven cofibrations.
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In the directed setting, Grandis calls a very similar notion by the name of upper
fibration [Gra09, §4.6.3].

3.2.1. Inverting the direction, II. As before, we may play the dualisation game in
the ‘op’ direction here as well. On the one hand, we define opcofibrations.

Definition 3.20 (Opextension). Leti : A — C, and let 7 : j = k be a natural
transformation for functors j,k : A — B. Letu : C — B be under j, in the
sense that u o i = j. An extension of 7 along ¢ consists of a functorv : ¢ — B
under k, and a 7 : v = v under 7, in the sense that 7 =7 = 7.

Definition 3.21 (Basic opcofibration). A basic opcofibrationis a functori: A —
C along which opextensions of any 7 : j = k and v : C — B under j exist.
Moreover, these extensions are required to be

(1) natural, in that forw : B — Dwehaveiv=7 = w = 7, and

(2) normalised, in that TJ =1,.

In pictures:

On the other hand, we define past retractions.

Definition 3.22. r : X — A is a past retraction if there exists a sectioni : A —
Xandan:ior = Idx suchthatr+n:r = risequaltol,.

Writing C°P for the class of basic opcofibrations, and PR for the class of past
retractions, we may then prove that

Theorem 3.23. (C°P,PR) is a weak factorisation system on Cat.

3.2.2. Strengthening the classes, II. As in §3.1.4, we can also use the triviality or
splitting of idempotents here to strengthen the classes of future and past retrac-
tions. Suppose r : A — X is a future retraction, with section j and n : Idx =
j or. Consider the naturality square

jr(z) =22 jrir(x)

njr(z)l l’ijrjr(x)

grir(x) o gririr(x)
By the fact j is a section of r the right-hand morphism in this diagram is 7;,(,)
as well. By » = = 1;, the bottom morphism is the identity. Thus 7;,.,) is an
idempotent: if the category is spacelike it is an identity, and » - j.
We also have the following analogue to Theorem 3.14.

Theorem 3.24. Ifr : X — A is a future section, and all idempotents in X split,
thenr is a left adjoint left inverser - j to someq : A — X.
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3.3. Strange inclusions. Finally, we close the section on the one-sided structure
by observing that the WFSs we have defined so far are not simply dual, but even
more strongly related: in fact, some classes of morphisms are included in others.
The pattern seems to be that left classes are included in left classes and symmet-
rically.

Theorem 3.25.

(1) Every past retraction is a basic fibration.

(2) Every future retraction is a basic opfibration.
(3) Every past section is a basic cofibration.

(4) Every future section is a basic opcofibration.

Proof. We prove (1), with the rest being entirely symmetric. Suppose r : E — B
is a past retraction, with section s : B — B and ‘counit’ € : s or = Idg. Suppose
furthermore that we have the situation

Whiskering the counit with v and s with o, we obtain

€EXV:SOT OV =11 :C > F
S*xT:801 =s50j:C—>FE

But s or o v = s o j by assumption, so we can compose these vertically to define

5‘1:ef(e*v)o(s*0):soi:>U:C—>E

Then
r#d=(r+(exv))o(r+(sxo))=((rxe)xv)o((ros)xc)=o0
asros =Idand r = ¢ = 1. This is natural in pre-whiskering at C. O

3.4. Concluding remarks. When we add an additional quantum of direction to
the usual factorisations used in the model structure on groupoids, we obtain a
total of four WFSs on Cat!

These four factorisations have been identified before by Grandis [Gra09, The-
orem 4.6.7]. In that strain of directed homotopy theory they are not discussed
as WESs, but rather as definable factorisations in various increasingly strong set-
tings in which one can do abstract directed homotopy theory, e.g. with various
cylinders and connection structures. However, the relationship between the sec-
ond factorisation system (PS, F°P) on small categories and directed type theory
was first identified by Paige North [Nor19c].

Thus, there is increasing evidence that these four factorisation systems

(FS,F) (PS, F°P) (C,FR) (C°P,PR)
with the inclusions
FS cC PScC FR < F°P PR < F

seem to play an important role in directed homotopy. In particular, the first two
show us how to ‘fill’ along future and past sections, which seem to take the place
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of trivial cofibrations. It seems that these two WFSs might have something inter-
esting to say for the formulation of 'left and ‘right’ path induction rules.

It would also be interesting to examine the notion of (co)fibrant replacement.
These notions would formerly replace an object with a (co)fibrant one up to weak
equivalence. The new factoriations give rise to four analogous notions. However,
this time they have the flavour of fibrant and cofibrant completion rather than
replacement. For example, using the (FS, F) system gives

A L} 1-4 future section A fibration 1

The first factor has the feel of an inclusion, so we may think of A as a fibrant
completion. Analogously, using the (C, FR) system gives

! cofibration future retraction
0->A=A A A

Again, the second factor is a retraction, so we may think of A’ as a bigger object
than A4, i.e. as its cofibrant completion. Of course, this discussion is moot in
Cat as every object is fibrant and cofibrant, but should acquire an interesting
meaning in other settings.

Nevertheless, there is still an awful lot of directed homotopy theory we cannot
do in this setting. More concretely, we have not yet solved the basic problem
we outlined in §2, namely that of finding classes that provide basic notions of
directed cylinders and directed path spaces. Consequently, we will proceed to
the analysis of what I call the fwo-sided structure on Cat, and which will provide
a solution to that problem.

4, TWO-SIDED STRUCTURE

Even though we have elaborted quite a bit of directed structure corresponding
to known notions from classical homotopy theory in Cat, we have not yet found
an abstract way to capture directed cylinders and directed path spaces. In §2 we
remarked that the usual arrow (dom, cod) : X? — X cannot be a fibration, as
that would imply that X is a groupoid. We are therefore led to the study of more
complicated categorical gadgets.

Fortunately, deciding whether we have found the right notions is easy, as there
is an elementary litmus test to which can put them: at the very least, we would
like to be able to reproduce a very basic argument from the theory of model cate-
gories, viz. that left homotopy implies right homotopy. Recall how this argument
works: suppose that f ~; g : A — X, and that A is cofibrant. Then there exists a

left homotopy H : I(A) — X with respect to some cylinder A + A Lol (A) 5
A. Because A is cofibrant, i is a cofibration, and in fact an acyclic one (by 2-out-

of-3). Given any path object X % P(X) PoPv, % X we form the following
commuting diagram, and find a filler K : I(4) — P(X) for it—as {(pp,p1) is a
fibration:

AL, x v > P(X)
iol K o {Po,p1)
_—
1(A) Gow D X xX

Picturing the horizontal dimension as that of cylinders and the vertical one as
that of paths, we can visualise K : I(A) — P(X) as a double homotopy whose
four sides are given by p; o K 04; : A — X fori,j € {0,1}. Given three of those
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sides, we have constructed the fourth:

f

constantly f

) A
constantly fY 122227222227077
7

z

f K>oi1 9

Hence K o i, : A — P(X) witnesses f ~, g.

The purpose of this section is to discover just enough structure on Cat so that
this argument can be reproduced through WFS-like structures alone, without
ever admitting that (—) x 2 is left adjoint to (—)2.

This will be achieved in two steps. First, we will see how directed cylinders
and path spaces can be viewed as relations on a category. This will naturally
lead us to the discussion of more complicated categorical structure than what
we have used so far, namely those of two-sided discrete fibrations and two-sided
codiscrete cofibrations. Second, we will take a more prosaic view of directed cylin-
ders, which comes from geometric intuitions: we will view them as adjoint cylin-
ders in the sense of Lawvere [Law94; Law96]. Directed path spaces will be re-
laxations of the dual concept, namely adjoint reflexive graphs, which is due to
Grandis [Gra09, §3.4.6]. These two developments will be joined by presenting a
two-sided lifting property in §4.6, which will provide just enough power to prove
that left homotopy implies right homotopy in a directed setting.

207275

4.1. Relations I. Whereas in homotopy theory path spaces can be captured up
to homotopy equivalence, the additional quantum of direction introduced with
directed homotopy complicates the situation. In particular, directed path spaces
behave more like relations: directed paths a v~ b can be seen as relating their
source « to their target b.

In particular, we seek some way to examine (—)? as a relation internal to Cat.
There are many formalisms for doing so, such as allegories [FS90] and cartesian
bicategories [CW87; Car+08]. However, the right formalism for the purposes of
higher category theory is that of (proarrow) equipments, which can equivalently
be expressed as framed bicategories [Shu08]; see the blog post [Shu09] for a gen-
eral discussion.

Equipments can be used to do ‘formal category theory’ in various settings:
they equip a category with proarrows, which stand for ‘relations’ between objects
of the category, and which can be reindexed under both base and cobase change.
Some standard examples of framed bicategories include

e sets, with functions for morphisms, and relations for proarrows;

e rings, with homomorphisms for morphisms, and modules for proarrows;

e V-categories, with V-functors for morphisms, and V-profunctors (aka V-
distributors) for proarrows.

The last example is particularly important to us. Recall that a (Set-) profunctor
¢ : A — Bisjustafunctor

¢: A’ x B — Set

In particular, the identity profunctor on a category A, id4 : A — A, is very close
to the desired gadget: it is the hom-set functor

A(—, =)t A% x A - Set
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which acts by precomposition and composition respectively.

One might ask why a profunctor is a relation. Suppose that we replace Set by

B &{0,1}, and take A to be a set so that A°P = A. Then a functor A x A — Bisjust

a function, so it represents a relation. The basic insight is then due to Lawvere:
the category of sets is a generalised object of truth values. Indeed, this is a central
idea in Weber 2-toposes [Web07].

Much research has been interested in generalising the profunctor-like con-
struction of equipments. It is straightforward to do so in the enriched setting:
the framed bicategory described above has functors A°? ® B — V' as proarrows.
However, it is much harder to construct proarrows in more general settings, such
as arbitrary 2-categories: we often have neither a (—)°P nor a tensor! There are
two ways to do so: one is fibrational, and the other cofibrational.

The fibrational way is to consider some structures called two-sided discrete
fibrations internal to (either a 2-category [Str74] or) a bicategory [Str80]. These

are spans
E
PN
A B

with appropriate liftings. In particular, p is a fibration, ¢ is an opfibration, and
they interact in a coherent way. Recall that spans represent relations: FE is the
‘relation’ object, or graph of the relation, and the two morphisms project the
source and target of each pair. It is shown in [Str80] that if we have a fibrational
bicategory we can construct a category of profunctors. As these are spans, they
compose by pullback. Unfortunately, this composite is not always a discrete two-
sided fibration, and the requirements for making sure it can be reflected into one
associatively are very strong, and do not work correctly in the enriched setting:
see the comment section on the blog post [Shu09].

Alternatively, one can consider certain structures called two-sided codiscrete
cofibrations, again internal to a bicategory. These are cospans

CXD/E

with appropriate extensions. Recall that cospans may represent relations: E is
the ‘barrel,’ or cograph of the relation. The two morphisms include A and B into
it, but the barrel also contains ‘cross-category objects’ that relate elements of A
to elements of B. [Str80] shows that the two-sided codiscrete cofibrations in V-
Cat exactly capture profunctors A°? ® B — V. Carboni et al. [Car+94] generalize
this construction subject to certain axioms on an arbitrary bicategory.

The reader may wonder what all this has to do directed homotopy. Notice that,
at least in the particular case of Cat, we have established a triple presentation of
the same gadget:

two-sided discrete fibrations ~ profunctors ~ two-sided codiscrete cofibrations

Consider now the identity profunctor. Up to equivalence, we obtain

A2 A A
C(V \i“)m ~ A(—,—): A’ x A — Set ~ 10\/‘ %
A A

Ax?2
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We have thus obtained both the directed path space and the directed cylinder as
mirror images of the same object under this triple correspondence!

We will now introduce both two-sided fibrations and cofibrations in some
generality, and then specialise our discussion to the discrete case. A very good
reference for these matters in various 2-categorical settings is the expository ar-
ticle of Loregian and Riehl [LR19].

4.2. Two-sided fibrations. Two-sided fibrations are spans whose legs are respec-
tively an opfibration and a fibration that act in a coherent way. They were in-
troduced by Street”! [Str74]. The original definition is given in terms of pseudo-
algebras for a certain 2-monad. In the case of Cat, this simplifies to the following
definition [LR19].

E
Definition 4.1. A span / X is a two-sided fibration whenever
A B

~

(1) each f : b — p(e) € B has a cartesian lift f(e) : f*(e) — e € E which is
g-vertical, i.e. q(f) = idy(e),

(2) each g : g(e) — a € A has an opcartesian lift g(e) : ¢ — gi(e) € E which is
p-vertical, i.e. p(g) = id, (., and

(3) the composite f*(e) — e — ¢i(e) induces a canonical comparison mor-
phism gi(f*(e)) — f*(g1(e)) which is an isomorphism.

It is worth noting how one obtains this ‘canonical comparison arrow.” Given f :
b — p(e) € B, one obtains a functor f* : E_ .y — E_ from the fiber of p over
p(e) € B to the fiber of p over b € B. We apply it to p-vertical oplift of g:

f*(e) e
RS g(e)
FE@Ee) ey
T*(g1(e)) W 9(e)
b f\p(e) \
b 7 ple

21ynder the name bifibration, which has since evolved to mean a single morphism that is both a
fibration and an opfibration at once.
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Applying q to the top square gives ¢ (f*(g(e))) = g. Thus f*(g(e)) is g-vertical, so
we may factor it oplift of g:

f*(e) 9(g:(f*(e)

Ly gi(f4(e))

It is then this unique h that must be an isomorphism. Note that h is both p-
vertical and ¢-vertical: the second fact may be obtained by applying p to its defin-
ing diagram. Alternatively, we may also obtain i by applying ¢ first and then
factorising through the lift of f.

It is not difficult to prove that condition (3) above is equivalent to the combi-
nation of the following two conditions:

(1) Given f : b — V' € B, the functor f* : E_;, — E_ from the fiber of p
over ¥’ to the fiber of p over b maps opcartesian oplifts g(e) : e — gi(e) to
opcartesian morphisms.

(2) Giveng : a — o € A, the functor g : E, - — E, _ from the fiber of
q over a to the fiber of ¢ over o’ maps cartesian lifts f(e) : f*(e) > eto
cartesian morphisms.

It is an easy exercise to show that any 4 : * — y € E may be factorised as

a(h)(z (1)
® x 2y = o L0, (gh)(@) S (h)*(y) L2 y

where k is both p-vertical and ¢-vertical.

We are interested in the case where the middle component k of this factorisa-
tion is actually the identity. This is true exactly for two-sided discrete fibrations.
We again use the definition given in [LR19].

E
Definition 4.2. A span / \Pl is a two-sided discrete fibration
A B

whenever
(1) any u : g(e) — o’ € A has a unique p-vertical ¢-lift, i.e. there is a unique
u: e — ¢’ € E'with domain e such that both ¢(u) = v and p(a) = id,();
(2) anyv : b — p(e) € B has a unique g-vertical p-lift, i.e. there is a unique
U : e’ — e e £ with codomain e such that both p(?9) = u and ¢(7) = idg(c);
and
(3) every morphism of E can be written as the composite of the two lifts: for

— —

each f:e — ¢ € FE, cod ¢(f) = dom p(f), and
foo_ o af ol
e—>e =e——>-—>e¢
Given a € A and b € B, define the doubly-indexed fibre category E, ; to be the
subcategory of morphisms f € E such that ¢(f) = id, and p(f) = id,. Evidently,
conditions (1) and (2) imply that E, ; is discrete: as p(id) = id and ¢(id) = id,
every morphism of E, , must be an identity morphism.
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Condition (3) is a little unusual: it implies that for any « : a — o’ € A and
v b — b € B there is at most one arrow f : e — ¢’ € F that is both over v and v.
This is used in a crucial manner in the following alternative characterisation.

E
Theorem 4.3. / \PJ is a two-sided discrete fibration iff
A B

(1) there exist p-vertical q-opcartesian lifts,
(2) there exist q-vertical p-cartesian lifts, and
(3) each doubly-indexed fibre E, ;, is a discrete category.

As aresult, the legs of a two-sided discrete fibration are respectively a Grothendieck
opfibration and a Grothendieck fibration.

Remark 4.4. Bénabou [Bén00, §6.4] implicitly claims to characterise two-sided
fibrations as those spans for which (1’) ¢ is a Grothendieck opfibration, (2’) p is
a Grothendieck fibration, and (3) E,; is discrete. While (1-3) imply (1’-3’), we
cannot see how (1’-3’) imply (1) and (2): we certainly have (op)cartesian lifts, but
itis not clear why they are ‘cross-vertical.’

Example 4.5. The central example of a two-sided discrete fibration is the span

X2
N
X X

where X is a category, and X? is its arrow category, i.e. the functor category
[2, X]. It is not hard to show that this is a two-sided discrete fibration. Let there
bep:x - ye X,and f : 2’ — z € X with the codomain of f above p wrt the
fibration dom, i.e. with dom(p) = z. There is a unique morphism into p that is
both above f wrt to dom and also vertical wrt cod, namely

~

N

8]

R R
S

< ¢t

A similar situation is the case with dom and cod swapped: the unique morphism
above g : y — y’ wrt to cod and vertical with respect to dom is

oo 8

~

S|
L/ R

:

It is now easy to see that we may factorise a morphism as

x % z x z % z
pl lp' = pl i P’
y —— Y y——y —vy

by letting the dashed line be p’ o f = g o p.
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It is worth remarking that neither dom nor cod are discrete as (op)fibrations
themselves: in fact,

f
 ——
|
i~ lopof | J{p
~
PR
Y T Y

is cartesian over f wrt cod for any isomorphism i : 3 =>4,

Example 4.6. Perhaps the simplest example of a two-sided (non-discrete) fibra-
tion is

XS
v N
X X

where X is a category, and X2 is the category of composable morphismsin X, i.e.
the functor category [3, X]. The doubly-indexed fiber X fy now has morphisms

of the form
x
|
|

Mo B

}f

q v

y—1Y

While v o u = ¢ o p implies that the two objects are strongly related they are
nonetheless not equal, and there may be many choices of 4 that make the two
squares commute. Working out the factorisation of a morphism of X2 into an
opcartesian arrow followed by a doubly-vertical and a cartesian arrow is a jolly
exercise that we leave to the reader.

A theorem of Street [Str74] generates two-sided discrete fibrations in Cat that

feel awfully familiar. To begin, let A 1, X & Bbea cospan of functors. Let {f, g}
be the comma category of that cospan: its objects are morphisms « : f(z) — g(y)
for z € A and y € B, and its morphisms are commuting squares

f(z) f(@)
4) o| |
9) — o 9W)
We define two functors A < {f, g} - B by
@) L2 p)
y=-y al la, N
9) — 7 9W)

We then have the
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Theorem 4.7 (Street). The span
{f.9}

PN
B A
is a two-sided discrete fibration.

As acorollary, pis a fibration and ¢ is an opfibration. This puts both the factori-
sations (FS, F) and (PS, F°P) into perspective: the constructions are the special

case of this theorem when the cospan is either B Y pLaoralBd B
that special case, ¢ (resp. p) also happens to be a left adjoint (resp. right adjoint)
to an inclusion.

4.2.1. Factorising spans. Revisiting the factorization for (FS, F) as defined by
the pullback diagram (2), one immediately sees that it actually provides a fac-
torisation of the graph of f : A — B, i.e. the span

ad, f>: A—> Ax B

into a right adjoint right inverse i : A — {B, f}, and a two-sided discrete fi-
bration (g, p) which is the span corresponding to the comma category {B, f}.
Similarly, the pullback diagram used for (FS, F°P) provides a factorisation of the
opgraphof f : A — B,ie. (f,Id): A — B x Ainto a left adjoint left inverse
and a two-sided discrete fibration.

Finally, these two constructions can be combined to factorise any span. Given
aspan{g, f): E — A x B, consider the diagram

-~ refl
(UGS RN
[N Sl
<
\\ \\S N
dom

g N (lf) — (B f} — B> =5 B

Jcod

|
®) A {g, A} E B

refl l
codJ{

A

g

— A

where i is defined essentially as above, and j similarly. These two arrows make
the square formed by the top-left opspan commute, and we hence obtain h by
the universal property of the pullback.

The span (u,v) : (g | f) = A x B formed by the left-and-downwards and the
top-and-across composites is not a discrete fibration, but a proper two-sided
fibration. The category (g | f) can be described more succintly** as 42 x 4 E x
B2?. That is: its objects consist of an objecte € F, apathq: g(e) — a € A4, and a
pathp: b — f(e) € B. Evidently

B axB-EL g % axB

241D fact, two-sided fibrations are algebras for this 2-monad.
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4.2.2. A note on composing two-sided fibrations: span repair. If two-sided fibra-
tions are meant to have a (higher-dimensional) relational flavour, then we should
also expect them to admit a notion of relational composition. This is indeed the
case, and it works by pullback. More specifically, in the diagram

N
By \A/ Xc

if the spans {p, ¢) and <(h, k) are two-sided fibrations, then so is {q o j, k o 7). This
is shown in detail in the context of co-cosmoi in the upcoming book by Riehl and
Verity [RV19, p. 11.2.6].

However, this composition does not preserve discreteness: we might have
{p,qyand {h, k) are two-sided discrete fibration, yet the composite fibration need
not be discrete. We can see this if we compose (dom, cod) : 42 — X along itself:
the resulting fibration, which is equivalent to A3 — A x A as given in Example
4.6, is certainly not discrete.

What is needed in this scenario, and which was already discussed by Street
[Str74], is what I like to call mechanism of repair. The total category A2 is indeed
arelation over points of 4, but it is a composite one: it retains information about
the midpoint. What is needed is a 2-categorical step analogous to that used to
rectify the composition of relations in regular categories.

This kind of repair on two-sided fibrations is a known thorn on the side of
higher category theorists. Street [Str74], who mentions it in passing, calls it a
“tensor product of bimodules coequalizer.” Hermida [Her01] simply calls it a co-
equalizer. Riehl and Verity identify the requisite general notion as a “homotopy
coinverter,” which is a type of colimit that is not available in the co-cosmos set-
ting: see [RV19, §12]. To solve this, they move to the setting of virtual double
categories, which allows them ‘multiarrows’ from many two-sided discrete fibra-
tions to one, thus never having to confront composition directly.

I am not sure which of the two concepts—discrete or non-discrete—is the
right one for a ‘directed homotopy’ theory. On the one hand, the discrete one is
well-understood, and—as shown by Riehl and Verity—neatly expresses bimod-
ules for (o0, 1)-categories. Nevertheless, it does not behave well under compo-
sition, and the discreteness seems limited: recall, for example, that discrete ob-
jects in the co-cosmos of quasi-categories are actually the Kan complexes [RV19,
p. 1.2.24], viz. the undirected spaces. Thus, it seems that discreteness eliminates
all undirected structure.

4.3. Relations II. In §4.1 we remarked that, at least in the case of Cat, there is
a triple correspondence between profunctors, two-sided discrete fibrations, and
two-sided codiscrete cofibrations. In order to motivate our discussion we will
now sketch the details of this correspondence.

Let ¢ : A — B be a profunctor, i.e. a functor A°? x B — Set. ¢ assigns to
each pair of objects a € A, b € B aset ¢(a,b). This set can be construed as the set
of evidence that a is related to b by ¢. ¢ also provides an action of morphisms on
relation witnesses. For example, if e € ¢(a,b) and f : ¢’ — a € A, then

def

e f=o(fidy)(e) € ¢(d’,b)
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is a witness that ¢’ and b are related. Similarly, if g : b — o’ we have that

g-¢ = ¢(ida, g)(e) € (a, V)
Functoriality, which in the above notation takes the simple form

e-(faofi)=(e-f2) - fr (92091)-e=g2-(g1-€) (9-¢)-f=g-(ef)
serves to ensure that this action is coherent with respect to A and B. Profunctors
form both a category, but also the paradigmatic example of a bicategory, whose
identity 1-cells are the hom-functorsX (—, —) : X°° x X — Set. General fefer-
ences include [Bor94, §7.7], [Bén00], and Joyal’s CatLab.?®

4.3.1. The two-sided Grothendieck construction. Given a two-sided discrete fi-
bration (¢, p) : E — Ax B, the construction of a profunctor ¢ : A°’ x B — Set
is reasonably evident. The pair (a € A,b € B) is sent to the doubly-indexed fibre
E, 1 (which is a set, as the fibration is discrete). Furthermore, we have to define
the functorial action of ¢ on morphisms; this is easy, as there is at most one lift
over two morphisms in A and B.

Conversely, one can construct a two-sided discrete fibration from a profunc-
tor. In fact, this is a two-sided Grothendieck construction. Given ¢ : A — B, we
let § ¢ be the category with
objects: (a € A,be B,e€ ¢(a,b))
morphisms: (f,g) : (a,b,e) — (a’,b',€’) are pairs of morphisms f : ¢« — o’ and

g:b— b suchthatg-e=¢-f.
That is: (f,g) is a morphism from e € ¢(a,b) to ¢’ € ¢(a’, ') just if pulling ¢’ back
along f : a — d’ togete - f € ¢(a, V') yields the same result as pushing e forwards
along g : b — V' to obtain g - € € ¢(a, b’). Then, the span defined by

§o » e € d(a,b)
N, T TN

is a two-sided discrete fibration. For example, pulling back along f : ¢ — a
provides a lift

!/

e fedlab) T cepa,b) {¢
Jp
o — 1 L A

which is unique above f with respect to p, and vertical with respect to q.

These constructions extend to an equivalence between the subcategory of
spans that are two-sided discrete fibrations and the functor category [A°P x B, Set]:
see [LR19, Theorem 2.3.2].

4.3.2. The collage. Far more well-known than the aforementioned perspective
is the construction of the collage of a profunctor ¢ : A — B. It is the category
Ax4Bwhose objects are the disjoint union of objects of A and B, with morphisms
are
Alz,y) ifz,yeA
(Axg B)(w.y) € { dle.y) ifzeAyeB
B(z,y) ifz,yeB

26A¢ the time of writing (November 9, 2019) many equations on the CatLab are not rendered
correctly.
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The collage has a useful pictorial representation:
CEE D
D

FIGURE 2. A collage

The ‘top’ of this structure is the category A, and the ‘bottom’ is the category
B. The black diagonal arrow depicts an element e € ¢(a, b), which in this setting
is sometimes called a heteromorphism. Near the top is a blue line, which stands
for a morphism f :  — 2’ € A. The diagonal dashed arrow is the result of the
contravariant action of f on ¢, namely e - f. The magenta line at the bottom
represents an arbitrary morphism of B.

Joyal captures such shapes by the following definition.

Definition 4.8 (Barrel). A barrel is functor f : X — 2.

The idea is that the fibre f~'(0) over 0—the top of the barrel**—stands for A
in the above picture, whereas the fibre f~!(1) over ¢g—the bottom of the barrel—
stands for B. Moreover, the top of the barrel is a sieve, in that precomposing any
arrow to an arrow at the top yields again an arrow at the top. The bottom of the
barrel has the dual property, i.e. is a cosieve. The heteromorphisms are all then
sent to the walking arrow 0 — 1 € 2. Joyal demonstrates an equivalence between
the category”’ of profunctors and the slice category Cat/2: up to iso, every barrel
is a collage of some profunctor.

In the next section we will show that every such collage is a two-sided codis-
crete cofibration, i.e. a cospan with a structure dual to the two-sided discrete
fibrations of §4.2.

4.3.3. Representable profunctors. Given a morphism f : a — b € A, one can
immediately obtain a presheaf A(—, f) : A°? — Set. In a similar manner, a
functor f : A — B givesrise to fwo profunctors. The first one is the profunctor
B(—,f(-)): B®? x A —> Set
which we denote by ¢ : B — A. The second one is the profunctor
B(f(-),—): A® x B —> Set

which we denote by ¢/ : A — B.

Using the results of §4.2 we see that, when seen as two-sided discrete fibra-
tions, the profunctors ¢; and ¢/ correspond the comma categories {B, f} and
{f, B}. Indeed, the objects of § ¢/ are exactly the pairs (a € A,be B, f € B(f(a),b)).

In an entirely dual manner, the collage of the profunctor ¢/ is

Az, y) ifr,ye A
(Axyr B)(w,y) < < B(f(x),y) ifzedyeB
B(x,y) ifr,ye B

28What we call top Joyal calls bottom and vice versa.
29Not to be confused with the bicategory of profunctors.
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which is exactly the construction of E7 that we used for (C, FR) in §3.2.

Finally, in the case of the identity profunctor idx : X — X, {idx is exactly

2 = {Idy,Idx}, and X #4, X isisomorphic to X x 2. Thus, we obtain the path
space and the cylinder of a space from the identity profunctor.

To conclude, not only do we get the one-sided structure as a special case of
the two-sided structure for the representables, but we are also given cylinders
and path spaces ‘for free.’

4.4. Two-sided cofibrations. Dualising the two-sided fibrations of §4.2 leads to
two-sided cofibrations. We may define them as being two-sided fibrations on
Cat®?, or pseudo-algebras for the 2-monad

B A
C (Ax2)4+4C+p(Bx2)

In the interest of brevity and simplicity we proceed directly to the codiscrete vari-
ant, which has the following simpler description.

Definition 4.9. The cospan \ / is a two-sided codiscrete cofi-
7 i

bration just if

(1) Givenr : f = gwhere f,g : A— D and anyv : C — D below g wrt j
there exists a unique j-covertical i-extension 7 : v = v of 7, i.e. a unique
extension such that both 7 # i = 7 and 7 = j = Id,.;.

(2) Given T : f = gwhere f,g: A— Dandanywu : C — D below f wrt
i there exists a unique j-covertical i-opextension 7 : v = v of 7, i.e. a
unique opextension such that both 7 * j = 7 and 7 * ¢ = Idyc;.

(3) Every 7 :u = v: C — D can be factorised as

<« ]

T * ] T %7

The diagrams are the usual pictures for basic cofibrations and opcofibrations:

where those extensions are (op)cocartesian and cross-covertical.

Example 4.10. The main interesting example of a two-sided codiscrete cofibra-
tion is the cospan
X X
X x2
which is one way of viewing the directed cylinder on a category X.



34 G. A. KAVVOS

Example 4.11. As with two-sided fibrations, it is interesting to consider the sim-
plest case which is not codiscrete. Analogously, that would be the cospan

X X

X x3

This can be pictured as a ‘three-level cylinder’ that consists of three copies of the
category X, with the arms of the cospan including X at the top and at the bottom.
Dually to 4.6, it is the cylinder-like object that we obtain as the pushout of two
cylinders, where we identify the bottom of the first with the top of the second.

Street [Str80] proved that if we view V-Cat as a bicategory and relax the above
definition in an appropriately bicategorical way then we obtain exactly the V—Cat
profunctors: see [LR19, Theorem 4.3.2]. Instead, we prove the following more el-
ementary result.

Proposition 4.12. Any barrel ¢ : C — 2 induces a two-sided codiscrete cofibra-

tion, viz.
(1) (0
C

Proof. Let A% ¢=1(0) and B ¥ ¢~1(1). We show that i is a cofibration. Suppose

)

q

J
-

E

The barrel structure ¢ : C — 2 on C partitions the morphisms into those in
A = ¢ 1(0), those in B = ¢~1(1), and the heteromorphisms that cross from the
former to the latter. With that in mind, we define the necessary functor « by case
analysis; we make it coincide with j on A, v on B, and use 7 for heteromorphisms:

u:C — D
fra—deA — i)+ dla) — j(a)
g:b—>beB — v(f) 1 v(b) = v(d)
e:a—b — v(e) o7y : jla) — v(b)

Functoriality for the case of heteromorphisms follows from v o i5 = k and the
naturality of 7 in the third. One can extend 7 to = by defining it to be 7 on 4, and
identity elsewhere, i.e.

Ta

j=9
e

Ta * j(a) - k(a)

5 2id, : v(b) — v(b)
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Evidently, this is covertical w.r.t. i;. For a heteromorphism e : « — b we have that

j(a) v(b)

- H

k(a) e v(b)

u(e)

commutes by definition of u(e) &« v(e) o 7,. Similarly, iy is an opcofibration.
It remains to show the factorisation property. Given o : u = v foru,v : C —
D, we ‘restrict’ « to A and B by whiskering with g, ¢; to obtain

axig:uoig=wvoig: A— D

a*i;:u0i =voi : B—D

We can then extend those transformations to ones on C:

woig uOiy

— T

V01

A D B~ Yaxi 2D

It is the case that v = w: chasing through the details of the extensions defined
before, we have that both z and w coincide with « on 4 and with v on B. On
heteromorphisms, w mapse : a — b to

v(e) o (a*1ip)q = v(e) o ay,
and z maps it to
(a=xi1)poule) = apoule)

which are equal by the naturality of . We can then obtain « = i o « * i1, and see
that it is componentwise are equal to a. d

I still owe the reader a result from §3.2, which now follows as a corollary of
this proposition. As remarked in §4.3.3, the category E/ used in the ‘mapping
cylinder’ factorisation

AL,B—ALE B
can be obtained as the collage of a representable profunctor, and hence induces
a two-sided codiscrete cofibration [i,j] : A+ B — E7. It thus follows that 7 is
indeed a basic cofibration.

In a manner analogous to that of §4.2, the pushout that defines the factorisa-
tion through E7, i.e.

A—L B

10

Ay Ax2 — Ef
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shows that can factor the cospan [idg, f] : B+ A — B, i.e. the cograph of f, as
B+AXL gl p

The dual diagram factors the opcograph [ f,idg].
A factorisation of general cospans [g, f] : B+ A — C as

B+Al, paa_ ¢

where [z, y] is the free two-sided cofibration may be obtained in a way dual to
that of diagram (5). The category B x A is complicated to define, but an explicit
description has been given by Fosco Loregian [Lor]: it is a barrel whose top is A4,
whose bottom is B, and whose heteromorphisms from a € A to b € B are given
by the coend

[ 4@ x Be.gw)

4.4.1. Another note on composition: cospan repair. Like with two-sided discrete
fibrations, the composition of two-sided codiscrete cofibrations is also not codis-
crete. However, their cospan-like nature seems more amenable to mechanisms
of repair. In particular, all thatis required is a particular kind of (2-categorical) or-
thogonal factorisation system: see abbreviated discussions of this point in [Shu09]
and [LR19], and the original paper [Car+94]. A similar mechanism of repair has
appeared in the context of Fong’s corelations [Fon18].

Nevertheless, it is more clear in this case that the codiscrete variant is the ill-
behaved one for the purposes of directed homotopy theory: we would definitely
like to prove that the pushout of two cylinders is again a cylinder, exactly because
this would imply that we may compose two (left) directed homotopies.

4.5. Adjoint cylinders and reflexive graphs. We have examined two-sided (dis-
crete) fibrations and cofibrations gua cylinders and path spaces in a directed
setting. However, a considerably less sophisticated structure is also a contender,
as it seems to capture the correct geometric intuitions.

Definition 4.13. An adjoint cylinder for a category X is a diagram of adjunctions

X

10 1

where r is a common retraction to ¢y and ¢;,i.e. r o iy = r o i; = Idx.

Adjoint cylinders were introduced by Lawvere [Law94; Law96], who also calls
them unity and identity for adjoint opposites (UIAO). Their defining diagram is
usually drawn upside down (i.e. with I(X) on top) but we have reversed that in
order to emphasize geometric intuition.

Indeed, an adjoint cylinder presents X as both a coreflective and reflective sub-
category of I(X). In that way it almost perfectly captures the image of the di-
rected cylinder in Figure 1, viz. two copies of X with a quantum of direction
adjoined in the middle.
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Example 4.14. X x 2 is an adjoint cylinder for any category X . We define the two
inclusions i, : X — X x 2fork € {0,1} by

xSy — (w,k)m(x,k)

In the opposite direction we have the projection functor 7; : X x 2 — X. which
‘collapses’ the cylinder by forgetting the cylindrical dimension. It is evident that
w1 o4 = idy, and thatig 4 71 — ¢1.

As a special case, this includes the walking morphism

1 2
i1

with the unique arrow 2 — 1 as a common retraction.

Example 4.15. Unlike the previous example, here is one which is not the collage
of a profunctor. It so happens that X x 3 is an also an adjoint cylinder for X.
We define the two inclusions i, : X — X x 2 for k € {0, 2} in the same way as
before, and take m; : X x 2 — X to be the common retraction. We have 7 —
m1 — 2. This barrel contains a ‘middle tier’ of additional evidence, viz. remnants
ofrelational composition. The mechanisms of repair discussed in §4.4.1 are there
to eliminate this middle tier, and turn it back into X x 2.

Corresponding to the weakened classes of future and past sections of §3, we
could weaken the adjunctions in the definition of an adjoint cylinder, so that it
would be a cospan whose arms are a future and past section respectively, but
with a common retraction (viz. cospans with some additional structure. My pre-
ferred name for this structure is that of cyclical section. As in §§3.1.4, 3.2.2, appro-
priate conditions on the underlying categories (i.e. being spacelike, or Cauchy
complete) would allow us to strengthen a cyclical section to an adjoint cylinder.

Unlike two-sided codiscrete cofibrations, adjoint cylinders are closed under
composition by pushout.*

Proposition 4.16. Adjoint cylinders are closed under cospan composition.

Proof. Let there be adjoint cylinders

for D, which come with natural transformations
n:ldy =ijor
€:igor =1Id4
0:1dg ==ji0q
(:jooq=1Idp

that satisfy the triangle equations.

32Moreover, this theorem also restricts to the weaker notion of cyclical section.
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Cat is strictly 2-cocomplete, so we construct the composite adjoint cylinder

by taking the strict 2-pushout C & A +, B, which effectively sticks the second
cylinder at the end of the first:

D D D
io J1
A B

N/

D

By the universal property of the pushout, we obtain a unique » : C — D thatis
a common retract to both k o ig and [ o j;.

It remains to provide natural transformations that witness the reflection and
coreflection. We only show the first, the other one being entirely dual. For suc-
cinctness we suppress composition and whiskering, and write 1 for the iden-
tity natural transformation. By the universal property of the strict 2-pushout,
to uniquely define a natural transformation

A (kig)h = Ide
it suffices to define its ‘components,’ which are prewhiskered by & and [, viz.
Aa :kighk =k and A : kighl =1
subject to the restriction A4 = i; = Ap * jo. The resulting A then satisfies
(6) Axk =Xy Axl=)Ap
Noting that kighk = kigr, we let
A E ke : kigr = k
Noting that kighl = k;q, we let

k(ei !
A & kiog Metg kirq = ljoq L

It is easy to see that
)\Ail = kﬁil = >\Bj0
We can now check the first coherence condition, viz. that
Aklo = )\Aio = kﬁio =1

as eip = 1 by the triangle equation of the adjunction. Furthermore, by naturality
of the 2-pushout, the natural transformation kA : A = h is the unique natural
transformation induced by h\ 4 and hAg. We calculate that

hAa = hke=re=1
by the triangle equation, and similarly that
hAp = h(I¢ o hk(ei1)q) = hi o hkeirg = qCoreiig=101=1
Thus it must be that hA = 1. O

The dual gadget has the flavour of a directed path space.
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Definition 4.17. An adjoint reflexive graph for a category X is a diagram of ad-
junctions

P(X)

~+ | A

T0 T1
A
X

where ¢ is a common section to rg and rq,i.e. rp o4 = r; 04 = Id x.

Here o and r; can be read as mapping a ‘path’ in P(X) to its domain and
codomain respectively. The data of the adjunction is evidence that we can ‘re-
tract’ these paths in two directions: either backwards along the counite : iorg =
Idx, or forwards along the unit 5 : Idx = i o r;. Either one of these processes
ends with the Teflexivity’ path on the (co)domain, as given by ¢.

Example 4.18. The arrow category X2 is an adjoint reflexive graph for every cat-
egory X. The usual functors dom, cod : X2 — X satisfy dom o refl = cod o refl =
Idx, where refl : X — X? is the usual functor z — id, : 2 — x. Finally, it is the
case that dom — refl 4 cod.

Example 4.19. Recall the category X3 of composable morphisms of X defined
in Example 4.6. It is also an adjoint reflexive graph: the common section refls :

X — X3 to the domain and codomain functors is of course given by the ‘degen-

eracy’ x — (x LN x). In Example 4.6 we showed that this is a two-sided

fibration, but that it is not discrete. The mechanisms of repair outlined in §4.2.2
are there to ‘compose’ this object back into X?2.

A result dual to Proposition 4.16 shows that adjoint reflexive graphs also com-
pose. Moreover, this proof restricts to the weaker variant of a cyclical retraction,
which would lack two of the coherence conditions (i.e. r, would be a past retrac-
tion and r; would be a future retraction, with a common section 7).

One might reasonably ask whether span consisting of the two retractions of
an adjoint reflexive graph is, in fact, a two-sided fibration. I am not so certain it
is. As with the strange inclusions of coherent sections and retractions into basic
(op/co)fibrations given in §3.3, I believe there must be a weaker notion of two-
sided fibration (i.e. non-Grothendieck) into which adjoint reflexive graphs could
be included.

4.6. A two-sided lifting property. We now have enough technology in place to
formulate a lifting property which suffices to reproduce the argument from the
start of this section, i.e. that left homotopy implies right homotopy.

In order to see from where this lifting propery comes, let us consider its sim-
plest case. Recall from Example 4.14 the inclusions

1 *
@) / \
2 0 ———1

which satisfied ip - ! - ;. Additionally, let the span (¢,p) : E — B x Abea
two-sided discrete fibration. Given an arrow g : d — p(i) € B for some i € E,
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there is a unique lift g above g that is vertical wrt to ¢:

d’ g >0
over d —2— p() in B
and q(i) == q(i) in A

Every aspect of this save for the cross-verticality wrt A can be captured as a diag-
onal filler for the diagram

:

=~
<«
i)

1
i1l g
2 -

Similarly, we may find a unique oplift of f : ¢(i) — e € A that is vertical wrt to p:

%
g

£

7 Ty e
over p(i) == p(i) in B
and g(i) —L— ¢ in A

and we can capture this as a diagonal filler in the diagram

:

1
o T
2

i

-
—
Q

E

We can now place these diagrams side by side:

d’ g > 4 f‘ : e
over d —2— p(i) == p(i) in B
and (i) == q(i) —L— ¢ in A

Thus, the composite h o f o g is over both f and g. However, the object i has
been ‘lost’ after composition. Put simply, if we lift and oplift ‘at the same time,’
we lose the ‘object control’ that was afforded previously by the commutation of
the upper triangles (i.e. that the codomain or domain of the lift was indeed the
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object 7). Instead, we now have the diagrams

1" F 1 " F
10 - q 71 - p
T h T h
ZﬁA 2'T>B

where the lower triangles commute, but the upper triangles are filled with natural
transformations—which in this particular case coincide with morphisms.

By Example 4.14, the cospan 1 — 2 < 1is an adjoint cylinder. We can in fact
generalise this lifting property to any other adjoint cylinder.

In order to prove that, we first need a result that rephrases the definition of
two-sided discrete fibrations (Def. 4.2) in terms of liftings and factorisations of
natural transformations. A similar characterisation has been obtained in a bicat-
egorical setting by Carboni et al. [Car+94]: see [LR19, Lemma 4.2.2].

E
Theorem 4.20. / \PJ is a two-sided discrete fibration iff
A B

(1) There is a unique q-vertical p-lift5 : w = v of o : i = j, wherei,j : C —
Bandv:C — FEisoverj w.r.tp.
(2) There is a unique p-vertical q-opliftc : v = v of o : i = j, wherei,j :
C — Aandu:C — Eisoveri w.rtq.
(3) Everyo : u= v foru,v : C — FE can be factorised as
q¥g . p¥o
Uu=—=d=—=v
Proof. First we prove the backwards direction: taking C' = 1, it is not hard to see
that the above specialises to the usual definition of two-sided discrete fibration.
Now for the forwards direction. (1) and (2) follow in the same way as Gray’s
lemma (Lemma 3.3). For (3), we factorise o, and o,/ (whilst ignoring the dotted
arrow for a moment) as

u(a) —7 d(a) —— v(a)

. um e o x(f)

u(a’) T) d(a) ? v(a)

Focus on the right hand side open box, which w.r.t. p is over the open box

(Ua)
pu(a) ? P

v(a)
o p(u(f))
pu(f) \
pu(a’) pv(a’)

Taking p(u(f)) as a lid for this box makes the diagram commute, as it is the p-
image of a naturality square of 0. As pg, is cartesian over po,/, there is a unique
arrow h : d(a) — d(a’) that can go in the position of the dotted arrow in (8)
that makes the right hand square commute. We record that p(h) = pu(f), and
q(h) = qu(f); the latter we get by applying ¢ to the right hand square of (8).

In an entirely symmetric way, we use the opcartesian arrow go, to obtain a
k : d(a) — d(a’) that makes the left hand square commute. But then ¢(k) = qu(f)
and ¢g(k) = pu(f), so in fact k = h. We pick this to be d(f), and the uniqueness

plogr)
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of this choice makes it functorial. Finally, placing it in the dotted position in (8)
makes the entire diagram commute.

We thus obtain a factorisation of ¢ as po o go. Before we conclude the proof,
let us note for later use that pod = pouandgod = gowv. O

We can now prove our main

Theorem 4.21. Given an adjoint cylinder and a two-sided discrete fibration

D
E
TEIEI Y
)
C

such that the diagrams

D —> FE D —> F
20 q 11 P
C — A ¢ —— B

commute, then thereisad : C — E and two natural transformations such that
the lower triangles of the diagrams

(3

|

D —— FE
A

D E
DENEN.
A c

J

g
commute.
Proof. We have two natural transformations
e:igor =Idc
n:ldg =idyor
We whisker them to get
fre:foigor=f
gxmn:g =goi or

Note that f oigor = goior,andgoi;or = poior. Then, as g and p are
respectively a Grothendieck opfibration and a Grothendieck fibration, we can
use Gray’s lemma (Lemma 3.3 to construct the lifts:

.y E
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We can compose these lifts along their common boundary to obtain

def g . fe
a k =ijor =h
9n . .
over g = poiror = poior

and gqgoior = goior gf

Thus p(a) = gn and ¢(«) = fe. By Theorem 4.20, we can factorise that as

qa , po
a= k =d=h
gn .
over g = g=poior

and goior gf: f

so we obtain the desired d : C — E over f and g, which makes the two lower
triangles commute.

Consider now pa : d = h. We may whisker it to obtain pa = g : d 0 ig = h o ig.
But recall how % was obtained: ¢ is a basic opfibration, so—as in Theorem 3.7—

fexio = feig=1=1
and hence that hoiy = ioroig = i. Hence paxig : doig = i, and similarly ga =i, :
i = d o i;. Therefore, these two transformations fill the upper triangles. O

This theorem fits our needs exactly. Suppose we have a ‘left directed homo-
topy’ a : X x 2 — Y which witnesses f v~ g,i.e. «oiyp = fand aoi; = g for
the inclusions ig,7; : X — X x 2. We can then use the Theorem 4.21 to find a
common filler d to the diagrams

X reflo f Y2 X reflo f Y2
X X
ioJ \d Jcod i1J \d Jdom
Xx2— Y Xx2——Y
o7y

The ‘right directed homotopy’ of interest is then d o i; : X — Y2. We calculate
domo (doi)) = fomoi; = f
codo(doi;) =aoi; =g

Given that any morphism in the total category of a (non-discrete) two-sided
fibration can be factorised into three morphisms, as claimed in equation (3), I be-
lieve that this theorem can be generalised to also cover any two-sided fibration.
The common lift would be replaced with two different lifts d;, d, with a natural
transformation d; = d» deforming one to the other. Moreover, this ‘middle’ nat-
ural transformation would be vertical with respect to both legs of the fibration.

5. CONCLUSIONS

By this point we have examined some of the structure of Cat that seems to
either arise as a directed generalisation of the usual homotopical structure on
groupoids, or simply appears to be useful and relevant for directed homotopy.
We consider this a first attempt some 1-categorical machinery that should un-
derlie an abstract model-category-like presentation of (oo, ) categories.

In §3 we examined how the usual mapping path space and mapping cylinder
factorisations used in the model structure on groupoids generalise to all small
categories. We found that both of them split into two WFSs—a forwards/future
and a backwards/past version—to make a total of 4 WFSs. The WESs where the
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right class has a (op)fibrational flavour provide a notion of filling along future
and past sections, which are slighly weaker than full reflections and coreflections.
Thus, we can extend any functor from a (co)reflective subcategory to a full cat-
egory, just by ‘following it backwards (forwards)’ along the (co) reflection. It is
evident that this filling is a directed analogue to filling along acyclic cofibrations.
Finally, we noticed that these morphism classes include into each other in an
unusual pattern.

Following that, we realised that despite having all these WFSs we still lacked
quite a bit of expressive power. Consequently, in §4 we examined what could pos-
sibly take the place of cylinders and path spaces as previously used in model cat-
egories. It seems that the right notion at this point is to consider not just classes
of morphisms, but classes of spans and cospans. We discussed two contenders
for what the right class of (co)spans is: two-sided (co)fibrations, which are a gen-
eralisation of (op)fibrations that permit both a fibrant and opfibrant direction,
and adjoint cylinders/reflexive graphs, which are a generalisation of both reflec-
tions and coreflections. We concluded by showing that both are useful, for they
lift against each other.

Itis a blessing and a curse that this work raises more questions than it answers.

What does ‘directed localisation’ mean? As discussed in §2, one of the standard
constructions in model categories is to construct the homotopy category of a
model category. Since we no longer have weak equivalences, the notion of /o-
calisation seems to lose its meaning. I believe that there are two things we can
do, but possess no evidence on which one is right.

One idea would be localise along future/past sections, or even reflections and
coreflections. That way, we could identify a category A with its image either at
the ‘start’ or at the ‘end’ of the cylinder A x 2, obtaining the forward localisation
and the backward localisation respectively. It is unclear whether this approach
leads to any interesting results.

However, another route would be to accept that this theory is fundamentally
two-dimensional. The right way would thus be to construct a directed homotopy
2-category instead, with the left (or right!) directed homotopies as 2-cells. This
route is also better understood: it is consistent with the use of the homotopy
2-category as a central device in the upcoming book by Riehl and Verity [RV19].

What is a ‘two-sided factorisation system’? It became evident in §4 that we have
found a way to consider the factorisation of spans and cospans. In the case of
those corresponding to representable profunctors—e.g. the graph {id, f)—this
leads to a factorisation into a right-adjoint-right-inverse followed by a two-sided
discrete fibration (or a two-sided codiscrete cofibration followed by a left-adjoint-
left-inverse in the cograph case). In the more general case of any span, this led to
a factorisation into a single morphism and a general two-sided fibration.

Coupled with the two-sided lifting property of Theorem 4.21, this raises an ob-
vious question: is there a notion of a fwo-sided factorisation system that we have
missed, and that could be an invaluable tool for directed homotopy? We be-
lieve this to be quite possible, but we have no intuitive descriptions of the single-
morphism left class. Paige North has been working a variation of this idea, but
her two-sided lifting property looks very different: see the talk [Nor19a].

Should there be a type theory of spans? The Awodey-Warren slogan ‘types are
fibrations’ was instrumental to developing a higher-dimensional semantics for
HoTT. Given our results in §4, we should carefully consider what the slogan

‘types are two-sided fibrations’



REFERENCES 45

has to offer to directed type theory.

There are indeed elements of this—but formulated internally—in the directed
type theory of Shulman and Riehl [RS17]. However, it might be worthwhile to
consider the formulation of a type theory where a type is not a display map, but
a display span, which would implicitly contain the idea that it is fibred over a part
of its context, and opfibred with respect to the rest.
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