
Dual-context Calculi for Modal
Logic

(Technical Report)

G. A. Kavvos

St John’s College

University of Oxford

Contents

1 Prelude 5

2 The Logics in Question 8

2.1 Constructive modal logics . 8

2.2 Preliminaries . 9

2.3 Hilbert systems . 10

2.4 Axioms . 10

2.5 Metatheory for Hilbert . 12

2.5.1 Structural rules . 12

2.5.2 Admissible Rules . 12

3 From sequent calculi to dual contexts 16

3.1 The perennial issues . 16

3.1.1 Explicit substitutions à la Bierman & de Paiva 16

3.1.2 Dual contexts . 18

3.2 Deriving dual-context calculi . 19

3.2.1 The Introduction Rules . 20

3.2.2 K . 21

3.2.3 K4 . 22

3.2.4 GL . 23

3.2.5 The Elimination Rule . 23

3.2.6 A second variable rule . 24

4 Terms, Types and Metatheory 26

4.1 Complementary variables . 28

4.2 Free variables: boxed and unboxed 31

4.3 Structural theorems . 35

4.4 Equivalence with Hilbert systems . 39

4.4.1 Hilbert to Dual . 39

2

4.4.2 Dual to Hilbert . 41

5 Reduction 42

5.1 Preservation theorems . 42

5.2 Confluence . 45

5.3 Strong normalization . 49

5.4 Subformula property . 54

6 Candidates of Reducibility 59

6.1 Candidates: the first four properties 60

6.2 Closure under formation: the latter two properties 66

6.3 The main theorem . 70

7 Modal Category Theory 76

7.1 Cartesian closed categories . 76

7.2 Lax and strong monoidal functors . 77

7.2.1 Product-Preserving Functors 78

7.2.2 Monoidal natural transformations 81

7.3 Categorical models of modal logic . 82

7.3.1 Kripke categories . 82

7.3.2 Bierman-de Paiva categories 83

7.3.3 Kripke-4 categories . 88

7.3.4 Kripke-T categories . 92

7.3.5 Gödel-Löb categories . 92

8 Categorical semantics 97

8.1 Equational theory . 97

8.1.1 Commuting Conversions . 98

8.1.2 The η rule . 101

8.2 Categorical interpretation . 103

8.3 Soundness . 104

8.4 Completeness . 114

9 Coda 118

Bibliography 119

3

List of Figures

2.1 Hilbert systems . 11

4.1 Definition and Typing Judgments . 27

4.2 Derivation of the Gödel-Löb axiom in DGL 40

5.1 Reduction . 43

5.2 Parallel Reduction . 47

8.1 Equations for all systems . 99

8.2 Equations for the modalities . 100

8.3 Categorical Semantics . 105

This is version 1.0.2324 of this report, compiled on August 10, 2018.

4

Chapter 1

Prelude

The study of the Curry-Howard correspondence (Howard, 1980; Girard et al., 1989)

between modal logics and modal λ-calculi began at the dawn of the 1990s, and was

heralded by the discovery of Linear Logic. Early milestones include Moggi’s monadic

metalanguage (Moggi, 1991), and the discovery of a constructive S4 modality by Bier-

man and de Paiva (1992, 1996, 2000). These were followed by multiple developments,

as well as some first applications. This first era is surveyed by de Paiva et al. (2004).

Since the early 2000s this field has largely been commandeered by the program-

ming language community. As a result, there has been less focus on theoretical

aspects, but great strides have been made in applications. These include—amongst

others—the modelling of dependency and secure programming languagues by Abadi

et al. (1999); a λ-calculus for distributed computing and mobile code (Murphy et al.,

2004); new modal approaches to metaprogramming (Taha and Nielsen, 2003; Tsukada

and Igarashi, 2010); the type systems for functional reactive programs (FRPs) devel-

oped by Krishnaswami (2013); the comonadic approach to contextual computation

developed by Orchard (2014); the explosive developments surrounding Homotopy

Type Theory (HoTT), and the resulting interest in modalities in cohesive HoTT

(Shulman, 2018); and the very active research community centred around guarded

type theory (Clouston et al., 2016).

These developments have occurred in spite of the fact we lack an overarching

foundational understanding of modal proof theory. The major impediment to ob-

taining such a foundation is that the methods of modal proof theory are, at best,

kaleidoscopic: some types of calculi work well for certain logics, yet fail to encompass

others. It is possible to develop a working intuition for these patterns, but it is much

harder to explain why a particular pattern suits a particular modal logic.

In the sequel we propose an explanation that clarifies why the necessity fragments

of the most popular normal modal logics—namely K, T, K4, GL and S4—are best

5

suited to dual-context calculi, as pioneered by Girard (1993), Andreoli (1992), Wadler

(1993, 1994), Plotkin (1993), Barber (1996), and Pfenning and Davies (2001). The

crux of the argument is that separating assumptions into a modal zone and an intu-

itionistic zone allows one to mimic rules from known cut-free sequent calculi for these

logics.

Our investigation is structured as follows. We first define and discuss the the

aforementioned constructive modal logics, and present a Hilbert system for each (§2).

Then, we briefly revisit previous attempts at presenting calculi for them. This natu-

rally leads us to a systematic pattern for deriving dual context systems from cut-free

sequent calculi, which we show equivalent to the corresponding Hilbert systems (§3).

We study the metatheory of these calculi (§4), and a notion of reduction of terms

which satisfies the usual properties, and—modulo a few commuting conversions—the

subformula property as well (§??).

Finally, we present a categorical semantics for these calculi (§7). The modalities

are interpreted by strong monoidal functors between cartesian categories (which we

show to be exactly the product preserving ones). The 4 and T axioms are interpreted

by coherent ‘comultiplications’ and ‘counits’ for these functors. In the case of S4,

which combines both 4 and T, these are required to satisfy the usual coherence re-

quired of a comonad. Finally, GL requires a notion of modal fixed point, which is

original to our investigation. These categorical structures are shown to be sound and

complete (§??).

Our contribution is twofold. On the theoretical side, it amounts to a full exten-

sion of the Curry-Howard-Lambek isomorphism—based on the usual triptych of logic,

computation and categories—to a handful of modal logics. Indeed, only fragments of

our dual-context formulations have appeared before. Dual-context S4 was invented

by Pfenning and Davies (2001), who introduced these systems to modal logic; nev-

ertheless, they did not study neither reduction nor its semantics. An approach that

is very similar to ours for K and K4 has been considered by Pfenning (2013, 2015)

in the context of linear sequent calculi. In turn, this ‘linear K’ of Pfenning seems

to be closely related to the work of Danos and Joinet (2003) in elementary linear

logic. However, the intuitionistic, natural deduction formulation are independently

due to the present author, and the technical innovations needed in presenting a term

calculus for K4/GL are original. The only previous approach to GL was the rather

complicated natural deduction calculus of Bellin (1985), and the appreciably simpler

dual-context formulation is our own invention. Finally, the approach to T is new.

6

The reader is invited to consult the survey (Kavvos, 2016) for a more detailed history

of modal λ-calculi.

On the other hand, the results in this paper are also meant to provide a solid

foundation for applications in programming languages. Necessity modalities are a

way to control data flow within a programming language. As such, a clear view of

the landscape can help one pick the appropriate modal axioms to ensure some desired

correctness property.

Before we proceed any further, let us mention that the author has formalized most

of the metatheoretic results in Agda; see the website 1 or the GitHub repository.2

1www.lambdabetaeta.eu
2lambdabetaeta/modal-logics

7

www.lambdabetaeta.eu

Chapter 2

The Logics in Question

We will study the necessity fragment of five modal logics: constructive K (abbrv.

CK), constructive K4 (abbrv. CK4), constructive T (abbrv. CT), constructive GL

(abbrv. CGL), and constructive S4 (abbrv. CS4). In this chapter we shall discuss

the common characteristics amongst these logics, define their syntax, and present a

Hilbert system for each.

2.1 Constructive modal logics

All of the above logics belong to a group of logics that are broadly referred to as

constructive modal logics. These are intuitionistic variants of known modal logics

which have been cherry-picked to satisfy a specific desideratum, namely to have a

well-behaved Gentzen-style proof-theoretic interpretation, and thereby an associated

computational interpretation through the Curry-Howard isomorphism.

There are a few characteristics common to all these logics, which are more ap-

preciable when the possibility modality (♦) is taken into consideration. First, the

de Morgan duality between necessity (�) and possibility (♦) breaks down, rendering

those two modalities logically independent. For that reason we shall mostly refer to

the � as the box modality, and ♦ as the diamond modality respectively. Second, the

principles ♦(A∨B)→ ♦A∨♦B and ¬♦⊥ are not provable. These two principles are

tautologies if we employ traditional Kripke semantics (Kripke, 1963). Thus, the step

to constructivity necessitates that we eschew the Kripkean analysis, at least in its

most popular form. But even if the diamond modality is essential in pinpointing the

salient differences between constructive modal logics and other forms of intuitionistic

modal logic—e.g. those studied by Simpson (1994)—it seems that its computational

interpretation is not very crisp. Hence, we restrict our study to the better-behaved,

and seemingly more applicable box modality (but see Pfenning (2001)).

8

As the history of modal proof theory and constructive modal logics is long and

tumultuous, we shall try to avoid the subject as much as possible. An extensive survey

and discussion of the history of constructive λ-calculi may be found in (Kavvos, 2016).

For a broader survey of the proof theory of modal logic we recommend (Negri, 2011).

2.2 Preliminaries

All of our modal logics shall be inductively defined sets of formulæ—the theorems of

the logic. These formulæ are generated by the following Backus-Naur form:

A,B ::= pi | ⊥ | A ∧B | A ∨B | A→ B | �A

where pi is drawn from a countable set of propositions. The sets of theorems will

be generated by axioms, closed under some inference rules. The set of axioms will

always contain (a) all the instances the axioms of intuitionistic propositional logic,

but over modal formulæ (abbrv. IPL�); and (b) all instances of the normality axiom,

also known as axiom K:

(K) �(A→ B)→ (�A→ �B)

The set of inference rules will contain all instances of the two rules necessary to

capture IPL�, namely the axiom rule:

A is an axiom of L

A ∈ L

and the rule of modus ponens :

(A→ B) ∈ L A ∈ L

B ∈ L

As for the modal part, we include all instances of the necessitation rule, namely

A ∈ L

�A ∈ L

The only thing that will then vary between any two of our logics L will be the set of

axioms.

9

2.3 Hilbert systems

There are two steps to passing from the definition of a logic to a Hilbert system for

it. First, we introduce a judgment of the form

Γ ` A

where Γ is a context, i.e. a list of formulæ defined by the BNF

Γ ::= · | Γ, A

and A is a single formula. We shall use the comma to also denote concatenation—

e.g. Γ, A,∆ shall mean the concatenation of three things: the context Γ, the context

consisting of the single formula A, and the context ∆.

The judgment Γ ` A is meant to be read as “from assumptions Γ, we infer A.”

The second step is to include the rules of axiom and modus ponens in this system.

We also add a rule that allows us to use an assumption; that is,

Γ, A,∆ ` A

We need to be careful in adapting the rule of necessitation. Doing so in a straight-

forward manner may invalidate the deduction theorem, which was a source of con-

fusion in early work on the proof theory of modal logic—see Hakli and Negri (2012)

for a historical and technical account. To approach this issue, we need to recall that

necessitation is bears a likeness to universal quantification: �A is a theorem just if A

is a theorem, and there is no reason that this should be so if we need any assumptions

to prove A. Thus, we should be able to infer �A (under any assumptions) only if we

can infer A without any assumptions at all. In symbols:

` A

Γ ` �A
The full system may be found in Figure 2.1.

2.4 Axioms

To obtain the various aforementioned logics, all we need to do is vary the set of

axioms. We write

(A1)⊕ · · · ⊕ (An)

to mean the set of theorems A such that ` A is derivable from all instances of the

axioms (A1), . . . , (An) under the rules in Figure 2.1.

10

(assn)
Γ, A,∆ ` A

A is an axiom
(ax)

Γ ` A

Γ ` A→ B Γ ` A
(MP)

Γ ` B

` A
(NEC)

Γ ` �A

Figure 2.1: Hilbert systems

We write (IPL�) to mean all instances of the axiom schemata of intuitionistic

propositional logic, but also including formulas of the form �A in the syntax. We

will use the following axiom schemata:

(K) �(A→ B)→ (�A→ �B)

(4) �A→ ��A

(T) �A→ A

(GL) �(�A→ A)→ �A

Constructive K is then defined as the minimal normal constructive modal logic.

Constructive K4 adds axiom 4 to that. Likewise, constructive T is the result of adding

axiom T to CK. Constructive S4 results from taking all these axiom schemas together.

Finally, we obtain constructive GL from CK by adding the Gödel-Löb axiom GL. A

summary in symbols is in order:

CK
def
= (IPL�)⊕ (K)

CK4
def
= (IPL�)⊕ (K)⊕ (4)

CT
def
= (IPL�)⊕ (K)⊕ (T)

CS4
def
= (IPL�)⊕ (K)⊕ (4)⊕ (T)

CGL
def
= (IPL�)⊕ (K)⊕ (GL)

To indicate that we are using the Hilbert system for e.g. CK, we annotate the

turnstile, like so:

Γ `CK A

We simply write Γ ` A or Γ `H A when the statement under discussion pertains to

all of our Hilbert systems.

11

2.5 Metatheory for Hilbert

2.5.1 Structural rules

We establish the following basic facts about all our logics:

Theorem 1 (Structural & Cut). The following rules are admissible.1

1. (Weakening)

Γ ` C

Γ, A ` C

2. (Exchange)

Γ, A,B,∆ ` C

Γ, B,A,∆ ` C

3. (Contraction)

Γ, A,A,∆ ` C

Γ, A,∆ ` C

4. (Cut)

Γ ` A Γ, A,∆ ` C

Γ,∆ ` C

Proof. All by induction.

Theorem 2 (Deduction Theorem). The following rule is admissible in all of our

logics:
Γ, A ` B

Γ ` A→ B

Proof. By induction on the derivation of Γ, A ` B.

2.5.2 Admissible Rules

We now consider some rules that are admissible in our Hilbert systems. These will

prove useful when we tackle the equivalence of the Hilbert systems with the dual-

context systems.

The first one is Scott’s rule, which ensures that if we ‘box’ all our assumptions, we

can get something ‘boxed’ in return. Categorically, we shall see that Scott’s rule will

express the fact that the box modality is a functor, and that this functor is monoidal

with respect to the cartesian product. We write �Γ to mean the context Γ which

each assumption occurring in it boxed, i.e.

�(A1, . . . , An)
def
= �A1, . . . ,�An

1Recall that a rule is admissible just if the existence of a proof of the antecedent implies the
existence of a proof of the conclusion. In contrast, a rule is derivable just if a proof of the antecedent
can be used verbatim as a constituent part of a proof of the conclusion.

12

Theorem 3 (Admissibility of Scott’s rule). The following rule is admissible in all of

our logics:
Γ ` A

�Γ ` �A
Proof. Induction on the derivation of Γ ` A. Most cases are straightforward, except

perhaps the one for modus ponens. If the last step in the derivation of Γ ` A is of

the form ···
Γ ` B → A

···
Γ ` B

Γ ` A
then, by applying the induction hypotheses to the two subderivations, we obtain

proofs of �Γ ` � (B → A) and �Γ ` �B. We can then use axiom K and use modus

ponens twice to build the desired proof, like so:

�Γ ` �(B → A)→ �B → �A

···
�Γ ` �(B → A)

�Γ ` �B → �A

···
�Γ ` �B

�Γ ` �A

Next, we deal with a rule that is only derivable if the system contains the axiom

T. The gist of the rule is that �A is stronger than A, as it implies it in any context.

Theorem 4 (Admissibility of the T Rule). If L is a logic that includes the T axiom,

i.e. if L ∈ {CT,CS4}, then the following rule is admissible:

Γ `L A

�Γ `L A

Proof. By induction on the derivation of Γ ` A. All the cases are straightforward,

except the assumption rule. If Γ ` A because A occurs in Γ, then �Γ ` �A, and

using modus ponens along with an instance of axiom T yields the result.

Finally, we present a rule that we call the Four rule. As its name suggests, the

Four rule deductively encapsulates the inclusion of axiom 4. In a nutshell, it expresses

the fact that, if something is derivable from ��A, then it is derivable from �A itself:

that is, one can ‘cut’ with axiom 4.

The Four rule only pertains to logics that include all instances of 4. One of these

logics is CGL, but in that case 4 is a theorem, so we begin by deriving it:

13

Lemma 1. `CGL �A→ ��A

Proof. We follow Boolos (1994). By using one of the conjunction axioms of (IPL�)

and Scott’s rule, we have �(�A ∧ A) ` �A, and hence

A,�(�A ∧ A) ` �A ∧ A

again by using weakening and the one of the conjunction axioms. Then, the deduction

theorem and Scott’s rule yield that

�A ` � (� (�A ∧ A)→ �A ∧ A)

Using that alongside modus ponens and the Gödel-Löb axiom yields

�A ` � (�A ∧ A)

and ‘cutting’ with � (�A ∧ A) ` ��A and using the deduction theorem completes

the proof.

Thus:

Theorem 5 (Admissibility of the Four Rule). If L is a logic that includes 4 either

as axiom or as theorem, i.e. if L ∈ {CK4,CGL,CS4}, then the following rule is

admissible:
�Γ,Γ `L A

�Γ `L �A
Proof. Induction on the derivation of �Γ,Γ ` A. Most cases are straightforward: it

suffices to use necessitation. The case for modus ponens uses axiom K: see the proof

of the admissibility of Scott’s rule (Theorem 3) for more details.

This leaves the case where �Γ,Γ ` A by the assumption rule. It follows that A

either occurs in �Γ, or it occurs in Γ. If it occurs in �Γ, then it is of the form �A′;

thus �Γ ` �A′, and using modus ponens alongside an instance of axiom 4 yields

�Γ ` ��A′ = �A. If, on the other hand, A occurs in Γ, then �Γ ` �A by the

assumption rule, and we are done.

A slightly weaker variant of the Four rule appears in (Bierman and de Paiva,

2000). It is a corollary to ours:

Corollary 1. If L is a logic that includes 4 either as axiom or as theorem, i.e. if

L ∈ {CK4,CGL,CS4}, then the following rule is admissible:

�Γ `L A

�Γ `L �A

14

Proof. Use weakening and the Four rule.

If the T rule is admissible as well—i.e. in the case of CS4—we can derive the

theorem from the corollary. If �Γ,Γ ` A, then ��Γ,�Γ ` A by the T rule, and

repeatedly cutting with instances of �B ` ��B yields �Γ,�Γ ` A. Repeated uses

of exchange and contraction then show �Γ ` A, to which we apply the corollary.

However, if the axiom T is not present and Rule T is not admissible, we need the

stronger version.

Finally, we show that Löb’s rule is admissible in CGL. Again, we show a stronger

version:

Theorem 6 (Löb’s Rule). The following rule is admissible in CGL:

�Γ,Γ,�A ` A

�Γ ` �A

Proof. By the deduction theorem, we can infer that �Γ,Γ ` �A→ A, and hence by

the Four rule (Theorem 5), it follows that

�Γ ` �(�A→ A)

Using an instance of the Gödel-Löb axiom and modus ponens completes the proof.

Again, we have a corollary that is weaker but corresponds to what is normally referred

to as Löb’s rule:

Corollary 2. The following rule is admissible in CGL:

�Γ,�A ` A

�Γ ` �A

Proof. Use weakening and Löb’s rule.

15

Chapter 3

From sequent calculi to dual
contexts

In this chapter we discuss the issues that one has to tackle time and time again whilst

devising modal λ-calculi for necessity modalities.

3.1 The perennial issues

A brief perusal of the survey (Kavvos, 2016) indicates that most work in the subject is

concentrated on essentially two kinds of calculi: (a) those with explicit substitutions,

following a style that was popularised by Bierman and de Paiva (1992, 1996, 2000);

and (b) those employing dual contexts, a pattern that was imported into modal type

theory by (Davies and Pfenning, 1996, 2001) and (Pfenning and Davies, 2001).

3.1.1 Explicit substitutions à la Bierman & de Paiva

The calculus introduced by Bierman and de Paiva made use of a trick that was

previously employed in the context of Intuitionistic Linear Logic by Benton et al.

(1993) to ensure that substitution is admissible. The trick is simple: if cut is not

admissible, then build it into the introduction rule.

In the case of CS4 (Bierman and de Paiva, 2000), the resulting λ-calculus is an

extension of the ordinary simply typed λ-calculus, obtained by adding the following

introduction rule:

Γ `M1 : �A1 . . . Γ `Mn : �An x1 : �A1, . . . , xn : �An ` N : B

Γ ` box N with M1, . . . ,Mn for x1, . . . xn : �B

In this example, x1, . . . xn comprise all the free variables that may occur in N . They

must all be ‘modal,’ in that their type has to start with a box. But if we are to

16

place a box in front of B then we must provide a substitute Mi for each of these free

variables, and Mi must also be of modal type. In short: all the data that goes into the

making of something of type �B must be ‘boxed.’ And, as if that were not enough,

all these terms of type Ai must be provided at once, for they are ‘frozen’ as part of

the term of type �B: they become an explicit substitution in the syntax. This is a

combined introduction and cut rule: the introduction part ensures that modal data

depend only on modal data, and the cut part allows for substitution.

By comparison, the elimination rule is much simpler, and incorporates axiom T

(�A→ A):
Γ `M : �A

Γ ` unbox M : A

In order to ensure admissibility of cut and hence subject reduction, the β-rule asso-

ciated with these rules has the effect of unrolling the explicit substitutions en masse:

unbox (box N with M1, . . . ,Mn for x1, . . . xn) −→ N [M1/x1, . . . ,Mn/xn]

Calculi of this sort are notorious for suffering from two kinds of problems: (a)

their need for multiple commuting conversions, and (b) the lack of ‘good’ symmetries

in the rules of the calculus. These two aspects we shall discuss in turn.

Commuting Conversions In order to maintain the validity of central proof-theoretic

results, calculi with explicit subsitutions often need a large number of commut-

ing conversions. Amongst other things, these conversions expose ‘hidden’ re-

dexes, the existence of which spoil the so-called subformula property, which we

will discuss in §5.4. The issue of commuting conversions is known to arise from

rules for positive connectives, such as those for disjunction and existence; for a

particularly perspicuous discussion, see (Girard et al., 1989, §10.1).

In calculi such as the above, commuting conversions are invariably some kind

of structural rule concerning the explicit substitutions. Structural rules are tra-

ditionally found in sequent calculi, but not in natural deduction where they

are often admissible. Their presence in a natural deduction system is incom-

patible with the view that natural deduction proofs comprise the “real proof

objects”—see (Girard et al., 1989, §5.4). In the case of Bierman and de Paiva’s

system for CS4, Goubault-Larrecq (1996) argues that systems like it obscure

the computational meaning of modal proofs: if they didn’t, they would need no

structural rules at all.

17

‘Good’ symmetries The calculus of Bierman and de Paiva for CS4 exhibits rea-

sonable symmetries: if we forget about the explicit substitutions for a moment,

then we can see an introduction and an elimination rule, the latter post-inverse

to the former: there is reasonable harmony.

Things are not that simple when it comes to other calculi of this sort. To see

that, we look at the the calculus of Bellin et al. (2001) for CK. Its introduction

rule is only slightly different to the one for CS4, in that the free variables need

not be of modal type. However, the substitutes for these free variables must be

of modal type. To wit:

Γ `M1 : �A1 . . . Γ `Mn : �An x1 : A1, . . . , xn : An ` N : B

Γ ` box N with M1, . . . ,Mn for x1, . . . xn : �B

In this calculus there can be no harmony, for there is no elimination rule at all.

Indeed, the only plausible ‘β-rule’ one might adopt is actually just a commuting

conversion that was previously studied in the context of CS4 by Goubault-

Larrecq (1996). Its function is to unbox any ‘canonical’ terms in the explicit

substitutions; e.g

box yx with y, (box M with z for z) for y, x −→ box y(box M) with y, z for y, z

in an appropriate context for y and z. It is evident that once we step out of the

harmonious patterns of CS4, systems based on ‘mixed’ introduction rules with

explicit subsitutions becomes less and less tenable.

In order to reach a better solution we must overcome two problems: (a) we must

‘decouple’ the two flavours—introduction and cut—that together constitute the in-

troduction rules of this shape; and (b) we must minimize as much as possible the

commuting conversions—in particular, we should strive to make them free of any

computational content. We should nevertheless expect that to do so one might have

to sacrifice the apparent simplicity of this kind of system.

3.1.2 Dual contexts

The right intuition for achieving this decoupling was introduced by Girard (1993) in

his attempt to combine classical, intuitionistic, and linear logic in one system, and

also independently by Andreoli (1992) in the context of linear logic programming.

The idea is simple and can be turned into a slogan: segregate assumptions. This

means that we should divide our usual context of assumptions in two, or—even

18

better—think of it as consisting of two zones. We should think of one zone as the pri-

mary zone, and the assumptions occuring in it as the ‘ordinary’ sort of assumptions.

The other zone is the secondary zone, and the assumptions in it normally have a dif-

ferent flavour. In this context, the introduction rule explains the interaction between

the two contexts, whereas the elimination rule effects substitution for the secondary

context.

This idea has been most profitable in the case of the Dual Intuitionistic Linear

Logic (DILL) of Barber (1996) and Plotkin (1993), where the primary context consists

of linear assumptions, and the secondary consists of ‘ordinary’ intuitionstic assump-

tions. The ‘of course’ modality (!) of Linear Logic is very much like a S4 modality,

and—simply by lifting the linearity restrictions—(Pfenning and Davies, 2001; Davies

and Pfenning, 2001) adapted this work to the modal logic CS4 with considerable suc-

cess. In this system, hereafter referred to as Dual Constructive S4 (DS4), the primary

context consists of intuitionistic assumptions, whereas the secondary context consists

of modal assumptions.

The systems of Barber, Plotkin, Davies and Pfenning do not immediately seem

adaptable to other logics. Indeed, the pattern may at first seem limited to modalities

like ‘of course’ and the necessity of S4, which—categorically—are comonads. Recall

that a comonad can be decomposed into an adjunction, which comes with a universal

property, and it may seem that the syntax heavily depends on that.

In the rest of this chapter we argue that, not only does the dual-context pattern

not depend on this universal property, but also that it can easily be adapted to

capture the necessity fragments of all the other aforementioned logics.

3.2 Deriving dual-context calculi

We shall start with the usual suspect, namely the sequent calculus. Gentzen intro-

duced the sequent calculus in the 1930s (Gentzen, 1935a,b) in order to study normal-

isation of proofs, known as cut elimination in this context; see Girard et al. (1989)

for an introduction.

A proof in the sequent calculus consists of a tree of sequents, which take the form

Γ ` A, where Γ is a context. Thus in our notation a sequent is a different name for

a judgment, like the ones in natural deduction.1 The rules, however, are different:

they come in two flavours: left rules and right rules. Broadly speaking, right rules

1Fundamental differences arise in the case of classical logics, where sequents are of the form Γ ` ∆
where both Γ and ∆ are lists of formulae. For the purposes of intuitionistic logic ∆ consists of at
most one formula—see (Girard et al., 1989, §5.1.3).

19

are exactly the introduction rules of natural deduction, as they only concern the

conclusion A of the sequent. The left rules play a role similar to that of elimination

rules, but they do so by ‘gerrymandering’ with the assumptions in Γ. See (Girard

et al., 1989, §5.4) for a more in-depth discussion of the correspondence between natural

deduction and sequent calculus.

The first attempts to forge sequent calculi for modal logics began in the 1950s,

with the formulation of a sequent calculus for S4 by Curry (1952) and Ohnisi and

Matsumoto (1957, 1959). There was also some limited success for other simple modal

logics, mainly involving the axioms we discuss here. Most of these are mentioned by

Ono (1998) and are more thoroughly discussed in the survey (Wansing, 2002); see

also (Negri, 2011).

3.2.1 The Introduction Rules

Let us consider the right rule for the logic S4. In the intuitionistic case, the rule is

�Γ ` A
(�R)

�Γ ` �A

One cannot help but notice this rule has an intuitive computational interpretation,

in terms of ‘flow of data.’ We can read it as follows: if only modal data are used

in inferring A, then we may safely obtain �A. Only ‘boxed’ things can flow into

something that is ‘boxed’ (cf. §3.1.1).

Let us now take a closer look at dual-context systems for box modalities. A

dual-context judgment is of the form

∆ ; Γ ` A

where both ∆ and Γ are contexts. The assumptions in ∆ are to be thought of as

modal, whereas the assumptions in Γ are run-of-the-mill intuitionistic assumptions.

A loose translation of a judgment of this form to the ‘ordinary sort’ would be

∆ ; Γ ` A �∆,Γ ` A

Under this translation, if we ‘mimic’ the right rule for S4 we would obtain the follow-

ing:
∆ ; · ` A

∆ ; · ` �A

20

where · denotes the empty context. However, natural deduction systems do not have

any structural rules, so we have to include some kind of ‘opportunity to weaken the

context’ in the above rule. If we do so, the result is

∆ ; · ` A

∆ ; Γ ` �A

Under the translation described above, this is exactly the right rule for S4, with some

extra weakening included. Incidentally, it is also exactly the introduction rule of

Pfenning and Davies (2001) for their dual-context system DS4.

This pattern can be harvested to turn the right rules for the box in sequent calculi

into introduction rules in dual-context systems. We tackle each case separately, except

T, which we discuss in §3.2.6.

3.2.2 K

The case for K is slightly harder to fathom at first sight. This is because its sequent

only has a single rule for the modality, namely Scott’s rule:

Γ ` A

�Γ ` �A

As Bellin et al. (2001) discuss, this rule is unsavoury: it is both a left and a right rule

at the same time. It cannot be split into two rules, which is the pattern that bestows

sequent calculus its fundamental symmetries.

Despite this, Scott’s rule is reasonably well-behaved. Leivant (1981) and Valentini

(1982) showed that incorporating Scott’s rule yields a system which admits cut elimi-

nation. Scott’s rule also appears in the sequent calculus for CK studied by Wijesekera

(1990).

With the previous interpretation in mind, our introduction rule should take the

following form:
· ; ∆ ` A

∆ ; · ` �A
Indeed, we emulate Scott’s rule by ensuring that all the intuitionistic assumptions

must become modal, at once. The final form is reached again by adding opportunities

for weakening:
· ; ∆ ` A

∆ ; Γ ` �A
At this point, the reader may protest vehemently, arguing that this is not an

introduction rule in the spirit of natural deduction at all: we are shamelessly messing

21

with assumptions! So much is true. But it is also true that even the most well-behaved

fragments of natural deduction are not really trees, but involve some ‘back edges,’

e.g. to record when and which assumptions are discharged—see (Girard et al., 1989,

§2.1). The situation is even more involved when it comes to the not-so-well-behaving

positive fragment (∨∃): for example, elimination rule for ∨, namely

Γ ` A ∨B Γ, A ` C Γ, B ` C

Γ ` C

involves the silent elimination of two ‘temporary assumptions,’ A and B. Rules

involving such temporary assumptions have been of enough importance to warrant

their own name: they are known as rules ‘in the style’ of Schroeder-Heister (1984).

The sum of it all is this: the proofs were never really trees.

Consequently, our shameless shuffling of assumptions from one context to another

shall not weigh heavily on our conscience. In fact, there is a simple way to think

about the ‘jump’ that the context ∆ makes from intuitionistic to modal. Suppose

that we are in the process of writing down an ordinary deduction, and we want to

introduce a box in front of the conclusion. All we have to do, then, is to place a mark

on all the assumptions that are open at that point. This does not discharge them,

but it merely makes them modal: there shall be a fundamentally different way of

substiting for them, and it shall be a little more complicated than the simple splicing

of a proof tree at a leaf.2

3.2.3 K4

The right sequent calculus rule for the logic K4, as well as the proof of cut elimination,

is due to Sambin and Valentini (1982). Using elements from his joint work with

Sambin, as well some counterexamples found in the work of Leivant (1981) on GL,

Valentini noticed that the key property induced by axiom 4 is that anything derivable

by ��A is derivable by �A. The following (left-and-right) rule for the encapsulates

this insight:
�Γ,Γ ` A

�Γ ` �A
Thus, to derive �A from a bunch of boxed assumptions, it suffices to derive A from

two copies of the same assumptions, one boxed and one unboxed. This co-occurence

2In fact, in order to substitute, we will need to ensure that (a) the substitute must have no modal
assumptions at all, and (b) after substitution, we need to mark all the assumptions of that substitute
as modal. But we leave that for later.

22

of the same assumptions in two forms will cause some mild technical complications

in the next section, but that will clarify the structure of the ‘flow of data’ in K4.

A direct translation, after adding opportunities for weakening, amounts to the

introduction rule:
∆ ; ∆ ` A

∆ ; Γ ` �A

3.2.4 GL

The correct formulation of sequent calculus for GL is a difficult problem that receives

attention time and time again. There are simple solutions that guarantee that we can

derive all and only theorems of GL, but they fail to satisfy cut elimination. There is

also a very complicated system of natural deduction, due to Bellin (1985).

The first attempt at a cut-free sequent calculus was that of Leivant (1981). Soon

thereafter Valentini (1983) showed that Leivant’s proof of cut elimination was incor-

rect. Sambin and Valentini (1980) describe a procedure for building cut-free proofs for

all provable sequents, but their proof is semantic and goes through Kripke structures,

and hence does not constitute Gentzen-style cut elimination. Sambin and Valentini

(1982) collect and describe in detail many early approaches, the reasons they do or do

not work, and all relevant results. Finally, Valentini (1983) shows that the same rule

admits cut elimination, but the proof is rather complicated, and derives from ideas

of (Bellin, 1985). Recent progress on clarifying that result may be found in Goré and

Ramanayke (2012).

The Leivant-Valentini sequent calculus rule for GL is the following:

�Γ,Γ,�A ` A

�Γ ` �A

The only difference between this rule and the one for K4 is the appearance of the

‘diagonal assumption’ �A. We can straightforwardly use our translation to state it

as an introduction rule:
∆ ; ∆,�A ` A

∆ ; Γ ` �A

3.2.5 The Elimination Rule

As discussed in §3.1.2, in a dual-context calculus we consider one of these zones to be

primary, and the other secondary, depending of course on our intentions. Assumptions

in the primary zone are discharged by λ-abstraction. Thus, the function space of DILL

is linear, whereas the function space of DS4 is intuitionistic. This mechanism provides

23

for internal substitution for an assumption, by first λ-abstracting it and then applying

the resulting function to an argument.

In contrast, substituting for assumptions in the secondary zone is the capacity

of the elimination rule. This is a customary pattern for dual-context calculi: unlike

primary assumptions, substitution for secondary assumptions is essentially a cut rule.

In the term assignment system we will consider later, this takes the form of an explicit

substitution, a type of ‘let construct.’ The rationale is this: the rest of the system

controls how secondary assumptions arise and are used, and the elimination rule

uniformly allows one to substitute for them.3 To wit:

∆ ; Γ ` �A ∆, A ; Γ ` C
(�E)

∆ ; Γ ` C

A lot of cheek is involved in trying to pass a cut rule as an elimination rule. Notwith-

standing the hypocrisy, this is not only common, but also the best presently known so-

lution to regaining the patterns of introduction/elimination in the presence of modal-

ity. It is the core of our second slogan: in dual context systems, substitution is a cut

rule for secondary assumptions.

One cannot help but notice that such rules are also in the infamous style of

Schroeder-Heister (1984), and very similar to that for disjunction. This kind of rule

is known to be problematic, as it automatically necessitates some commuting con-

versions: unavoidably, the conclusion C has no structural relationship with anything

else in sight. See (Girard et al., 1989, §10) for a more in-depth discussion.

Can we live with this? Unless we are to engage in more complicated and radical

schemes, the present author is afraid that we must. Put simply, there is no good way

to do away with commuting conversions: they are part-and-parcel of any sufficiently

complicated type theory. All we can hope for is to (a) minimize their number, and

(b) state them systematically.

3.2.6 A second variable rule

We have conveniently avoided discussing two things up to this point: (a) the left rule

for � in S4, which is the only one of our logics that has both left and right rules, and

(b) the case of T. These two are intimately related.

3Alternative approaches have also been considered. For example, one could introduce another
abstraction operator, i.e. a ‘modal λ.’ This has been adopted by Pfenning (2001) in a dependently-
typed setting.

24

The left rule for necessity in S4 is

Γ, A ` B
(�L)

Γ,�A ` B

We can intuitively read it as follows: if A suffices to infer B, then �A is more than

enough to infer B. It is not hard to see that this encapsulates the T axiom, namely

�A → A. This rule, together with Scott’s rule, forms a sequent calculus where cut

is admissible; this is mentioned by Wansing (2002) and attributed to Ohnisi and

Matsumoto (1957).

One way of emulating this rule in our framework would be to have a construct

that makes an assumption ‘jump’ from one context to another, but that is inelegant

and probably unworkable. We are in natural deduction, and we have two kinds of

assumptions: modal and intuitionistic. The way to imitate the following is to include

a rule that allows one to use a modal assumption as if it were merely intuitionistic.

To wit:
(�var)

∆, A,∆′ ; Γ ` A
This translates back to the sequent �∆,�A,�∆′,Γ ` A.

A rule like this was introduced by Plotkin (1993) and Barber (1996) for dereliction

in DILL, and is also essential in Davies and Pfenning’s DS4. In our case, we use it in

combination with the introduction rule for K in order to make a system for T.

25

Chapter 4

Terms, Types and Metatheory

In this chapter we collect all the observations we made in §3 in order to turn our

natural deduction systems into term assignment systems, i.e. typed λ-calculi. First,

we annotate each assumption A with a variable, e.g. x : A. Then, we annotate each

judgment ∆ ; Γ ` A with a term M representing the entire deduction that with that

judgment as its conclusion—see (Girard et al., 1989, §3) or (Gallier, 1993; Sørensen

and Urzyczyn, 2006) for an introduction. We omit a treatment of ∨, for we believe

it is largely orthogonal.

The grammars defining types, terms and contexts, as well as the typing rules for

all our systems can be found in Figure 4.1. When we are at risk of confusion, we

annotate the turnstile with a subscript to indicate which system we are referring to;

e.g. ∆ ; Γ `GL M : A refers to the system consisting of the rules pertaining to all our

calculi coupled with the introduction rule (�IGL).

We also define

ΛA
def
= {M | ∃∆,Γ. ∆ ; Γ `M : A }

to be the set of terms of type A, and we write Λ for the set of all terms, well-typed

or not.

From this point onwards, we assume Barendregt’s conventions: terms are identified

by α-conversion, and bound variables are silently renamed whenever necessary. In

let box u ⇐ M in N , u is a bound variable in N . Finally, we write N [M/x] to mean

capture-avoiding substitution of M for x in N .

Furthermore, we shall assume that whenever we write a judgment like ∆ ;Γ `M :

A, then ∆ and Γ are disjoint, in the sense that Vars (∆) ∩Vars (Γ) = ∅, where

Vars (x1 : A1, . . . , xn : An)
def
= {x1, . . . , xn}

This causes a mild technical complication in the cases K4 and GL. Fortunately, the

solution is relatively simple, and we explain it now.

26

Types A,B ::= pi | A×B | A→ B | �A

Typing Contexts Γ,∆ ::= · | Γ, x:A

Terms M,N ::= x | λx:A. M |MN | 〈M,N〉 | π1(M) | π2(M)

| box M | let box u⇐M in N

Rules for all calculi:

(var)
∆ ; Γ, x:A,Γ′ ` x : A

∆ ; Γ `M : A ∆ ; Γ ` N : B
(×I)

∆ ; Γ ` 〈M,N〉 : A×B

∆ ; Γ `M : A1 × A2
(×Ei)

∆ ; Γ ` πi (M) : Ai

∆ ; Γ, x:A `M : B
(→ I)

∆ ; Γ ` λx:A. M : A→ B

∆ ; Γ `M : A→ B ∆ ; Γ ` N : A
(→ E)

∆ ; Γ `MN : B

∆ ; Γ `M : �A ∆, u:A ; Γ ` N : C
(�E)

∆ ; Γ ` let box u⇐M in N : C

Rules for K, K4, GL:

· ; ∆ `M : A
(�IK)

∆ ; Γ ` box M : �A

∆ ; ∆⊥ `M⊥ : A
(�IK4)

∆ ; Γ ` box M : �A

∆ ; ∆⊥, z⊥ : �A `M⊥ : A
(�IGL)

∆ ; Γ ` fix z in box M : �A

Rules for S4:

(�var)
∆, u:A,∆′ ; Γ ` u : A

∆ ; · `M : A
(�IS4)

∆ ; Γ ` box M : �A

Rules for T: (�IK) and (�var)

Figure 4.1: Definition and Typing Judgments

27

4.1 Complementary variables

Näıvely annotating the rule for K4 would yield

∆ ; ∆ `M : A

∆ ; Γ ` box M : �A

This, however, violates our convention that the two contexts are disjoint: the same

variables will appear both at modal and intuitionistic positions. To overcome this we

introduce the notion of complementary variables. Let V be the set of term variables

for our calculi. A complementation function is an involution on variables. That is, it

is a bijection (−)⊥ : V
∼=−→ V which happens to be its own inverse:(

x⊥
)⊥

= x

The idea is that, if u is the modal variable representing some assumption in ∆, we

will write u⊥ to refer to a variable x, uniquely associated to u, and representing the

same assumption, but without a box in front. For technical reasons, we would like

that x⊥ be the same variable as u.

We extend the involution to contexts:

(x1 : A1, . . . , xn : An)⊥
def
= x⊥1 : A1, . . . , x

⊥
n : An

We also inductively extend (−)⊥ to terms, with the exception that it must not change

anything inside a box (−) construct. It also need not change any bound modal vari-

ables, as for K4 and GL these shall only occur under box (−) constructs:

(λx : A.M)⊥
def
= λx⊥:A. M⊥

(MN)⊥
def
= M⊥N⊥

〈M,N〉 def
= 〈M⊥, N⊥〉

(πi(M))⊥
def
= πi(M

⊥)

(box M)⊥
def
= box M

(let box u⇐M in N)⊥
def
= let box u⇐M⊥ in N⊥

We use this machinery to modify the rule, so as to maintain disjoint contexts. When

we encounter an introduction rule for the box and the context ∆ gets ‘copied’ to

the intuitionistic position, we will complement all variables in the copy, as well as all

variables occuring in M , but not under any box (−) constructs:

∆ ; ∆⊥ `M⊥ : A

∆ ; Γ ` box M : �A

28

As an example, here is the derivation that · ;�A ` �(A ∧�A):

· ; x : �A ` x : �A

u : A ; u⊥ : A ` u⊥ : A

u : A ; u⊥ : A ` u⊥ : A

u : A ; u⊥ : A ` box u : �A

u : A ; u⊥ : A ` 〈u⊥, box u〉 : A×�A

u : A ; x : �A ` box 〈u, box u〉 : �(A×�A)

· ; x : �A ` let box u⇐ x in box 〈u, box u〉 : �(A×�A)

We extend complementation to finite sets of variables, by setting

{x1, . . . , xn}
def
= x⊥1 , . . . , x

⊥
n

It is not hard to see that (a) the involutive behaviour of (−)⊥ extends to all these

extensions and (b) some common operations commute with (−)⊥.

Lemma 2.

1. For any context ∆,
(
∆⊥
)⊥ ≡ ∆.

2. For any finite set of variabels S,
(
S⊥
)⊥

= S.

3. For any context ∆, Vars
(
∆⊥
)

= (Vars (∆))⊥.

4. If S, T are finite sets of variables, then

S ⊆ T =⇒ S⊥ ⊆ T⊥

Proof. Trivial.

There is a simple relationship between complementation and substitution:

Theorem 7. If u⊥ is not free in M , then

(M [N/u])⊥ ≡M⊥[N,N⊥/u, u⊥]

Proof. By induction on M .

1. If M is a variable, then by assumption M 6≡ u⊥. There are then two cases:

(a) M ≡ u: then

(M [N/u])⊥ ≡ N⊥ ≡ u⊥[N,N⊥/u, u⊥] ≡M⊥[N,N⊥/u, u⊥]

29

(b) M ≡ v 6≡ u, u⊥: then

(M [N/u])⊥ ≡ v⊥ ≡ v⊥[N,N⊥/u, u⊥] ≡M⊥[N,N⊥/u, u⊥]

2. If M ≡ λx:A.M ′, then, assuming x 6≡ u, u⊥, we use the IH to calculate that

(M [N/u])⊥ ≡ λx⊥.(M ′[N/u])⊥ ≡ λx⊥.M ′⊥[N,N⊥/u, u⊥] ≡ (λx.M ′)⊥[N,N⊥/u, u⊥]

3. If M is an application M1M2 or a tuple 〈M1,M2〉, we use the IH twice. Similarly

if it is a projection πi(M
′).

4. If M ≡ box M ′, we calculate:

(M [N/u])⊥ ≡ (box (M ′[N/u]))
⊥ ≡ box (M ′[N/u]) ≡ (box M ′)⊥[N,N⊥/u, u⊥]

where the last step follows because box M ′ ≡ (box M ′)⊥, and u⊥ 6∈ fv (M ′).

5. If M ≡ let box v ⇐M1 in M2, we calculate

(M [N/u])⊥ ≡ let box v ⇐ (M1[N/u])⊥ in (M2[N/u])⊥

≡ let box v ⇐M⊥
1 [N,N⊥/u, u⊥] in M⊥

2 [N,N⊥/u, u⊥]

≡
(
let box v ⇐M⊥

1 in M⊥
2

)
[N,N⊥/u, u⊥]

≡M⊥[N,N⊥/u, u⊥]

To conclude our discussion of complementary variables, we carefully define what

it means for a pair of contexts to be well-defined.

Definition 1 (Well-defined contexts). A pair of contexts ∆ ; Γ is well-defined just if

1. They are disjoint, i.e. Vars (∆) ∩Vars (Γ) = ∅.

2. In the cases of K4 and GL, no two complementary variables occur in the same

context; that is

Vars (Γ) ∩Vars
(
Γ⊥
)

= ∅

Vars (∆) ∩Vars
(
∆⊥
)

= ∅

The second condition is easy to enforce, and will prove useful in some technical results

found in the sequel.

30

4.2 Free variables: boxed and unboxed

Definition 2 (Free variables).

1. The free variables fv (M) of a term M are defined by induction on the structure

of the term:

fv (x)
def
= {x}

fv (MN)
def
= fv (M) ∪ fv (N)

fv (λx:A. M)
def
= fv (M)− {x}

fv (〈M,N〉) def
= fv (M) ∪ fv (N)

fv (πi(M))
def
= fv (M)

fv (box M)
def
= fv (M)

fv (let box u⇐M in N)
def
= fv (M) ∪ (fv (N)− {u})

and for GL we replace the clause for box (−) with

fv (fix z in box M)
def
= fv (M)− {z}

2. The unboxed free variables fv0 (M) of a term are those that do not occur under

the scope of a box (−) construct. They are formally defined by replacing the

clause for box (−) in the definition of free variables by

fv0 (box M)
def
= ∅

and, for GL,

fv0 (fix z in box M)
def
= ∅

3. The boxed free variables fv≥1 (M) of a term M are those that do occur under

the scope of a box (−) construct. They are formally defined by replacing the

clauses for variables and for box (−) in the definition of free variables by the

following

fv≥1 (x)
def
= ∅

fv≥1 (box M)
def
= fv (M)

and, for GL,

fv≥1 (fix z in box M)
def
= fv (M)− {z}

Theorem 8 (Free variables).

31

1. For every term M , fv (M) = fv0 (M) ∪ fv≥1 (M).

2. For every term M , fv0

(
M⊥) = fv0 (M)⊥.

3. For every term M , fv≥1

(
M⊥) = fv≥1 (M).

4. If S ∈ {DK,DK4,DGL} and ∆ ; Γ `S M : A, then

fv0 (M) ⊆ Vars (Γ)

fv≥1 (M) ⊆ Vars (∆)

5. If S ∈ {DS4,DT} and ∆ ; Γ `S M : A, then

fv0 (M) ⊆ Vars (Γ) ∪Vars (∆)

fv≥1 (M) ⊆ Vars (∆)

6. If ∆ ; Γ, x:A,Γ′ `M : A and x 6∈ fv (M), then ∆ ; Γ,Γ′ `M : A.

7. If ∆, u:A,∆′ ; Γ `M : A and u 6∈ fv (M), then ∆,∆′ ; Γ `M : A.

Proof.

1. Trivial induction on M .

2. Trivial induction on M .

3. Trivial induction on M .

4. By induction on the derivation of ∆ ; Γ `S M : A. We show the cases for (�I).

The first statement follows trivially, as fv0 (box M) = fv0 (fix z in box M) =

∅ ⊆ Vars (Γ), so it remains to show the second statement.

For (�IK), we have

fv≥1 (box M)

= { definition }

fv (M)

= { (1) }

fv0 (M) ∪ fv≥1 (M)

⊆ { IH, twice }

Vars (∆) ∪Vars (·)

= { definition }

Vars (∆)

32

For (�IK4), we have

fv≥1 (box M)

= { definition }

fv (M)

= { (1) }

fv0 (M) ∪ fv≥1 (M)

= {Lemma 2(2) }(
fv0 (M)⊥

)⊥
∪ fv≥1 (M)

⊆ { (2), (3), and Lemma 2(4) }(
fv0

(
M⊥))⊥ ∪ fv≥1

(
M⊥)

⊆ { IH twice, and Lemma 2(4) }

Vars
(
∆⊥
)⊥ ∪Vars (∆)

= {Lemma 2(3, 1) }

Vars (∆)

by the IH.

33

For (�IGL), we have

fv≥1 (fix z in box M)

= { definition }

fv (M)− {z}

= { (1) }

fv0 (M) ∪ fv≥1 (M)− {z}

= {Lemma 2(2) }(
fv0 (M)⊥

)⊥
∪ fv≥1 (M)− {z}

⊆ { (2), (3), Lemma 2(4), and monotonicity of subtraction. }

fv0

(
M⊥)⊥ ∪ fv≥1

(
M⊥)− {z}

⊆ { IH twice, and Lemma 2(4) and monotonicity of subtraction. }(
Vars

(
∆⊥
)
∪ {z⊥}

)⊥ ∪Vars (∆)− {z}

= {Lemma 2(2, 3) }

(Vars (∆) ∪ {z} ∪Vars (∆))− {z}

= { z 6∈ Vars (∆) }

Vars (∆)

5. By induction on the derivation of ∆ ; Γ `S M : A. We show the case for (�IS4);

the first statement is trivial, so we show the second:

fv≥1 (box M)

= { definition }

fv (M)

= { (1) }

fv0 (M) ∪ fv≥1 (M)

⊆ { IH, twice }

(Vars (∆) ∪Vars (·)) ∪Vars (∆)

= { definition }

Vars (∆)

6. Trivial induction on the typing derivation for M .

7. Trivial induction on the typing derivation for M .

34

4.3 Structural theorems

As expected, our systems satisfy the standard menu of structural results: weakening,

contraction, exchange, and cut rules are admissible.

Theorem 9 (Structural & Cut). The following rules are admissible in all systems:

1. (Weakening)

∆ ; Γ,Γ′ `M : A

∆ ; Γ, x:A,Γ′ `M : A

2. (Exchange)

∆ ; Γ, x:A, y:B,Γ′ `M : C

∆ ; Γ, y:B, x:A,Γ′ `M : C

3. (Contraction)

∆ ; Γ, x:A, y:A,Γ′ `M : A

∆ ; Γ, w:A,Γ′ `M [w,w/x, y] : A

4. (Cut)

∆ ; Γ ` N : A ∆ ; Γ, x:A,Γ′ `M : A

∆ ; Γ,Γ′ `M [N/x] : A

Proof. All by induction on the typing derivation of M . Most cases are standard. As

an example, we show the case of (�IK) for weakening. Suppose ∆ ; Γ,Γ′ `M : A by

(�IK). Then M ≡ box M ′ and A ≡ �A′ and · ; ∆ ` M ′ : A′. A single use of (�IK)

then yields ∆ ; Γ, x:A,Γ′ `M : A.

Theorem 10 (Modal Structural). The following rules are admissible:

1. (Modal Weakening)

∆,∆′ ; Γ `M : C

∆, u:A,∆′ ; Γ `M : C

2. (Modal Exchange)

∆, x:A, y:B,∆′ ; Γ `M : C

∆, y:B, x:A,∆′ ; Γ `M : C

3. (Modal Contraction)

∆, x:A, y:A,∆′ ; Γ `M : C

∆, w:A,∆′ ; Γ `M [w,w/x, y] : C

Proof. All by induction on the typing derivation of M . Most cases are standard. As

an example, we discuss the case of (�I) for weakening.

If ∆,∆′ ; Γ ` M : A by (�IK), then M ≡ box N and A ≡ �B for N and B such

that · ; ∆,∆′ ` N : B. We use Theorem 9 to deduce that · ; ∆, x:A,∆′ ` N : B, and

then a single use of (�IK) yields the result.

If ∆,∆′ ; Γ `M : A by (�IK4), then M ≡ box N and A ≡ �B for N and B such

that ∆,∆′ ;∆⊥,∆′⊥ ` N⊥ : B. By the IH, we have that ∆, u:A,∆′ ;∆⊥,∆′⊥ ` N⊥ : B.

We use Theorem 9 to deduce that ∆, u:A,∆′ ; ∆⊥, u⊥:A,∆′⊥ ` N⊥ : B, and then a

single use of (�IK4) yields the result.

The cases for (�IGL) and (�IS4) are similar.

35

Theorem 11 (Modal Cut). The following rules are admissible:

1. (Modal Cut for DK)

· ; ∆ `DK N : A ∆, u:A,∆′ ; Γ `DK M : C

∆,∆′ ; Γ `DK M [N/u] : C

2. (Modal Cut for DK4)

∆ ; ∆⊥ `DK4 N
⊥ : A ∆, u:A,∆′ ; Γ `DK4 M : C

∆,∆′ ; Γ `DK4 M [N/u] : C

3. (Modal Cut for DGL)

∆ ; ∆⊥, z⊥ : �A `DGL N
⊥ : A ∆, u:A,∆′ ; Γ `DGL M : C

∆,∆′ ; Γ `DGL M [N [fix z in box N/z] /u] : C

4. (Modal Cut for DS4)

∆ ; · `DS4 N : A ∆, u:A,∆′ ; Γ `DS4 M : C

∆,∆′ ; Γ `DS4 M [N/u] : C

5. (Modal Cut for DT)

· ; ∆ `DT N : A ∆, u:A,∆′ ; Γ `DT M : C

∆,∆′ ; Γ `DT M [N/u] : C

Proof. By induction on the typing derivation of M .

We show the case for (�I), and—for DS4 and DT—the case for modal variables

(�var).

1. (DK) If ∆, u:A,∆′ ; Γ `M : C by (�IK), then M ≡ box M ′, C ≡ �C ′, and

· ; ∆, u:A,∆′ `M ′ : C ′

By Theorem 9, we have

· ; ∆,∆′ `M ′[N/u] : C

and hence ∆,∆′ ; Γ ` box (M ′[N/u]) : �C ′ ≡ C by an application of (�IK).

But

box (M ′[N/u]) ≡ (box M ′) [N/u] ≡M [N/u]

and hence we have the result.

36

2. (DK4) If ∆, u:A,∆′ ; Γ `M : C by (�IK4), then M ≡ box M ′, C ≡ �C ′, and

∆, u:A,∆′ ; ∆⊥, u⊥:A,∆′⊥ `M ′⊥ : C ′

By the IH, we have

∆,∆′ ; ∆⊥, u⊥:A,∆′⊥ `M ′⊥[N/u] : C ′

and by Theorem 9, that yields

∆,∆′ ; ∆⊥,∆′⊥ `M ′⊥[N,N⊥/u, u⊥] : C ′

But, by Theorem 7, we have that M ′⊥[N,N⊥/u, u⊥] ≡ (M ′[N/u])⊥, and hence

by a use of (�IK4), we have

∆,∆′ ; Γ ` box (M ′[N/u]) : �C ′ ≡ C

and hence the result.

3. (DGL) If ∆, u:A,∆′ ; Γ `M : C by (�IGL), then M ≡ fix y in box M ′, C ≡ �C ′,
and

∆, u:A,∆′ ; ∆⊥, u⊥:A,∆′⊥, y⊥ : �C ′ `M ′⊥ : C ′

Write N∗
def
= N [fix z in box N/z]. By the first premise and the IH, we have that

∆,∆′ ; ∆⊥, u⊥:A,∆′⊥, y⊥ : �C ′ `M ′⊥ [N∗/u] : C ′

We now need to substitute for u⊥. By an application of (�IGL) to the first

premise we have

∆ ; ∆⊥ ` fix z in box N : �A

and hence by Theorem 9 we substitute this into the first premise itself to get

∆ ; ∆⊥ ` N⊥[fix z in box N/z⊥] : A

But N⊥∗ ≡ N⊥[fix z in box N/z⊥], so by weakening and Theorem 9, we obtain

∆,∆′ ; ∆⊥,∆′⊥, y⊥ : �C `M ′⊥[N∗, N
⊥
∗ /u, u

⊥] : C ′

But by well-definedness of contexts, u⊥ 6∈ fv (M), so by Theorem 7 we have

that M ′⊥[N∗, N
⊥
∗ /u, u

⊥] ≡ (M ′[N∗/u])⊥, and hence by a use of (�IGL), we have

∆,∆′ ; Γ ` fix y in box (M ′[N∗/u]) : �C ′ ≡ C

and hence the result.

37

4. (DS4)

• If ∆, u:A,∆′ ; Γ `M : C by (�IS4) then M ≡ box M ′ and C ≡ �C ′ with

∆, u:A,∆′ ; · `M ′ : C

The IH then yields ∆,∆′ ; · ` M ′[N/u] : C, and a single use of (�IS4)

yields the result.

• If ∆, u:A,∆′ ; Γ ` M : C by (�var) then M ≡ v for some v such that

(v : C) ∈ ∆, u:A,∆′. There are two cases:

– u ≡ v: then M [N/u] ≡ N and A ≡ C. The premise ∆ ; · ` N : A

along with weakening for both contexts yields the result.

– u 6≡ v: then M [N/u] ≡ M , and u does not occur in M . It is easy to

show that if ∆, u:A,∆′ ; Γ `M : C and u 6∈ fv≥1 (M) then ∆,∆′ ; Γ `
M : C.

5. (DT)

• If ∆, u:A,∆′ ; Γ `M : C by (�IK) then we proceed as in the case of DK.

• If ∆, u:A,∆′ ; Γ ` M : C by (�var) then M ≡ v for some v such that

v : C ∈ ∆, u:A,∆′. There are two cases:

– u ≡ v: then M [N/u] ≡ N and A ≡ C. The premise · ; ∆ ` N : A

along with Theorem 12 yields ∆ ; · ` N : A. A series of weakenings

for both contexts then yields the result.

– u 6≡ v: then M [N/u] ≡ M , and u does not occur in M . It is easy to

show that if ∆, u:A,∆′ ; Γ `M : C and u 6∈ fv≥1 (M) then ∆,∆′ ; Γ `
M : C.

Finally, in the cases where the T axiom is present, we may move variables from

the intuitionstic to the modal context:

Theorem 12 (Modal Dereliction). If S ∈ {DS4,DT}, then the following rule is

admissible:
∆ ; Γ,Γ′ `M : A

∆,Γ ; Γ′ `M : A

38

Proof. By induction on the derivation of ∆ ; Γ,Γ′ ` M : A. Most cases are straight-

foward, except (var) and (�IS4)/(�IK)

If the judgment holds by (var), then M ≡ x for some (x : A) ∈ Γ,Γ′. If (x : A) ∈ Γ,

we use (�var) to conclude that ∆,Γ ; Γ′ ` x : A. If (x : A) ∈ Γ′, then another use of

(var) suffices.

If the judgment holds by (�IS4) then M ≡ box M ′ and A ≡ �A′ for some M ′, A′

with ∆ ; · ` M ′ : A′. Repeated use of weakening for the modal context followed by

an application of (�IS4) yields the result.

The case of (�IK) is similar, but uses weakening for the intuitionistic context.

4.4 Equivalence with Hilbert systems

In this section we prove that our dual-context λ-calculi correspond to the negative

fragment of the Hilbert systems for the logics we defined in §2. An extension to

the full fragment should be straightforward. This ties the knot with respect to the

Curry-Howard isomorphism.

The translation under which this equivalence is shown is indeed the same one that

we used in §3 to derive our calculi:

∆ ; Γ `M : A �∆̂, Γ̂ `H A

The only differences are that the proof term M is now visible, and we write Γ̂ to

mean the context Γ with all the variables removed: if Γ ≡ x1 : A1, . . . , xn : An, then

Γ̂
def
= A1, . . . , An

One direction of the proof involves showing that the axioms are indeed derivable

in the dual-context systems. The other direction involves showing the admissibility

of the dual-context rules in the Hilbert systems.

4.4.1 Hilbert to Dual

First and foremost, we need to show that axiom (K) is derivable. It is easy to check

that the term

axK
def
= λf : �(A→ B). λx : �A. let box g ⇐ f in let box y ⇐ x in box (g y)

has type �(A → B) → �A → �B in all our systems other than GL. For GL, we

instead use

axDGL
K

def
= λf : �(A→ B). λx : �A. let box g ⇐ f in let box y ⇐ x in fix z in box (g y)

39

It is also not hard to see that in DK4 and DS4 the terms

ax4
def
= λx : �A. let box y ⇐ x in box (box y)

have type �A→ ��A; that is, axiom 4.

In the case of DGL, we need to show that the term

axGL
def
= λx : �(�A→ A). let box f ⇐ x in (fix z in box (f z))

has type �(�A → A) → �A. The most interesting part of the derivation can be

found in Figure 4.2.

· · · ` x : �(�A→ A)

···
∆, f : �A→ A ; ∆, f⊥ : �A→ A, z⊥ : �A ` f⊥ z⊥ : A

∆, f : �A→ A ; Γ, x : �(�A→ A) ` fix z in box (f z) : �A

∆ ; Γ, x : �(�A→ A) ` let box f ⇐ x in (fix z in box (f z)) : �(�A→ A)→ �A

∆ ; Γ ` λx : �(�A→ A). let box f ⇐ x in (fix z in box (f z)) : �(�A→ A)→ �A

Figure 4.2: Derivation of the Gödel-Löb axiom in DGL

Finally, in DT and DS4, the term

axT
def
= λx : �A. let box y ⇐ x in y

has type �A→ A, i.e. inhabits axiom T.

With all that, we can show:

Theorem 13 (Hilbert to Dual). If Γ is a well-defined context and Γ̂ `L A, then there

exists a term M such that · ; Γ `DL M : A.

Proof. By induction on the derivation of Γ̂ `L A. In the case of the assumption rule,

we use (var) to type the associated variable in Γ̂. The cases for axioms of (IPL�) are

easy. For the modal axioms, we use the terms derived above. For modus ponens, we

use application, i.e. (→ E).

This leaves the case of necessitation. Suppose Γ̂ `L A by it; then A ≡ �A′,
and `L A′. By the IH, there is a term M ′ such that · ; · `DL M ′ : A′. We then

use the appropriate introduction rule for box—e.g. (�IK), and so on—to obtain

· ; Γ `DL box M ′ : �A′.

40

4.4.2 Dual to Hilbert

For the opposite direction, the essence lies in showing that the rules of the dual-

context calculus are admissible in the corresponding Hilbert system—that is, after

erasing the proof terms. We have done most of the required work in §2.5.2.

Theorem 14 (Dual to Hilbert). If ∆ ; Γ `DL M : A then �∆̂, Γ̂ `L A.

Proof. By induction on the derivation of ∆ ; Γ `DL M : A.

If the premise holds by (var), then we use the assumption rule of the Hilbert

system. If the last step in the derivation of the premise is the rule (→ I), we use the

IH followed by the Deduction Theorem (Theorem 2). If the last step is by (→ E),

we use modus ponens. It is simple to translate the rules that pertain to the product,

namely (×I) and (×Ei) to uses of the IPL axioms pertaining to the product along

with modus ponens. It is also not hard to see that, under the given translation, (�E)

can also be matched by a use of the IH along with an invocation of the admissibility

of cut for Hilbert systems (Theorem 1). Uses of the modal variable rule (�var) can

be imitated by a use of the assumption rule, modus ponens, and an instance of the

T axiom.

This leaves the introduction rules for the box. The rule (�IK) is matched with

Scott’s rule (Theorem 3). The rule (�IK4) is matched with the Four rule (Theorem

5). The rule (�IGL) is matched with the generalized Löb rule (Theorem 6). Finally,

the rule (�IS4) is matched with the corollary to the Four rule (Corollary 1).

41

Chapter 5

Reduction

In this chapter we study a notion of reduction for the dual-context calculi we intro-

duced in §4. Our reduction relation,

−→ ⊆ Λ× Λ

is defined in Figure 5.1, and it is essentially the standard notion of reduction previously

considered by Pfenning and Davies (2001). A similar notion of reduction was studied

in the context of Dual Intuitionistic Linear Logic (DILL) by Ohta and Hasegawa

(2006). Unlike the work in op. cit. we do not study the full reduction including η-

contractions and commuting conversions, and hence our work does not immediately

yield a decision procedure for the theory of equality that we will study in §8.1 and

that our categorical semantics will validate. However, the necessary extensions to the

full reduction should be straightforward.

We first show that typing is preserved under reduction, and that reduction is

largely preserved under complementation—that is, if the types are right. Further-

more, we show that the notion under consideration is confluent. We then briefly

introduce the method of candidates of reducibility, and show that it can be used to

demonstrate strong normalization. Finally, we discuss some commuting conversions,

which are necessary for the subformula property to hold.

5.1 Preservation theorems

Theorem 15 (Subject reduction). If ∆;Γ `M : A and M −→ N , then ∆;Γ ` N : A.

Proof. By induction on the generation of M −→ N . Most cases follow straightfor-

wardly from the IH. The cases for the β rules follow from Theorems 9 and 11.

42

Rules for all calculi:

(−→ β)
(λx:A. M)N −→M [N/x]

(−→ β×)
πi(〈M1,M2〉) −→Mi

M −→ N
(congπi)

πi(M) −→ πi(N)

Mi −→ Ni and M1−i ≡ N1−i
(cong×)

〈M0,M1〉 −→ 〈N0, N1〉

M −→ N
(congλ)

λx:A. M −→ λx:A. N

M −→ N
(congbox)

box M −→ box N

M −→ N
(app1)

MP −→ NP

P −→ Q
(app2)

MP −→MQ

M −→ N
(congfix)

fix z in box M −→ fix z in box N

M −→ N
(letbox1)

let box u⇐M in P −→ let box u⇐ N in P

P −→ Q
(letbox2)

let box u⇐M in P −→ let box u⇐M in Q

Beta rule for non-GL:

(−→ β�)
let box u⇐ box M in N −→ N [M/u]

Beta rule for GL:

(−→ βGL)
let box u⇐ fix z in box M in N −→ N [M [fix z in box M/z] /u]

Figure 5.1: Reduction

43

The following theorem shall prove useful when showing that strong normalization

satisfies the properties necessary for the candidates of reducibility method to apply.

Theorem 16 (Complement reduction). If ∆ ; ∆⊥ `DK4 M⊥ : A or ∆ ; ∆⊥, z⊥ :

�A `DGL M
⊥ : A, then M −→ N implies M⊥ −→ N⊥.

Proof. By induction on the generation of M −→ N . Most cases follow straightfor-

wardly from the IH. In some cases we need to use renaming, weakening and then

strengthening. The rest we show.

Case(−→ β). It is easy to see that

((λx:A. M)N)⊥ ≡ (λx⊥:A. M⊥)N⊥ −→M⊥[N⊥/x]

But we have ∆ ; ∆⊥, x⊥:A `M⊥ : B for some A and B. Thus, x⊥ 6∈ Vars (∆),

and hence, by Theorem 8(4), x⊥ 6∈ fv≥1

(
M⊥), which is equal to fv≥1 (M) by

Theorem 8(3). Also, x⊥ 6∈ fv0 (M), for then we would have x ∈ fv0

(
M⊥) and

thus x ∈ Vars
(
∆⊥
)
, contradicting well-formedness of contexts. It thus follows

that x⊥ 6∈ fv (M), and hence, by Theorem 7,

(M [N/x])⊥ ≡M⊥[N,N⊥/x, x⊥] ≡M⊥[N⊥/x⊥]

where the last α-equivalence follows because x is not free in M⊥, for as x⊥ 6∈
Vars

(
∆⊥
)

we have x 6∈ Vars (∆) ∪ Vars
(
∆⊥
)
, and thus x 6∈ fv

(
M⊥), by

Theorem 8(1, 4). The reasoning is similar for GL.

Case(−→ β�). It is easy to see that

(let box u⇐ box M in N)⊥ ≡ let box u⇐ (box M)⊥ in N⊥

≡ let box u⇐ box M in N⊥

−→ N⊥[M/u]

It now suffices to show that (a) u⊥ 6∈ fv (N), and that (b) u⊥ 6∈ fv
(
N⊥
)
. For,

by (a), Theorem 7 applies and hence

(N [M/u])⊥ ≡ N⊥[M,M⊥/u, u⊥]

But then, as u⊥ 6∈ fv
(
N⊥
)
, the RHS is α-equivalent to N⊥[M/u], concluding

the argument. Luckily, the restrictions we have put on contexts put together

with the fact that

∆, u:A ; ∆⊥ ` N⊥ : A

44

suffice to yield the two desiderata.

For (a): by well-formedness of contexts, as u ∈ Vars (∆, u:A), then u⊥ 6∈
Vars (∆, u:A), and hence, u⊥ 6∈ fv≥1

(
N⊥
)

= fv≥1 (N). Also, u 6∈ Vars
(
∆⊥
)
,

so u 6∈ fv0

(
N⊥
)
, and hence u⊥ 6∈ fv0 (N). It follows that u⊥ 6∈ fv (N).

For (b): by well-formedness of contexts again, u 6∈ Vars (∆) and u⊥ 6∈ Vars (∆).

Hence u⊥ 6∈ Vars
(
∆⊥
)
∪ Vars (∆), and thus by Theorem 8 we have u⊥ 6∈

fv
(
N⊥
)
.

Case(−→ βGL). Similarly to (−→ β�).

5.2 Confluence

We will prove that

Theorem 17. The reduction relation −→ is confluent.

There are many ways to do so. A classic strategy is to exploit the fact we prove

in the next section, viz. that −→ is strongly normalizing, and show local confluence

followed by an appeal to Newman’s Lemma (Newman, 1942; Mitchell, 1996; Terese,

2003).

We will use another method, namely that of parallel reduction, which was dis-

covered by Tait and Martin-Löf. The basic outline of this method for the untyped

λ-calculus is presented in (Barendregt, 1984, §3.2). Variations of it, as well as its

history, are covered by Takahashi (1995). The idea is simple: we will introduce a

second notion of reduction, =⇒ ⊆ Λ×Λ which we will ‘sandwich’ between reduction

proper and its transitive closure:

−→ ⊆ =⇒ ⊆ −→∗

We will then show that =⇒ has the diamond property. By the above inclusions, the

transitive closure =⇒∗ of =⇒ is then equal to −→∗, and hence −→ is Church-Rosser.

In fact, we will follow Takahashi (1995) in doing something better: we will define

for each term M its complete development, M?. The complete development is intu-

itively defined by ‘unrolling’ all the redexes of M at once. We will then show that if

45

M =⇒ N , then N =⇒M?. M? will then suffice to close the diamond:

M

P Q

M?

The parallel reduction =⇒ is defined in Figure 5.2. It is immediate that

Lemma 3. =⇒ is reflexive.

Definition 3 (Complete development). The complete development M? of a term M

is defined by the following clauses:

x?
def
= x

(〈M,N〉)? def
= 〈M?, N?〉

(πi(〈M1,M2〉))?
def
= M?

i

(πi (M))?
def
= πi(M

?)

(λx:A. M)?
def
= λx:A. M?

((λx:A. M)N)?
def
= M?[N?/x]

(MN)?
def
= M?N?

(box M)?
def
= box M?

(let box u⇐ box M in N)?
def
= N?[M?/u]

(let box u⇐M in N)?
def
= let box u⇐M? in N?

and, in the case of GL,

(fix z in box M)?
def
= fix z in box M?

(let box u⇐ fix z in box M in N)?
def
= N? [M?[fix z in box M?/z]/u]

First, a little lemma capturing the essence of parallel reduction:

Lemma 4. If M =⇒ N and P =⇒ Q, then

M [P/x] =⇒ N [Q/x]

Proof. By induction on the generation of M =⇒ N . The cases for congruence rules

and (=⇒ β×) follow simply by the IH, so we omit them.

46

Rules for all calculi:

(var)
x =⇒ x

M =⇒ N P =⇒ Q
(→ β)

(λx:A. M)P =⇒ N [Q/x]

Mi =⇒ N
(×β)

πi(〈M1,M2〉) =⇒ N

M =⇒ N
(congπi)

πi(M) =⇒ πi(N)

M1 =⇒ N1 M2 =⇒ N2
(cong×)

〈M1,M2〉 =⇒ 〈N1, N2〉

M =⇒ N
(congλ)

λx:A. M =⇒ λx:A. N

M =⇒ N
(box)

box M =⇒ box N

M =⇒ N P =⇒ Q
(app)

MP =⇒ NQ

M =⇒ N
(congfix)

fix z in box M =⇒ fix z in box N

M =⇒ N P =⇒ Q
(letbox)

let box u⇐M in P =⇒ let box u⇐ N in Q

Beta rule for non-GL:

M =⇒ N P =⇒ Q
(�β)

let box u⇐ box P in M =⇒ N [Q/u]

Beta rule for GL:

M =⇒ N P =⇒ Q
(�βGL)

let box u⇐ fix z in box P in M =⇒ N [Q [fix z in box Q/z] /u]

Figure 5.2: Parallel Reduction

47

Case(var). Then M =⇒ N is z =⇒ z for some z. If z ≡ x, we have M [P/x] ≡
P and N [Q/x] ≡ Q, and the result follows because P =⇒ Q. Otherwise,

M [P/x] ≡ z ≡ N [Q/x] and the result follows by Lemma 3.

Case(→ β). Then (λx′:A. M)N =⇒ N ′[M ′/x′], where M =⇒ M ′ and N =⇒
N ′. Then

((λx′:A. M)N) [P/x] ≡ (λx′:A. M [P/x])(N [P/x])

But, by the IH, M [P/x] =⇒ M ′[Q/x] and N [P/x] =⇒ N ′[Q/x]. So, by the

rules (congλ) and (app), and then rule (=⇒ β), we have

(λx′:A. M [P/x])(N [P/x]) =⇒M ′[Q/x] [N ′[Q/x]/x′]

But this last is α-equivalent to (M ′[N ′/x′]) [Q/x] by the substitution lemma.

Case(�β). Similar to (=⇒ β).

Case(�βGL). Then

let box u⇐ fix z in box M in N =⇒ N ′[M ′[fix z in box M ′/z]/u]

with M =⇒M ′ and N =⇒ N ′. We have

(let box u⇐ fix z in box M in N) [P/x]

≡ let box u⇐ fix z in box M [P/x] in N [P/x]

=⇒ N ′[Q/x] [M ′[Q/x] [fix z in box M ′[Q/x]/z] /u]

where the last step follows because, by the IH, M [P/x] =⇒ M ′[Q/x] and

N [P/x] =⇒ N ′[Q/x]. This last—by two uses of the substitution lemma—is

α-equivalent to

N ′[M ′[fix z in box M ′/z]/u][Q/x]

And here is the main result:

Theorem 18. If M =⇒ P , then P =⇒M?.

Proof. By induction on the generation of M =⇒ P . The case of the variable rule is

trivial, and the cases of congruence rules follow from the IH. We show the rest.

48

Case(→ β). Then we have (λx:A. M)N =⇒ M ′[N ′/x], with M =⇒ M ′ and

N =⇒ N ′. By the IH, M ′ =⇒ M? and N ′ =⇒ N?. Then, by Lemma 4,

M ′[N ′/x] =⇒M?[N?/x] ≡ (λx:A. M)N)?.

Case(×β). Then we have πi(〈M1,M2〉) =⇒ M ′
i , with Mi =⇒ M ′

i . By the IH,

M ′
i =⇒M?

i ≡ (πi(〈M1,M2〉))?.

Case(). Then we have

let box u⇐ box M in N =⇒ N ′[M ′/u]

where M =⇒ M ′ and N =⇒ N ′. By the IH, M ′ =⇒ M? and N ′ =⇒ N?. It

follows that

N ′[M ′/u] =⇒ N?[M?/u] ≡ (let box u⇐ box M in N)?

by Lemma 4.

Case(�βGL). Then we have

let box u⇐ fix z in box M in N =⇒ N ′[M ′[fix z in box M ′/z]/u]

with M =⇒ M ′ and N =⇒ N ′. By the IH, M ′ =⇒ M? and N ′ =⇒ N?. It

follows by (congfix) that fix z in box M ′ =⇒ fix z in box M?, and thus, by Lemma

4, that

M ′[fix z in box M ′/z] =⇒M?[fix z in box M?/z]

Hence, by Lemma 4 again, we have that

N ′[M ′[fix z in box M ′/z]/u] =⇒ N?[M?[fix z in box M?/z]/u]

5.3 Strong normalization

In this section, we will prove that

Theorem 19. The reduction relation −→ is strongly normalizing.

We shall do so by using the method of candidates of reducibility (candidats de

reducibilité), which is a kind of induction on types, rather closely related to the tech-

nique of logical relations—or, in this particular case, logical predicates. ‘Candidats’

49

was invented by Girard (1972) to prove strong normalization for System F, which is

covered in (Girard et al., 1989, §14). The particular variant we use is a mixture of

the versions of Girard and Koletsos (1985). An elementary presentation of the latter

may be found in (Gallier, 1995). For a discussion of other closely related variants see

Gallier (1990).

The overall structure of the method is the following: Suppose we have a family of

nonempty sets of typing judgments,

P = {PA}A

indexed by the type A they assign to the term they carry. We will state six properties,

(P0)–(P5), that such a family should satisfy. In case it does indeed satisfy them, we

show that PA contains all judgments ∆ ; Γ `M : A with type A.

In our case, we show that the family of typing judgments

SN def
= {SNA}A

satisfies the properties (P0) through (P5), where SNA consists of all the judgments

∆ ; Γ ` M : A for which M is strongly normalizing with respect to −→ . Then

SNA = ΛA, and all typable terms are strongly normalizing.

The requisite properties follow. If C ⊆ PA, we write ∆ ; Γ ` M ∈ C as a

shorthand for (∆ ; Γ `M : A) ∈ C. We also write Γ v Γ′ to mean that the context Γ

is a subsequence of Γ′ (in other words, Γ′ is obtained after a series of weakening steps

on Γ).

Definition 4.

1. A term is a I-term just if it is an introduction form, i.e. of the form

λx:A. M, 〈M,N〉, box M, fix z in box M (for GL only)

2. A term is a simple term1 just if it is a variable or an elimination form, i.e. of

the form

x, MN, πi(M), let box u⇐M in N

3. A stubborn term is a simple term that is either a normal form, or a term that

does not reduce to a I-term.

1Girard (Girard et al., 1989) calls these neutral terms, which also means something entirely
different in the programming language literature.

50

Definition 5 (Properties P0-P3). We define the following properties pertaining to

the family P .

(P0) (a) ∆ ; Γ `M ∈ PA and Γ v Γ′ imply ∆ ; Γ′ `M ∈ PA

(b) ∆ ; Γ `M ∈ PA and ∆ v ∆′ imply ∆′ ; Γ `M ∈ PA

(c) (for T and S4 only) ∆ ; Γ,Γ′ `M ∈ PA implies ∆,Γ ; Γ′ `M ∈ PA

(P1) ∆ ; Γ ` x ∈ PA for all variables x.

(P2) M ∈ PA and M −→ N imply N ∈ PA.

(P3) For simple terms M ,

(a) If

– ∆ ; Γ `M ∈ PA→B,

– ∆ ; Γ ` N ∈ PA, and

– whenever M −→∗ λx:A.M ′ then ∆ ; Γ ` (λx:A.M ′)N ∈ PB

then this implies ∆ ; Γ `MN ∈ PB.

(b) If

– ∆ ; Γ `M ∈ PA×B, and

– whenever M −→∗ 〈M1,M2〉 then ∆ ; Γ ` π1(〈M1,M2〉) ∈ PA and

∆ ; Γ ` π2(〈M1,M2〉) ∈ PB,

then this implies that ∆ ; Γ ` π1(M) ∈ PA and ∆ ; Γ ` π2(M) ∈ PB.

Definition 6 (Properties P4-P5).

(P4) (a) If ∆ ; Γ, x:A `M ∈ PB then ∆ ; Γ ` λx:A. M ∈ PA→B.

(b) ∆ ; Γ `M ∈ PA and ∆ ; Γ ` N ∈ PB imply ∆ ; Γ ` 〈M,N〉 ∈ PA×B.

(c)

i. (for K and T) · ; ∆ `M ∈ PA implies ∆ ; Γ ` box M ∈ P�A
ii. (for K4) ∆ ; ∆⊥ `M⊥ ∈ PA implies ∆ ; Γ ` box M ∈ P�A
iii. (for GL) ∆ ; ∆⊥, z⊥ : �A ` M⊥ ∈ PA implies ∆ ; Γ ` fix z in box M ∈

P�A

iv. (for S4) ∆ ; · `M ∈ PA implies ∆ ; Γ ` box M ∈ P�A

(P5) (a) If ∆′ w ∆ and Γ′ w Γ satisfy ∆′ ; Γ′ ` N ∈ PA and ∆′ ; Γ′ `M [N/x] ∈ PB,

then ∆′ ; Γ′ ` (λx:A. M)N ∈ PB.

51

(b) ∆ ; Γ ` M ∈ PA and ∆ ; Γ ` N ∈ PB imply ∆ ; Γ ` π1(〈M,N〉) ∈ PA and

∆ ; Γ ` π2(〈M,N〉) ∈ PB.

(c) i. (for non-GL) If we have ∆ ; Γ ` M ∈ P�A and ∆, u:A ; Γ ` N ∈ PC ,

and whenever M −→∗ box Q then ∆ ; Γ ` N [Q/u] ∈ PC , then we have

that ∆ ; Γ ` let box u⇐M in N ∈ PC .

ii. (for GL only) If we have ∆;Γ `M ∈ P�A and ∆, u:A;Γ ` N ∈ PC , and

wheneverM −→∗ fix z in box Q then ∆;Γ ` N [Q[fix z in box Q/z]/u] ∈
PC , then we have that ∆ ; Γ ` let box u⇐M in N ∈ PC .

Showing that these properties guarantee that PA = ΛA consists of a laborious induc-

tive argument that employs multiple lemmata. The full argument in all its tediousness

may be found in §6. In this chapter we shall content ourselves by showing that the

family SN indeed satisfies the properties (P0)-(P5).

In carrying out the proof we shall often proceed by induction on d(M), the depth

of the term M . Let there be a tree consisting of M and all its reducts, with an edge

from reduct M1 to reduct M2 just if M1 −→M2. This is the reduction tree of M . As

M has at most finite redexes, the reduction tree is finitely branching: there can only

be a finite number of terms Mi such that N −→∗ Mi for any term N . Furthermore, if

M is strongly normalizing, then the reduction tree has no infinite paths. By König’s

Lemma, the tree is then finite, and d(M) is the depth of the reduction tree of M—i.e.

the longest path in the tree that is rooted at M .

(P0)–(P2) Trivial.

(P3)

(a) We prove that MN is strongly normalizing, by induction on d(M)+d(N).

Suppose MN −→ P . As M is simple, MN cannot be a redex, so it is of

the form P ≡ M ′N ′ such that either (a) M −→ M ′ and N ′ ≡ N , or (b)

N −→ N ′ and M ′ ≡M .

If either M ′ is simple, or if M ′ ≡ M and the reduction N −→ N ′ took

place, then

d(M ′) + d(N ′) < d(M) + d(N)

and so, by the IH, P ≡M ′N ′ is strongly normalizing.

Otherwise, we have M ′ ≡ λx:A.M ′′ and N ′ ≡ N . The assumption applies,

and M ′N is strongly normalizing.

(b) Similar to (P3)(a).

52

(P4) All cases are very similar; we show (c)(ii), namely the case for K4.

If box M −→ P , then P ≡ box N for some N , and M −→ N . Hence

d(box M) ≤ d(M). But the last one is, by Theorem 16, equal to d(M⊥), which

is finite as M⊥ is strongly normalizing.

(P5)

(a) First, we note that by substituting x for N , the premise implies that M is

strongly normalizing, and thus that both d(M) and d(N) are finite.

We now proceed by induction on d(M) + d(N). If (λx:A. M)N −→ P ,

then there are three possibilities:

– P ≡ (λx:A. M ′)N and M −→M ′. Then

d(M ′) + d(N) < d(M) + d(N)

and so, by the IH, P is strongly normalizing.

– P ≡ (λx:A. M)N ′ and N −→ N ′. Then

d(M) + d(N ′) < d(M) + d(N)

and so, by the IH, P is strongly normalizing.

– P ≡M [N/x]. Then, by assumption, P is strongly normalizing.

In all cases, if (λx:A. M)N −→ P , then P is strongly normalizing. We

conclude that the original term itself is strongly normalizing.

(b) Similar to (a).

(c)

(i) First, we note that by substituting u for Q, the premise implies that N

is strongly normalizing, and thus that both d(M) and d(N) are finite.

We now proceed by induction on d(M)+d(N). If let box u⇐M in N −→
P , then there are three possibilities:

– P ≡ let box u⇐M ′ in N and M −→M ′. Then

d(M ′) + d(N) < d(M) + d(N)

and so, by the IH, P is strongly normalizing.

– Likewise for N .

53

– M ≡ box Q and P ≡ N [Q/u]. Then, by assumption, P is strongly

normalizing.

In all cases, if let box u⇐M in N −→ P , then P is strongly normaliz-

ing. We conclude that the original term itself is strongly normalizing.

(ii) Similar to (i).

5.4 Subformula property

The notion of reduction we have studied in this chapter is computationally interesting,

but is logically weak, in the sense that it does not satisfy the subformula property.

A calculus satisfies the subformula property when any normal proof (i.e. one

that has no reducts) of formula A from assumptions Γ only involves formulæthat

are either (a) subexpressions/subformulæof the conclusion of A, or (b) subexpres-

sions/subformulæof some premise in Γ. This is almost sufficient to say that the proof

has a very specific structure: it proceeds by eliminating logical symbols of assump-

tions in Γ, and then uses the results to ‘build up‘ a proof of A using only introduction

rules. In short, the proof has no detours, and proceeds as quickly as possible from

assumptions to conclusion. See Prawitz (1965) and Girard et al. (1989) for a fuller

discussion of these points.

Let us return to our systems: they do not satisfy the subformula property because

of the elimination rule:

∆ ; Γ `M : �A ∆, u:A ; Γ ` N : C
(�E)

∆ ; Γ ` let box u⇐M in N : C

Notice that the conclusion C is given to us by the minor premise ∆, u:A ; Γ ` N : C,

and it is structurally unrelated to �A, the major premise that is being eliminated: in

Girard’s terminology, it is parasitic. This is so because the elimination rule is secretly

a kind of cut rule, or a rule in the style of Schroeder-Heister (1984).

It is not so easy at first to see where the actual trouble with this kind of rule is;

the point is that the let box u⇐ (−) in (−) construct may ‘hide redexes’ that should

be reduced. Once we introduce the extra reductions that are needed and prove the

subformula property this will become quite clear. But—in the meantime—let us

consider three examples.

Suppose that ∆, u:A ; Γ ` 〈N1, N2〉 : A1 × A2, and that ∆ ; Γ `M : �A. We may

use (�E) to obtain

∆ ; Γ ` let box u⇐M in 〈N1, N2〉 : A1 × A2

54

This is indeed—and should be!—a normal form. But what if we just want to prove

A1? We may apply the elimination rule:

∆ ; Γ ` π1 (let box u⇐M in 〈N1, N2〉) : A1

Now, this is a proof of A1, but it surreptitiously contains a proof N2 of A2 as well,

which is entirely unrelated to A1 (neither need be a subexpression of the other).

But, according to our notion of reduction, it is normal! The problem is that the

let box u ⇐ (−) in (−) obstructs the meeting of the destructor π1(−) with the con-

structor 〈N1, N2〉. The solution is to allow a commuting conversion that allows the

two to meet, by ‘pulling the let construct outside:’

π1 (let box u⇐M in 〈N1, N2〉) −→ let box u⇐M in π1(〈N1, N2〉)

A similar situation occurs when ∆, u:A ; Γ ` λx:A.P : A→ B: we may form

∆ ; Γ ` let box u⇐M in λx:A. P : A→ B

which is a perfectly reasonable normal form, but if ∆ ; Γ ` Q : A then

∆ ; Γ ` (let box u⇐M in λx:A. P)Q : B

is not: we should be able to reduce

(let box u⇐M in λx:A. P)Q −→ let box u⇐M in (λx:A. P)Q

Finally, there is third, less visible case of this phenomenon. If we understand (�E)

to be a ‘bad’ elimination, we have considered the cases of ‘good’ elimination (πi(−),

application) following ‘bad’ elimination. The final case is that of ‘bad’ elimination

following another ‘bad’ elimination. To give an example, let us consider an elimination

after a box (−) introduction:

∆ ; Γ ` let box u⇐M in box N : �A

If we then have a term ∆, v:A ; Γ ` P : C, we can plug this in by eliminating the box:

∆ ; Γ ` let box v ⇐ (let box u⇐M in box N) in P : C

Now things are clear: the second let-construct is obstructing the meeting of the first

let-construct with the introduction form box N . We need to convert:

let box v ⇐ (let box u⇐M in box N) in P

−→ let box u⇐M in let box v ⇐ box N in P

55

but we should take care to rename u so that it does not occur in P—as it would be

wrongly bound otherwise.

These examples actually cover all cases. We define −→ c ⊆ Λ × Λ to be the

compatible closure of −→ that includes the following clauses:

πi (let box u⇐M in N) −→ c let box u⇐M in πi(N)

(let box u⇐M in P)Q −→ c let box u⇐M in PQ

let box v ⇐ (let box u⇐M in N) in P −→ c let box u⇐M in let box v ⇐ N in P

We can now prove the requisite property for this reduction relation: one only

needs to take enough care to strengthen the induction hypothesis sufficiently.

Theorem 20 (Subformula Property). Let ∆ ; Γ ` M : A, and suppose M is a

(−→ c)-normal form. Then,

1. Every type occuring in the derivation of ∆ ; Γ `M : A is either a subexpression

of the type A, or a subexpression of a type in ∆ or Γ.

2. If M is an elimination construct that is not of the form let box u ⇐ P in Q—

i.e. if it is a projection πi(N) or an application PQ—then it entirely consists

of a sequence of eliminations: that is, there is a sequence of types,

A0, . . . , An

such that

• A0 occurs in either ∆ or Γ,

• An is A, and

• Ai is the major premise of an elimination whose conclusion is Ai+1 for

i = 0, . . . , n. In particular, An is a subexpression of A0.

This is called a principal branch.

Proof. By induction on the derivation of ∆ ; Γ `M : A.

Case(x). Then ∆ ; Γ ` x : A and hence (x : A) ∈ Γ. This is the complete

derivation, and satisfies both desiderata.

Case(u). Then ∆ ; Γ ` u : A and hence (u : A) ∈ ∆. This is the complete

derivation, and satisfies both desiderata.

56

Case(λx:A. M). Then the immediate premise is of the form ∆;Γ, x:A `M : B.

By the IH, all types that occur in that are either (a) subexpressions of types

in ∆ or Γ, (b) subexpressions of A, or (c) subexpressions of B. Thus any of

the types occuring in the derivation of the premise are indeed subexpressions of

either ∆, Γ, or A → B. Let us now look at the complete derivation. The only

new type that occurs in it is A → B, and that is trivially a subexpression of

itself.

Case(〈M,N〉). Similar.

Case(box M). Similar.

Case(MN). Then the major premise is ∆ ; Γ ` M : B → A and the minor

premise is ∆ ; Γ ` N : B for some type B.

Let us look at the term M . It cannot be a lambda-abstraction, for that would

make MN a redex. It also cannot be any other introduction rule, for they

introduce types of a different shape (e.g. A× B or �A). Hence, it must be an

elimination. Of the eliminations, it cannot be a let-expression, for our newly

introduced commuting conversion would make that a redex.

It follows that M is a ‘good’ elimination, either πi(−) or PQ. We can thus

apply (2) from the inductive hypothesis to conclude that there is a principal

branch beginning with an assumption in ∆ or Γ, and ending with B → A. We

can extend that principal branch to a principal branch for M , ending with A.

This proves (2), and furthermore implies that B → A is a subexpression of some

premise in either ∆ or Γ.

Over to (1): applying the IH to the major premise, we know that every type

that occurs in the derivation of ∆ ; Γ `M : B → A is either a subexpression of

a type in ∆ or Γ, or a subexpression of B → A. But we have already deduced

that B → A is a subexpression of some premise in either ∆ or Γ, so that all

types occuring in the derivation of the major premise satisfy the desideratum.

Applying the IH to the minor premise, every type that occurs in the derivation

of ∆ ; Γ ` N : B is either a subexpression of some type in ∆ or Γ, or a

subexpression of B. But B is a subexpression of B → A, which in turn is a

subexpression of a premise in one of the contexts. Hence all types occurring in

that branch also occur in either ∆ or Γ. This concludes the proof of this case,

for we have examined all types appearing in the derivation.

57

Case(πi(M)). Similar.

Case(let box u ⇐ M in N). The major premise is then ∆ ; Γ ` M : �B and

the minor premise is ∆, u:B ; Γ ` N : A for some B. (2) does not apply to

let-constructs, so we only need to show (1).

Consider the term M . It cannot be a box (−), for that would make the entire

term a redex. It also cannot be any other introductory form, because they in-

troduce types of a different shape. It therefore must be an elimination form; but

not another let-construct, for that would be a redex too, due to our commuting

conversion. Hence, it must be a ‘good’ elimination, either of the form πi(M
′)

or of the form PQ. It follows that (2) of the IH applies: there is a principal

branch beginning with a premise and ending with �B. In particular, �B is a

subexpression of some type in ∆ or Γ.

By the IH, any type that occurs in the derivation of the major premise is either

a subexpression of a type in ∆ or Γ, or a subexpression of �B. But �B is

a subexpression of some type in one of those two contexts, so every type that

occurs in the derivation of the major premise is actually a subexpression of a

type in ∆ or Γ.

As for the minor premise, any type that occurs in it is either a subexpression of a

type in ∆ or Γ, or a subexpression of the types B or A. But B is a subexpression

of �B, which by our previous reasoning is in turn a subexpression of some type

in either ∆ or Γ. Thus all types occuring in it are either subexpressions of some

type in ∆ or Γ, or subexpressions of A. This concludes the proof of this case.

We have thus established the notion of reduction −→ c, which eliminates any

structurally irrelevant occurences from a proof of the formula. Of course, one should

extend the preceding analysis of −→ to this notion, but we think that this may be

harder than it sounds. A full analysis would follow the lines of the one in Ohta and

Hasegawa (2006), whilst keeping in mind that we are not trying to decide an equality

like in op. cit., but that we are merely eliminating parasitic formulae.

58

Chapter 6

Candidates of Reducibility

In this chapter we adapt the method of candidats de reducibilité to our modal λ-

calculi. The method of candidats originated in Girard’s proof of strong normalization

for System F (Girard, 1972).

Our variant of “candidats” is a combination of two versions. The main structure

of the proof is due to by Koletsos (1985), as presented in simplified form by Gallier

(1995). However, the Koletsos-Gallier presentation does not carry typing information

in the proof, whereas in our calculi typing is vital. Thus, we enhance their method,

insofar as our can candidates consist of typing judgments ∆ ; Γ ` M : A rather than

simply terms M : A. Ideas on how this is done were drawn from another chapter by

Gallier (1990), which also surveys multiple variants of the candidats method.

The overall structure of the proof is the following. Suppose we have a family of

nonempty sets of typing judgments,

P = {PA}A

indexed by the type A they assign to the term they carry. We will state six properties,

P0–P5, that such a family should satisfy. In case it does indeed satisfy them, we show

that PA contains all judgments ∆ ; Γ `M : A with type A.

In §5.3 we verified that the family {PA}A where PA contains all judgments ∆ ; Γ `
M : A for which the term M is strong normalizing indeed satisfies P0–P5, and it thus

followed that all terms strongly normalizing.

We now give a brief summary of the proof. To begin, we will state the first four

properties, namely P0–P4. We also define what it means for a set C of derivable

judgments to be a candidate. Then, we define a subset JAK of PA, for each type A.

We call judgments in JAK reducible. It so happens that JAK is a candidate. Finally,

we introduce two further properties, P4 and P5. If these hold of PA, then we show

that JAK contains all derivable judgments.

59

But before we begin, we need to differentiate between introduction and elimination

forms. The first we call I-terms, and the latter simple:

Definition 7.

1. A term is a I-term just if it is an introduction form, i.e. of the form

λx:A. M, 〈M,N〉, box M, fix z in box M (for GL only)

2. A term is a simple term just if it is a variable or an elimination form, i.e. of the

form

x, MN, πi(M), let box u⇐M in N

3. A stubborn term is a simple term that is either a normal form, or a term that

does not reduce to a I-term.

6.1 Candidates: the first four properties

We now define the first four properties that we shall consider. The first one is our

addition to Gallier (1995), and solely refers to typing: in particular, it requires that

weakening, modal weakening, and modal dereliction are admissible rules in the family

P . The second and third require that all variables be in P , and that P be closed

under reduction respectively. Finally, the fourth is a funny closure condition: if a term

reduces to a I-term, then eliminating this introduction by something of appropriate

type present in P again yields something in P .

Definition 8 (Properties P0-P3). We define the following properties pertaining to

the family P .

(P0) (a) ∆ ; Γ `M ∈ PA and Γ v Γ′ imply ∆ ; Γ′ `M ∈ PA

(b) ∆ ; Γ `M ∈ PA and ∆ v ∆′ imply ∆′ ; Γ `M ∈ PA

(c) (for T and S4 only) ∆ ; Γ,Γ′ `M ∈ PA implies ∆,Γ ; Γ′ `M ∈ PA

(P1) ∆ ; Γ ` x ∈ PA for all variables x.

(P2) M ∈ PA and M −→ N imply N ∈ PA.

(P3) For simple terms M ,

(a) If

60

– ∆ ; Γ `M ∈ PA→B,

– ∆ ; Γ ` N ∈ PA, and

– whenever M −→∗ λx:A.M ′ then ∆ ; Γ ` (λx:A.M ′)N ∈ PB

then this implies ∆ ; Γ `MN ∈ PB.

(b) If

– ∆ ; Γ `M ∈ PA×B, and

– whenever M −→∗ 〈M1,M2〉 then ∆ ; Γ ` π1(〈M1,M2〉) ∈ PA and

∆ ; Γ ` π2(〈M1,M2〉) ∈ PB,

then this implies that ∆ ; Γ ` π1(M) ∈ PA and ∆ ; Γ ` π2(M) ∈ PB.

We now define what it means to be a candidate C ⊆ PA. The gist is this: a

candidate is closed under our useful admissible rules; it is closed under reduction;

and, a term is necessarily in the candidate if all the I-terms it reduces to are in the

candidate as well.

Definition 9 (P-candidate). A set C of derivable judgments of type A is a P-

candidate just if

(R0) (a) ∆ ; Γ `M ∈ C and Γ v Γ′ imply ∆ ; Γ′ `M ∈ C.

(b) ∆ ; Γ `M ∈ C and ∆ v ∆′ imply ∆′ ; Γ `M ∈ C.

(c) (for T and S4 only) ∆ ; Γ,Γ′ `M ∈ C implies ∆,Γ ; Γ′ `M ∈ C

(R1) C ⊆ PA.

(R2) ∆ ; Γ `M ∈ C and M −→ N imply ∆ ; Γ ` N ∈ C.

(R3) If ∆ ;Γ `M ∈ PA is simple, and whenever M −→∗ N and N is a I-term implies

that ∆ ; Γ ` N ∈ C then it follows that ∆ ; Γ `M ∈ C.

The definition implies that all variables are in a candidate:

Lemma 5. For any P-candidate C, ∆ ; Γ ` x ∈ C.

Proof. By (P1), we have that ∆ ; Γ ` x ∈ PA, and by definition x is simple, and

a normal form, so it cannot ever reduce to a I-term. All the premises of (R3) are

satisfied, so ∆ ; Γ ` x ∈ C.

61

We now define the set JAK of reducible judgments for each type A. This definition

has a flavour that is familiar to those acquainted with logical relations, or logical

predicates in this case. J�AK is defined differently for each system, and so is JA→ BK,

in order to ensure admissibility of the dereliction rule when needed.

Definition 10 (Reducible judgments). We define for each type A a set of derivable

judgments JAK ⊆ PA by induction on A.

JpiK
def
= Ppi

JA×BK def
= {∆ ; Γ `M ∈ PA×B | ∆ ; Γ ` π1(M) ∈ JAK ∧ ∆ ; Γ ` π2(M) ∈ JBK }

JA→ BK def
=



{ ∆ ; Γ `M ∈ PA→B |
∀ splittings Γ ≡ Γ1,Γ2.

∀∆′ w ∆,Γ1. ∀Γ′ w Γ2.

∀∆′ ; Γ′ ` N ∈ JAK . ∆′ ; Γ′ `MN ∈ JBK}

for T, S4

{ ∆ ; Γ `M ∈ PA→B |
∀∆′ w ∆. ∀Γ′ w Γ.

∀∆′ ; Γ′ ` N ∈ JAK . ∆′ ; Γ′ `MN ∈ JBK}
otherwise

J�AK def
=



{∆ ; Γ `M ∈ P�A |M −→∗ box Q =⇒ · ; ∆ ` Q ∈ JAK } for K, T{
∆ ; Γ `M ∈ P�A

∣∣M −→∗ box Q =⇒ ∆ ; ∆⊥ ` Q⊥ ∈ JAK
}

for K4

{∆ ; Γ `M ∈ P�A |M −→∗ box Q =⇒ ∆ ; · ` Q ∈ JAK } for S4

{ ∆ ; Γ `M ∈ P�A |
M −→∗ fix z in box Q =⇒ ∆ ; ∆⊥, z⊥ : A ` Q⊥ ∈ JAK}

for GL

We can now prove that JAK is a candidate. We will need a slightly stronger induction

hypothesis in order to complete the proof.

Theorem 21. If P = {PA} satisfies properties P0-P3, then

1. For any A, JAK is a P-candidate.

2. For any A, JAK contains all the stubborn terms in PA.

Proof. By induction on types.

1. Case(pi). Then JAK = Ppi , so it trivally contains all stubborn terms in Ppi ,

hence (2). To verify (1), we need to show properties R0–R3. R0 is exactly P0.

R1 is trivially satisified. R2 is exactly P2. R3 also trivially holds as JAK contains

all terms in Ppi .

62

2. Case(A×B). For (1), we verify R0-R3.

(R0) For (a): let ∆;Γ `M ∈ JA×BK and Γ v Γ′. Then ∆;Γ ` π1(M) ∈ JAK by

the definition of JA×BK, and—by the IH—we have ∆;Γ′ ` π1(M) ∈ JAK,

and similarly for B, which yields the result. The reasoning is similar for

(b) and (c).

(R1) Trivially JA×BK ⊆ PA×B.

(R2) Let ∆ ; Γ ` M ∈ JA×BK, and suppose M −→ N . By (P2), we have

∆ ; Γ ` N ∈ PA×B. It remains to show ∆ ; Γ ` π1(N) ∈ JAK and ∆ ; Γ `
π2(N) ∈ JBK. But as ∆ ; Γ `M ∈ JA×BK, we have ∆ ; Γ ` π1(M) ∈ JAK.

Thus, as π1(M) −→ π1(N), we use (R2) from the IH to obtain ∆ ; Γ `
π1(N) ∈ JAK. Similarly for π2(N).

(R3) Suppose that M ∈ PA×B is a simple term, and whenever M −→∗ 〈P,Q〉,
then 〈P,Q〉 ∈ JA×BK. We want to show that π1(M) ∈ JAK and π2(M) ∈
JBK.

First, we show they are in PA and PB respectively, and we do this by

invoking (P3)(b). Suppose then that M −→∗ 〈P,Q〉 for some P and Q.

By assumption, we have 〈P,Q〉 ∈ JA×BK, and hence—by definition—

π1(〈P,Q〉) ∈ JAK ⊆ PA and π2(〈P,Q〉) ∈ JBK ⊆ PB. So, as M is simple,

we obtain by (P3)(b) that π1(M) ∈ PA and π2(M) ∈ PB.

There are now two cases:

Case(M stubborn). Then M never reduces to a I-term. It follows

that π1(M) ∈ PA and π2(M) ∈ PB are also stubborn, as M never

reduces to a pair so that the outermost projections become a redex.

By (2) of the IH, π1(M) ∈ JAK and π2(M) ∈ JBK as each contains all

stubborn terms in PA and PB respectively.

Case(M not stubborn). We only show this for A, the reasoning for

B being similar.

Case(A ≡ pi). Then have the result, as JAK = PA.

Case(A 6≡ pi). We use (R3) from the IH: it suffices to show that

π1(M) −→∗ U for some I-term U implies U ∈ JAK.

If π1(M) is stubborn, then the desideratum holds vacuously.

Suppose otherwise, i.e. that π1(M) −→∗ U for some I-term U . As

U is a I-term, the reduction π1(M) −→∗ U must have been of the

63

form

π1(M) −→∗ π1(〈U ′, V ′〉) −→ U ′ −→∗ U

with M −→∗ 〈U ′, V ′〉: otherwise the outer π1(−) would have

persisted. But M is simple and M −→∗ 〈U ′, V ′〉, so—by our

assumption—〈U ′, V ′〉 ∈ JA×BK, hence π1(〈U ′, V ′〉) ∈ JAK by

definition. By multiple uses of (R2) of the IH, this yields that

U ∈ JAK.

For (2): if M ∈ PA×B is stubborn, we argue as above: M is simple, and it

never reduces to a I-term, so by (P3)(b) we have π1(M) ∈ PA and π2(M) ∈ PB
respectively. These terms are in turn stubborn, so by the IH they are in JAK
and JBK respectively, hence M ∈ JA×BK by definition.

3. Case(A→ B). For (1):

(R0) We only show (a) for the ‘otherwise’ case, the T and S4 case being very

similar. Let ∆ ; Γ ` M ∈ JA→ BK, and Γ v Γ′. We need to show

that, given Γ′′ w Γ′, ∆′′ w ∆ and any ∆′′ ; Γ′′ ` N ∈ JAK we have

∆′′ ; Γ′′ `MN ∈ JBK. But, as Γ v Γ′ and v is transitive, this follows from

the definition of JA→ BK. The reasoning is similar for (b).

For (c): let ∆ ; Γ,Γ′ ` M ∈ JA→ BK. We need to show that for all

splittings Γ′ ≡ Γ′a,Γ
′
b and ∆′ w ∆,Γ′a and Γ′ w Γ′b we have that ∆′ ; Γ′ `

N ∈ JAK implies that ∆′ ; Γ′ ` MN ∈ JBK. Pick Γ1
def
= Γ,Γ′a and Γ2

def
= Γ′b;

the definition of JA→ BK then ensures that, again by transitivity of v.

(R1) Trivially JA→ BK ⊆ PA×B.

(R2) Let ∆ ; Γ ` M ∈ JA→ BK and suppose M −→ N . By (P2) we have

N ∈ PA→B. It remains to show that, for all P ∈ JAK, NP ∈ JBK. But we

have—by definition—that MP ∈ JBK, and as MP −→ NP , we have by

(R2) of the IH that NP ∈ JBK.

(R3) For the sake of clarity we omit the contexts in this case, for they are just

annotations to the essence of the argument.

Suppose that M ∈ PA→B is a simple term, and whenever M −→∗ λx:A. P

then λx:A. P ∈ JA→ BK. That is, for any Q ∈ JAK, we have (λx:A. P)Q ∈
JBK. We need to show that, for any N ∈ JAK we have MN ∈ JBK.

64

First, we show that for any N ∈ JAK we have MN ∈ PB. We know by the

assumption that whenever M −→∗ λx:A. P then (λx:A. P)N ∈ JBK ⊆ PB.

By (P3)(a), it follows that MN ∈ PB.

There are two cases.

Case(M stubborn). Then MN ∈ PB is also stubborn, as no top-

level redexes can ever be created. It follows by the IH for B that

MN ∈ JBK.

Case(M not stubborn). We distinguish on whether B is a base type

or not.

Case(B ≡ pi). Then MN ∈ PB = JBK.

Case(B 6≡ pi). The term MN ∈ PB is simple. Thus, it suffices—

by (R3) of the IH for B—to show the following: if MN −→∗ Q
with Q a I-term, then Q ∈ JBK.

If MN is stubborn, then it never reduces to a I-term, so the

desideratum holds vacuously.

If MN is not stubborn, we have that MN −→∗ U for some I-term

U. As U is a I-term, that reduction must be of the form

MN −→∗ (λx:A. P)N ′ −→ P [N ′/x] −→∗ U

with M −→∗ λx:A.P and N −→∗ N ′: otherwise the outer applica-

tion would have persisted. But M is simple and M −→∗ λx:A. P ,

so by the assumption λx:A. P ∈ JA→ BK. As N −→∗ N ′, re-

peated applications of the (R2) of the IH yield N ′ ∈ JBK. Thus,

(λx:A. P)N ′ ∈ JBK, and again by repeated applications of (R2) of

the IH, U ∈ JBK.

For (2): if M ∈ PA→B is stubborn, we argue as above: M is simple, and it never

reduces to a I-term. Take any N ∈ JAK ⊆ PA. By (P3)(a) MN ∈ PB. This MN

is in turn stubborn—as M never reduces to a λ-abstraction and the outermost

application persists—so, by the IH, MN ∈ JBK. Hence M ∈ JA→ BK.

4. Case(�A). For (1):

(R0) (a) trivially holds, for none of the judgments for Q in the definition of

J�AK depend on the context Γ.

(b) and (c) follow from the assumption ∆ ; Γ ` M : �A and—depending

on the logic—the statements (a), (b), or both, of (R0) of the IH for A.

65

(R1) Trivially J�AK ⊆ P�A.

(R2) We only show the case for K, the others being entirely analogous.

Let ∆ ; Γ ` M ∈ J�AK and suppose M −→ N . By (P2) we have ∆ ;

Γ ` N ∈ P�A. It remains to show that, whenever N −→∗ box Q, then

· ; ∆ ` Q ∈ JAK. But when that sequence of reductions happens, we have

M −→ N −→∗ box Q

thus, by the definition of J�AK, we have that · ; ∆ ` Q ∈ JAK.

(R3) We only show the case for S4, all the others being similar.

Suppose that ∆ ; Γ ` M ∈ P�A is a simple term, and whenever M −→∗

box Q then that term is in J�AK: this is to say that whenever box Q −→∗

box Q′, then ∆ ; · ` Q′ ∈ JAK. We need to show that, if M −→∗ box Q,

then ∆; · ` Q ∈ JAK. But, by reflexivity, box Q −→∗ box Q, so this already

follows by our assumption.

For (2): if M ∈ P�A is stubborn, then it never reduces to a I-term of shape

box Q, so it is—by definition—in J�AK. Likewise for GL.

6.2 Closure under formation: the latter two prop-

erties

We now introduce two further properties. Property (P4) is essentially closure of

P under introduction rules. Property (P5) ensures that, if a term is in P is after

‘eliminating a detour,’ then it is also in P before the detour is eliminated.

Definition 11 (Properties P4-P5).

(P4) (a) If ∆ ; Γ, x:A `M ∈ PB then ∆ ; Γ ` λx:A. M ∈ PA→B.

(b) ∆ ; Γ `M ∈ PA and ∆ ; Γ ` N ∈ PB imply ∆ ; Γ ` 〈M,N〉 ∈ PA×B.

(c)

i. (for K and T) · ; ∆ `M ∈ PA implies ∆ ; Γ ` box M ∈ P�A
ii. (for K4) ∆ ; ∆⊥ `M⊥ ∈ PA implies ∆ ; Γ ` box M ∈ P�A
iii. (for GL) ∆ ; ∆⊥, z⊥ : �A ` M⊥ ∈ PA implies ∆ ; Γ ` fix z in box M ∈

P�A

66

iv. (for S4) ∆ ; · `M ∈ PA implies ∆ ; Γ ` box M ∈ P�A

(P5) (a) If ∆′ w ∆ and Γ′ w Γ satisfy ∆′ ; Γ′ ` N ∈ PA and ∆′ ; Γ′ `M [N/x] ∈ PB,

then ∆′ ; Γ′ ` (λx:A. M)N ∈ PB.

(b) ∆ ; Γ ` M ∈ PA and ∆ ; Γ ` N ∈ PB imply ∆ ; Γ ` π1(〈M,N〉) ∈ PA and

∆ ; Γ ` π2(〈M,N〉) ∈ PB.

(c) i. (for non-GL) If we have ∆ ; Γ ` M ∈ P�A and ∆, u:A ; Γ ` N ∈ PC ,

and whenever M −→∗ box Q then ∆ ; Γ ` N [Q/u] ∈ PC , then we have

that ∆ ; Γ ` let box u⇐M in N ∈ PC .

ii. (for GL only) If we have ∆;Γ `M ∈ P�A and ∆, u:A;Γ ` N ∈ PC , and

wheneverM −→∗ fix z in box Q then ∆;Γ ` N [Q[fix z in box Q/z]/u] ∈
PC , then we have that ∆ ; Γ ` let box u⇐M in N ∈ PC .

The next theorem shows that properties (P4) and (P5) carry over to the candidates

of reducible judgments JAK.

Theorem 22. If P = {PA} satisfies properties (P1)-(P5), then

1. If whenever Γ′ w Γ, ∆′ w ∆ and ∆′ ; Γ′ ` N ∈ JAK we have ∆′ ; Γ′ `M [N/x] ∈
JBK, then

∆ ; Γ ` λx:A. M ∈ JA→ BK

2. If ∆ ; Γ `M ∈ JAK and ∆ ; Γ ` N ∈ JBK then

∆ ; Γ ` 〈M,N〉 ∈ JA×BK

3. (a) (for K and T) If ∆ ; Γ ` M ∈ J�AK, and whenever ∆′ w ∆ and · ; ∆′ `
Q ∈ JAK then we have ∆′ ; Γ ` N [Q/u] ∈ JCK then

∆ ; Γ ` let box u⇐M in N ∈ JCK

(b) (for K4 only) If ∆ ; Γ `M ∈ J�AK, and whenever ∆′ w ∆ and ∆′ ; ∆′⊥ `
Q⊥ ∈ JAK then we have ∆′ ; Γ ` N [Q/u] ∈ JCK, then

∆ ; Γ ` let box u⇐M in N ∈ JCK

(c) (for GL only) If ∆;Γ `M ∈ J�AK, and whenever ∆′ w ∆ and ∆′ ;∆′⊥, z⊥ :

�A ` Q⊥ ∈ JAK then ∆′ ; Γ ` N [Q[fix z in box Q/z]/u] ∈ JCK, then

∆ ; Γ ` let box u⇐M in N ∈ JCK

67

(d) (for S4 only) If ∆ ; Γ `M ∈ J�AK, and whenever ∆′ w ∆ and ∆′ ; · ` Q ∈
JAK then we have ∆′ ; Γ ` N [Q/u] ∈ JCK, then

∆ ; Γ ` let box u⇐M in N ∈ JCK

Proof.

1. First, we show that ∆ ; Γ ` λx:A. M ∈ PA→B. By Lemma 5 and Theorem 21,

it is the case that ∆ ; Γ, x:A ` x ∈ JAK. Hence, by taking Γ′
def
= Γ, x:A and

∆′
def
= ∆ in the assumption, we have ∆ ; Γ, x:A `M [x/x] ∈ JBK ⊆ PB. Thus, as

M [x/x] ≡M , we have by (P4)(a) that ∆ ; Γ ` λx:A. M ∈ PA→B.

It remains to show that, for ∆′ w ∆, Γ′ w Γ and ∆′ ; Γ′ ` N ∈ JAK, we have

∆′ ; Γ′ ` (λx:A. M)N ∈ JBK. First we need to show that (λx:A. M)N ∈ PB.

But, by the assumption, M [N/x] ∈ JBK ⊆ PB. By invoking (P5)(a) we have

that (λx:A. M)N ∈ PB. There are now two cases.

Case(B ≡ pi). Then PB = JBK and the result follows.

Case(B 6≡ pi). We have that (λx:A. M)N is simple, so we use (R3): it

suffices to show that whenever (λx:A. M)N −→∗ Q and Q is a I-term,

then Q ∈ JBK.

If (λx:A. M)N is stubborn, then the desideratum is trivial.

Otherwise, if (λx:A. M)N −→∗ Q where Q is a I-term, then the reduction

must be of the form

(λx:A. M)N −→∗ (λx:A. M ′)N ′ −→M ′[N ′/x] −→∗ Q

where M −→∗ M ′ and N −→∗ N ′: otherwise the outermost application

would persist. But, by the assumption, M [N/x] ∈ JBK, and

M [N/x] −→∗ M ′[N ′/x] −→∗ Q

so, by applying (R2) repeatedly, Q ∈ JBK.

2. First, we show that 〈M,N〉 ∈ PA×B. We have M ∈ JAK ⊆ PA and N ∈ JBK ⊆
PB, so what we want follows simply by (P4)(b).

It remains to show that π1(〈M,N〉) ∈ JAK and π2(〈M,N〉) ∈ JBK. That each

is already in PA and PB respectively follows by (P5)(2) and the fact M and N

are already in PA and PB respectively.

There are now two cases: we show each for A, the one for B being analogous.

68

Case(A ≡ pi). Then π1(〈M,N〉) ∈ PA = JAK.

Case(A 6≡ pi). Then π1(〈M,N〉) is simple, so we use (R3): it suffices to

show that whenever π1〈M,N〉 −→∗ Q and Q is a I-term, then Q ∈ JAK.

If π1(〈M,N〉) is stubborn, then the desideratum is trivial.

Otherwise, if π1(〈M,N〉) −→∗ Q where Q is a I-term, then the reduction

must be of the form

π1(〈M,N〉) −→∗ π1(〈M ′, N ′〉) −→M ′ −→∗ Q

where M −→∗ M ′ and N −→∗ N ′: otherwise, the outermost projection

construct would persist. But, by assumption, M ∈ JAK, and

M −→∗ M ′ −→∗ Q

so by multiple applications of (R2) we get that Q ∈ JAK.

3. We only show the case for K and T, with the other cases being analogous (e.g.

using (P5)(c)(ii) for GL).

First, we show that let box u ⇐ M in N ∈ PC , and we invoke (P5)(c)(i) to do

so. It suffices to show that ∆ ; Γ ` M ∈ P�A, that ∆, u:A ; Γ ` N ∈ PC ,

and whenever M −→∗ box Q then ∆ ; Γ ` N [Q/u] ∈ PC . The first of these is

implied by the assumption that ∆ ; Γ ` M ∈ JAK ⊆ PA. For the second, we

infer that—by Lemma 5 and Theorem 21—we have that · ; ∆, u:A ` u ∈ JAK.

Hence, as ∆ v ∆, u:A, we have by the assumption that

∆, u:A ; Γ ` N ≡ N [u/u] ∈ JCK

The final desideratum also follows: if M −→∗ box Q then, by the definition

of J�AK, we have that · ; ∆ ` Q ∈ JAK and hence—by the assumption—that

∆ ; Γ ` N [Q/u] ∈ JCK ⊆ PC .

For the rest, there are two cases.

Case(M is stubborn). Then so is let box u⇐M in N , as the let construct

persists. As it is a simple term, it never reduces to a I-term, and it is in

PC , it is also in JCK, simply by invoking (R3).

Case(M is not stubborn). We distinguish again on whether C is a base

type or not.

Case(C ≡ pi). Then let box u⇐M in N ∈ PC = JCK.

69

Case(C 6≡ pi). Then let box u ⇐ M in N is simple, so we use (R3):

it suffices to show that whenever let box u ⇐ M in N −→∗ Q and Q

is a I-term, then Q ∈ JCK.

If let box u⇐M in N is stubborn, then the desideratum is trivial.

Otherwise, if let box u ⇐ M in N −→∗ Q where Q is a I-term, then

the reduction must be of the form

let box u⇐M in N

−→∗ let box u⇐ box U in N ′

−→ N ′[U/u]

−→∗ Q

where M −→∗ box U and N −→∗ N ′: otherwise the let construct

would persist. But, by assumption, ∆ ; Γ `M ∈ J�AK, so by multiple

applications of (R2) we infer that ∆ ; Γ ` box U ∈ J�AK and hence

that ·;∆ ` U ∈ JAK. By the assumption, we get ∆;Γ ` N [U/u] ∈ JCK.

But

N [U/u] −→∗ N ′[U/u] −→∗ Q

so, by repeated applications of (R2), Q ∈ JCK.

6.3 The main theorem

Definition 12. A substitution is a finite function σ : V ⇀ Λ from the set of all

variables V to the set of all possible terms Λ.

Definition 13. A substitution σ : V ⇀ Λ is type-preserving from ∆′ ; Γ′ to ∆ ; Γ,

written

∆′ ; Γ′
σ

=⇒DL ∆ ; Γ

just if

1. dom(σ) ⊆ Vars (∆) ∪Vars (Γ),

2. (x : C) ∈ Γ implies ∆′ ; Γ′ ` σ(x) : C, and

3. either

– L ∈ {K,T} and (u : C) ∈ ∆ implies · ; ∆′ ` σ(u) ∈ C, or

70

– L = K4 and (u : C) ∈ ∆ implies ∆′ ; ∆′⊥ ` (σ(u))⊥ ∈ C, or

– L = GL and there exists a variable z such that (u : C) ∈ ∆ implies

∆′ ; ∆′⊥, z⊥ : �C ` (σ(u))⊥ ∈ C, or

– L = S4 and (u : C) ∈ ∆ implies ∆′ ; · ` σ(u) ∈ C.

We write if σ : V ⇀ Λ is a substitution, we write σ[x 7→ N] : V ⇀ Λ to mean the

substitution defined by

σ(y)
def
=

{
σ(y) if y 6≡ x

N if y ≡ x

One may weaken substitutions freely:

Lemma 6 (Substitution Weakening). If ∆′ ; Γ′ ` σ : ∆ ; Γ and ∆′ v ∆′′ and Γ′ v Γ′

then ∆′′ ; Γ′′ ` σ : ∆ ; Γ.

Proof. Use weakening for individual terms.

It is easy to show the following convenient technical result:

Lemma 7 (Modal Drop). Given a type-preserving substitution σ : V ⇀ Λ, such that

∆′ ; Γ′
σ

=⇒DL ∆ ; Γ we also have that

– If L ∈ {K,T}, then · ; ∆′
σ

=⇒DK · ; ∆

– If L = K4, then ∆′ ; ∆′⊥
σ

=⇒DK4 ∆ ; ∆⊥

– If L = GL, then, for some variable z we have

∆′ ; ∆′⊥, z⊥ : �A
σ

=⇒DGL ∆ ; ∆⊥, z⊥ : �A

– If L = S4, then ∆′ ; · σ
=⇒DS4 ∆ ; ·

Proof. Trivial.

71

We extend the action of substitutions on terms, as follows:

σ(y)
def
=

{
σ(y) if y ∈ dom(σ)

y otherwise

σ(λx:A. M)
def
= λx:A. σ(M)

σ(MN)
def
= σ(M)σ(N)

σ(〈M,N〉) def
= 〈σ(M), σ(N)〉

σ(πi(M))
def
= πi(σ(M))

σ(box M)
def
= box σ(M)

σ(let box u⇐M in N)
def
= let box u⇐ σ(M) in σ(N)

σ(fix z in box M)
def
= fix z in box σ(M) (for GL only)

where we silently α-rename bound variables in λ-abstractions, let bindings, or fixpoint

terms, so as to avoid substituting for something bound, or having something free

become bound after a substitution.

Lemma 8. If ∆′ ; Γ′
σ

=⇒ ∆ ; Γ and ∆ ; Γ `M : C then ∆′ ; Γ′ ` σ(M) : C.

Proof. By induction on M . We only show some cases: for the others the IH suffices.

Case(x). Then (x : C) ∈ Γ, or—in the cases of T and S4—(x : C) ∈ ∆. If

(x : C) ∈ Γ then we have that ∆′ ; Γ′ ` σ(x) : C. Otherwise, say in the case of

T, we have that · ; ∆′ ` σ(x) : C, so we use modal dereliction (Theorem 12) to

conclude ∆′ ; · ` σ(x) : C, and then weakening to obtain the result. The case

of S4 is similar.

Case(λx:A. M). Then we have that ∆;Γ, x:A `M : B for some A and B such

that C ≡ A→ B. Define

σ′
def
= σ[x 7→ x]

so that, by weakening and definition, ∆′ ; Γ′, x:A
σ′

=⇒ ∆ ; Γ, x:A. By the IH, we

have

∆′ ; Γ′, x:A ` σ′(M) : B

But σ′(M) ≡ σ(M), so a single use of (→ I) yields the result.

Case(box M).

72

– (for K and T)

Then · ; ∆ `M : A for some A such that C ≡ �A. We have that

· ; ∆′
σ

=⇒ · ; ∆

by Lemma 7; thus, applying the IH yields · ; ∆′ ` σ(M) : A. But as

σ(box M) ≡ box σ(M), a single use of (�IK) suffices.

– (others) Similar.

Case(fix z in box M). (for GL only) Similarly.

Case(let box u⇐M in N). Similar to the case for λ-abstraction.

Theorem 23 (Candidats). Let P = {PA} be a family satisfying properties (P1)–(P5).

If ∆ ; Γ `DL M : A, and ∆′ ; Γ′ ` σ : ∆ ; Γ is a substitution such that

(x : C) ∈ Γ =⇒ ∆′ ; Γ′ ` σ(x) ∈ JCK

and either

– L ∈ {K,T} and (u : C) ∈ ∆ implies · ; ∆′ ` σ(u) ∈ JCK, or

– L = K4 and (u : C) ∈ ∆ implies ∆′ ; ∆′⊥ ` (σ(u))⊥ ∈ JCK, or

– L = GL and there exists a variable z such that (u : C) ∈ ∆ implies ∆′ ; ∆′⊥, z⊥ :

�C ` (σ(u))⊥ ∈ JCK, or

– L = S4 and (u : C) ∈ ∆ implies ∆′ ; · ` σ(u) ∈ JCK

then

∆′ ; Γ′ ` σ(M) ∈ JAK

Proof. By induction on M .

Case(x).

Then (x : C) ∈ Γ, or—in the cases of T and S4—(x : C) ∈ ∆. In the case of

the former, the assumption implies that ∆′ ; Γ′ ` σ(x) ∈ JCK. In the case of the

latter, we conclude that · ; ∆′ ` σ(x) ∈ JCK. We use Theorem 21 and (R0)(c)

to conclude that ∆′ ; · ` σ(x) ∈ JCK, and then Theorem 21 again and (R0)(a)

to weaken this to ∆′ ; Γ′ ` σ(x) ∈ JCK.

73

Case(λx:A. M). Then ∆ ; Γ, x:A `M : B for some B. We use Theorem 22(1):

it suffices to show that for ∆′′ w ∆′ and Γ′′ w Γ′, and for every ∆′′ ;Γ′′ ` N ∈ JAK
we have ∆′′ ; Γ′′ ` σ(M)[N/x] ∈ JBK, for then Theorem 22(1) yields

∆′ ; Γ′ ` λx:A. σ(M) ∈ JA→ BK

But then λx:A. σ(M) ≡ σ(λx:A. M), hence the result. To this end, let

σ′
def
= σ[x 7→ N]

Then, by weakening both contexts in σ, we have that

∆′′ ; Γ′′
σ′

=⇒ ∆ ; Γ, x:A

and σ(M)[N/x] ≡ σ′(M). But σ′ satisfies the premises of the IH for M , hence

∆′′ ; Γ′′ ` σ′(M) ∈ JBK

which is the desideratum.

Case(MN). Then ∆ ; Γ ` M : A → B and ∆ ; Γ ` N : A for some A and

B. We use the IH twice to conclude that ∆′ ; Γ′ ` σ(M) ∈ JA→ BK and

∆′ ; Γ′ ` σ(N) ∈ JAK. By the definition of J−K, this yields that

∆′ ; Γ′ ` σ(MN) ≡ σ(M)σ(N) ∈ JBK

Case(〈M,N〉). Then ∆ ; Γ ` M ∈ A and ∆ ; Γ ` N ∈ B. We use Theorem

22(2): it suffices to show that ∆′ ; Γ′ ` σ(M) ∈ JAK and ∆′ ; Γ′ ` σ(N) ∈ JBK,

for then

∆′ ; Γ′ ` σ(〈M,N〉) ≡ 〈σ(M), σ(N)〉 ∈ JA×BK

But the two desiderata follow from the IH.

Case(π1(M)). Then ∆ ; Γ `M ∈ A×B for some A and B. We use the IH to

conclude that ∆′ ; Γ′ ` σ(M) ∈ JA×BK, and hence that

∆′ ; Γ′ ` σ(π1(M)) ≡ π1(σ(M)) ∈ JAK

which follows by the definition of JA×BK.

Case(π2(M)). Similar.

74

Case(box M). We only show the case for K and T, the others being similar.

Then · ;∆ `M : A for some A. By Lemma 7, we have that · ;∆′ σ
=⇒ · ;∆. Then,

by the IH, we have that · ; ∆′ ` σ(M) ∈ JAK. So, by (P4)(c), box σ(M) ∈ P�A.

It now suffices—by the definition of J�AK—to show that

box σ(M) −→∗ box M ′

implies ·;∆′ `M ′ ∈ JAK. But then we must have σ(M) −→∗ M ′, so by repeated

applications of (R2) we have M ′ ∈ JAK.

Case(fix z in box M). (for GL only) Similar.

Case(let box u⇐M in N).

We show the case for K. We have ∆ ; Γ ` M : A and ∆, u:A ; Γ ` N : C. We

use Theorem 22(a): to show that

∆′ ; Γ′ ` σ(let box u⇐M in N) ≡ let box u⇐ σ(M) in σ(N) ∈ JCK

It suffices to show that ∆′ ; Γ′ ` σ(M) ∈ J�AK—which we have by the IH—and

that whenever ∆′′ w ∆′ and · ; ∆′′ ` Q ∈ JAK, then ∆′′ ; Γ′ ` σ(N)[Q/u] ∈ JCK.

Define

σ′
def
= σ[u 7→ Q]

Then, by weakening the modal context in σ, we have

∆′′, u:A ; Γ′
σ′

=⇒ ∆, u:A ; Γ

By the IH,

∆′′, u:A ; Γ′ ` σ′(N) ∈ JCK

But σ′(N) ≡ σ(N)[Q/u].

Corollary 3. If P = {PA} is a family satisfying properties (P1)–(P5), then

PA = ΛA

Proof. By Theorem 23 we have that M ∈ JAK for every ∆ ; Γ ` M : A. Hence

ΛA ⊆ JAK ⊆ PA ⊆ ΛA.

75

Chapter 7

Modal Category Theory

In order to formulate categorical semantics for our calculi, we shall need—first and

foremost—a cartesian closed category (CCC), for the underlying λ-calculus. For

background on cartesian closed categories, we refer to (Crole, 1993) and (Abramsky

and Tzevelekos, 2011).

We shall model the modality by a strong monoidal endofunctor. In our case, the

monoidal product will be the cartesian product of the cartesian closed category. We

will show that this coincides with the notion of product-preserving endofunctor, and

hence gives rise to the isomorphism

�(A×B) ∼= �A×�B

which is another way of stating the modal axiom K.

In this chapter we introduce a modest amount of monoidal category theory that

we will use in our modelling attempts. Further material on monoidal functors can be

found in MacLane (Mac Lane, 1978, §XI.2). We draw a lot on a superbly lucid treat-

ment by Melliès (Melliès, 2009, §5), which is specifically geared towards categorical

logic.

7.1 Cartesian closed categories

Definition 14. A category C is cartesian closed just if it is cartesian (i.e. has a

terminal object 1 and a binary products) and has exponentials, i.e. for each pair of

objects A,B ∈ C there is an object BA ∈ C and an arrow

evA,B : BA × A→ B

76

such that for every f : C × A → B there is a unique λ(f) : C → BA such that the

following diagram commutes:

BA × A B

C × A

evA,B

f
λ(f)×idA

There are many equivalent definitions of cartesian closure. The above is that of the

existence of a couniversal arrow from − × A to B for each pair of objects A,B ∈ C.
It is the same as requiring the existence of a right adjoint to the functor −×A—see

(Crole, 1993).

7.2 Lax and strong monoidal functors

Let C and D be cartesian categories. We regard them as monoidal categories (C,×,1)

and (D,×,1) respectively.

Definition 15. A functor F : C −→ D between two cartesian categories is lax

monoidal just if it is equipped with a natural transformation

m : F (−)× F (−)⇒ F (−×−)

as well as an arrow m0 : 1→ F (1) such that the following diagrams commute:

(FA× FB)× FC FA× (FB × FC)

F (A×B)× FC FA× F (B × C)

F ((A×B)× C) F (A× (B × C))

α

mA,B×idFC idFA×mB,C

mA×B,C mA,B×C

Fα

(7.1)

FA× 1 FA

FA× F1 F (A× 1)

ρA

idFA×m0

mA,1

FρA

1× FB FB

F1× FB F (1×B)

λB

m0×idFB

m1,B

FλB (7.2)

Definition 16. A strong monoidal functor between two cartesian categories is a lax

monoidal functor where the components mA,B : FA×FB → F (A×B) and the arrow

m0 : 1→ F1 are isomorphisms.

77

These natural transformations can be extended to more objects. We write

n∏
i=1

An

for the product A1 × · · · × An, where × associates to the left.

We define, by induction:

m(0) def
= 1

m0−→ F1

m(1) def
= FA1

idFA1−−−→ FA1

m(n+1) def
=

n+1∏
i=1

FAi
m(n)×id−−−−−→ F

(
n∏
i=1

Ai

)
× FAn+1

m−→ F

(
n+1∏
i=1

Ai

)

Then the m(n)’s are a natural transformation, so that

m(n) ◦
n∏
i=1

Ffi = F

(
n∏
i=1

fi

)
◦m(n)

We also note that if F : C −→ C is a monoidal endofunctor, then so is F 2 def
= F ◦ F ,

with components

nA,B
def
= F 2A× F 2B

mA,B−−−→ F (FA× FB)
FmA,B−−−−→ F 2(A×B)

and n0
def
= Fm0 ◦m0—see e.g. (Melliès, 2009, §5.9).

7.2.1 Product-Preserving Functors

Lax and strong monoidal functors are widely used as notions of morphism between

monoidal categories. However, in our setting, the monoidal product will always be the

cartesian product. In the rest of this section we note some facts which are particular

to the cartesian case.

To start, here is another notion of a functor between cartesian categories that

‘plays well with products,’ namely that of product-preserving functors. The definition

initially appears to be much stronger than simple monoidality.

Definition 17. A product-preserving functor F : C −→ D between two cartesian

categories is a functor for which the arrows

pA,B
def
= 〈Fπ1, Fπ2〉 : F (A×B)

∼=−→ FA× FB

p0
def
= !F1 : F1

∼=−→ 1

are isomorphisms.

78

Product-preserving functors are—indeed—strong monoidal. To show that, all we

need to consider is the inverse of the arrows required by the definition, namely

mA,B
def
= p−1

A,B : FA× FB
∼=−→ F (A×B)

m0
def
= p−1

0 : 1
∼=−→ F1

Before we show that, we note that product-preserving functions satisfy two remark-

ably useful equations. The first is

Proposition 1. If F is product-preserving, then

mA,B ◦ 〈Ff, Fg〉 = F 〈f, g〉

for f : C → A, and g : D → B.

Proof. We may compute

pA,B ◦ F 〈f, g〉 = 〈Fπ1 ◦ F 〈f, g〉, Fπ2 ◦ F 〈f, g〉〉 = 〈Ff, Fg〉

and, since p−1
A,B = mA,B, the result follows.

The second equation concerns the fact that the mA,B’s may be used to relate the

projections with their image under the functor.

Proposition 2. Let F : C −→ D be product-preserving, and let

A
πA,B
1←−−− A×B

πA,B
2−−−→ B

and

FA
πFA,FB
1←−−−− FA× FB

πFA,FB
2−−−−→ FB

be product diagrams in C and D respectively. Then

FπA,Bi ◦mA,B = πFA,FBi

Proof. πi ◦m−1
A,B = πi ◦ 〈Fπ1, Fπ2〉 = Fπi

We will often write equations of this sort as Fπ1◦m = π1 without further ado. Armed

with these facts, it is now easy to see that

Theorem 24. Any product-preserving functor is strong monoidal, with mA,B and m0

defined as above.

79

Proof. For f : C → A and g : D → B, we calculate that

mA,B ◦ (Ff × Fg)

= { definition }

mA,B ◦ 〈Ff ◦ π1, Fg ◦ π2〉

= {Proposition 2 }

mA,B ◦ 〈Ff ◦ Fπ1 ◦mC,D, Fg ◦ Fπ2 ◦mC,D〉

= { functoriality of F, naturality of product }

mA,B ◦ 〈F (f ◦ π1), F (g ◦ π2)〉 ◦mC,D

= {Proposition 1, definition }

F (f × g) ◦mC,D

so that

m : F (−)× F (−)⇒ F (−×−)

is a natural transformation. The associativity diagram commutes: the proof is a

lengthy but simple calculation involving the naturality of the product arrow, the def-

inition α
def
= 〈π1π1, 〈π2π1, π2〉〉, and—more crucially—the invertibility of the mA,B’s.

Commutation of the other two diagrams follows from Proposition 2 and the observa-

tion that ρA
def
= π1 and λB

def
= π2.

Rather strikingly, the converse holds as well: these two notions of functors between

cartesian categories coincide.

Theorem 25. Any strong monoidal functor between two cartesian categories is product-

preserving.

Proof. Note that m−1
0 : F1 −→ 1 is necessarily equal to the unique arrow !F1 :

F1 −→ 1 to the terminal object 1. Hence, it suffices to show that, for any A,B ∈ C,
m−1
A,B = 〈Fπ1, Fπ2〉.

We will first show a particular case, viz. that

m−1
A,1 = 〈Fπ1, Fπ2〉

from which the general case will follow. Remembering that ρA
def
= π1 : A× 1→ A, we

have that ρ−1
A = 〈idFA, !FA〉 : FA→ FA× 1. Hence, by reversing ρA and mA,1 in the

first diagram of (7.2), we obtain

m−1
A,1 = (idA ×m0) ◦ 〈idFA, !FA〉 ◦ Fπ1 = 〈Fπ1,m0 ◦ !F (A×1)〉 : F (A× 1)→ FA× F1

80

But, as m0 : 1
∼=−→ F1, F1 is also a terminal object, and any arrow into it is of the

form m0 ◦ !A : A→ F1. This applies to Fπ2 : F (A× 1)→ F1, so

m−1
A,1 = 〈Fπ1, Fπ2〉

Now for the general case. As mA,B is a natural isomorphism, its inverse is a

natural transformation with components m−1
A,B. The naturality square for (idA, !B) is

F (A×B) FA× FB

F (A× 1) FA× F1

m−1
A,B

F (idA×!B) idFA×F (!B)

m−1
A,1

Calculating down and across gives

m−1
A,1 ◦ F (idA × !B) = 〈Fπ1, Fπ2〉 ◦ F (idA × !B) = 〈Fπ1, F (!B ◦ π2)〉

whereas across and down gives

(idFA × F (!B)) ◦m−1
A,B = 〈π1 ◦m−1

A,B, F (!B) ◦ π2 ◦m−1
A,B〉

The first two components of these should be equal, therefore π1 ◦ m−1
A,B = Fπ1.

Similarly, π2 ◦m−1
A,B = Fπ2, and hence m−1

A,B = 〈Fπ1, Fπ2〉.

7.2.2 Monoidal natural transformations

The standard notion of natural transformation between lax monoidal functors is the

following:

Definition 18. Let F,G : C −→ D be two lax monoidal functors between two

cartesian categories C,D. A monoidal natural transformation between F and G is a

natural transformation α : F ⇒ G such that the following diagrams commute:

FA× FB GA×GB

F (A×B) G(A×B)

αA×αB

mA,B nA,B

αA×B

1

F1 G1

n0
m0

α1

Surprisingly, it is not hard to show that

Theorem 26. If F,G : C −→ D are product-preserving functors between two carte-

sian categories, then any natural transformation α : F ⇒ G is a monoidal natural

transformation.

81

Proof. We trivially have !G1 ◦ α1 = !F1. But !G1 and !F1 are isomorphisms, so—

by inverting them—we obtain α1 ◦ m0 = n0. Furthermore, we have the following

naturality diagram:

F (A×B) FA

G(A×B) GA

Fπ1

αA×B αA

Gπ1

and a similar one for B. Hence, n−1
A,B ◦ αA×B

def
= 〈Gπ1, Gπ2〉 ◦ αA×B is equal to

〈Gπ1 ◦ αA×B, Gπ2 ◦ αA×B〉 = 〈αA ◦ Fπ1, αB ◦ Fπ2〉 = (αA × αB) ◦ 〈Fπ1, Fπ2〉

which is just (αA × αB) ◦m−1
A,B. It then suffices to reverse mA,B and nA,B.

7.3 Categorical models of modal logic

In this section we introduce the main definitions of the structures needed to produce

categories that can interpret our modal calculi. We begin with the basic two examples

of Kripke categories (K), and Bierman–de Paiva categories (S4). These are the most

well-behaved, and most commonly encountered cases. We then discuss the slightly

more obscure cases of Kripke-4 categories (K4), Kripke-T categories (T), and finally

Gödel-Löb categories (GL).

7.3.1 Kripke categories

The combination of a CCC with a product-preserving endofunctor is the quintessential

structure in our development, so we give it a name.

Definition 19. A Kripke category (C,×,1, F) is a cartesian closed category C along

with a product-preserving endofunctor F : C −→ C.

Kripke categories are the minimal setting in which one can model Scott’s rule (see

§2.5.2), by defining an operation

(−)• : C

(
n∏
i=1

Ai, B

)
→ C

(
n∏
i=1

FAi, FB

)
as follows:

f :
n∏
i=1

Ai → B

f •
def
=

n∏
i=1

FAi
m(n)

−−→ F

(
n∏
i=1

Ai

)
Ff−→ FB

82

The operation (−)• satisfies the following ‘distribution’ laws.

Proposition 3.

1. Let f :
∏n

i=1Bi → C and gi :
∏k

j=1Aj → Bi for i = 1, . . . , n. Then

(f ◦ 〈−→gi 〉)
•

= f • ◦
〈−→
g•i

〉
2. For f :

∏n
i=1Ai → B and 〈~πj〉 :

∏n
i=1 FAi →

∏
j∈J FAj for J a list with

elements from {1, . . . , n},

(f ◦ 〈~πj〉)• = f • ◦ 〈~πj〉

Proof. For (1):

(f ◦ 〈−→gi 〉)
•

= { definition, functoriality }

Ff ◦ F 〈−→gi 〉 ◦m(k)

= {F strong monoidal }

Ff ◦m(n) ◦ 〈
−→
Fgi〉 ◦m(k)

= { naturality of product morphism, definitions }

f • ◦
〈−→
g•i

〉
For (2), it suffices notice that π•j

def
= Fπj ◦m(n) = πj by Prop. 2.

7.3.2 Bierman-de Paiva categories

In order to model S4, we need a Kripke category whose product-preserving functor

is additionally a comonad.

Definition 20. A comonad (F, ε, δ) consists of an endofunctor F : C −→ C, and two

natural transformations

ε : F ⇒ Id, δ : F ⇒ F 2

such that the following diagrams commute:

FA F 2A

F 2A F 3A

δA

δA δFA

FδA

FA F 2A

F 2A FA

δA

δA
idFA εFA

FεA

83

In particular, we will require that the comonad used is monoidal, in that it satsfies

some additional coherence conditions.

Definition 21. A monoidal comonad on a cartesian category C is a comonad (F, ε, δ)

such that F : C −→ C is a lax monoidal functor, and ε : F ⇒ Id and δ : F ⇒ F 2 are

monoidal natural transformations. Concretely, this amounts to commutation of the

following diagrams:

FA× FB A×B

F (A×B) A×B

εA×εB

mA,B

εA×B

1

F1 1

m0

ε1

(7.3)

FA× FB F 2A× F 2B

F (FA× FB)

F (A×B) F 2(A×B)

δA×δB

mA,B

mFA,FB

FmA,B

δA×B

1

F1

F1 F 21

m0

m0

Fm0

δ1

(7.4)

However, since the functors that we use are product-preserving, or strong monoidal,

it follows automatically by Theorem 26 that

Corollary 4. If (F, ε, δ) is a comonad whose functor F is product-preserving, then it

is a monoidal comonad.

We shall not hence explicitly worry about monoidality, neither in this section nor in

the ones that follow it. We will, however, use the equations with which it furnishes

our natural transformations without further explanation.

Definition 22. A Bierman-de Paiva category (BdP category) (C,×,1, F, ε, δ) is a

Kripke category (C,×,1, F) whose functor F : C −→ C is part of a comonad (F, ε, δ).

Bierman-de Paiva categories are the minimal setting in which both the Four and

T rules can be modelled. The T rule is modelled directly by the (monoidal) natural

transformation ε. On the other hand, the Four rule is modelled by (a generalisation

of) something already well-known in category theory, namely the co-Kleisli lifting :

(−)∗ : C

(
n∏
i=1

FAi, B

)
→ C

(
n∏
i=1

FAi, FB

)

84

which is defined as follows:

f :
n∏
i=1

FAi → B

f ∗
def
=

n∏
i=1

FAi

∏n
i=1 δAi−−−−−→

n∏
i=1

F 2Ai
m(n)

−−→ F

(
n∏
i=1

FAi

)
Ff−→ FB

This operation interacts in a useful manner with the transformations δ and ε.

Proposition 4.

1. Let f :
∏n

i=1 FAi → B. Then δB ◦ f ∗ = (f ∗)∗.

2. Let f :
∏n

i=1 FAi → B. Then εB ◦ f ∗ = f .

Proof.

1. Let E
def
=
∏n

i=1 FAi. Then

δB ◦ f ∗

= { definition }

δB ◦ Ff ◦m(n) ◦
n∏
i=1

δAi

= { δ natural }

F 2f ◦ δE ◦m(n) ◦
n∏
i=1

δAi

= {monoidal equation for δ }

F 2f ◦ Fm(n) ◦m(n) ◦
n∏
i=1

δFAi
◦

n∏
i=1

δAi

= { product is functorial }

F 2f ◦ Fm(n) ◦m(n) ◦
n∏
i=1

δFAi
δAi

= { equation of comonads }

F 2f ◦ Fm(n) ◦m(n) ◦
n∏
i=1

FδAi
δAi

= { product functorial, F product-preserving }

F 2f ◦ Fm(n) ◦ F

(
n∏
i=1

δAi

)
◦m(n) ◦

n∏
i=1

δAi

= {F functor, definitions }

(f ∗)∗

85

2. Straightforward calculation involving—amongst other things—the naturality

and monoidality of ε.

The co-Kleisli extension also satisfies a handful of very useful equations:

Proposition 5.

1. id∗FA = δFA

2. ε∗A = idFA

3. Let f :
∏n

i=1Bi → C and gi :
∏k

j=1 FAj → Bi for i = 1, . . . , n. Then

(f ◦ 〈−→gi 〉)
∗

= f • ◦
〈−→
g∗i

〉
4. For ki :

∏m
j=1 FAj → Bj and l :

∏n
i=1 FBi → C,(

l ◦
〈−→
k∗i

〉)∗
= l∗ ◦

〈−→
k∗i

〉
5. For f :

∏n
i=1 FAi → B and 〈~πj〉 :

∏n
i=1 FAi →

∏
j∈J FAj for J a list with

elements from {1, . . . , n},

(f ◦ 〈~πj〉)∗ = f ∗ ◦ 〈~πj〉

Proof. (1) and (2) are standard comonad equations. (3) is a straightforward cal-

culation, similar to Proposition 3(1). (4) follows from (3), Proposition 4(1), and

f ∗
def
= f • ◦

∏
δ. (5) is a corollary of (3), once we notice that π∗i = δAi

◦ πi, and use of

f ∗
def
= f • ◦

∏
δ.

Idempotence It is interesting to separately consider those BdP categories for which

the comonad (F, ε, δ) is idempotent, i.e. δ : F ⇒ F 2 is an isomorphism (which is to say

each of its components are). There are many equivalent ways to define idempotence—

see (Borceux, 1994, §4.3.2). One of them is that δFA ◦ εFA = idF 2A for each object

A. Here, we will use the equation FεA = εFA for each object A. Restated in our

notation:

ε•A = εFA : F 2A→ FA

86

Proposition 6. If (F, ε, δ) is idempotent, then

(εB ◦ f)∗ = f

for f :
∏n

i=1 FAi → FB.

Proof. By Proposition 5(3), (ε ◦ f)∗ = ε• ◦ f ∗ = ε ◦ f ∗ = f

This situation creates an additional sort of naturality for (−)∗, essentially by making

Proposition 5(4) universally applicable.

Proposition 7. For any f :
∏m

j=1 FBj → FC, and any kj :
∏n

i=1 FAi → FBj, we

have (
f ◦
〈−→
ki

〉)∗
= f ∗ ◦

〈−→
ki

〉
Proof. Using Propositions 6 and 5(4),(

f ◦
〈−→
kj

〉)∗
=

(
f ◦
〈−−−−−−−→(
εBj
◦ kj

)∗〉)∗
= f ∗ ◦

〈−−−−−−−→(
εBj
◦ kj

)∗〉
= f ∗ ◦

〈−→
kj

〉

Thus, we have the following situation

Theorem 27 (Idempotence). (F, ε, δ) is idempotent if and only if the map

(−)∗ : C

(
n∏
i=1

FAi, B

)
→ C

(
n∏
i=1

FAi, FB

)

is an isomorphism, natural with respect to precomposition of morphisms k :
∏n

j=1 FDj →∏n
i=1 FAi.

Proof. For the backwards direction, the inverse of (−)∗ is εB ◦−: it is a left and right

inverse to (−)∗ by Propositions 4(2) and 6. Naturality follows by Proposition 7 once

we write k =
〈−−−→
πi ◦ k

〉
.

For the forwards direction, we calculate

δFA ◦ εFA = id∗FA ◦ εFA = (idFA ◦ εFA)∗ = ε∗FA = idF 2A

by Prop. 5(1), naturality for εFA : F 2A→ FA, and Prop. 5(2).

87

7.3.3 Kripke-4 categories

Kripke-4 categories model K4; they are essentially ‘half a comonad,’ namely the half

that consists of the comultiplication δ. We still require that one of the comonadic

equations, viz. the one that only refers to δ, holds.

Definition 23. A Kripke-4 category (C,×,1, F, δ) is a Kripke category (C,×,1, F)

along with a natural transformation δ : F ⇒ F 2 such that the following diagram

commutes:

FA F 2A

F 2A F 3A

δA

δA δFA

FδA

We know once more, by Theorem 26, that δ : F ⇒ F 2 is a monoidal natural trans-

formation, which means that the diagrams (7.4) commute.

We can model the general version of Four rule in Kripke-4 categories, but in a way

that is slightly more involved than the simple co-Kleisli lifting of Bierman–de Paiva

categories. They are the minimal setting in which this can happen; see §2.5.2. To see

this, let (C,×,1, F, δ) be a Kripke-4 category, and write

n∏
i=1

Ai ×l
m∏
j=1

Bj

to mean the left-associating product A1 × · · · × An ×B1 × · · · ×Bm. Also, write

〈
−→
fi ,
−→gi ,
−→
hj〉

to mean the left-associating mediating morphism 〈f1, . . . , fn, g1, . . . , gm, h1, . . . , gp〉.
With this notation we can now define a map of hom-sets

(−)# : C

(
n∏
i=1

FAi ×l
n∏
i=1

Ai, B

)
→ C

(
n∏
i=1

FAi, FB

)
as follows:

f :
n∏
i=1

FAi ×l
n∏
i=1

Ai → B

f# def
=

n∏
i=1

FAi
〈
−−−→
δAi

πi,
−→πi〉−−−−−→

n∏
i=1

F 2Ai ×l
∏
i=1

Ai
m(2n)

−−−→ F

(
n∏
i=1

FAi ×l
n∏
i=1

Ai

)
Ff−→ B

Even though it might seem slightly unnatural at first sight, we can show that the

(−)# operation satisfies some equations similar to the ones encountered before.

88

Proposition 8.

1. Let f :
∏n

i=1Bi → C and gi :
∏k

j=1 FAj×l
∏k

j=1Aj → Bi for i = 1, . . . , n. Then

(f ◦ 〈−→gi 〉)
#

= f • ◦
〈−→
g#
i

〉
2. Let J be a list with elements from {1, . . . , n}. Then we have

(f ◦ 〈−→πFj,−→πj 〉)
#

= f# ◦ 〈−→πj 〉

where 〈−→πFj,−→πj 〉 :
∏n

i=1 FAi×l
∏n

i=1Ai →
∏

j∈J FAj×l
∏

j∈J Aj is the projection

that ‘follows J in both contexts’
∏n

i=1 FAi and
∏n

i=1Ai.

3. For k :
∏n

i=1 FAi ×l
∏n

i=1 Ai → B and l : FB → C, then

(l ◦ k#)∗ = l∗ ◦ k#

Proof. Straightforward calculations, similar to Propositions 3 and 5.

Proposition 9. Let f :
∏n

i=1 FAi ×l
∏n

i=1Ai → B. Then

δB ◦ f# =
(
f#
)∗

89

Proof. Let E
def
=
∏n

i=1 FAi ×l
∏n

i=1Ai. Then

δB ◦ f#

= { definition }

δB ◦ Ff ◦m(2n) ◦ 〈
−−→
δAi
πi,
−→πi 〉

= { δ natural }

F 2f ◦ δE ◦m(2n) ◦ 〈
−−→
δAi
πi,
−→πi 〉

= { δ monoidal }

F 2f ◦ Fm(2n) ◦m(2n) ◦

(
n∏
i=1

δFAi
×l

n∏
i=1

δAi

)
◦ 〈
−−→
δAi
πi,
−→πi 〉

= { product after bracket law }

F 2f ◦ Fm(2n) ◦m(2n) ◦
〈−−−−−−→
δFAi

δAi
πi,
−−→
δAi
πi

〉
= { law pertaining to δ }

F 2f ◦ Fm(2n) ◦m(2n) ◦
〈−−−−−−→
FδAi

δAi
πi,
−−→
δAi
πi

〉
= { naturality of product morphisms, projections }

F 2f ◦ Fm(2n) ◦m(2n) ◦
〈−−−−→
FδAi

πi,
−→πi
〉
◦
〈−−→
δAi
πi

〉
= {Proposition 2 }

F 2f ◦ Fm(2n) ◦m(2n) ◦
〈−−−−−−−−−−→
FδAi

Fπi ◦m(n),
−−−−−−−→
Fπi ◦m(n)

〉
◦
〈−−→
δAi
πi

〉
= { naturality of product morphism, F strong monoidal }

F 2f ◦ Fm(2n) ◦ F
(〈−−→
δAi
πi,
−→πi
〉)
◦m(n) ◦

〈−−→
δAi
πi

〉
= { definitions }

Ff# ◦m(n) ◦
n∏
i=1

δAi

When the morphism of type
∏n

i=1 FAi ×l
∏n

i=1Ai → B does not depend on the

Ai, then the operation (−)# is reduced to (−)∗.

Proposition 10. Let f :
∏n

i=1 FAi → B. Then, writing π :
∏n

i=1 FAi ×l
∏n

i=1Ai →∏n
i=1 FAi for the projection,

(f ◦ π)# = f ∗

90

Proof. We calculate:

(f ◦ π)#

= { definition }

F (f ◦ 〈−−→πFAi
〉) ◦m(2n) ◦ 〈

−−→
δAi
πi,
−→πi 〉

= { functoriality, and Proposition 1 }

Ff ◦m(n) ◦ 〈
−−−−→
FπFAi

〉 ◦m(2n) ◦ 〈
−−→
δAi
πi,
−→πi 〉

= { naturality of product morphism, and Proposition 2 }

Ff ◦m(n) ◦ 〈−−−→πF 2Ai
〉 ◦ 〈
−−→
δAi
πi,
−→πi 〉

= { naturality of product morphisms, projections }

Ff ◦m(n) ◦ 〈
−−→
δAi
πi〉

And, finally, we prove another crucial distribution property of (−)#. Namely, if we

substitute ‘the same thing’ for both contexts, the hash distributes as such:

Proposition 11. Let f :
∏n

i=1 FBi ×
∏n

i=1 Bi → B, and gi :
∏n

i=1 FAi ×
∏n

i=1Ai →
Bi. Then, writing π :

∏n
i=1 FAi ×

∏n
i=1 Ai →

∏n
i=1 FAi for the projection,(

f ◦ 〈
−−−−→
g#
i ◦ π,

−→gi 〉
)#

= f# ◦
〈−→
g#
i

〉
Proof. (

f ◦
〈−−−−→
g#
i ◦ π,

−→gi
〉)#

= {Proposition 8(1) }

f • ◦

〈−−−−−−−→(
g#
i ◦ π

)#

,
−→
g#
i

〉
= {Proposition 10 }

f • ◦
〈−−−−→(

g#
i

)∗
,
−→
g#
i

〉
= {Proposition 9 }

f • ◦
〈−−−→
δ ◦ g#

i ,
−→
g#
i

〉
= { definitions }

f# ◦ 〈
−→
g#
i 〉

91

7.3.4 Kripke-T categories

The following structure will be the categorical analogue to the logic T.

Definition 24. A Kripke-T category (C,×,1, F, ε) is a Kripke category (C,×,1, F)

along with a natural transformation

ε : F ⇒ Id

Using Theorem 26 again we see ε : F ⇒ Id is a monoidal natural transformation, the

diagrams (7.3) commute. Modelling the T rule from §2.5.2 amounts to precomposition

with the product of a bunch of components of ε : F ⇒ Id. This operation interacts

nicely with Scott’s rule:

Proposition 12. Let f :
∏n

i=1Ai → B. Then

εB ◦ f • = f ◦
n∏
i=1

εAi

Proof. Let E
def
=
∏n

i=1Ai. Then

εB ◦ f • = εB ◦ Ff ◦m(n) = f ◦ εE ◦m(n) = f ◦
n∏
i=1

εAi

by the definition of (−)•, the naturality of ε, and its being a monoidal transformation.

7.3.5 Gödel-Löb categories

We are looking for a setting where Löb’s rule can be modelled. This requires a notion

of modal fixed point.

Definition 25 (Modal Fixed Point). Let (C,×,1, F, δ) be a Kripke-4 category. A

modal fixed point of f :
∏n

i=1 FBi ×
∏n

i=1 Bi × FA→ A is an arrow

f † :
n∏
i=1

FBi → FA

such that the following diagram commutes:

∏n
i=1 FBi F (

∏n
i=1 FBi ×

∏n
i=1 Bi)× F 2A

FA

〈id#,(f†)
∗
〉

f†

f•

92

Definition 26 (Modal Fixed Points). Given Kripke-4 category (C,×,1, F, δ), an

object A ∈ C has modal fixed points just if for any Bi ∈ C there is a hom-set map

(−)†−→
B

: C

(
n∏
i=1

FBi ×
n∏
i=1

Bi × FA,A

)
→ C

(
n∏
i=1

FBi, FA

)

such that f †−→
B

is a modal fixed point of each f :
∏n

i=1 FBi ×
∏n

i=1 Bi × FA→ A.

We will often write f †, dropping the subscript entirely. This is an external spec-

ification of modal fixed points, in the sense that they are given as a map on the

hom-sets of the Kripke-4 category. We might instead consider an internal specifi-

cation, i.e. through an appropriate notion of a modal fixed point combinator. This

will—unsurprisingly—be an arrow F (AFA)→ FA, which is the type of the Gödel-Löb

axiom �(�A→ A)→ �A of provability logic. This kind of combinator comes in two

varieties.

Definition 27. Let (C,×,1, F, δ) be a Kripke-4 category.

1. A strong modal fixed point combinator at A ∈ C is an arrow

YA : F (AFA)→ FA

such that the following diagram commutes:

F (AFA) F (AFA)× F 2A

FA

〈id,Y ∗A〉

YA
ev•

2. A weak modal fixed point combinator at A ∈ C is an arrow

YA : F (AFA)→ FA

such that for each B and f :
∏n

i=1 FBi ×
∏n

i=1Bi × FA→ A,

n∏
i=1

FBi
(λ(f))#−−−−→ F (AFA)

YA−→ FA

is a modal fixed point of f .

We can prove that having a modal fixed point combinator at A, as above, is equivalent

to having modal fixed points at A. But to do so we will need a lemma concerning

cartesian closure in this setting.

93

Lemma 9. If f :
∏n

i=1 FAi ×
∏n

i=1Ai × FB → B and a :
∏n

i=1 FAi → F 2A, then

ev• ◦ 〈(λf)# , a〉 = f • ◦ 〈id#, a〉

Proof. Calculation:

ev• ◦ 〈(λf)# , a〉

= { definitions }

F ev ◦m ◦
〈
F (λf) ◦m ◦ 〈

−→
δπi,
−→πi 〉, a

〉
= { product equation, definition of (−)∗ }

F ev ◦m ◦ (F (λf)× id) ◦
〈
m ◦ 〈

−→
δπi,
−→πi 〉, a

〉
= {m natural }

F ev ◦ F (λf × id) ◦m ◦
〈
m ◦ 〈

−→
δπi,
−→πi 〉, a

〉
= { cartesian closure, definition of (−)• and (−)# }

f • ◦
〈
id#, a

〉

Theorem 28. Let there be a Kripke-4 category (C,×,1, F, δ). Then the following are

equivalent:

1. There is a strong modal fixed point combinator at A.

2. There is a weak modal fixed point combinator at A.

3. The object A ∈ C has modal fixed points.

Proof. To prove (1)⇒ (2), if we are given such a Y we calculate

Y ◦ λf#

= { definition of strong mfpc, naturality of product morphism }

ev• ◦ 〈λf#, Y ∗ ◦ λf#〉

= {Proposition 8(3) }

ev• ◦ 〈λf#, (Y ◦ λf#)∗〉

= {Proposition 9 }

f • ◦ 〈id#, (Y ◦ λf#)∗〉

94

so Y indeed yields modal fixed points. (2) ⇒ (3) is trivial, so it remains to show

(3)⇒ (1). Let

g
def
= F (AFA)× AFA × FA 〈π2,π3〉−−−−→ AFA × FA ev−→ A

We show that g† : F (AFA) → FA is a strong modal fixed point combinator at A.

Indeed, it is not very hard to calculate that

g† = ev• ◦ 〈id,
(
g†
)∗〉

We formulate the following naturality property of modal fixed points, which is partly

reminiscent of the ones in (Simpson and Plotkin, 2000), but also resembles Proposition

11.

Proposition 13. If we define (−)†B by a weak modal fixed point combinator, then the

resulting modal fixed points are natural, in the sense that for any f :
∏n

i=1 FAi ×∏n
i=1 Ai × A → A and any gi :

∏m
j=1 FBj ×

∏m
j=1 Bj → Bi, then, writing π :∏m

j=1 FBi ×
∏m

j=1Aj →
∏m

j=1 FBi for the projection,(
f ◦
(〈−−−−→

g#
i ◦ π,

−→
g#
i

〉
× idA

))†
= f † ◦

〈−→
g#
i

〉
Proof. The LHS is equal to

Y ◦
(
λ

(
f ◦
(〈−−−−→

g#
i ◦ π,

−→
g#
i

〉
× idA

)))#

which, using naturality of λ(−) and Proposition 11, is equal to Y ◦ (λ(f))# ◦
〈−→
g#
i

〉
,

and hence to the RHS.

We can finally define:

Definition 28. A Gödel-Löb category
(
C,×,1, F, δ, (−)†

)
is a Kripke-4 category

(C,×,1, F, δ) that has modal fixed points at all objects A, given by maps

(−)†−→
B,A

: C

(
n∏
i=1

FBi ×
n∏
i=1

Bi × FA,A

)
→ C

(
n∏
i=1

FBi, FA

)
which, moreover, are natural, in the sense that for any f :

∏n
i=1 FAi×

∏n
i=1 Ai×A→ A

and gi :
∏m

j=1 FBj ×
∏m

j=1Bj → Bi,(
f ◦
(〈−−−−→

g#
i ◦ π,

−→
g#
i

〉
× idA

))†
−→
B,A

= f †−→
A,A
◦
〈−→
g#
i

〉
95

The preceding theorem (Theorem 28) assures us that, as long as we are given a

Kripke-4 category, it does not matter whether we are given a strong modal fixed point

combinator, a weak modal fixed point combinator, or simply modal fixed points, as

we can turn any of these three flavours into a standard Gödel-Löb category.

Finally, to close this section we show that whenever the modal fixed point has no

‘diagonal’ occurences, it deteriorates to the (−)# operation.

Proposition 14. If f :
∏n

i=1 FAi×
∏n

i=1Ai×A→ B and π :
∏n

i=1 FAi×
∏n

i=1Ai×
A→

∏n
i=1 FAi ×

∏n
i=1Ai is the obvious projection, then

(f ◦ π)† = f#

Proof. Writing g
def
= (f ◦ π)†, we have

g = (f ◦ π)• ◦
〈
id#, g∗

〉
= f • ◦ π ◦

〈
id#, g∗

〉
= f • ◦ id# = (f ◦ id)# = f#

by the definition of modal fixed point, and Prop. 3(2), 8(1).

96

Chapter 8

Categorical semantics

In this chapter we use the modal category theory developed in §7 to formulate a

categorical semantics for our dual-context calculi. This completes the circle in terms

of the Curry-Howard-Lambek correspondence, showing the following associations:

CK ←→ DK ←→ Kripke categories
CK4 ←→ DK4 ←→ Kripke-4 categories
CGL ←→ DGL ←→ Gödel-Löb categories
CT ←→ DT ←→ Kripke-T categories
CS4 ←→ DS4 ←→ Bierman-de Paiva categories

where the first bi-implication refers to provability, and the second to soundness and

completeness of the dual-context calculus with respect to the type of category on the

right. Of the latter half, only soundness of DS4 in Bierman-de Paiva categories has

been previously obtained by Hofmann (1999).

We begin by endowing our calculi with an equational theory, and then proceed to

show soundness and completeness with respect to it.

8.1 Equational theory

To state the full set of equations, we will need the notion of term contexts, i.e. terms

with a single hole.

Definition 29 (Term Contexts).

1. Term contexts C[−] are defined by

C[−] ::= [−] | λx:A. C[−] | C[−] M |M C[−]

| 〈C[−],M〉 | 〈M,C[−]〉 | πi(C[−])

| box C[−] | let box u⇐ C[−] in M

| let box u⇐M in C[−]

97

2. C[−] is non-modal just if it is generated without the clause box C[−].

3. C[−] does not bind u just if it is generated without the clause let box u ⇐
C[−] in C[−] nor the clause λu:A.C[−].

We write C[M] for the term that results from (capture-insensitive) substitution of

the term M for the hole [−] of the term context C[−].

The equational rules that pertain to all our systems can be found in Figure 8.1,

whereas the equations for the various modalities can be found in Figure 8.2. To obtain

the complete set, one should also add congruences, and rules that makes equality an

equivalence relation. We need not include substitution rules:

Theorem 29. Structural rules of weakening, exchange and contraction for contexts

are admissible in the equational theory. Furthermore, the following rules are derivable

in the equational theory:

1. Substitution:

∆ ; Γ, x:A `M = N : C ∆ ; Γ ` P = Q : A

∆ ; Γ `M [P/x] = N [Q/x] : C

2. Modal Substitution; for example, in the case of DK:

∆, u:A ; Γ `M = N : C · ;∆ ` P = Q : �A

∆ ; Γ `M [P/u] = N [Q/u] : C

8.1.1 Commuting Conversions

The most interesting rules are the unavoidable commuting conversions that arise from

the study of the categorical semantics of our systems.

The rule (commweak) is a ‘weakening’ rule that disposes of an explicit substitution

that binds a non-occurring variable. This rule has never been considered in the study

of dual-context systems, for DILL (Barber, 1996) was a linear system, and Davies

and Pfenning (Pfenning and Davies, 2001) studied neither reduction nor equality.

However, a similar rule was proposed by Goubault-Larrecq (1996) in his study of

Bierman and de Paiva’s calculus for S4. This rule was later included in (Bierman and

de Paiva, 2000).

(commcontr) is a ‘contraction’ rule. This is also unfamiliar in dual-context calculi—

essentially for the same reasons as (commweak)—but is also well-known in Bierman–

de Paiva style calculi as a ‘garbage collection’ rule: see (Goubault-Larrecq, 1996),

(Bierman and de Paiva, 2000) and (Kakutani, 2007).

98

Function Spaces

∆ ; Γ, x:A `M : B ∆ ; Γ ` N : A
(→ β)

∆ ; Γ ` (λx:A.M)N = M [N/x] : B

∆ ; Γ `M : A→ B x 6∈ fv (M)
(→ η)

∆ ; Γ `M = λx:A.Mx : A→ B

Modality

∆ ; Γ `M : �A
(�η)

∆ ; Γ ` let box u⇐M in box u = M : �A

∆ ; Γ `M = N : �A ∆ ; Γ ` P = Q : C
(�let-cong)

∆ ; Γ ` let box u⇐M in P = let box u⇐ N in Q : B

Commuting Conversions

(commlet)

∆ ; Γ ` C[let box u⇐M in N] : C C[−] is non-modal, does not bind u

∆ ; Γ ` let box u⇐M in C[N] = C[let box u⇐M in N] : C

(commweak)

∆ ; Γ ` N : C ∆ ; Γ `M : �A u 6∈ fv (N)

∆ ; Γ ` let box u⇐M in N = N : C

(commcontr)

∆ ; Γ `M : �A ∆, u:A, v:A ; Γ ` N : C u, v 6∈ fv (M)

∆ ; Γ ` let box u⇐M in let box v ⇐M in N = let box w ⇐M in N [w,w/u, v] = N : C

Remark. In addition to the above, one should also include (a) rules that ensure that
equality is an equivalence relation, and (b) congruence rules for λ-abstraction and
application.

Figure 8.1: Equations for all systems

99

For DK and DT:

· ; ∆ `M : A ∆, u : A ; Γ ` N : C
(�βK)

∆ ; Γ ` let box u⇐ box M in N = N [M/x] : C

· ; ∆ `M = N : A
(�congK)

∆ ; Γ ` box M = box N : �A

For DK4:

∆ ; ∆⊥ `M⊥ : A ∆, u:A ; Γ ` N : C
(�βK4)

∆ ; Γ ` let box u⇐ box M in N = N [M/x] : C

∆ ; ∆⊥ `M⊥ = N⊥ : A
(�congK4)

∆ ; Γ ` box M = box N : �A

For DGL:

∆ ; ∆⊥, z⊥ : �A `M⊥ : A ∆, u:A ; Γ ` N : C
(�βGL)

∆ ; Γ ` let box u⇐ fix z in box M in N = N [M [fix z in box M/z] /u] : C

∆ ; ∆⊥, z⊥ : �A `M⊥ = N⊥ : A
(�congGL)

∆ ; Γ ` fix z in box M = fix z in box N : �A

For DS4:

∆ ; · `M : A ∆, u : A ; Γ ` N : C
(�βS4)

∆ ; Γ ` let box u⇐ box M in N = N [M/x] : C

∆ ; · `M = N : A
(�congS4)

∆ ; Γ ` box M = box N : �A

Figure 8.2: Equations for the modalities

100

‘Exchange’ is treated as part of the much more general rule (commlet), which

makes ‘let’ constructs commute with all term formers except box (−). In its most

general form, it is the equality

C[let box u⇐M in N] = let box u⇐M in C[N]

for any C that does not bind u, and whose hole [−] is not included within a box (−).

Read in one direction, (commlet) allows one to ‘pull’ an explicit substitution to an

outermost position, as long as nothing extra is bound in the process. In the other

direction, it allows one to ‘push’ an explicit substitution as deeply as one can without

creating any free occurrences.

A variant of this rule was considered in the study of DILL by Barber (1996), and

is also mentioned by Kakutani (2007). We remark that (commlet) includes a form

of ‘exchange’ as a special case, by swapping of the order of non-interacting explicit

substitutions; this special case is thoroughly studied by Goubault-Larrecq (1996).

8.1.2 The η rule

As is usual with positive type formers, of which � is an example, there are two ways

to express the η rule. The first is the straightforward way, viz. that introduction is

post-inverse to elimination for any term of the type: for any term ∆ ; Γ `M : �A,

∆ ; Γ `M = let box u⇐M in box u : �A

The second version of that is a kind of Paul’s rule,1 which allows us to η-expand a

term of modal type, no matter where (or how many times) it is found in a well-typed

term:
∆ ; Γ `M : �A ∆ ; Γ, x : �A ` N : B

∆ ; Γ ` N [M/x] = let box v ⇐M in N [box v/x] : B

In fact,

Theorem 30. In the presence of commuting conversions, the η rule and the modal

Paul’s rule are equivalent.

Proof. Certainly the η rule is a special case of Paul’s rule. In the opposite direction,

we proceed by induction on the derivation of the term N . Most cases are simple. For

1So called here because a similar rule for coproducts was taught to the author by Paul Blain
Levy.

101

products, we have that

〈N1, N2〉[M/x]

≡ { substitution }

〈N1[M/x], N2[M/x]〉

= { IH, twice }

〈let box u⇐M in N1[box u/x], let box v ⇐M in N2[box v/x]〉

= { (commlet), twice }

let box u⇐M in let box v ⇐M in 〈N1[box u/x], N2[box v/x]〉

= { (commcontr) }

let box w ⇐M in 〈N1[box w/x], N2[box w/x]〉

≡ { substitution }

let box w ⇐M in N [box w/x]

A similar ‘collapsing step’ is also needed in the case of let. The case for box M is

simple, as in all of our type theories x does not occur in M ; the result hence follows

by (commweak).

Idempotence The (commlet) rule avoided instances of the commutation between

a let and a box. If such commutations were allowed, we would have, for example, the

following equality in DS4:

∆ ; Γ ` box (let box u⇐M in N) = let box u⇐M in box N : C

for ∆ ; · ` M : �A and ∆, u : A ; · ` N : C. We will later show that these rules

are sound for the categorical semantics of DS4 if and only if the comonad used to

interpret � is idempotent.

In fact, there are three equivalent ways to present idempotence in DS4. The first

two roughly say that box (−) and let commute. The third is a strong form of Paul’s

rule, this time for modal variables.

Theorem 31. The following rules are equivalent

1.
∆ ; · `M : �A ∆, u : A ; · ` N : B

∆ ; Γ ` box (let box u⇐M in N) = let box u⇐M in box N : �B

102

2.
∆ ; Γ ` C[let box u⇐M in N] : B C[−] does not bind u

∆ ; Γ ` let box u⇐M in C[N] = C[let box u⇐M in N] : B

3.
∆ ; · `M : �A ∆, u : �A ; Γ ` N : B

∆ ; Γ ` N [M/u] = let box v ⇐M in N [box v/u] : B

Proof. (1) is a special case of (2). To prove (2) from (1), we proceed by induction on

C: use the commuting conversion (commlet) for the non-modal cases, and then (1)

for the modal case C[−]
def
= box C ′[−]. If we have the premises of (1), we can show

that, by (3),

(box (let box u⇐ v in N)) [M/v] : �B

is equal to

let box w ⇐M in (box (let box u⇐ v in N)) [box w/v] : �B

The first expression simplifies to box (let box u⇐M in N), and the second to

let box w ⇐M in (box (let box u⇐ box v in N))

which, by one step of β-reduction and α-conversion is equal to let box u⇐M in box N .

We can show (3) from (1) by induction on the derivation of N as before, but using

(1) for the crucial case of box N ′.

8.2 Categorical interpretation

We are now fully equipped to define the categorical semantics of our dual-context

systems. For background on the categorical semantics of simply-typed λ-calculus in

cartesian closed categories, we refer to the classics by Lambek and Scott (1988) and

Crole (1993), as well as the detailed presentation of Abramsky and Tzevelekos (2011).

We start by interpreting types and contexts. Given any Kripke category (C,×,1, F),

and a map I(−) associating each base type pi with an object I(pi) ∈ C, we define an

object JAK ∈ C for every type A by induction:

JpiK
def
= I(pi)

JA→ BK def
= JBKJAK

J�AK def
= F JAK

103

Then, given a well-defined context ∆ ; Γ where ∆ = u1:B1, . . . un:Bn and Γ =

x1:A1, . . . , xm:Am, we let

J∆ ; ΓK def
= FB1 × · · · × FBn × A1 × · · · × Am

where the product is, as ever, left-associating.

We then extend the semantic map J−K to associate an arrow

J∆ ; Γ `M : AK : J∆ ; ΓK → JAK

of the category C to each derivation ∆ ; Γ `M : A. The definition for rules common

to all calculi are the same for all logics, but we use each of the maps defined in §7 to

interpret the different introduction rules for the modality. To do that we need more

than just a Kripke category: for K4 we need a Kripke-4 category; for T a Kripke-T

category, for GL a Gödel-Löb category, and for S4 a Bierman-de Paiva category.

The full definition is given in Figure 8.3. The map

π∆;Γ
∆ : J∆ ; ΓK → J∆ ; ·K

is the obvious projection. Moreover, the notation 〈−→π∆, f,
−→πΓ〉 stands for

〈−→π∆, f,
−→πΓ〉

def
= 〈π1, . . . , πn, f, πn+1, . . . , πn+m〉

8.3 Soundness

The main tools in proving soundness of our interpretation are (a) lemmas giving the

categorical interpretation of various admissible rules, and (b) a fundamental lemma

relating substitution of terms to composition in the category. In the sequel we often

use informal vector notation for contexts: for example, we write ~u : ~B for the context

u1 : B1, . . . , un : Bm. We also write [~N/~u] for the simultaneous, capture-avoiding

substitution [N1/u1, . . . , Nm/un].

First, we interpret weakening and exchange.

Lemma 10 (Semantics of Weakening).

1. Let ∆ ; Γ, x:C,Γ′ `M : A with x 6∈ fv (M). Then

J∆ ; Γ, x:C,Γ′ `M : AK = J∆ ; Γ,Γ′ `M : AK ◦ π

where π : J∆ ; Γ, x:C,Γ′K → J∆ ; Γ,Γ′K is the obvious projection.

104

Definitions for all calculi

J∆ ; Γ, x:A,Γ′ ` x : AK def
= π : J∆ ; Γ, x:A,Γ′K −→ JAK

J∆ ; Γ ` 〈M,N〉 : A×BK def
= 〈J∆ ; Γ `M : AK , J∆ ; Γ ` N : BK〉

J∆ ; Γ ` πi(M) : AiK
def
= πi ◦ J∆ ; Γ `M : A1 × A2K

J∆ ; Γ ` λx:A. M : A→ BK def
= λ (J∆ ; Γ, x : A `M : BK) : J∆ ; ΓK −→ JBKJAK

J∆ ; Γ `MN : BK def
= ev ◦ 〈J∆ ; Γ `M : A→ BK , J∆ ; Γ ` N : AK〉

J∆ ; Γ ` let box u⇐M in N : CK def
= J∆, u:A ; Γ ` N : CK ◦ 〈−→π∆, J∆ ; Γ `M : �AK ,−→πΓ〉

Definitions for various modalities

J∆, u:A,∆′ ; Γ ` u : AKL
def
= εJAK ◦ π : J∆, u:A,∆′ ; ΓK → JAK (for L ∈ {T, S4})

J∆ ; Γ ` box M : �AKL
def
= J· ; ∆ `M : AK• ◦ π∆;Γ

∆ (for L ∈ {K,T})

J∆ ; Γ ` box M : �AKK4

def
=

q
∆ ; ∆⊥ `M⊥ : A

y# ◦ π∆;Γ
∆

J∆ ; Γ ` fix z in box M : �AKGL

def
=

q
∆ ; ∆⊥, z⊥ : �A `M⊥ : A

y† ◦ π∆;Γ
∆

J∆ ; Γ ` box M : �AKS4

def
= J∆ ; · `M : AK∗ ◦ π∆;Γ

∆

Figure 8.3: Categorical Semantics

105

2. Let ∆, u:B,∆′ ; Γ `M : A with u 6∈ fv (M). Then

J∆, u:B,∆′ ; Γ `M : AK = J∆,∆′ ; Γ `M : AK ◦ π

where π : J∆, u:B,∆′ ; ΓK → J∆,∆′ ; ΓK is the obvious projection.

Proof. By induction on the two derivations. All cases are straightforward. The modal

one uses Propositions 3(2), 5(5), 8(2), and 13.

Lemma 11 (Semantics of Exchange).

1. Let ∆ ; Γ, x:C, y:D,Γ′ `M : A. Then

J∆ ; Γ, x:C, y:D,Γ′ `M : AK = J∆ ; Γ, y:D, x:C,Γ′ `M : AK ◦ (∼=)

where (∼=) : J∆ ; Γ, x:C, y:D,Γ′K
∼=−→ J∆ ; Γ, y:D, x:C,Γ′K is the obvious isomor-

phism.

2. Let ∆, u:C, v:D,∆′ ; Γ `M : A. Then

J∆, u:C, v:D,∆′ ; Γ `M : AK = J∆, v:D, u:C,∆′ ; Γ `M : AK ◦ (∼=)

where (∼=) : J∆, u:C, v:D ; ΓK
∼=−→ J∆, v:D, u:C ; ΓK is the obvious isomorphism.

Proof. By induction on the two derivations. All cases are straightforward.

Then, we move on to something particular to the cases of T and S4, namely the

interpretation of the Modal Dereliction rule—see Theorem 12.

Lemma 12 (Semantics of Dereliction). Let ∆ ; Γ,Γ′ `DL M : A where L ∈ {T, S4}
and Γ = ~z : ~C. Then

J∆,Γ ; Γ′ `M : AKL = J∆ ; Γ,Γ′ `M : AKL ◦
(−→
id∆ ×−→εCi

×
−→
idΓ′

)
Proof. By induction on the derivation of ∆ ; Γ,Γ′ `DL M : A. All cases are straight-

forward. The case for (�E) depends on the semantics of exchange lemma.

We also need to know that ‘boxing’ a variable results in the obvious projection. This

depends essentially on the fact our functors are product-preserving (and not just lax

monoidal).

Lemma 13 (Identity Lemma). For (ui : Bi) ∈ ∆, and L ∈ {K,K4,T, S4},

J∆ ; Γ ` box ui : �BiKL = π∆;Γ
�Bi

106

Proof.

Case(K, T).

J∆ ; Γ ` box ui : �BiK

= { definition }

J· ; ∆ ` ui : BiK
• ◦ π∆;Γ

∆

= { definition }(
π·;∆Bi

)•
◦ π∆;Γ

∆

= {Proposition 2, or Proposition 3(2) with f = id }

π∆;·
�Bi
◦ π∆;Γ

∆

= { projections }

π∆;Γ
�Bi

Case(K4).

J∆ ; Γ ` box ui : �BiK

= { definition }
q
∆ ; ∆⊥ ` u⊥i : Bi

y# ◦ π∆;Γ
∆

= { definition }(
π∆;∆⊥

Bi

)#

◦ π∆;Γ
∆

= { definition }

Fπ∆;∆⊥

Bi
◦m(2n) ◦ 〈

−−−→
δBi

πi,
−→πi 〉 ◦ π∆;Γ

∆

= {Proposition 2 }

π�∆;�∆⊥

�Bi
◦ 〈
−−−→
δBi

πi,
−→πi 〉 ◦ π∆;Γ

∆

= { projections }

π∆;Γ
�Bi

107

Case(S4).

J∆ ; Γ ` box ui : �BiK

= { definition }

J∆ ; · ` ui : BiK
∗ ◦ π∆;Γ

∆

= { definition }(
εBi
◦ π∆;·
�Bi

)∗
◦ π∆;Γ

∆

= {Proposition 5 }

ε∗Bi
◦ π∆;·
�Bi
◦ π∆;Γ

∆

= {Proposition 5, projections }

π∆;Γ
�Bi

We aim to show that substitution in the syntax corresponds to composition in the

semantics. To make this result work, we need to introduce a box (−) construct for

GL, we will write

box M
def
= fix w in box M

with w,w⊥ fresh. It is then not hard to see that the introduction rule of K4 is ad-

missible for GL when M has no occurrences of w⊥: we simply use weakening followed

by the introduction rule for GL. This derived operation is reflected in the semantics

by the equation

Proposition 15. J∆ ; Γ `DGL box M : �AK =
q
∆ ; ∆⊥ `DGL M

⊥ : A
y# ◦ π∆;Γ

∆

Proof. By the semantics of weakening and Proposition 14.

In short: when the variable that is being recursed over does not occur freely, the

situation degenerates to that of K4.

Lemma 14 (Semantics of Substitution). Suppose that ~u : ~B ; ~x : ~A `DL P : C. Let

∆ ; Γ `DL Mi : Ai for i = 1, . . . , n, and let

αi
def
= J∆ ; Γ `Mi : AiKL

If either

1. L ∈ {K,T} and · ; ∆ ` Nj : Bj for j = 1, . . . ,m, or

108

2. L ∈ {K4,GL} and ∆ ; ∆⊥ ` N⊥j : Bj for j = 1, . . . ,m, or

3. L = S4 and ∆ ; · ` Nj : Bj for j = 1, . . . ,m,

then, letting for j = 1, . . . ,m

βj
def
= J∆ ; Γ ` box Nj : �BjKL

we have that
r

∆ ; Γ ` P [~N/~u, ~M/~x] : C
z

L
=

r
~u : ~B ; ~x : ~A ` P : C

z

L
◦ 〈β1, . . . , βm, α1, . . . , αn〉

Proof. By induction on the derivation of ~u : ~B ; ~x : ~A ` P : C. Most cases are

straightforward, and use a combination of standard equations that hold in cartesian

closed categories—see §7.1 or (Crole, 1993, §2)—in order to perform calculations very

close the ones detailed in (Abramsky and Tzevelekos, 2011, §1.6.5). Because of the

precise definitions we have used, we also need to make use of Lemma 10 to interpret

weakening whenever variables in the context do not occur freely in the term. For the

modal rules we use many of the equations we showed in 7, e.g in Propositions 3, 5,

8, and so on. We will now prove these modal cases in detail.

Case(�var). We show the case T only. The case for S4 is similar, but uses

Proposition 4(2) instead of Proposition 12. Then P ≡ ui for some ui amongst

the ~u. Hence, the LHS is ∆ ; Γ ` Ni : Bi, whereas we calculate that the RHS is
r
~u : ~B ; ~x : ~A ` P : C

z
◦ 〈~β, ~α〉

= { definition }

εBi
◦ π~u: ~B;~x: ~A

ui:Bi
◦ 〈~β, ~α〉

= { projection }

εBi
◦ J∆ ; Γ ` box Ni : �BiK

= { definition }

εBi
◦ J· ; ∆ ` Ni : BiK

• ◦ π∆;Γ
∆

= {Proposition 12 }

J· ; ∆ ` Ni : BiK ◦
∏
D∈∆

εD ◦ π∆;Γ
∆

= { Semantics of Dereliction (Lemma 12) }

J∆ ; · ` Ni : BiK ◦ π∆;Γ
∆

= { Semantics of Weakening (Lemma 10) }

J∆ ; Γ ` Ni : BiK

109

Case(�IK). We have that ~u : ~B ; ~x : ~A ` box P : �C, so that · ; ~u : ~B ` P : C,

with the result that none of the variables ~x occurs free in P . We use this fact

and the definition of substitution to calculate:

r
∆ ; Γ ` box (P [~N/~u, ~M/~x]) : �C

z

= { definition, and non-occurence of the ~x }
r
· ; ∆ ` P [~N/~u] : C

z•
◦ π∆;Γ

∆

= { IH }(r
· ; ~u : ~B ` P : C

z
◦
〈−−−−−−−−−−−→
J· ; ∆ ` Ni : BiK

〉)•
◦ π∆;Γ

∆

= {Proposition 3 }
r
· ; ~u : ~B ` P : C

z•
◦
〈−−−−−−−−−−−→
J· ; ∆ ` Ni : BiK

•
〉
◦ π∆;Γ

∆

= { naturality of product morphism, definition, projection }
r
· ; ~u : ~B ` P : C

z•
◦ π~u: ~B;~x: ~A

~u: ~B
◦
〈−→
β ,−→α

〉
= { definition }

r
~u : ~B ; ~x : ~A ` box P : �C

z
◦
〈−→
β ,−→α

〉
Case(�IK4). We have that ~u : ~B ; ~x : ~A ` box P : �C, so that ~u : ~B ; ~u⊥ :
~B ` P : C, with the result that none of the variables ~x or

−→
x⊥ occur free in P .

Hence,
(
P [~N/~u, ~M/~x]

)⊥
≡ P [~N/~u,

−→
N⊥/
−→
u⊥] by Theorem 7. Now we calculate:

r
∆ ; Γ ` box (P [~N/~u, ~M/~x]) : �C

z

= { definition, and non-occurence of the ~x and
−→
x⊥ }(r

∆ ; ∆⊥ ` P [~N/~u,
−→
N⊥/
−→
u⊥] : C

z)#

◦ π∆;Γ
∆

= { IH }(r
~u : ~B ; ~u⊥ : ~B ` P : C

z
◦
〈−−−−−−−−−−−−−−−−−−→q

∆ ; ∆⊥ ` box Ni : �Bi

y
,
−−−−−−−−−−−−−→q
∆ ; ∆⊥ ` Ni : Bi

y〉)#

◦ π∆;Γ
∆

= { definition }(r
~u : ~B ; ~u⊥ : ~B ` P : C

z
◦
〈−−−−−−−−−−−−−−−−−−−−−→q

∆ ; ∆⊥ ` Ni : Bi

y# ◦ π∆;∆⊥

∆ ,
−−−−−−−−−−−−−→q
∆ ; ∆⊥ ` Ni : Bi

y〉)#

◦ π∆;Γ
∆

= {Proposition 11 }
r
~u : ~B ; ~u⊥ : ~B ` P : C

z#

◦
〈−−−−−−−−−−−−−−→q

∆ ; ∆⊥ ` Ni : Bi

y#
〉
◦ π∆;Γ

∆

= { naturality, projections, definitions }
r
~u : ~B ; ~x : ~A ` box P : �C

z
◦
〈−→
β ,−→α

〉

110

Case(�IGL). We have that ~u : ~B ; ~x : ~A ` fix z in box P : �C, so that

~u : ~B ; ~u⊥ : ~B, z⊥ : �C ` P : C, with the result that none of the variables ~x or
−→
x⊥ occur free in P . Hence,

(
P [~N/~u, ~M/~x]

)⊥
≡ P [~N/~u,

−→
N⊥/
−→
u⊥] by Theorem

7. Now we calculate:

r
∆ ; Γ ` fix z in box (P [~N/~u, ~M/~x]) : �C

z

= { definition and previous argument }(r
∆ ; ∆⊥, z⊥ : �C ` P [~N/~u,

−→
N⊥/
−→
u⊥, z/z] : C

z)†
◦ π∆;Γ

∆

= { IH, weakening, bi
def
=

q
∆ ; ∆⊥ ` box Ni : �Bi

y
, ni

def
=

q
∆ ; ∆⊥ ` Ni : Bi

y
}(r

~u : ~B ; ~u⊥ : ~B, z⊥ : �C ` P : C
z
◦
〈−−−−−−−−→
bi ◦ π∆;∆⊥,z⊥

∆;∆⊥
,
−−−−−−−−→
ni ◦ π∆;∆⊥,z⊥

∆;∆⊥
, π∆;∆⊥,z⊥

z⊥

〉)†
◦ π∆;Γ

∆

= { definition of product morphism }(r
~u : ~B ; ~u⊥ : ~B, z⊥ : �C ` P : C

z
◦
(〈−→

bi ,
−→ni
〉
× id

))†
◦ π∆;Γ

∆

= { by the remark preceding this theorem, bi = n#
i ◦ π

∆;∆⊥

∆;· }(r
~u : ~B ; ~u⊥ : ~B, z⊥ : �C ` P : C

z
◦
(〈−−−−−−−→

n#
i ◦ π

∆;∆⊥

∆;· ,−→ni
〉
× id

))†
◦ π∆;Γ

∆

= { naturality of modal fixed points }
r
~u : ~B ; ~u⊥ : ~B, z⊥ : �C ` P : C

z†
◦
〈−→
n#
i

〉
◦ π∆;Γ

∆

= { naturality of product morphism, remark preceding theorem, definitions }
r
~u : ~B; ` fix z in box P : �C

z
◦
〈−−−−−−−−−−−−−−−−→
J∆ ; Γ ` box Ni : �BiK

〉
= {weakening }

r
~u : ~B ; ~x : ~A ` fix z in box P : �C

z
◦
〈−→
β ,−→α

〉
Case(�IS4). We have that −→u :

−→
B ; −→x :

−→
A ` box P : �C, so that −→u :

−→
B ; · ` P : C, with the result that none of the variables −→x occur in P . Hence

111

P [~N/~u, ~M/~x] ≡ P [~N/~u], and we calculate:

r
∆ ; Γ ` box (P [~N/~u, ~M/~x]) : �C

z

= { definition, and non-occurence of the ~x in P }
r

∆ ; · ` P [~N/~u] : C
z∗
◦ π∆;Γ

∆

= { IH }(r
~u : ~B ; · ` P : C

z
◦
〈−−−−−−−−−−−−−−−→
J∆ ; · ` box Ni : �BiK

〉)∗
◦ π∆;Γ

∆

= { definition }(r
~u : ~B ; · ` P : C

z
◦
〈−−−−−−−−−−−−−→
J∆ ; · ` Ni : �BiK

∗
〉)∗
◦ π∆;Γ

∆

= {Proposition 5(4) }
r
~u : ~B ; · ` P : C

z∗
◦
〈−−−−−−−−−−−−−→
J∆ ; · ` Ni : �BiK

∗
〉
◦ π∆;Γ

∆

= { projections, definition of (−)∗ and J−K }
r
~u : ~B ; ~x : ~A ` box P : �C

z
◦
〈−→
β ,−→α

〉

Theorem 32 (Soundness). If ∆ ; Γ `DL M = N : A, then we have that

J∆ ; Γ `M : AKL = J∆ ; Γ ` N : AKL

Proof. By induction on the derivation of ∆;Γ `DL M = N : A. The congruence cases

are clear, as are the majority of the ordinary clauses—see Crole (1993) and Abramsky

and Tzevelekos (2011). The rules that remain are (�η), the many variants of (�β),

and the commuting conversions.

First, we prove the modal β and η cases by direct calculation. To do so, we use

Lemma 13, and hence product preservation is essential not just for (�η), but for (�β)

as well.

Let ∆ = ~u : ~B and Γ = ~x : ~A. We then calculate:

J∆ ; Γ ` let box u⇐ box M in N : CK

= { definition }

J∆, u:A ; Γ ` N : CK ◦ 〈−→π∆, J∆ ; Γ ` box M : �AK ,−→πΓ〉

= {Lemma 13 }

J∆, u:A ; Γ ` N : CK ◦ 〈
−−−−−−−−−−−−−−−−→
J∆ ; Γ ` box ui : �BiK, J∆ ; Γ ` box M : �AK ,

−−−−−−−−−−−→
J∆ ; Γ ` xi : AiK〉

= {Lemma 14 }

J∆ ; Γ ` N [~ui/~ui,M/u, ~xi/~xi] : CK

112

This covers all cases save GL. For that, it suffices to show that

J∆ ; Γ ` fix z in box M : �AK = J∆ ; Γ ` box M [fix z in box M/z] : �AK

and then surreptitiously swap the first expression with the second in the above cal-

culation just before using the substitution lemma. To show that, we may let

m
def
=

q
∆ ; ∆⊥, z⊥ : �A `M⊥ : �A

y

and then calculate:

J∆ ; Γ ` fix z in box M : �AK

= { definition }

m† ◦ π∆;Γ
∆

= { definition of modal fixed point }

m• ◦
〈
id#, (m†)∗

〉
= {Proposition 10 }

m• ◦
〈
id#, (m† ◦ π∆;∆⊥

∆)#
〉
◦ π∆;Γ

∆

= {Proposition 8(1) }(
m ◦

〈
id,m† ◦ π∆;∆⊥

∆

〉)#

◦ π∆;Γ
∆

= { definition, weakening }(
m ◦

〈
id,

q
∆ ; ∆⊥ ` fix z in box M : �A

y〉)# ◦ π∆;Γ
∆

= {Lemma 14 }
q
∆ ; ∆⊥ `M⊥[fix z in box M/z⊥] : A

y# ◦ π∆;Γ
∆

= {Proposition 15 }

J∆ ; Γ ` box M [fix z in box M/z] : �AK

The case of (�η) is even simpler, and follows immediately from Lemma 13.

The commuting conversions for weakening and contraction are straightforward.

(commlet) requires a subsidiary induction on contexts C[−], which follows from the

naturality of the various operations of the CCC.

Idempotence If the comonad (F, ε, δ) provided as part of a Bierman-de Paiva cat-

egory is idempotent, then it is true that more equations are sound. We have shown

113

the equivalence between three such equations in §8.1, so it suffices to prove only one

of them sound:

J∆ ; Γ ` box (let box u⇐M in N) : �BK

= { definitions }

(J∆, u : A ; · ` N : BK ◦ 〈id, J∆ ; · `M : �AK〉)∗

= { Theorem 27 }

J∆, u : A ; · ` N : BK∗ ◦ 〈id, J∆ ; · `M : �AK〉

= { definitions }

J∆ ; Γ ` let box u⇐M in box N : �BK

8.4 Completeness

To complete our investigation, we shall sketch the proof that our categorical semantics

is complete; that is:

Theorem 33 (Completeness).

1. If J∆ ; Γ `DK M : AK = J∆ ; Γ `DK N : AK in every Kripke category, then the

judgment ∆ ; Γ `DK M = N : A is derivable.

2. If J∆ ; Γ `DK4 M : AK = J∆ ; Γ `DK4 N : AK in every Kripke-4 category, then

the judgment ∆ ; Γ `DK4 M = N : A is derivable.

3. If J∆ ; Γ `DGL M : AK = J∆ ; Γ `DGL N : AK in every Gödel-Löb category, then

the judgment ∆ ; Γ `DGL M = N : A is derivable.

4. If J∆ ; Γ `DT M : AK = J∆ ; Γ `DT N : AK in every Kripke-T category, then the

judgment ∆ ; Γ `DT M = N : A is derivable.

5. If J∆ ; Γ `DS4 M : AK = J∆ ; Γ `DS4 N : AK in every Bierman-de Paiva cate-

gory, then the judgment ∆ ; Γ `DS4 M = N : A is derivable.

Only the last of these cases has been obtained before, for a calculus that includes the

diamond modality, and can be found in the diploma thesis of Marntirosian (2014).

By the method of Lindenbaum and Tarski, to prove this theorem it suffices to

construct a suitable category of each sort from the bare syntax of each calculus.

Thus, we construct a Kripke category CK based on the syntax of DK, a Bierman-

de Paiva category CS4 based on the syntax of DS4, and so on. The reasoning then

114

proceeds as follows: if an equation holds in all categories of this sort, then it holds

in the one made of syntax, which—and we must also show this—yields the required

equality.

To perform the aforementioned syntactic construction, we follow a pattern that we

learned from Čubrić et al. (1998). The objects of all our categories will be two-zoned

lists of types,

〈 ~B| ~A〉

and the morphisms 〈 ~B| ~A〉 −→ 〈 ~D|~C〉 shall be two-zoned lists of terms, quotiented up

to provable renaming and equality.

In the first zone, the typing will have a form that will be readily substitutable for

a modal variable. For CK and CT, the morphisms will be

〈· ; ~u : ~B ` N1 : D1, . . . , · ; ~u : ~B ` Nl : Dl |

~u : ~B ; ~x : ~A `M1 : C1, . . . , ~u : ~B ; ~x : ~A `Mk : Ck〉

whereas for CS4 they will be

〈~u : ~B ; · ` N1 : D1, . . . , ~u : ~B ; · ` Nl : Dl |

~u : ~B ; ~x : ~A `M1 : C1, . . . , ~u : ~B ; ~x : ~A `Mk : Ck〉

Finally, in CK4 and CGL morphisms will respect the structure of complementary vari-

ables and their relationship to substitution, and so take the form

〈~u : ~B ; ~u⊥ : ~B ` N⊥1 : D1, . . . , ~u : ~B ; ~u⊥ : ~B ` N⊥l : Dl |

~u : ~B ; ~x : ~A `M1 : C1, . . . , ~u : ~B ; ~x : ~A `Mk : Ck〉

Composition is then defined by substitution, and the identity morphisms will be

simply occurences of variables; e.g. in CK and CT they will be

〈· ; ~u : ~B ` u1 : B1, . . . , · ; ~u : ~B ` um : Bm |

~u : ~B ; ~x : ~A ` x1 : A1, . . . , ~u : ~B ; ~x : ~A ` xn : An〉

It is easy to verify that composition is associative and that the proposed arrows are

identities: associativity corresponds to the so-called substitution lemma, and identities

vanish up to renaming.

This constitutes a cartesian closed category. Products are defined by

〈
−→
B |
−→
A 〉 × 〈

−→
D |
−→
C 〉 def

= 〈
−→
B ,
−→
D |
−→
A,
−→
C 〉

115

Mediating morphisms are constructed by composition, and projections consist of vec-

tors of variable occurrences. All the necessary product equations hold by inspection.

Exponentials defined pointwise; for example, in the case of K,

〈
−→
D,
−→
B 〉
〈
−→
B,
−→
A 〉 def

=

〈−−−→
D〈·|

−→
B 〉,
−−−−→
C〈
−→
B |
−→
A 〉,

〉
where

C〈
−→
B,
−→
A 〉 def

= �B1 → (�B2 → . . . (�Bm → (A1 · · · → An → C)) . . .)

whereas, in the case of K4/GL,

〈
−→
D,
−→
B 〉
〈
−→
B,
−→
A 〉 def

=

〈−−−−→
D〈
−→
B |
−→
B 〉,
−−−−→
C〈
−→
B |
−→
A 〉,

〉
with C〈

−→
B,
−→
A 〉 as before. The map λ(−) is defined by a combination of λ-abstraction

and judicious use of let constructs. The evaluation map involves a application to

strings of ‘boxed’ variables (box u) and ordinary occurrences, and showing unicity

involves both the η rule for functions as well as the η rule for the modality.

Finally, we construct a monoidal functor on each category. In all cases, its con-

struction is indicated by the following simple result, which holds uniformly in all our

calculi:

Proposition 16. If −→u :
−→
B ;−→x :

−→
A `M : C, then

−→v :
−−→
�B ;−→y :

−→
�A ` let box −→x ⇐ −→y in box (let box −→u ⇐ −→v in M) : �C

This action defines a strict monoidal functor on each CL. Moreover, the terms

ax4 : �A → �� and axT : �A → A defined in §4.4.1 constitute comultiplications

and counits: they are natural and satisfy the appropriate diagrams, leading one to

conclusion that CK is a Kripke category, CK4 and CGL are Kripke-4 categories, and

so on. We shall only construct the modal fixed point combinators of CGL for the

simple case of single types; then Proposition 13 suffices to guarantee that we have a

Gödel-Löb category. If A
def
= 〈D | C〉, we have

FA = 〈�D | �C〉

AFA =
〈
�2D → �D → D | �2D → �C → C

〉
F
(
AFA

)
=
〈
�
(
�2D → �D → D

)
| �
(
�2D → �C → C

)〉
So we first have to construct a term

· ; x : �
(
�2D → �D → D

)
` dd[x] : �D

116

which we do by

dd[x]
def
= let box w ⇐ x in fix z in box w(ax4 z)z

Notice that dd[f⊥] ≡ (dd[f])⊥, so

f : �
(
�2D → �D → D

)
; f⊥ : �

(
�2D → �D → D

)
` (dd[f])⊥ : �C

and we let this be the first component of the combinator. The second component

shall be a term

f : �
(
�2D → �D → D

)
; g : �

(
�2D → �C → C

)
` ds[f, g] : �D

which we construct by a judicious use of dd:

ds[f, g]
def
= let box u⇐ f in let box v ⇐ g in fix z in box v(ax4(dd[u]))z

To complete the argument, one shows by induction on M that

Lemma 15.

r
~u : ~B ; ~x : ~A `M : A

z

L
=
〈
−
∣∣∣· ; ~v : ~�B, ~x : ~A ` let box ~u⇐ ~v in M : A

〉
∈ CL

117

Chapter 9

Coda

We have thus achieved a full Curry-Howard-Lambek isomorphism for a handful of

modal logics, spanning the logical aspect (Hilbert systems and provability), the com-

putational aspect (a study of reduction), and the categorical aspect (proof-relevant

semantics).

In order to achieve the connection at the first junction—that between logic and

computation—we have employed a systematic pattern based on sequent calculus,

namely a translation of (right or single) modal sequent calculus rules to introduction

rules for dual context systems. This has worked remarkably well. It is our hope

that there is a deeper aspect to this pattern—perhaps even a theorem to the effect

that sequent calculi rules for which cut elimination is provable can immediately be

translated to a well-behaved dual context system. Of course, this is quite a long way

from our current grasp, but we believe it is worth investigating.

In addition, it is also our hope that our calculi elucidate the computational be-

haviour of a handful of necessity modalities. In fact, the author believes that modali-

ties can be used to control the ‘flow of data’ in a programming language, in the sense

that they create regions of the language whose intercommunication is restricted, in

one way or another. For example, one can handwavingly argue that S4 guarantees

that ‘only modal variables flow into terms of modal type,’ whereas K additionally

ensures that no modal data flows into a term of non-modal type. However, these

examples are—at this stage—mere intuitions. Making such intuitions rigorous and

proving them should amount to a sort of safety property. A first result of this style

is the free variables theorem (Theorem 8), but the author finds it rather weak. We

believe that it can be strengthened by making use of the second junction, that be-

tween computation and categories: investigating categorical models for these calculi

can perhaps give a succinct and rigorous expression to these intuitions.

118

Having such safety properties can make these calculi extraordinarily useful for

programming language applications. For example, it seems that K is stratified in two

levels: ‘the world under a box,’ and ‘the world outside boxes.’ The distinction between

compile-time vs. run-time—or even code vs. value—is known to be expressible in

terms of modalities: this result is due to Davies and Pfenning (2001), and was the

primary motivation for weakening DILL to DS4. Moreover, the authors in op. cit.

remark that, for the purposes of this analysis, the necessary “fragment corresponds to

a weaker modal logic, K, in which we drop the assumption in S4 that the accessibility

relation is reflexive and transitive [...].” Thus, we may think of K as the logic of

program construction, i.e. a form of metaprogramming that happens in one stage.

119

Bibliography

Abadi, M., Banerjee, A., Heintze, N., and Riecke, J. G. (1999). A core calculus of

dependency. In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages - POPL ’99, pages 147–160, New York, New

York, USA. ACM Press.

Abramsky, S. and Tzevelekos, N. (2011). Introduction to Categories and Categorical

Logic. In Coecke, B., editor, New Structures for Physics, pages 3–94. Springer-

Verlag.

Andreoli, J.-M. (1992). Logic Programming with Focusing Proofs in Linear Logic.

Journal of Logic and Computation, 2(3):297–347.

Barber, A. G. (1996). Dual Intuitionistic Linear Logic. Technical report, ECS-LFCS-

96-347, Laboratory for Foundations of Computer Science, University of Edinburgh.

Barendregt, H. (1984). Lambda Calculus: Its Syntax and Semantics. North-Holland,

Amsterdam.

Bellin, G. (1985). A system of natural deduction for GL. Theoria, 51(2):89–114.

Bellin, G., de Paiva, V., and Ritter, E. (2001). Extended Curry-Howard correspon-

dence for a basic constructive modal logic. In Proceedings of Methods for Modalities.

Benton, N., Bierman, G., de Paiva, V., and Hyland, M. (1993). A term calculus for

Intuitionistic Linear Logic. In Typed Lambda Calculi and Applications, Interna-

tional Conference on Typed Lambda Calculi and Applications, TLCA ’93, Utrecht,

The Netherlands, March 16-18, 1993, Proceedings, pages 75–90.

Bierman, G. M. and de Paiva, V. (1992). Intuitionistic Necessity Revisited. In

Proceedings of the Logic at Work Conference, Amsterdam, Holland.

Bierman, G. M. and de Paiva, V. (1996). Intuitionistic Necessity Revisited. Technical

report, University of Birmingham.

120

Bierman, G. M. and de Paiva, V. (2000). On an Intuitionistic Modal Logic. Studia

Logica, 65(3):383–416.

Boolos, G. S. (1994). The Logic of Provability. Cambridge University Press, Cam-

bridge.

Borceux, F. (1994). Handbook of Categorical Algebra. Cambridge University Press,

Cambridge.

Clouston, R., Bizjak, A., Bugge Grathwohl, H., and Birkedal, L. (2016). The guarded

lambda calculus: Programming and reasoning with guarded recursion for coinduc-

tive types. Logical Methods in Computer Science, 12(3):1–39.

Crole, R. L. (1993). Categories for Types. Cambridge University Press.

Čubrić, D., Dybjer, P., and Scott, P. J. (1998). Normalization and the Yoneda

embedding. Mathematical Structures in Computer Science, 8(2):153–192.

Curry, H. B. (1952). The elimination theorem when modality is present. The Journal

of Symbolic Logic, 17(04):249–265.

Danos, V. and Joinet, J. B. (2003). Linear logic and elementary time. Information

and Computation, 183(1):123–137.

Davies, R. and Pfenning, F. (1996). A modal analysis of staged computation. In Pro-

ceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages (POPL’96), pages 258–270.

Davies, R. and Pfenning, F. (2001). A modal analysis of staged computation. Journal

of the ACM, 48(3):555–604.

de Paiva, V., Goré, R., and Mendler, M. (2004). Editorial: Modalities in Constructive

Logics and Type Theories. Journal of Logic and Computation, 14(4):439–446.

Gallier, J. (1990). On Girard’s ”Candidats de Reductibilite”. In Odifreddi, P., editor,

Logic and Computer Science, pages 123–203. Academic Press.

Gallier, J. (1993). Constructive logics Part I: A tutorial on proof systems and typed

λ-calculi. Theoretical Computer Science, 110(2):249–339.

Gallier, J. (1995). On the Correspondence Between Proofs and Lambda Terms. In

de Groote, P., editor, The Curry-Howard Isomorphism, pages 55–138. Academia,

Louvain-la-Neuve.

121

Gentzen, G. (1935a). Untersuchungen über das logische Schließen. I. Mathematische

Zeitschrift, 39(1):176–210.

Gentzen, G. (1935b). Untersuchungen über das logische Schließen. II. Mathematische

Zeitschrift, 39(1):405–431.

Girard, J.-Y. (1972). Interprétation fonctionelle et élimination des coupures de

l’arithmétique d’ordre supérieur. PhD thesis, Université Paris VII.

Girard, J.-Y. (1993). On the unity of logic. Annals of Pure and Applied Logic,

59(3):201–217.

Girard, J.-Y., Lafont, Y., and Taylor, P. (1989). Proofs and Types. Cambridge

University Press.

Goré, R. and Ramanayke, R. (2012). Valentini’s Cut-Elimination for Provability

Logic Resolved. The Review of Symbolic Logic, 5(02):212–238.

Goubault-Larrecq, J. (1996). On Computational Interpretations of the Modal Logic

S4 - I. Cut Elimination. Technical report, 1996-35. Institut für Logik, Komplexität

und Deduktionssysteme, Universität Karlsruhe.

Hakli, R. and Negri, S. (2012). Does the deduction theorem fail for modal logic?

Synthese, 187(3):849–867.

Hofmann, M. (1999). Type Systems for Polynomial-Time Computation. Habilitation

thesis, Technischen Universität Darmstadt.

Howard, W. A. (1980). The formulae-as-types notion of construction. In Seldin, J. P.

and Hindley, J. R., editors, To H. B. Curry: Essays on Combinatory Logic, Lambda

Calculus and Formalism, pages 479–490. Academic Press, Boston, MA.

Kakutani, Y. (2007). Call-by-Name and Call-by-Value in Normal Modal Logic. In

Shao, Z., editor, Programming Languages and Systems (5th Asian Symposium,

APLAS 2007, Singapore, November 28-December 1, 2007, Proceedings), pages 399–

414, Berlin, Heidelberg. Springer, Berlin, Heidelberg.

Kavvos, G. A. (2016). The Many Worlds of Modal Lambda Calculi: I. Curry-Howard

for Necessity, Possibility and Time. CoRR.

Koletsos, G. (1985). Church-Rosser theorem for typed functional systems. The Jour-

nal of Symbolic Logic, 50(03):782–790.

122

Kripke, S. A. (1963). Semantical Analysis of Modal Logic I. Normal Modal Propo-

sitional Calculi. Zeitschrift für Mathematische Logik und Grundlagen der Mathe-

matik, 9(5-6):67–96.

Krishnaswami, N. R. (2013). Higher-order functional reactive programming without

spacetime leaks. In Proceedings of the 18th ACM SIGPLAN international confer-

ence on Functional programming - ICFP ’13, page 221, New York, New York, USA.

ACM, ACM Press.

Lambek, J. and Scott, P. J. (1988). Introduction to Higher-Order Categorical Logic.

Cambridge University Press.

Leivant, D. (1981). On the proof theory of the modal logic for arithmetic provability.

The Journal of Symbolic Logic, 46(03):531–538.

Mac Lane, S. (1978). Categories for the Working Mathematician, volume 5 of Grad-

uate Texts in Mathematics. Springer New York, New York, NY.

Marntirosian, K. (2014). Categorical CS4 Logic (in Greek). Diploma thesis, National

Technical University of Athens.

Melliès, P.-A. (2009). Categorical Semantics of Linear Logic. In Curien, P.-L., Her-

belin, H., Krivine, J.-L., and Melliès, P.-A., editors, Panoramas et synthèses 27:

Interactive models of computation and program behaviour. Société Mathématique

de France.

Mitchell, J. C. (1996). Foundations for programming languages. Foundations of

Computing. The MIT Press.

Moggi, E. (1991). Notions of computation and monads. Information and Computa-

tion, 93(1):55–92.

Murphy, T., Crary, K., Harper, R., and Pfenning, F. (2004). A symmetric modal

lambda calculus for distributed computing. In Proceedings of the 19th Annual

IEEE Symposium on Logic in Computer Science, 2004., pages 286–295. IEEE.

Negri, S. (2011). Proof Theory for Modal Logic. Philosophy Compass, 6(8):523–538.

Newman, M. H. A. (1942). On Theories with a Combinatorial Definition of ”Equiv-

alence”. The Annals of Mathematics, 43(2):223.

123

Ohnisi, M. and Matsumoto, K. (1957). Gentzen method in modal calculi. Osaka

Journal of Mathematics, 11(2):113–130.

Ohnisi, M. and Matsumoto, K. (1959). Gentzen method in modal calculi. II. Osaka

Journal of Mathematics, 11(2):115–120.

Ohta, Y. and Hasegawa, M. (2006). A Terminating and Confluent Linear Lambda

Calculus. In Pfenning, F., editor, Term Rewriting and Applications. RTA 2006,

volume 4098 of Lecture Notes in Computer Science, pages 166–180. Springer, Berlin,

Heidelberg.

Ono, H. (1998). Proof-theoretic methods in nonclassical logic–an introduction. In

Takahashi, M., Okada, M., and Dezani-Ciancaglini, M., editors, Theories of Types

and Proofs, MSJ Memoirs, pages 207–254. The Mathematical Society of Japan,

Tokyo.

Orchard, D. (2014). Programming contextual computations. PhD thesis, University

of Cambridge.

Pfenning, F. (2001). Intensionality, extensionality, and proof irrelevance in modal type

theory. Proceedings of the 16th Annual IEEE Symposium on Logic in Computer

Science (LICS 2001).

Pfenning, F. (2013). Weather Report.

Pfenning, F. (2015). Decomposing Modalities.

Pfenning, F. and Davies, R. (2001). A judgmental reconstruction of modal logic.

Mathematical Structures in Computer Science, 11(4):511–540.

Plotkin, G. D. (1993). Type theory and recursion. In Proceedings Eighth Annual

IEEE Symposium on Logic in Computer Science, page 374. IEEE Comput. Soc.

Press.

Prawitz, D. (1965). Natural Deduction: a proof-theoretical study. Almquist and

Wiksell.

Sambin, G. and Valentini, S. (1980). A modal sequent calculus for a fragment of

arithmetic. Studia Logica, 39(2-3):245–256.

Sambin, G. and Valentini, S. (1982). The modal logic of provability. The sequential

approach. Journal of Philosophical Logic, 11(3):311–342.

124

Schroeder-Heister, P. (1984). A natural extension of natural deduction. The Journal

of Symbolic Logic, 49(04):1284–1300.

Shulman, M. (2018). Brouwer’s fixed-point theorem in real-cohesive homotopy type

theory. Mathematical Structures in Computer Science, 28(6):856–941.

Simpson, A. K. (1994). The Proof Theory and Semantics of Intuitionistic Modal

Logic. PhD thesis, The University of Edinburgh.

Simpson, A. K. and Plotkin, G. D. (2000). Complete axioms for categorical fixed-

point operators. In Proceedings of the 15th Annual IEEE Symposium on Logic in

Computer Science (LICS 2000), pages 30–41. IEEE Comput. Soc.

Sørensen, M. H. and Urzyczyn, P. (2006). Lectures on the Curry-Howard Isomor-

phism. Elsevier.

Taha, W. and Nielsen, M. F. (2003). Environment classifiers. In Proceedings of the

30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages (POPL ’03), pages 26–37.

Takahashi, M. (1995). Parallel Reductions in λ-Calculus. Information and Compu-

tation, 118(1):120–127.

Terese (2003). Term Rewriting Systems. Cambridge University Press.

Tsukada, T. and Igarashi, A. (2010). A logical foundation for environment classifiers.

Logical Methods in Computer Science, 6(4):1–43.

Valentini, S. (1982). Cut-elimination in a modal sequent calculus for K. Bolletino

dell’Unione Mathematica Italiana, 1B:119–130.

Valentini, S. (1983). The Modal Logic of Provability: Cut-Elimination. Journal of

Philosophical Logic, 12(4):471–476.

Wadler, P. (1993). A taste of linear logic. In Proceedings of Mathematical Founda-

tions of Computer Science 1993: 18th International Symposium, MFCS’93 Gdańsk,

Poland, August 30–September 3, 1993, volume 711 of LNCS, pages 185–210.

Wadler, P. (1994). A syntax for linear logic. In Brookes, S., Main, M., Melton, A.,

Mislove, M., and Schmidt, D., editors, Mathematical Foundations of Programming

Semantics: 9th International Conference, New Orleans, LA, USA, April 7 - 10,

1993. Proceedings, pages 513–529. Springer-Verlag Berlin Heidelberg.

125

Wansing, H. (2002). Sequent Systems for Modal Logics. In Handbook of Philosophical

Logic, pages 61–145. Springer Netherlands, Dordrecht.

Wijesekera, D. (1990). Constructive modal logics I. Annals of Pure and Applied

Logic, 50(3):271–301.

126

	Prelude
	The Logics in Question
	Constructive modal logics
	Preliminaries
	Hilbert systems
	Axioms
	Metatheory for Hilbert
	Structural rules
	Admissible Rules

	From sequent calculi to dual contexts
	The perennial issues
	Explicit substitutions à la Bierman & de Paiva
	Dual contexts

	Deriving dual-context calculi
	The Introduction Rules
	K
	K4
	GL
	The Elimination Rule
	A second variable rule

	Terms, Types and Metatheory
	Complementary variables
	Free variables: boxed and unboxed
	Structural theorems
	Equivalence with Hilbert systems
	Hilbert to Dual
	Dual to Hilbert

	Reduction
	Preservation theorems
	Confluence
	Strong normalization
	Subformula property

	Candidates of Reducibility
	Candidates: the first four properties
	Closure under formation: the latter two properties
	The main theorem

	Modal Category Theory
	Cartesian closed categories
	Lax and strong monoidal functors
	Product-Preserving Functors
	Monoidal natural transformations

	Categorical models of modal logic
	Kripke categories
	Bierman-de Paiva categories
	Kripke-4 categories
	Kripke-T categories
	Gödel-Löb categories

	Categorical semantics
	Equational theory
	Commuting Conversions
	The rule

	Categorical interpretation
	Soundness
	Completeness

	Coda
	Bibliography

