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The study of modal logic has witnessed tremendous development following
the introduction of Kripke semantics. However, recent developments in
programming languages and type theory have led to a second way of studying
modalities, namely through their categorical semantics. We show how the
two correspond.

1. Introduction

The development of modal logic has undergone many phases [20, 13, 37, 79]. It is widely
accepted that one of the most important developments was the relational semantics of
Kripke [54, 55, 56] [13, §1] [37, §4.8]. Kripke semantics has proven time and again that it
is intuitive and technically malleable, thereby exerting sustained influence over Computer
Science.
However, over the last 30 years another way of studying modalities has evolved:

looking at modal logic through the prism of the Curry-Howard-Lambek correspondence
[58, 74, 80] yields new computational intuitions, often with surprising applications in
both programming languages and formal proof. The tools of the trade here are type
theory and category theory.
Up to now, these two ways of looking at modalities have appeared mostly unrelated.

The purpose of this paper is to establish a connection: I will show that the Kripke and
categorical semantics of modal logic are part of a duality. It is well-known that dualities
between Kripke and algebraic semantics exist: the Jónsson-Tarski duality is one of the
cornerstones of modern modal logic [13, §5]. The contribution of this paper is to show
that such dualities can be elevated to the categorical level of proofs.

There are two obstacles to overcome. The first is that we must work over an intuitionistic
substrate: most research on types and categories is forced to do so, for well-known and
unavoidable reasons. Hence, we will develop a duality for intuitionistic modal logic.
However, there is no consensus on what a minimal intuitionistic modal logic is! The
problem is particularly acute in the presence of ♢ [23]. I will avoid this problem by
making canonical choices at each step. First, I will formulate a Kripke semantics based
on bimodules, i.e. relations that are canonically compatible with a poset. Then, I will
show how Kan extension uniquely determines two adjoint modalities, ♦ and 2, from any
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bimodule. The fact these arise automatically is evidence that they are the canonical
choice of intuitionistic modalities.
The second obstacle has to do with the appearance of proofs. The Jónsson-Tarski

duality establishes a precise correspondence between Kripke and algebraic semantics—in
the classical setting. The jump from algebraic to categorical semantics involves adding
an extra ‘dimension’ of proofs. Consequently, in order to re-establish a duality, an
additional dimension must be added to Kripke semantics as well. We call the result
a two-dimensional Kripke semantics. Category theorists will find it anticlimactic: it
amounts to the folklore observation that Kripke semantics is a semantics in a presheaf
category.

Indeed, a proportion of this paper consists of ‘folklore’ results that are probably well-
known to experts. However, many of them are drawn from related but distinct areas:
logic, order theory, category theory, and topos theory. As a result, it does not appear
that all of them are known by a single expert. Thus, the synthesis presented here appears
to be new.

In §2 we recall the Kripke and algebraic semantics of intuitionistic logic, and consider
the duality Kripke semantics and certain complete Heyting algebras. We extend this
to duality to intuitionistic modal logic in §3, where we show how a relation that is
compatible with the intuitionistic order (a bimodule) gives rise to two modalities through
Kan extension. In §4 we add proofs to intuitionistic logic, and elevate the duality to one
between two-dimensional frames and presheaf categories. We then repeat the process
for intuitionistic modal logic in §5. This is achieved by promoting the bimodule to a
profunctor on the relational side, and adding an adjunction on the algebraic side.
For general background in orders we refer to the book by Davey and Priestley [24].

Given a poset (D,⊑D) we define the opposite poset Dop by reversing the partial order;
that is, x ⊑Dop y iff y ⊑D x. A lattice has all finite meets and joins. A complete
lattice has arbitrary ones. A complete lattice is infinitely distributive just if the law
a ∧

∨
i bi =

∨
i a ∧ bi holds. Such lattices are variously called frames, locales, or complete

Heyting algebras [47, 62, 66].

2. Intuitionistic Logic I

There are many types of semantics for intuitionistic logic, including Kripke, Beth,
topological, and algebraic semantics. Bezhanishvili and Holliday [10] argue that these
form a strict hierarchy, with Kripke being the least general, and algebraic the most. I
will briefly review the elements of both these extreme points.

The Kripke semantics of intuitionistic logic are given by Kripke frames [20, §2.2].
Kripke frame is a partially-ordered set (W,⊑). We refer to W as the set of worlds and
to ⊑ as the information order. A world w ∈ W is a ‘state of knowledge,’ and w ⊑ v
means that moving from world w to world v possibly entails an increase in the amount
of information.
Let Up(W ) ⊆ P(W ) be the set of upper sets of W , i.e. the sets S ⊆ W such that

w ∈ S and w ⊑ v implies v ∈ S. A Kripke model M = (W,⊑, V ) consists of a Kripke
frame (W,⊑) as well as a function V : Var → Up(W ). The valuation V assigns to each
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propositional variable p ∈ Var an upper set V (p) ⊆ W , which is the set of worlds in
which p is true. The idea is that, once a proposition becomes true, it must remain true
as information increases.

We are now able to inductively define a relation M, w ⊨ ϕ with the meaning that ϕ is
true in world w of model M. The only interesting clause is that for implication:

M, w ⊨ ϕ→ ψ
def≡ ∀w ⊑ v. M, v ⊨ ϕ implies M, v ⊨ ϕ

This definition is famously monotonic: if M, w ⊨ ϕ and w ⊑ v then M, v ⊨ ϕ.
The algebraic semantics of intuitionistic logic consist of Heyting algebras. These are

lattices such that every map − ∧ x : L→ L has a right adjoint, i.e. for x, y ∈ L there is
an element x⇒ y ∈ L such that c ∧ x ⊑ y iff c ⊑ x⇒ y. Then, assuming that we have
an interpretation JpK ∈ L of each proposition p, each formula ϕ of intuitionistic logic is
inductively mapped to an element JϕK ∈ L using the corresponding algebraic structure.
We will not expound on Heyting algebras further; see [20, §7.3] [15, §1.1] [62, §I.8].

2.1. Prime algebraic lattices

Let (W,⊑) be any Kripke frame, and let 2 def= {0 ⊑ 1}. Consider the poset [W, 2] of
monotonic functions from W to 2, ordered pointwise. This poset has a number of curious
properties.

First, the monotonicity of p :W → 2 implies that if p(w) = 1 and w ⊑ v, then p(v) = 1.
Hence, the subset U def= p−1(1) of W is an upper set. Conversely, every upper set U ⊆W
gives rise to a monotonic pU : W → 2 by setting pU (w) = 1 if w ∈ U , and 0 otherwise.
Consequently, there is an order bijection Up(W ) ∼= [W, 2], with the order on Up(W ) being
inclusion. We will liberally treat upper sets and elements of [W, 2] as the same.
Second, the poset [W, 2] is a complete lattice: arbitrary joins and meets are given

pointwise. If we view the elements of [W, 2] as upper sets, these joins and meets correspond
to arbitrary unions and intersections of upper sets, which are also upper. Moreover,
this lattice satisfies the infinite distribution law, so it is a complete Heyting algebra,
synonymously a frame. Given two upper sets X,Y ⊆W their exponential is given by

X ⇒ Y
def= {w ∈W | ∀w ⊑ v. v ∈ X implies v ∈ Y }

Third, given any w ∈ W , consider its principal upper set ↑w def= {v ∈W | w ⊑ v} ∈
[W, 2]. A simple argument shows that w ⊑ v iff ↑ v ⊆ ↑w.1 Thus, we have an order-
embedding ↑(−) :W op → [W, 2]. This can be shown to preserve meets and exponentials.

Fourth, the principal upper sets ↑w are special, in that they are prime.2 An element d
of a complete lattice L is prime just if d ⊑

⊔
X implies that d ⊑ x for some x ∈ X. This

says that d contains a tiny, indivisible fragment of information: as soon as it approximates
a supremum, it must approximate something in the set that is being upper-bounded.
The prime elements of [W, 2] are exactly the principal upper sets ↑w for some w ∈W .
1This is an order-theoretic consequence of the Yoneda lemma.
2Such elements are variously called completely join-irreducible [68], supercompact [7] [66, §VII.8],
completely (join-)prime [81], or simply join-prime [32, §1.3].
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Fifth, the complete lattice [W, 2] is prime algebraic. This means that all its elements
can be reconstructed by ‘multiplying’ or ‘sticking together’ prime elements. In symbols,
a complete lattice L is prime algebraic whenever for every element d ∈ L we have

d =
⊔

{p ∈ L | p ⊑ d, p prime }

Such lattices are variously called completely distributive, algebraic lattices [24, §10.29]
or superalgebraic lattices [66, §VII.8]. In fact, it can be shown that any such lattice is
essentially of the form [W, 2], i.e. a lattice of upper sets [68, 64]. See the textbooks by
Picado and Pultr [66, §VII.8] and Davey and Priestley [24, §10.29], and the paper by
Winskel [81].

Finally, the fact every element can be reconstructed as a supremum of primes means
that it is possible to canonically extend any monotonic f : W → W ′ to a monotonic
[W op, 2] →W ′, as long as W ′ is a complete lattice. Diagrammatically, in the situation

W [W op, 2]

W ′

↑

f
f! ⊣ f⋆

(1)

there exists a unique f! which preserves joins and satisfies f!(↑w) = f(w). It is given by

f!(S)
def=

⊔
i

{f(w) | w ∈ S}

f! is called the (left) Kan extension of f along ↑(−). As it preserves joins, and [W, 2] is
complete, it has a right adjoint f⋆ by the adjoint functor theorem [24, §7.34] [47, §I.4.2].
For any complete lattice W ′ this situation amounts to a bijection

HomPos(W,W ′) ∼= HomCSLatt([W op,2],W ′)

where CSLatt is the category of complete lattices and join-preserving maps.
Suppose then that we have a Kripke model (W,⊑, V ). Then, the construction given

above induces a Heyting algebra [W, 2]. Defining JpK = V (p), we obtain an algebraic
model of intuitionistic logic, which interprets every formula ϕ as an upper set JϕK ∈ [W, 2].
This is the upper set of worlds in which a formula is true [20, Theorem 7.20]:

Theorem 2.1. w ⊨ ϕ if and only if w ∈ JϕK

Thus, every Kripke semantics corresponds to a prime algebraic lattice.

2.2. Morphisms
The simplest kind of morphism between frames is a monotonic map f :W →W ′. Frames
and monotonic maps form the category Pos of posets. Given a monotonic f :W → V we
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may define a monotonic map f∗ : [W ′,2] → [W, 2] which maps p :W ′ → 2 to p◦f :W → 2.
Viewing the elements of [W ′,2] as upper sets, f∗ maps the upper set S ⊆W ′ to the set
f−1(S) def= {v ∈ V | f(v) ∈ S} ⊆ W , which is upper by monotonicity of f . f∗ preserves
arbitrary joins and meets, and hence induces a functor [−, 2] : Posop −→ PrAlgLatt to
the category PrAlgLatt of prime algebraic lattices and complete lattice homomorphisms.

Moreover, [−,2] is an equivalence! By the adjoint functor theorem any complete lattice
homomorphism f∗ : L′ → L has a left and right adjoint:

L L′
f∗

f∗

f!

⊣
⊣

(2)

Given a prime algebraic lattice L, let Prm(L) ⊆ L be the sub-poset of prime elements.
It can be shown that f! maps primes to primes [32, Lemma 1.23]. We can thus restrict it
to a function Prm(L) → Prm(L′). This defines a functor Prm(−) : PrAlgLatt −→ Posop
with the property that Prm([W, 2]) ∼=W . All in all, this amounts to a duality

Posop ≃ PrAlgLatt (3)

However, monotonic maps are not particularly well-behaved from the perspective of
logic, as they do not preserve nor reflect ‘local’ truth. This is the privilege of open maps.

Definition 2.2. Let i0 : 1 → 2 map the unique point of 1 def= {∗} to 0 ∈ 2. A monotonic
map f : W → W ′ of Kripke frames is open just when it has the right lifting property
with respect to i0 : 1 → 2, i.e. when every commuting diagram of the form

1

2

i0

W

W ′

f

in Pos has a diagonal filler (dashed) that makes it commute.

In other words, f is open if whenever f(w) ⊑ v′ there exists a w′ ∈ W with w ⊑ w′

and f(w′) = v′.3 Open maps send upper sets to upper sets [20, Prop. 2.13]. Thus

Lemma 2.3. Let M = (W,⊑, V ) and N = (W ′,⊑, V ′) be Kripke models, and f :W →W ′

be open. Suppose V = f−1 ◦ V ′, i.e. w ∈ V (p) iff f(w) ∈ V ′(p). Then M, w ⊨ ϕ iff
N, f(w) ⊨ ϕ.

3Such morphisms are often called p-morphisms [20, §2.3] or bounded morphisms [13, §2.1]. According
to Goldblatt [37], open maps were introduced by De Jongh and Troelstra [25] in intuitionistic logic,
and by Segerberg [72] in modal logic. More rarely they are called functional simulations, and led
us to bisimulations [71, §3.2]. The name is chosen because such maps are open with respect to the
Alexandrov topology on a poset, whose open sets are the upper sets [47, §1.8].
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Write W ⊨ ϕ to mean that (W,⊑, V ), w ⊨ ϕ for any valuation V and w ∈W . Then

Lemma 2.4. If f :W →W ′ is open and surjective, then W ⊨ ϕ implies W ′ ⊨ ϕ.

Recall now the induced map f∗ : [W ′,2] → [W, 2] for a monotonic f :W →W ′. Then

Lemma 2.5.

1. f :W →W ′ is open iff f∗ : [W ′, 2] → [W, 2] preserves exponentials.

2. f :W →W ′ is surjective iff f∗ : [W ′,2] → [W, 2] is injective.

Consequently, the duality of (3) may be restricted to two wide subcategories:

Posopopen ≃ PrAlgLatt⇒ Posopopen,surj ≃ PrAlgLatt⇒,inj (4)

The morphisms on the left are open (resp. open surjective) maps, and the morphisms on
the right are complete Heyting homomorphisms, i.e. complete lattice homomorphisms
that preserve exponentials (resp. and are injective).

Finally, let us consider the classical case—as a sanity-check. This amounts to restricting
Pos to its subcategory of discrete orders, i.e. Set. In this case every map is open. The
corresponding restriction on the other side is to the category CABA of complete atomic
Boolean algebras, yielding the usual Tarski duality Setop ≃ CABA [53].

2.3. Related work
The origins of the construction of a Heyting algebra from a Kripke frame seems to lost in
the mists of time. The earliest occurence I have located is in the book by Fitting [30,
§1.6], where it is attributed to an exercise in the book by Beth [9].
The duality (3) appears to be somewhat folklore—sufficiently to now be included as

an exercise in new textbooks [32, Ex. 1.3.10]; see also Erné [27]. However, I have not
been able to find any mention of the dualities of (4) in the literature.
Both the dualities (3) and (4) involve just prime algebraic lattices, which is a far cry

from encompassing all Heyting algebras. It is possible to do so, by enlarging the category
Pos to a class of ordered topological spaces called descriptive frames [20, §8.4]. The
resulting duality is called Esakia duality [28] [32, §4.6] [11, §2.3.4].

3. Modal Logic I

We now wish to extend the results of §2 to intuitionistic modal logic.
There is disagreement on what a minimal intuitionistic modal logic is. This arises no

matter the methodology we choose—be it relational, algebraic, or proof-theoretic. The
situation becomes even more complex if we include a diamond modality (♢): see Das
and Marin [23] and Wolter and Zakharyaschev [84] for a discussion.
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We adopt the intuitionistic propositional logic with Galois connections of Dzik et al.
[26]. This extends intuitionistic logic with modalities ♦ and 2, and the two inference
rules

♦ϕ→ ψ

ϕ→ 2ψ
and

ϕ→ 2ψ

♦ϕ→ ψ

These rules correspond to a Galois connection [24, §7.23], i.e. an adjunction ♦ ⊣ 2
between posets. They imply the derivability of the following rules, amongst others [26,
Prop. 2.1].

ϕ→ ψ

2ϕ→ 2ψ

ϕ

2ϕ

ϕ→ ψ

♦ϕ→ ♦ψ ♦(ϕ ∨ ψ) ↔ ♦ϕ ∨ ♦ψ 2(ϕ ∧ ψ) ↔ 2ϕ ∧2ψ

The notation of the ‘black diamond’ modality ♦ may appear unusual. However, we will
argue this logic is, in a way, the canonical intuitionistic modal logic.

The Kripke semantics of classical modal logic is given by a modal frame (W,R), which
consists of a set W and an accessibility relation R ⊆ W ×W [13, §1]. However, if the
same set of worlds W is already part of an intuitionistic Kripke frame (W,⊑), then we
must take care to ensure that ⊑ and R are compatible. There are many compatibility
conditions that one can consider [67] [73, §3.3]. However, we will take a hint from the
category theory literature, and seek a canonical definition of what it means for a relation
to be compatible with a poset.

Recall that relations can be presented as functions R :W ×W → 2 which map a pair
of worlds (w, v) to 1 whenever w R v. We will ask that R is such function, but with a
twist:

Definition 3.1. A bimodule R :W1 −7→W2 is a monotonic map R :W1
op ×W2 → 2.

Stated in terms of ordinary relations, R−1(1) ⊆W1 ×W2 corresponds to a bimodule
just if w′ ⊑ w R v ⊑ v′ implies w′ R v′. Thus, R is ‘compatible’ with ⊑, contravariantly
(resp. covariantly) on the first (resp. second) component. This is a standard, minimal
way to define what it means to be ‘a relation in Pos.’

We can then define a modal Kripke frame (W,⊑, R) to be a Kripke frame (W,⊑)
equipped with a bimodule R :W −7→W . A modal Kripke model M = (W,⊑, R, V ) adds
to this a function V : Var → Up(W ). We extend M, w ⊨ ϕ to modal formulae:

M, w ⊨ ♦ϕ
def≡ ∃v. v R w and M, v ⊨ ϕ M, w ⊨ 2ϕ

def≡ ∀v. w R v implies M, v ⊨ ϕ

There are a number of things to note about this definition. First, there is a clear duality
between the clauses: we exchange ∀ for ∃, but we also flip the variance of the relation.
As a result, ♦ uses the relation in the opposite variance to the more traditional ♢—hence
the notation. Third, the clause for the 2 modality is the traditional one, which is unlike
some streams of work on intuitionistic modal logic [67, 73]. Finally, this definition is
monotonic: using the bimodule structure of R we can show that if M, w ⊨ ϕ and w ⊑ v
then M, v ⊨ ϕ. Dzik et al. [26, §5] prove that this semantics is sound and complete.
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The algebraic semantics of this logic is given by a Heyting algebra H equipped with
two monotonic maps ♦,2 : H → H which form an adjunction ♦ ⊣ 2, i.e. a Galois
connection. Dzik et al. [26, §4] prove that this semantics is also sound and complete.
We are now in a position to discuss how the Kripke and algebraic semantics of this

intuitionistic modal logic correspond. Let (W,⊑, R) be a modal Kripke frame, and
consider the map λR :W op → [W, 2] obtained by the cartesian closure of Pos. This map
takes w ∈ W to the upper set {v ∈W | w R v}. Putting λR in diagram 1, we obtain
through Kan extension the diagram

W op [W, 2]

[W, 2]

↑(−)

λR
♦R ⊣ 2R

(5)

where we write ♦R for λR! and 2R for λR⋆. It can be shown that these maps are given
by

♦R(S)
def= {w ∈W | ∃v. v R w and v ∈ S} 2R(S)

def= {w ∈W | ∀v. w R v implies v ∈ S}

Thus, any relation R defines an adjunction ♦R ⊣ 2R on [W, 2]. Correspondingly, any
adjunction ♦ ⊣ 2 yields a monotonic map ♦ ◦ ↑(−) : W op → [W, 2], which uniquely
corresponds to a bimodule W op ×W → 2 by the cartesian closure of Pos.

Thus, starting from a bimodule, i.e. a relation that is compatible with the information
order, we have canonically and uniquely induced two modal operators through Kan
extension. These do what we expect them to do: defining J♦ϕK = ♦RJϕK and J2ϕK =
2RJϕK, we get

Theorem 3.2. For any modal formula ϕ, w ⊨ ϕ if and only if w ∈ JϕK.

3.1. Morphisms
Define the category Bimod to have bimodules R : W1 −7→ W2 as objects. A bimodule
morphism from R : W1 −7→ W2 to R′ : W ′

1 −7→ W ′
2 is a pair (f, g) of monotonic maps

f :W1 →W ′
1 and g :W2 →W ′

2 such that R(w, v) ⊑ R′(f(w), g(v)). Stated in terms of
relations, it must be that w R v implies f(w)R′ g(v).
We define the subcategory EBimod to consist of endobimodules R : W −7→ W and

pairs of maps (f, f). Thus, objects are bimodules on a single posetW , and morphisms are
monotonic maps f :W →W ′ that preserve the relation, i.e. w R v implies f(w)R f(v).
In other words, the objects of EBimod are modal Kripke frames.
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Recall the adjunctions induced by a monotonic f :W →W ′:

[W, 2] [W ′, 2]
f∗

f∗

f!

⊣
⊣

2R 2R′ (6)

Lemma 3.3. f :W →W ′ is a morphism of bimodules f : R→ R′ iff f∗2R′ ⊆ 2Rf
∗.

This constitutes a duality

EBimodop ≃ PrAlgLattO (7)

where PrAlgLattO is the category with objects (L,2L), where L is a prime algebraic
lattice and 2L : L→ L is a meet-preserving operator. By the adjoint functor theorem,
such operators always have a left adjoint ♦L : L → L. Thus, this category contains
algebraic models of intuitionistic modal logic—but not all of them. The morphisms are
complete lattice homomorphisms h : L→ L′ such that h2L ⊑ 2L′h.

However, as with monotone maps, morphisms of bimodules do not preserve local truth;
for that we need a notion of modally open maps.

Definition 3.4. Let (W,⊑, R) and (W ′,⊑, R′) be modal Kripke frames. A bimodule
morphism f : R → R′ is modally open just if whenever f(w) R′ v then there exists a
w′ ∈W with w R w′ and f(w′) ⊑ v.

This is similar to Definition 2.2, but ever so slightly weaker: instead of requiring
f(w′) = v′, it requires that the information in f(w′) can be increased to v′. Like
Definition 2.2, it can also be written homotopy-theoretically, but that requires some ideas
from double categories that are beyond the scope of this paper. We have the analogous
result about preservation of truth:

Lemma 3.5. Let M = (W,⊑, R, V ) and N = (W ′,⊑, R′, V ′) be modal Kripke models, f :
W →W ′ be open and modally open, and V = f−1 ◦ V ′. Then M, w ⊨ ϕ iff N, f(w) ⊨ ϕ.

Lemma 3.6. Let f : W → W ′ be open, modally open, and surjective. If W ⊨ ϕ
then W ′ ⊨ ϕ.

The following result relates the modal openness of f to f∗.

Lemma 3.7. f : R→ R′ is modally open iff 2Rf
∗ = f∗2R′ iff f!♦R = ♦R′f!.

Thus, the duality (7) may be restricted to dualities between wide subcategories:

EBimodopmoo ≃ PrAlgLattO⇒o EBimodopmoo, surj ≃ PrAlgLattO⇒o,inj (8)
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The morphisms on the left are open and modally open (resp. also surjective); and the on
the right they preserve exponentials and commute with operators (resp. also injective).

As a sanity check, let us consider the restriction of this duality to the classical setting.
A bimodule on a discrete poset is just a relation on a set. The corresponding restriction
on the right is to CABAs with operators, and complete homomorphisms which commute
with operators. We thus obtain the Thomason duality MFrmop

open ≃ CABAO between
Kripke frames and modally open maps on the left, and CABAs with operators on the
right [77, 53].

3.2. Related work
Many works have presented a Kripke semantics for intuitionistic modal logic. All such
semantics assume two accessibility relations: a preorder for the intuitionistic dimension,
and a second relation for the modal dimension. What varies is their compatibility
conditions.

The first person to present such a semantics appears to Fischer Servi [29]. One of the
required compatibility conditions is (⊑) ◦ R ⊆ R ◦ (⊑). This is weaker than having a
bimodule.
The first person to recognise the importance of bimodules was Sotirov in his 1979

thesis. His results are summarised in a conference abstract [75, §4]: they include the
completeness of a minimal intuitionistic modal logic with a 2, the K axiom, and the
necessitation rule. Božić and Došen [17] repeat the study for the same logic, but for a
semantics based on the Fischer Servi compatibility conditions. Wolter and Zakharyaschev
[82, §2] argue that bimodule semantics and Fischer Servi semantics are equally expressive.

Plotkin and Stirling [67] attempt to systematise the Kripke semantics of intuitionistic
modal logic. This paper and all its descendants—notably the thesis of Simpson [73,
§3.3]—adopt a non-standard clause for 2 which uses both ⊑ and R.
The bimodule condition and the complex algebra construction (or fragments thereof)

have made scattered appearances in the literature: in the early work of Sotirov [75] and
Božić and Došen [17]; in Wolter and Zakharyaschev [83, 82, 84], Hasimoto [43, §4], and
Orłowska and Rewitzky [65]; and of course in Dzik et al. [26, §7].
With the exception of Dzik et al. [26], none of the above references discuss the ♦

modality. Moreover, in none of these references are the categorical aspects of these
structures discussed.
As mentioned before, dualities between frames and algebras have played a significant

role in modal logic. Thomason [77] and Goldblatt [36] also considered morphisms of
frames, respectively obtaining Thomason duality and (categorical) Jónsson-Tarski duality
between descriptive frames and Boolean Algebras with Operators (BAOs) [37, §6.5].
Kishida [53] surveys a number of (classical) dualities for modal logic.
The duality EBimodop ≃ PrAlgLattO (7) is stated by Gehrke [31, Thm. 2.5] who

attributes it to Jonnson and Tarski [50], even though no such theorem appears in that
paper.
The duality EBimodopmoo ≃ PrAlgLattO⇒o (8) is the direct intuitionistic analogue to

that of Thomason. I have not been able to find it anywhere in the literature.
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According to the extensive survey of Menni and Smith [63], the idea that the commonly-
used modalities 2 and ♢ are often part of adjunctions ♦ ⊣ 2 and ♢ ⊣ ■ is implicitly
present throughout the development of modal logic. However, these were not made
explicit in a logic until the 2010s, when they appeared in the work of Dzik et al. [26] and
Sadrzadeh and Dyckhoff [70]. The same perspective plays a central rôle in the exposition
of Kishida [53].

4. Intuitionistic Logic II

In the rest of this paper we will categorify [6] the notion of Kripke semantics. The main
idea is to replace posets by categories, so that the order w ⊑ v is replaced by a morphism
w → v. As there might be multiple morphisms w → v, this allows the recording of not
just the fact v may signify more information than v, but also the manner in which that
is so. The reflexivity and transitivity of the poset are then replaced by the identity and
composition laws of the category. This adds a dimension of proof-relevance to Kripke
semantics.
A corresponding change in our algebraic viewpoint will be that of replacing the set

2 of truth values with the category Set. This is a classic Lawverean move [59]. While
the falsity 0 is only represented by one value, viz. the empty set, the truth 1 can be
represented by any non-empty set X. The elements of X can be thought of as a proofs
of a true statement.

Our goal is to make Kripke semantics proof-relevant. To that end, we trade the frame
(W,⊑) for an arbitrary category C. Next, we wish to define what it means to have a
proof that the formula ϕ holds at a world w ∈ C. We denote the set of all such proofs by
JϕKw. Assuming we are given a set JpKw for each proposition p and world w, here is a
first attempt:

J⊥Kw
def= ∅ J⊤Kw

def= {∗} Jϕ ∧ ψKw
def= JϕKw × JψKw Jϕ ∨ ψKw

def= JϕKw + JψKw

Jϕ→ ψKw
def= (v : C) → (f : HomC(w, v)) → JϕKv → JψKv

where for a family (Ba)a∈A we let (a : A) → Ba
def= {f : A→

⋃
a∈ABa | ∀a ∈ A.f(a) ∈ Ba}.

This closely follows the usual definition, but adds proofs. For example, a proof in
Jϕ1 ∧ ϕ2Kw is a pair (x, y) of a proof x ∈ Jϕ1Kw and a proof y ∈ Jϕ2Kw. Similarly, a proof
F ∈ Jϕ→ ψKw is a function which maps a proof of ‘increase in information’ f : w → v to
a function F (v)(f) : JϕKv → JψKv. In turn, this function maps proofs in JϕKv to proofs in
JψKv.
To show that this definition is monotonic we have to do so on proofs: given a proof

x ∈ JϕKw and a morphism f : w → v we have to define a proof f · x ∈ JϕKv. Assuming
that we are given this operation for propositions, we can extend it by induction; e.g.

f · (x, y) def= (f · x, f · y) ∈ Jϕ ∧ ψKv
f · α def= (z : C) 7→ (g : HomC(v, z)) 7→ (x : JϕKz) 7→ α(z)(g ◦ f)(x) ∈ Jϕ→ ψKv

Moreover, this definition is compatible with C, in the sense that g · (f ·x) = (g ◦ f) ·x and
idw · x = x. We thus obtain a (covariant) presheaf JϕK : C −→ Set for each formula ϕ.
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It is well-known that the proofs of intuitionistic logic form a bicartesian closed category
(biCCC), i.e. a category with finite (co)products and exponentials [57]. A biCCC can be
seen as a categorification of a Heyting algebra: formulae are objects of the category, and
proofs are morphisms. We will not expound on this further; see [58, 22, 4].
It should therefore be the case that the semantics described above form a biCCC.

Indeed, it is a well-known fact of topos theory that the category of presheaves [C,Set] is
a biCCC. In fact, the construction of exponentials [62, §I.6] reveals that our definition
above is deficient: we should restrict Jϕ→ ψKw to contain only those functions F that
for any f : w → v1, g : v1 → v2, and x ∈ JϕKv1 satisfy the coherence condition
g · F (v1)(f)(x) = F (v2)(g ◦ f)(g · x).
From now on we will identify two-dimensional Kripke semantics with categorical

semantics in a category of presheaves [C,Set]. Following topos theory, we will call C a
site.

4.1. Presheaf categories
The category [C,Set] of covariant presheaves is eerily similar to prime algebraic lattices.
In a sense they are just the same; but, having traded 2 for Set, they have become
proof-relevant.
First, letting P ∈ [C,Set], an element x ∈ P (w) is a proof that P holds at a ‘world’

w ∈ C. A morphism f : w → v of C then leads to a proof f · x def= P (f)(x) ∈ P (v) that P
holds at v. Thus, the presheaf P is very much like an upper set.

Second, [C,Set] is both complete and cocomplete, with limits and colimits computed
pointwise [62, §I]. It is also ‘distributive’ in an appropriate sense [3, §3.3], which makes it
into a Grothendieck topos. Amongst other things, this means that it is a cartesian closed
category, with the exponential being (P ⇒ Q)(w) def= Hom(P × y(w), Q).
Third, the representable presheaves y(w) def= HomC(w,−) : C → Set are the proof-

relevant analogues of the principal upper set. The Yoneda lemma guarantees that
we obtain an embedding y(−) : Cop −→ [C,Set] which moreover preserves limits and
exponentials [4].
Fourth, the representables y(w) are special, in that they are tiny [85].

Definition 4.1. An object w ∈ C is tiny just if Hom(w,−) : C → Set preserves colimits.4

Tininess is a proof-relevant version of primality: it implies that for any f : w → lim−→i
vi

there exists an i such that f is equal to the composition of a morphism w → vi with the
injection vi → lim−→i

vi. By the Yoneda lemma, it follows that all representables y(w) are
tiny.
Fifth, the so-called co-Yoneda lemma [61, §III.7] shows that every P ∈ [C,Set] is a

colimit of representables. This means that it can be reconstructed by sticking together
tiny elements:

P ∼= lim−→i
y(wi)

4In the literature this property is often referred to as external tininess (cf. internal tininess).
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Like with prime algebraic lattices, there is a converse to this result: every category which
is generated by sticking together tiny elements is in fact a presheaf category:

Theorem 4.2 (Bunge [18]). A category which is cocomplete and strongly generated by a
small set of tiny objects is equivalent to [C,Set] for some small category C.

A textbook presentation of this result can be found in the book by Kelly [52, §5.5].
Finally, the fact every element can be reconstructed as a colimit of tiny objects means

that it is possible to uniquely extend any functor f : C −→ D to a cocontinuous functor
[Cop, 2] −→ D, as long as D is cocomplete. Diagrammatically, in the situation

C [Cop,Set]

D

y

f
f! ⊣ f⋆

(9)

there exists a unique cocontinuous f! with f!(y(w)) = f(w). It is given by

f!
(
lim−→i

y(wi)
)
= lim−→i

f(wi)

f! is called the left Kan extension of f along y. It has a right adjoint f⋆ which can be
explicitly given by f⋆(d) = Hom(f(−), d). This amounts to an equivalence

HomCat(C,D) ∼= HomCocont([Cop,Set],D)

where Cat is the 2-category of categories, and Cocont is the 2-category of cocomplete
categories and cocontinuous functors [4, Prop. 9.16] [69, Cor. 6.2.6, Rem. 6.5.9] and [61,
§ X.3, Cor. 2] [52, Th. 4.51].
All in all, presheaf categories are the categorification of prime algebraic lattices.

4.2. Spacelike sites
Replacing posets with categories does not come for free: the extra dimension of morphisms
lead to situations that could not arise in a poset. Some of thse are problematic when
thinking of C as a Kripke frame. Perhaps the most bizarre is the presence of idempotents,
i.e. morphisms e : w → w with the property that e ◦ e = e. Such morphisms represent a
non-trivial increase in information which confusingly leaves us in the same world.

The presence of idempotents causes issues. For example, recall that, in prime algebraic
lattices, primes and principal upper sets coincide. The astute reader will have noticed we
did not claim the analogous result in presheaf categories: tiny objects are not necessarily
representable in [C,Set]. For that, we need C to be Cauchy-complete [16, 14].

Definition 4.3. A category is Cauchy-complete just if every idempotent splits, i.e. if every
idempotent is equal to s ◦ r for a section-retraction pair s and r.

13



Note that every complete category is Cauchy-complete, including Set and [C,Set].
This leads us to another troublesome situation, namely that of having section-retraction

pairs, i.e. s : w → v and r : v → w with r ◦ s = idw. In this case w and v contain no
more information than each other, but are not isomorphic. We may ask that this does
not arise.

Definition 4.4. A category satisfies the Hemelaer condition [44, Prop. 5.8] just if every
section-retraction pair is an isomorphism.

Combining these two conditions is equivalent to the following definition.

Definition 4.5. A category is spacelike if every idempotent is an identity.

In the rest of this paper, we will assume that our sites are at least Cauchy-complete,
so that tiny objects coincide with representables.

4.3. Morphisms
The simplest kind of morphism between sites is a functor. Given a f : C −→ D we can
define a functor f∗ : [D,Set] −→ [C,Set] that takes P : D −→ Set to P ◦ f : C −→ Set.
This functor has left and right adjoints, which are given by Kan extension [48, A4.1.4]:

[C,Set] [D,Set]
f∗

f∗

f!

⊣
⊣

(10)

Therefore f∗ preserves all limits and colimits, i.e. it is (co)continuous. In short, the
presheaf construction gives a functor [−,Set] : Catccop −→ PshCat, where Catcc is the
category of small Cauchy-complete categories and functors, and PshCat is the category
of presheaf categories and (co)continuous functors.

Moreover, this functor is an equivalence. Given a presheaf category we can obtain the
site as the subcategory of tiny objects [48, A1.1.10]. But how can we extract f : C −→ D
from any (co)continuous functor f∗ : [D,Set] −→ [C,Set]? First, as presheaf categories
are locally presentable, the adjoint functor theorem implies that f∗ has left and right
adjoints, as in (10) [1, §1.66]. This gives what topos theorists call an essential geometric
morphism. Johnstone [48, §A4.1.5] shows that every such morphism is induced by a
f : C −→ D, as f! preserves representables (when D is Cauchy-complete). We thus obtain
a duality5

Catopcc ≃ PshCat (11)

As with posets, functors here fail to preserve truth; for that we need a notion of
openness.

5There are some size issues here that are being swept under the rug.
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Definition 4.6. f : C −→ D is open just if f∗ : [D,Set] −→ [C,Set] preserves exponentials.
Lemma 4.7. If f : C −→ D is open then there is a natural isomorphism θw : JϕKw ∼=
JϕKf(w).

Definition 4.6 is somewhat underwhelming, as it does not give explicit conditions that
one can check—unlike Definition 2.2. However, obtaining such a description appears
difficult.
Some information may be gleaned by considering (f∗, f∗) : [C,Set] −→ [D,Set] as a

geometric morphism. Such a morphism is open [46] [49, C3.1] just if both the canonical
maps f∗(c ⇒ d) → f∗(c) ⇒ f∗(d) and f∗(Ω) → Ω are monic. Johnstone [49, C3.1]
proves that (f∗, f∗) is open iff for any β : f(w) → v′ in D there exists an α : w → w′ in C
and a section-retraction pair s : v′ → f(w′) and r : f(w′) → v′ with s ◦ β = f(α). This
superficially seems like a categorification of Definition 2.2. However, it only guarantees
that the canonical map is sub-cartesian-closed, whereas we need an isomorphism for
Lemma 4.7 to hold.

A stronger condition is to ask that (f∗, f∗) be locally connected, i.e. that f∗ commute
with dependent products [49, C3.3]. All such morphisms are open geometric morphisms.
This is stronger than what we need, but sufficient conditions on f can be given [49,
C3.3.8].
Finally, an even stronger condition is to ask that (f∗, f∗) be atomic, i.e. that f∗ is a

logical functor. This means it preserves exponentials and the subobject classifier [49, A2.1,
C3.5]. All atomic geometric morphisms are locally connected. This is again stronger than
what we need, and a characterisation in terms of f is elusive: see MathOverflow [76].

It is easier to characterise when (f∗, f∗) is a surjection, i.e. when f∗ is faithful [48,
A2.4.6]. This happens when every d ∈ D is the retract of f(c) for some c ∈ C [48, A2.4.7].
If D satisfies the Hemelaer condition, this reduces to f being essentially surjective.
Writing C ⊨ ϕ to mean that JϕKw is non-empty for any w ∈ C and interpretation of

JpK,
Lemma 4.8. For D spacelike, f : C → D open and essentially surjective, if C ⊨ ϕ then D ⊨
ϕ.

We may thus restrict the duality (11) to

Catopcc, open ≃ PshCat⇒ Catopsp, open, es ≃ PshCat⇒,f (12)

In the first instance, the category on the left is that of Cauchy-complete categories and
open functors; and on the right it is presheaf categories and (co)complete, cartesian closed
functors. In the second instance, the category on the left is that of spacelike categories
and open, essentially surjective functors; and on the right it is presheaf categories and
(co)complete, faithful, cartesian closed functors.

5. Modal Logic II

To make a two-dimensional Kripke semantics for modal logic we have to categorify
relations. We took the first step by considering with bimodules, i.e. information-order-
respecting relations. The second step can be taken by replacing 2 with Set; this leads us
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to the notion of a relation between categories, also known as a profunctor or distributor
[8] [14, §7].

Definition 5.1. A profunctor R : C −7→ D is a functor R : Cop ×D → Set.

To formulate a two-dimensional Kripke semantics for modal logic, we swap modal
Kripke frames (W,⊑, R) with a category C with an (endo)profunctor R : Cop × C → Set.
To obtain the right definition we can now play the trick we played before: putting
ΛR : Cop → [C,Set] into diagram (9) we canonically obtain by Kan extension the
following situation:

Cop [C,Set]

[C,Set]

y

ΛR
♦R ⊣ 2R

(13)

We may then define J♦ϕK def= ♦RJϕK : C −→ Set and J2ϕK def= 2RJϕK : C −→ Set. It is
worth unfolding what a proof of 2ϕ is at a world w to obtain an explicit description:

J2ϕKw = (2RJϕK)(w) = Hom[C,Set](ΛR(w), JϕK) = Hom[C,Set](R(w,−), JϕK) (14)

Thus, a proof that ϕ holds at w is a natural transformation α : R(w,−) ⇒ ϕ. This has
the expected shape of Kripke semantics for 2: for each v ∈ C and proof x ∈ R(w, v) that
v is accessible from w, it gives us a proof αv(x) ∈ JϕKv that ϕ holds at v.
It is a little harder to see what a proof of ♦ϕ at a world w is. It becomes more

perspicuous if we use the coend formula for the left Kan extension [60, §2.3]:

J♦ϕK = ΛR!JϕK ∼=
∫ v∈C

Hom[C,Set](y(v), JϕK)× ΛR(v) ∼=
∫ v∈C

JϕKv ×R(v,−) (15)

Hence, a proof that ♦ϕ holds at w consists of a world v ∈ C, a proof that R(v, w), and a
proof that ϕ holds at v—which is exactly what we would have expected. The difference
is that the coend quotients some of these pairs, according to the action of C on v.6

How well does this fit the categorical semantics of modal logic? As with intuitionistic
modal logic, there is also a number of proposals of what that might be. A fairly recent
idea is to define it as the semantics of a Fitch-style calculus, as studied by Clouston [21].
This is exactly a (bi)cartesian closed category C equipped with an adjunction:

C C

2

♦

⊣ (16)

6See Mac Lane and Moerdijk [62, §VII.2] for a classic textbook exposition on why this construction is a
tensor product of JϕK and ΛR.
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The left adjoint ♦ is often written as lock. It does not commonly appear as a modality,
but as an operator on contexts that corresponds to ‘opening a box’ in Fitch-style natural
deduction [45, §5.4]. The modality 2 is a right adjoint, so that it automatically preserves
all limits, including products. This idea has proven remarkably robust: variations on it
have worked well for modal dependent type theories [12, 40, 41, 42, 39]. The fact that
an adjunction on a presheaf category corresponds precisely to a two-dimensional Kripke
semantics is further evidence that this is the correct notion of categorical model of modal
logic.

Finally, note that (14) and (15) look suspiciously like the modal structure of normalization-
by-evaluation models for modal type theories. This is explicitly visible in the paper by
Valliappan et al. [78, §2], and also implicitly present in the paper by Gratzer [38].

5.1. Morphisms
Define the category Prof to have as objects profunctors. A morphism (f, g, α) : R→ S
from R : C −7→ D to S : C′ −7→ D′ consists of functors f : C −→ C′ and g : D −→ D′, and a
natural transformation α : R(−,−) ⇒ S(f(−), g(−)). The subcategory EProf consists of
endoprofunctors R : C −7→ C, and triples of the form (f, f, α). We synecdochically refer to
α : R(−,−) ⇒ S(f(−), f(−)) as a morphism of EProf. Thus, objects are two-dimensional
Kripke frames, and morphisms are functors that proof-relevantly preserve the relation.

Lemma 5.2. Morphisms of endoprofunctors α : R(−,−) ⇒ S(f(−), f(−)) are in bijection
with natural transformations γ : f∗2S ⇒ 2Rf

∗.

Proof. Unfolding the definitions, γ : Hom(S(f(−),−),−) ⇒ Hom(R(−,−), f∗(−)). As
f! ⊣ f∗ this is exactly a transformation Hom(S(f(−),−),−) ⇒ Hom

(
f!R(−,−),−

)
. By

the Yoneda lemma, any such transformation arises by precomposition with a unique
transformation f!R(−,−) ⇒ S(f(−),−). By f! ⊣ f∗ again, this uniquely corresponds to
a transformation α : R(−,−) ⇒ f∗S(f(−),−) = S(f(−), f(−)).

We thus obtain a duality
EProfopcc ≃ PshCatO (17)

where PshCatO is the category of presheaf categories [C,Set] equipped with a continuous
2 : [C,Set] −→ [C,Set]. Note that, as presheaf categories are locally presentable, 2
always has a left adjoint ♦. Thus, the objects are categorical models of modal logic.
Morphisms are pairs (f, γ) of a (co)continuous f : C −→ D and a natural transformation
γ : f∗2⇒ 2f∗.

As before, open functors do not preserve truth; for that we need a notion of modal open-
ness. Let α : R(−,−) ⇒ S(f(−), f(−)). As pointed out in the proof of Lemma 5.2, this
uniquely corresponds to a transformation tα : f!R(−,−) ⇒ S(f(−),−). Its components

tα,c,v :
∫ w∈V

R(c, w)×HomD(f(w), v) → S(f(c), v)

map x ∈ R(c, w) and k : f(w) → v to S(idf(c), k)(αc,v(x)). We can then say that
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Definition 5.3. α : R(−,−) ⇒ S(f(−), f(−)) is modally open just if tα is an isomorphism.

This asks that for every proof y ∈ S(f(c), v) we should be able to find an object w ∈ C,
a proof x ∈ R(c, w), and a morphism k : f(w) → v, so that y = S(idf(c), k)(αc,v(x)).
This is clearly a categorification of Definition 3.4, and leads to the following lemma:

Lemma 5.4. α is modally open iff the corresponding f∗2S ⇒ 2Rf
∗ is an isomorphism.

Proof. The proof of Lemma 5.2 precomposes with tα to get γ. Thus γ is iso iff tα is.

Thus, the duality (17) may be restricted dualities between the wide subcategories

EProfopcc, moo ≃ PshCatO⇒o EProfopsp, moo, es ≃ PshCatO⇒of (18)

The morphisms on the left are modally open, open maps (resp. also essentially surjective);
and the morphisms on the right are (f, γ) where f is cartesian closed (resp. also faithful)
and γ : f∗2 ∼= 2f∗ is a natural isomorphism.

6. Other related work

Alechina et al. [2] present Kripke and algebraic semantics for constructive S4 and
propositional lax logic, and related dualities. Their interpretation of 2 is non-standard,
cf. [67, 73].
Ghilardi and Meloni [33] explore a presheaf-like interpretation of (predicate) modal

logic, which is similar to ours, albeit non-proof-relevant. They work over the identity
profunctor Hom(−,−). They are hence forced to weaken the definition of presheaf. See
also [34, 35].

Awodey et al. [5] give a topos-theoretic semantics for a higher-order version of intuition-
istic S4 modal logic. They also briefly survey much previous work on presheaf-based and
topos-theoretic semantics for first-order modal logic. Their work is not proof-relevant.

Finally, there is clear methodological similarity between the results here and the results
of Winskel and collaborators on open maps and bisimulation [51, 19]. One central
difference is that Winskel et al. are mainly concerned with open maps between presheaves
themselves, whereas I only consider open maps between (two-dimensional) frames.
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