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Abstract

We revisit the duality between Kripke and algebraic semantics of intuitionistic and intuitionistic modal logic. We find that
there is a certain mismatch between the two semantics, which means that not all algebraic models can be embedded into a
Kripke model. This leads to an alternative proposal for a relational semantics, the stable semantics. Instead of an arbitrary
partial order, the stable semantics requires a distributive lattice of worlds. We constructively show that the stable semantics
is exactly as complete as the algebraic semantics. Categorifying these results leads to a 2-duality between two-dimensional
stable semantics and categories of product-preserving presheaves, i.e. models of algebraic theories in the style of Lawvere.
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1 Introduction

In a previous paper I revisited the relationship between the Kripke and algebraic semantics of intuitionistic
logic and (intuitionistic) modal logic [30]. Kripke frames (i.e. partial orders) correspond to a certain class
of complete Heyting algebras, the prime algebraic lattices. This entails a duality Posop ≃ PrAlgLatt,
which may be refined to ‘truth-preserving’ morphisms on one side, and implication-preserving on the other.

What is curious about this duality is that it can be reproduced at the level of categories, which model
proofs. Replacing a Kripke frame by a category leads to an evident definition of a proof-relevant two-
dimensional Kripke semantics. This amounts to taking presheaves over the category, yielding a bicartesian
closed category, i.e. a model of intuitionistic proofs. The interpretation of formulas is then a direct
categorification of Kripke semantics. This is a 2-duality Catopcc ≃ PshCat between Cauchy-complete
categories (qua two-dimensional Kripke frames) and presheaf categories (qua prime algebraic lattices).

Moreover, this story can be adapted to intuitionistic modal logic. There is no widespread agreement
on what the latter is. However, in [30] I showed that a relation that is compatible with a partial order, i.e.
a bimodule, canonically induces two adjoint modalities ♦ ⊣ 2 by Kan extension. This provides a canonical
proposal as to what an intuitionistic modal logic should be. Its corresponding Kripke semantics is

w ⊨ ♦φ
def≡ ∃v. v R w and v ⊨ φ w ⊨ 2φ

def≡ ∀v. w R v implies v ⊨ φ (1)
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While 2 is indeed the expected modality, ♦ uses R in the opposite variance to the more common ♢modality.
Conversely, any adjunction ♦ ⊣ 2 on a prime algebraic lattice uniquely corresponds to a bimodule, giving
a duality EBimodop ≃ PrAlgLattO between bimodules on a partial order and prime algebraic lattices
L equipped with an operation, i.e. a meet-preserving 2 : L→ L.

The modal picture can also be categorified, by replacing bimodules with profunctors. Left Kan exten-
sion then induces an adjunction on [C,Set]. By unfolding the definition of these adjoints we obtain
a remarkable proof-relevant version of (1). This amounts to a 2-duality EProfopcc ≃ PshCatO be-
tween profunctors on a Cauchy-complete category, and presheaf categories equipped with a continuous
2 : [C,Set] −→ [C,Set], which automatically has a left adjoint ♦ (by local finite presentability). This is
consistent with what we have come to regard in the last few years as the categorical semantics of modal
logic, i.e. an adjunction on a bicartesian closed category [13].

Completeness

These dualities also come with theorems relating validity in the Kripke semantics to validity in the induced
algebraic and categorical semantics. Consequently, we are able to use them to prove completeness of the
algebraic semantics from completeness of the Kripke semantics. Suppose that a formula of intuitionistic
logic is valid in all Heyting algebras; it is then valid in all prime algebraic lattices. Hence, it must be valid
in all Kripke frames. Therefore, if the Kripke semantics is complete, this formula must be provable. As a
result, completeness of the Kripke semantics implies completeness of the algebraic semantics.

Surprisingly, the converse implication is also provable. An old construction, whose origins we can trace
at least as far as the book by Fitting [21, §1.6], gives a recipe for inducing a Kripke semantics from a general
Heyting algebra, by taking all prime filters. The resulting structure is richer than an ordinary frame: it is
a descriptive frame [12, §8.4]. This is part of a duality between Heyting algebras and descriptive frames,
which is known as Esakia duality [20]. It is then possible to relate validity in the descriptive frame to
validity in the Heyting algebra. A categorical version of this construction for coherent toposes has been
shown by Joyal: see [39, Theorem 6.3.5]. When simplified, Joyal’s result amounts to an embedding of
every Heyting algebra into a prime algebraic lattice that preserves all connectives [25, §3.2] [38] [23].

However, the part of this result that relates validity in the descriptive frame to validity in the Heyting
algebra requires the prime filter existence theorem [16, §10] [28, §I.2.3], which is a weak form of the axiom
of choice. Similarly, the result of Joyal quoted above uses highly non-constructive reasoning.

This paper is about trying to avoid this particular reasoning step. This is not merely due to a predilection
for constructive reasoning: if this proof is constructive we should be able to straightforwardly categorify
it, so that it applies to models of intuitionistic (modal) proofs as well. This will in turn provide interesting
information about the completeness of various classes of models of typed (modal) λ-calculi.

Stable semantics

However, relating Kripke and algebraic semantics appears impossible without using prime filters. In an
attempt to overcome this I will introduce a new relational semantics for intuitionistic logic, which I call
stable semantics. The essence can summarised as replacing upper sets, which play a central rôle in Kripke
semantics [30], with filters. This inescapably leads to the use of distributive lattices as frames, as well
as a different interpretation of disjunction, which is reminiscent of Beth semantics [9] and Kripke-Joyal
semantics [32, §II.9] [37, §VI.6] [11, §6.6]. The attendant duality, which is now between distributive lattices
and coherent frames, is already well-known from Stone duality [28, §II.3.2]. Furthermore, the coherent
semantics can be straightforwardly extended to modalities.

The advantage of stable semantics is that we can constructively show an equi-completeness result
between them and the algebraic semantics. Every stable semantics induces a certain kind of complete
Heyting algebra, i.e. a coherent frame. This allows us to prove completeness of Heyting algebras from
completeness of the stable semantics. However, every Heyting algebra is a distributive lattice, and hence
a stable frame. This frame can be embedded in a coherent frame in a way that preserves all the logical
structure. Thus, completeness of the stable semantics follows from completeness of the algebraic semantics.
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Two-dimensional stable semantics and algebraic theories

Categorifying the above story engenders a pleasant surprise. The most technically expedient categorifica-
tion of the filter construction for our purposes is the sifted colimit completion. However, the very same
completion plays a decisive rôle in the algebraic theories in the style of Lawvere [4]: every category of
algebras is a sifted completion of the opposite of its theory, which is a cartesian category.

If we assume that the opposite of a theory is a distributive category [14], the results on stable semantics
can be directly categorified. This shows that the class of product-preserving functors (cf. filters) on that
distributive category (cf. stable frame) is a complete model of the typed λ-calculus with sums and an
empty type. These results can be readily adapted to the proofs of intuitionistic modal logic.

Thus, the results herein bear a striking relationship with categorical algebra. I am not yet certain what
the long-term impact of this observation is, but it seems far too compelling to ignore.

Roadmap

In §2 I discuss what it means to regard a Heyting algebra as a Kripke frame, as well as the technical
issues that arise when we try to embed that representation into a prime algebraic lattice. This leads to the
introduction of stable semantics in §3, which is proved equi-complete with Heyting algebras. Moreover,
the relevant duality is discussed. In §4 I show that the stable semantics can be effortlessly adapted to
interpret adjoint modalities. Then, in §5 I categorify them; this requires a recap of the elements of Lawvere’s
approach to algebraic theories. I give an an equi-completeness proof, and discuss the syntax-semantics
duality. Finally, this approach is extended to intuitionistic modal proofs in §6.

2 Heyting algebras vs. Kripke frames

Every Kripke frame (W,⊑) induces a prime algebraic lattice [W, 2] constiting of its upper sets, ordered by
inclusion [30, §2]. Looking at this lattice as a Heyting algebra, i.e. an algebraic semantics for intuitionistic
logic, we see that every formula φ is interpreted as the set JφK ⊆W of worlds in which it is true. This set
is upper because Kripke semantics is monotonic: w ⊑ v can be read as saying that world v has potentially
more information than world w. Thus, the passage from w to v may force more formulas to be true, but
will not invalidate formulas that were previously known to be true.

It is interesting to consider a Heyting algebra H in the capacity of a Kripke frame itself. The most
evident way of doing so is by taking the opposite of its order, yielding the partial order (Hop,⊑), where
⊑ is just ≥ in H. Thinking of H as a Tarski-Lindenbaum algebra of an intuitionistic theory, we see that

φ ⊑ ψ iff ψ ≤ φ iff “ψ ⊢ φ”

Roughly, each element φ ∈ H can be thought of as a formula that specifies what we currently know. The
relation φ ⊑ ψ holds just when ψ implies φ, i.e. when ψ potentially contains more information.

The order-embedding ↑ : H → [Hop, 2] then takes φ ∈ H to {ψ ∈ H | ψ ≤ φ}, i.e. the set of formulas
that imply φ. It is well-known that ↑ preserves finite meets and exponentials, so that

↑⊤ = H ↑(φ ∧ ψ) = ↑φ ∧ ↑ψ ↑(φ⇒ ψ) = ↑φ⇒ ↑ψ

However, ↑ famously does not preserve disjunction: sometimes ↑(φ ∨ ψ) ̸= ↑φ ∨ ↑ψ. Thus, we can only
embed the (∧ →) fragment of the logic into a prime algebraic lattice in this manner.

These facts are perhaps better known at the two-dimensional level. Suppose that C is a bicartesian
closed category, i.e. a model of intuitionistic proofs. It is a basic fact of category theory that the Yoneda
functor y : Cop −→ [C,Set] is an embedding, i.e. full, faithful, and injective on objects. It is also well-known
that y preserves finite products and exponentials [7], i.e. that

y(1) ∼= 1 y(c× d) ∼= y(c)× y(d) y(c⇒ d) ∼= y(c) ⇒ y(d)

For a totally unrelated purpose, Dana Scott [41] noticed that this induces a useful isomorphism:

Lemma 2.1 (Scott) If φ uses neither disjunction nor falsity then JφK[Cop,Set]
∼= y(JφKC).
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Here JφKC is the interpretation of φ as an object of C, and JφK[Cop,Set] is the interpretation of φ as
an object of the category of presheaves [Cop,Set], both defined following the respective cartesian closed
structure. In the second instance basic propositions p are interpreted by the representable y(JpKC).

It is not difficult to extend this to the categorical models of modal logic. Following the work of Clouston
on Fitch-style λ-calculi [13], these are generally understood to be endo-adjunctions

C C

2

♦

⊣ (2)

on a bicartesian closed category C. Given such a model, take the left Kan extension of ♦◦y along Yoneda:

C [Cop,Set]

[Cop,Set]C

y

y

♦ ⊣ 2 ♦p ⊣ 2p (3)

♦p is then a colimit-preserving functor on the presheaf category, and has a right adjoint 2p. Thus, we
obtain a categorical model of modal logic on the presheaf category. It is easy to calculate that the action of
these adjoint functors on representables is essentially the same as that of ♦ and 2, in that (3) commutes:

♦p(y(c))
def
= y(♦c)

2p(y(c))
def
= Hom[Cop,Set]

(
y(♦(−)),y(c)

) ∼= HomC(♦(−), c) ∼= HomC(−,2c) = y(2c)

Consequently, Scott’s lemma directly extends to the categorical semantics of the (∧ → ♦2) fragment of
intuitionistic modal logic. Notice that the diagram (3) witnesses y as a (weak) morphism of categorical
models of modal logic without disjunction: y is a cartesian closed functor that preserves the adjunction.
Of course, this result can be de-categorified to one for Heyting algebras equipped with an adjunction.

This leaves the mystery of disjunction. One might think that sheaves are the answer. However, we will
do something far more radical instead.

3 Stable semantics of intuitionistic logic

Given an arbitrary Kripke frame, i.e. a partial order (W,⊑), Kripke semantics interpret every formula as
an upper set of worlds, i.e. a set S ⊆ W for which w ∈ S and w ⊑ v implies v ∈ S. The stable semantics
will instead revolve around the notion of a filter over W .

Definition 3.1 A filter over (W,⊑) is a non-empty subset F ⊆W which is

• upper, in that w ∈ F and w ⊑ v implies v ∈ F ; and

• filtered, in that whenever w, v ∈ F there exists a z ∈ F with z ⊑ w and z ⊑ v.

We write Filt(W ) for the set of filters overW . Filt(W ) is a poset under inclusion—in fact it is a directed
complete partial order (dcpo) (without a bottom element) [24, §O-2.8].

When W has more structure the definition of a filter can be somewhat simplified.

Proposition 3.2 Let (W,⊑) be a meet-semilattice. A subset F ⊆W is a filter if and only if it is

• upper, in that w ∈ F and w ⊑ v implies v ∈ F ; and

• a sub-meet-semilattice, in that 1 ∈ F and w, v ∈ F implies w ∧ v ∈ F
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A stable frame is a partial order (W,⊑) which is a distributive lattice. This means that it has both finite
joins and meets, and that they also satisfy the distributive law a∧ (x∨y) = (a∧x)∨ (a∧y). Consequently,
they also satisfy the dual law a ∨ (x ∧ y) = (a ∨ x) ∧ (a ∨ y) [28, §I.1.5], which we will use heavily.

A stable frame has much more structure than a good old fashioned Kripke frame. To begin, any two
worlds w, v ∈ W have a meet w ∧ v and a join w ∨ v (we use the same notation as the logic, but rely
on context for disambiguation). If we think of each world as containing information—in particular about
which variables have become true—then these two operators tell us that it is possible to find least and
greatest upper bounds of information. The fact the distributive law holds means that the interpretation
of these bounds as ‘intersection of information’ and ‘union of information’ is tenable.

Furthermore, W has a bottom element 0 and a top element 1. 0 represents the baseline level of infor-
mation, i.e. the fewest facts we may regard as true. In contrast, 1 represents a supernova of information.
As we will see below, this will be enough to imply all possible facts—even false ones.

A stable model M = (W,⊑, V ) consists of a stable frame (W,⊑) and a function V : Var → Filt(W ).
The valuation V assigns to each propositional variable p ∈ Var a filter V (p) ⊆W , to be thought of as the
set of worlds in which p is true. The fact this is a filter leads to the following intuitions:

Upper set Once a proposition becomes true, it remains true as information increases.

Top element 1 is the world in which every proposition is true. Thus, 1 ∈ V (p) for every p.

Meets If w, v ∈ V (p), then both w and v contain the information that p is true. Therefore, their greatest
lower bound should also contain that information, so that w ∧ v ∈ V (p).

Notice that if 0 ∈ V (p) then every world is in V (p), as every filter is an upper set. Thus, a variable that
is true at the baseline world w is true throughout the frame.

The stable semantics are defined through a relation M, w ⊨ φ with the meaning that φ is true in world
w of model M. When it is clear which model we are using we will skip it, writing simply w ⊨ φ. The
clauses for M, w ⊨ φ are much like those for the Kripke semantics, with the characteristic clause for →:

M, w ⊨ φ→ ψ
def≡ ∀w ⊑ v. M, v ⊨ φ implies M, v ⊨ φ

The only clauses that change are the ones for falsity and disjunction:

M, w ⊨ ⊥ def≡ (w = 1) M, w ⊨ φ ∨ ψ def≡ ∃v1, v2. v1 ∧ v2 ⊑ w and M, v1 ⊨ φ and M, v2 ⊨ ψ

There are a number of things to notice about this definition.
First, the falsity ⊥ can now be a true formula; but it is only true at 1 ∈ W , which is top element for

the information order ⊑. In fact, every formula is true at 1. In that sense, 1 is a supernova of information,
a world that contains so much information that it forces everything—even falsity!—to be true. A similar
concept of exploding or fallible worlds has occurred in the context of intuitionistically-valid completeness
proofs for intuitionistic logic and associated realizability models [43,18,42,25,34].

Second, the clause for the disjunction φ ∨ ψ at world w requires that both φ and ψ are true at some
worlds v1 and v2 respectively. However, the common information between v1 and v2, i.e. v1 ∧ v2, must
already imply the information that was known at w. But what if one of the two formulas is a contradiction?
This is not a cause for worry, due to the existence of the supernova world: as w ∧ 1 = w, we have that
w ⊨ φ ∨ ⊥ if and only if w ⊨ φ. When v1 ∧ v2 ⊑ w we say that w fans into v1 and v2.

Third, note that the definition does not mention the joins w ∨ v that exist in W . Does that mean we
could do away with them? The answer is strongly negative, as they will prove indispensible in showing
that the stable semantics is monotonic, which is part of the next lemma.

Lemma 3.3 (Filtering)

(i) M, w ⊨ φ and w ⊑ v imply M, v ⊨ φ.

(ii) M, 1 ⊨ φ for any φ.

(iii) M, w1 ⊨ φ and M, w2 ⊨ φ imply M, w1 ∧ w2 ⊨ φ.

Proof. We prove (iii), and only show the cases for implication and disjunction.
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Suppose that w1 ⊨ φ → ψ, w2 ⊨ φ → ψ, w1 ∧ w2 ⊑ v and v ⊨ φ. As wi ⊑ wi ∨ v and v ⊑ wi ∨ v we
know that wi ∨ v ⊨ φ→ ψ and wi ∨ v ⊨ φ by (i), and hence that wi ∨ v ⊨ ψ, for i ∈ {1, 2}. Hence, by the
IH, (w1 ∨ v) ∧ (w2 ∨ v) ⊨ ψ. But v = (w1 ∧ w2) ∨ v = (w1 ∨ v) ∧ (w2 ∨ v) by distributivity.

Suppose that w1 ⊨ φ1 ∨ φ2 and w2 ⊨ φ1 ∨ φ2. Then there exist vij with vi1 ∧ vi2 ⊑ wi and vij ⊨ φj .
Then v1j ∧ v2j ⊨ ϕj , with (v11 ∧ v21) ∧ (v21 ∧ v22) = (v11 ∧ v12) ∧ (v12 ∧ v22) ⊑ w1 ∧ w2. 2

Both (i) and (iii) of this lemma require the existence of disjunctions; in fact, they make essential use
of the dual distributive law a ∨ (x ∧ y) = (a ∨ x) ∧ (a ∨ y).

It now remains to show how the stable semantics induce an algebraic semantics. Given a stable frame
(W,⊑) consider the set [W, 2]∧ of monotonic functions p : W → 2 which preserve finite meets. This is a
partial order under the pointwise order. This poset has a number of curious properties.

First, the monotonicity of p : W → 2 implies that if p(w) = 1 and w ⊑ v, then p(v) = 1. Hence, the
subset U = p−1(1) of W is an upper set. As p(⊤) = 1, we know that ⊤ ∈ U . Moreover, if p(w) = 1 and
p(v) = 1, then p(v∧w) = p(v)∧p(w) = 1, so U is closed under finite meets. In short, U is a filter. It is not
difficult to show that every filter F ⊆ W gives rise to a map pF : W → 2 which is monotonic and finite-
meet-preserving. Consequently, there is an order-bijection Filt(W ) ∼= [W, 2]∧. We are thus investigating
properties of the poset of filters of W . However, I will keep using the somewhat cumbersome notation
[W, 2]∧ for reasons that will become clear later.

Second, the poset [W, 2]∧ is a complete lattice, with meets given by intersection [24, §O-1.15, O-2.8].
The bottom element is {⊤}, while the binary join is F1 ∨ F2 = ↑{a ∧ b | a ∈ F1, b ∈ F2} [24, §O-1.15].
Infinitary joins

⊔
Fi are given by ↑{an1 ∧ . . . ∧ anj | ank

∈ Fnk
}. In fact, as W is distributive, infinite joins

and finite meets satisfy the infinite distributive law, making [W, 2]∧ a frame, or complete Heyting algebra
[28, §II.2.11]. The exponential is given by F1 ⇒ F2 = {w ∈W | ∀w ⊑ v. v ∈ F1 implies v ∈ F2}, which
one can readily check is a filter whenever F1 and F2 are—as long as W is distributive.

Third, given any w ∈ W , its principal filter ↑w is {v ∈W | w ⊑ v} ∈ [W, 2]∧. As w ⊑ v iff ↑ v ⊆ ↑w,
this gives an order-embedding ↑ :W op → [W, 2]∧. The key to this paper is the following lemma.

Lemma 3.4 ↑ :W op → [W, 2]∧ preserves finite and infinite meets, finite joins, and exponentials.

(The dual of) most of this lemma can be found in [24, §O-2.15]; the rest is elementary—at least if one
notices that the domain of ↑ is the opposite of W .

Fourth, the principal upper sets ↑w are special, as they are compact. Let L be a directed-complete

partial order (dcpo). An element d ∈ L is compact just if d ⊑
⊔↑X implies that d ⊑ x for some x ∈ X, for

any directed setX. Like (completely) prime elements, this says that d contains a small, indivisible fragment
of information: as soon as it approximates a ‘recursively defined element,’ i.e. a directed supremum, it
must approximate some ‘finite unfolding.’ We write K(L) for the set of compact elements of L. It is not
hard to show that the compact elements of [W, 2]∧ are exactly the principal upper sets ↑w for some w ∈W
[24, §I-4.10] [1, Prop. 2.2.2]. In addition, the finitary cases of Lemma 3.4 imply that the sub-poset of
compact elements K([W, 2]∧) is in fact a sub-lattice of [W, 2]∧. This fact will prove very important.

Fifth, the complete lattice [W, 2]∧ is algebraic [24, §I-4.10] [1, §2.2]. This means that all its elements
can be reconstructed as directed suprema of compact ones. In symbols, L is algebraic just if for any d ∈ L

{c ∈ K(L) | c ⊑ d} is directed, and d =
⊔↑

{c ∈ K(L) | c ⊑ d}

In summary, if W is distributive, [W, 2]∧ is a frame which is (i) algebraic, and (ii) whose compact elements
form a sub-lattice. Such lattices are referred to as coherent frames, and play an important rôle in Stone
duality. In fact, every such lattice arises as the filters of a distributive lattice [28, §II.3.2]:

Theorem 3.5 A frame is coherent iff it is isomorphic to [W, 2]∧ for a distributive lattice W .

This theorem says that a coherent frame L is isomorphic to the filters Filt(K(L)) of its compact elements.
Finally, the fact every element can be reconstructed as a supremum of compact elements means that

it is possible to canonically extend any monotonic f :W →W ′ that preserves finite joins to a monotonic,
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join-preserving [W op,2] →W ′, as long as W ′ is a complete lattice. Diagrammatically, in the situation

W [W op, 2]∧

W ′

↑

f
f! ⊣ f⋆

(4)

there exists a unique f! which preserves all joins and satisfies f!(↑w) = f(w). It is given by

f!(S)
def
=

⊔
{f(w) | w ∈ S}

We call f! the Scott-continuous extension of f along ↑. This follows from a much more general theorem:
if W is merely a poset and W ′ a dcpo, then [W op,2]∧ is a dcpo, and there is a unique Scott-continuous
f! that makes (4) commute [1, Prop 2.2.24]. However, if W already has finite joins, then [W op,2] is a
complete lattice. The reason is every join can be written as a directed supremum of non-empty finite ones.
Then, if f preserves finite joins, f! preserves all of them. As [W op,2]∧ is complete, it has a right adjoint
f⋆, by the adjoint functor theorem [16, §7.34] [28, §I.4.2].

Suppose then that we start with a stable model (W,⊑, V ). By taking its filters we then obtain a
complete Heyting algebra [W, 2]∧. Defining JpK = V (p), we obtain a model of intuitionistic logic, which
interprets every formula φ as a filter JφK ∈ [W, 2]∧, namely the filter of worlds in which it is true:

Proposition 3.6 w ⊨ φ if and only if w ∈ JφK.

In view of this proposition,

Theorem 3.7 (Soundness) The stable semantics is sound for intuitionistic logic.

3.1 Completeness

Revisiting the remarks of §2, we may prove that completeness of the stable semantics implies completeness
of the algebraic semantics and vice versa. One direction works exactly as it would for Kripke semantics:

Theorem 3.8 Completeness of the stable semantics implies completeness of the algebraic semantics.

Proof. Suppose JφKH = 1 for every Heyting algebra H and any interpretation JpKH ∈ H of the proposi-
tions. Hence, given any stable model (W,⊑, V ) we have that JφK[W,2]∧ = 1 = W where JpK[W,2]∧ = V (p).
But Prop. 3.6 then implies that w ⊨ φ for all w ∈W . By completeness of the stable semantics, ⊢ φ. 2

The filter construction now enables a proof of the other direction as well, as it yields an embedding

↑Hop : H → [Hop,2]∧

of any Heyting algebra H into the cHA of filters of Hop which is a Heyting homomorphism by Lemma 3.4.
It is worth pausing for a moment to ponder that a filter on Hop is in fact an ideal of H, viz. a lower set
that is a sub-join-semilattice. Thus, ↑Hop sends x ∈ H to the principal ideal {y ∈ H | y ≤ x} of x in H.

Suppose we have a Heyting algebra H, and some interpretation of propositional variables JpKH ∈ H.

Define an interpretation into [Hop, 2]∧ starting from JpK[Hop,2]∧
def
= ↑Hop(JpKH). Then, by Lemma 3.4,

Proposition 3.9 JφK[Hop,2]∧ = ↑HopJφKH = {y ∈ H | y ≤ JφKH}

We are now in a position to prove the

Theorem 3.10 Completeness of the algebraic semantics implies completeness of the stable semantics.
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Proof. Suppose φ is valid in every stable model. By completeness of the algebraic semantics, it suffices
to show that JφKH = 1 for any Heyting algebra H, and any interpretation JpKH ∈ H, as this implies ⊢ φ.
Consider then the stable model (Hop,⊑, V ) where V (p) = ↑Hop(JpKH). As φ is valid in this model, x ⊨ φ for
every x ∈ H. By Proposition 3.6 and Proposition 3.9 we get that H = JφK[Hop,2]∧ = {y ∈ H | y ≤ JφKH}.2

3.2 Morphisms

We briefly consider what it means to have a morphism f : W → W ′ of stable frames. We would like
such morphisms to induce a map f∗ : [W ′,2]∧ → [W, 2]∧ by f∗(F ) = {v ∈W ′ | f(v) ∈ F}. To conclude
that f∗(F ) is a filter we need to know that f is monotonic, and that it preserves finite meets. Such maps
warrant their own name, which we borrow from the literature on stable domain theory [8]:

Definition 3.11 A monotonic map f : W → W ′ is stable just if it preserves finite meets. We define
Stable to be the category of distributive lattices and stable maps.

Unlike the categoryDLatt of distributive lattices, the morphisms of Stable need not preserve disjunctions.
It is straightforward to show that when f preserves finite meets, f∗ is Scott-continuous and preserves

arbitrary meets. This defines a functor [−,2]∧ : Stableop −→ Coh, where Coh is the category of coherent
frames and Scott-continuous, meet-preserving morphisms. Note that this is not the usual category that is
used in Stone duality, whose morphisms are frame maps that preserve compact elements [28, §II.3.3].

It is not difficult to see that [−,2]∧ is an equivalence. On objects this is guaranteed by Theorem 3.5.
On morphisms, it suffices to spot that every f∗ : [W ′,2]∧ → [W, 2]∧ preserves meets, and hence has a left
adjoint f! by the adjoint functor theorem. It is then simple to show that left adjoints preserve compact
elements, so that f can be extracted by restricting f! to K([W, 2]) ∼=W . This leads to a duality

Stableop ≃ Coh (5)

Weaker versions of this duality are well-known, see e.g. [24, §IV-1.16] for a duality between meet-
semilattices and algebraic lattices, as well as references to it in the literature.

However, stable morphisms do not preserve truth. For that, we need to refine the above duality to
maps that are stable, open, surjective, and also L-morphisms in the sense of Bezhanishvili et al. [10, §2],
which appropriately preserve disjunction. The details are similar to those in [30].

4 Stable semantics of modal logic

In [30] I argued that a canonical Kripke semantics for intuitionistic modal logic is given by a bimodule, i.e.
a monotonic function R :W op ×W → 2 over a Kripke frame (W,⊑). In this section we adapt this to the
case where (W,⊑) is a stable frame.

Definition 4.1 A stable bimodule on W is a bimodule R : W op ×W → 2 that additionally satisfies the
following stability conditions:

(i) w R v1 and w R v2 =⇒ w R v1 ∧ v2
(ii) w R 1

(iii) w1 ∧ w2 R v =⇒ ∃v1, v2. v1 ∧ v2 ⊑ v and w1 R v1, w2 R v2

(iv) 1R v ⇐⇒ v = 1

A stable bimodule continues to be a relation R ⊆ W ×W with the property that w′ ⊑ w R v ⊑ v′

implies w′ R v′. This automatically implies the converses of (i) and (iii). Furthermore, (ii) is redundant,
as it is implied by (iv) and the bimodule conditions. However, we keep it for symmetry. A modal stable
frame (W,⊑, R) comprises a stable frame (W,⊑) and a bimodule R :W op ×W → 2.

Stability conditions (i) and (ii) ensure that abstracting the second variable yields a monotonic map
ΛR : W op → [W, 2]∧. Moreover, stability conditions (iii) and (iv) ensure that ΛR preserves finite joins.

8
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Then, by continuous extension, λR induces the following adjunction:

W op [W, 2]∧

[W, 2]∧

↑

λR
♦R ⊣ 2R

(6)

Like in the Kripke case [30], it can be shown that these maps are given by

♦R(F )
def
= {w ∈W | ∃v. v R w and v ∈ F} 2R(F )

def
= {w ∈W | ∀v. w R v implies v ∈ F}

It is easy to show by elementary means that both ♦R(F ) and 2R(F ) are filters whenever F is: the proof
of the first uses stability conditions (i) and (iv), and the second uses stability conditions (iii) and (iv).

This directly leads to the following clauses of a stable semantics of the two modalities:

M, w ⊨ ♦φ
def≡ ∃v. v R w and M, v ⊨ φ M, w ⊨ 2φ

def≡ ∀v. w R v implies M, v ⊨ φ

to which Proposition 3.6 readily extends. I have neglected to mention what a modal stable model M =
(W,⊑, R, V ) is: (W,⊑, R) is a modal stable frame, and the valuation V maps propositions into filters.

4.1 Completeness

In [30] I argued that applying Kan extension to a bimodule inescapably leads us to an intuitionistic modal
logic with two adjoint modalities, ♦ and 2, as studied by Dzik et al. [19]. The two clauses of the stable
semantics are identical to the Kripke semantics in loc. cit. But is the logic the same? To answer that
we have to reach for its algebraic models, which are Heyting algebras H equipped with two operators
♦,2 : H → H that form an adjunction ♦ ⊣ 2. We have just seen that stable bimodules on W correspond
precisely to such adjunctions on the cHA [W, 2]∧. As Proposition 3.6 remains true if we include ♦ and 2,
we have that the stable semantics is sound for the logic of Dzik et al. Furthermore,

Theorem 4.2 Completeness of the modal stable semantics implies completeness of the modal algebraic
semantics.

The proof is the same as that of Theorem 3.8. For the other direction we have to combine our work
from intuitionistic logic, and the ideas from §2. Given a Heyting algebra H and an adjunction on it, the
map ↑ ◦♦ preserves finite joins, as both ↑ and ♦ do. Take its Scott-continuous extension, ♦f :

H [Hop,2]∧

[Hop,2]∧H

↑

↑

♦ ⊣ 2 ♦f ⊣ 2f (7)

The map ↑ ◦♦ corresponds to a stable R♦ : H ×Hop → 2, which maps (x, y) to 1 iff y ≤ ♦x in H. This
is by definition stable, but in any case that is easy to verify manually—as long as one is careful about
variance. For example, to prove (iii), we need to show that whenever y ≤ ♦x1 ∨♦x2 there exist y1, y2 with
y ≤ y1 ∨ y2 and y1 ≤ ♦x1 and y2 ≤ ♦x2. It suffices to take yi = y ∧ ♦xi and use distributivity.

Diagram (7) commutes. For ♦ we have that ↑ ◦♦ = ♦f ◦ ↑ by definition. For the 2 we have

2f (↑ z) = {x ∈ H | ∀y. y ≤ ♦x implies y ≤ z} = {x ∈ H | ♦x ≤ z} = {x ∈ H | x ≤ 2z} = ↑2z

9
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Proposition 3.9 extends to the modal case. We therefore have

Theorem 4.3 Completeness of the modal algebraic semantics implies completeness of the modal stable
semantics.

The proof is also like that of Theorem 3.10. Thus, the modal stable semantics is sound and complete
for the intuitionistic modal logic of Dzik et al. [19].

4.2 Morphisms

Like in [30], the duality (5) of §3.2 can be restricted to a duality

SBimodop ≃ CohO

The category on the left has distributive lattices equipped with a stable bimodule as objects; and stable
morphisms that preserve the bimodule as morphisms. The category on the right has coherent frames L
equipped with a meet-preserving operation 2L : L→ L as objects; and Scott-continuous, meet-preserving
maps h : L→ L′ for which h2L ⊑ 2L′h. In analogy with previous results this can be further refined to a
duality where the morphisms preserve truth on the left, and the operator and implication on the right.

5 Two-dimensional stable semantics of intuitionistic logic

Following the programme of [30], we look for categorifications of the stable semantics. Thus, we exchange
stable frames (W,⊑) for arbitrary categories C with finite products; we could call these stable categories.
The first thing we must categorify is the notion of filter. Surprisingly, there are two possible choices:

(i) the Ind-completion Ind(C), which adds all filtered colimits to C [28, §VI.1] [4, §4.17]; and

(ii) the Sind-completion Sind(C), which adds all sifted colimits to C [3,5,4].

All filtered colimits are sifted, so the latter involves adding more colimits. However, for a poset W we
have that Ind(W op) ∼= Sind(W op) ∼= Filt(W ) [3, §2.3]. Thus, these two completions are indistinguishable at
the order-theoretic level. As an aside, note that the former completion is related to essentially algebraic
theories [2], while the latter to algebraic theories of Lawvere [4].

We will work with the sifted completion, for more than one reasons. The most important one is
that, when C has finite coproducts, Sind(C) is cocomplete. This is just enough to allow us to embed any
bicartesian closed category C (which only has coproducts) into a cocomplete category Sind(C), adapting
the story of §3. The cocompleteness is absolutely essential in the semantics of modalities given in §6.
Second, the conditions required on C for Sind(C) to be a cartesian closed category—and hence a model
of intuitionistic proofs—are rather weak. Third, there is an analogy to working with filters as elements
of [W, 2]∧: the classic Lawverean move of replacing 2 by Set [33] leads us to consider product-preserving
presheaves [C,Set]×, which coincide with Sind(Cop) whenever C has products, mirroring Proposition 3.2.

The following proposition collects various facts about the sifted completion [3,4]. These are analogous
to various facts about presheaf categories [30], and mirror the properties of Filt(W ) given in §3.

Proposition 5.1 Let Sind(C) be the sifted completion of C.
(i) If C has coproducts then Sind(C) is isomorphic to the category [Cop,Set]× of product-preserving

presheaves and natural transformations. It is a complete and cocomplete category.

For the rest of this proposition we assume that C has coproducts.

(ii) Representable presheaves are product-preserving, so y : C −→ [Cop,Set]× is an embedding.

(iii) y : C −→ [Cop,Set]× preserves products and coproducts.

(iv) y(c) is perfectly presentable, i.e. Hom(y(c),−) : [Cop,Set]× → Set preserves sifted colimits.

(v) A category is equivalent to [Cop,Set]× for some C if and only if it is cocomplete and has a strong
generator consisting of perfectly presentable objects. Moreover, there is a unique idempotent-complete
category C for which this is true (up to equivalence): the subcategory of perfectly presentable objects.

10
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Proof. (i) is shown in [3, §2.8] [4, §1.22, 4.5, 4.13].
(ii) is shown in [4, §1.12] and (iii) in [4, §1.13]. (iv) follows from the fact representables are tiny, and

that [Cop,Set]× is closed under sifted colimits in presheaves [4, §5.5]. (v) is shown in [3] [4, §6.9, 8.12]. 2

Categories satisfying (v) above (up to equivalence) are called algebraic categories by Adamek, Rosicky,
and Vitale [6]. Their relation to algebraic theories had been discovered earlier by Lawvere [6].

One might wonder whether y : C −→ [Cop,Set]× preserves exponentials. It would, were [Cop,Set]× to
have them; and it has them exactly when C is a distributive category, i.e. whenever the canonical morphism
(a× b) + (a× c) → a× (b+ c) is an isomorphism [14]. The following result is quoted on the nLab.

Proposition 5.2 Let C have both products and coproducts. Then, the following are equivalent:

(i) C is distributive.

(ii) P × y(a+ b) ∼= P × y(a) + P × y(b) in [Cop,Set]×

(iii) Sind(C) ∼= [Cop,Set]× is cartesian closed.

In that case y : C −→ [Cop,Set]× preserves exponentials.

Proof. (i) ⇒ (ii): Write P ∼= lim−→(c,x)∈elP y(c) as a colimit of representables. As P is product-preserving,

its category of elements elP is sifted [4, §4.2]. Hence, it does not matter if this colimit is in presheaves
or product-preserving presheaves, as the latter are closed under sifted colimits within the former [4, §2.5].
Noticing also that × is the same operation in both [Cop,Set] and [Cop,Set]× we may calculate

P × y(a+ b) ∼=
(
lim−→(c,x)∈elP y(c)

)
× y(a+ b) now in presheaves

∼= lim−→(c,x)∈elP (y(c)× y(a+ b)) as −× y(a+ b) is left adjoint

∼= lim−→(c,x)∈elP y(c× (a+ b)) now back in [Cop,Set]×

∼= lim−→(c,x)∈elP y((c× a) + (c× b))

∼= lim−→(c,x)∈elP (y(c)× y(a)) + (y(c)× y(b)) where + is now in [Cop,Set]×

∼=
(
lim−→(c,x)∈elP y(c)× y(a)

)
+

(
lim−→(c,x)∈elP y(c)× y(b)

)
as colimits commute with colimits

∼=
(
lim−→(c,x)∈elP y(c)

)
× y(a) +

(
lim−→(c,x)∈elP y(c)

)
× y(b)

∼= P × y(a) + P × y(b)

(ii) ⇒ (iii): We only need to prove that the usual exponential (P ⇒ Q)(c)
def
= Hom[Cop,Set]×(P × y(c), Q)

is a product-preserving presheaf. But this easily follows from the observation that y(0) ∼= 0 and (ii).
(iii) ⇒ (i): Then [Cop,Set]× is a bicartesian closed category, and hence it is distributive. But y is an

embedding that preserves products and coproducts, so the subcategory C is distributive as well. 2

Tracing the origins of the result that was just proven appears challenging. The claim (i) ⇒ (iii) appears
to be due to Younesse Kaddar [29]. The presentation here simplifies Kaddar’s calculation by using (ii).
(iii) ⇒ (i) is stated without proof on the nLab, and appears to be due to Sam Staton.

This puts us in a good place to introduce a two-dimensional stable semantics. This amounts to replacing
the stable frame (W,⊑) by a category C with products and coproducts for which Cop is distributive. This
means that the unusual isomorphism a + (b × c) ∼= (a + b) × (a + c) holds in C. But, unlike in lattices,
distributivity in categories is not self-dual, so that is all we get.

By Propositions 5.1 and 5.2, the category [C,Set]× is a bicartesian closed category. The two-
dimensional stable semantics is then dictated by the bicartesian closed structure. The results in this
section mean that these follow the two-dimensional Kripke semantics given in [30]. Thus, every formula φ
is interpreted as a product-preserving presheaf

JφK : C →× Set
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Writing JφKw for JφK(w) and w ∈ C and f ·x ∈ JφKv for JφK(f) and f : w → v, the clauses are the expected
proof-relevant categorifications of the stable semantics of §3:

Jφ ∧ ψKw
def
= JφKw × JψKw

Jφ→ ψKw
def
= {F : (v : C) → HomC(w, v) → JφKv → JψKv | ∀g. g · F (v)(f)(x) = F (v′)(g ◦ f)(g · x)}

However, the interpretation of φ ∨ ψ is not immediately evident, as it is a coproduct in [C,Set]×.
Adamek et al. [4, §4.5] prove the existence of such coproducts abstractly, by decomposing presheaves as
sifted colimits of representables and using the fact y(a) + y(b) = y(a× b). To enable a direct comparison
with the stable semantics of disjunction of §3, we need to describe it in a more direct way.

Theorem 5.3 Let C have finite products. Then the coproduct in [C,Set]∧ is given by the coend

(P +Q)(c)
def
=

∫ c1,c2∈C
HomC(c1 × c2, c)× P (c1)×Q(c2)

Thus, an element of (P + Q)(c) essentially consists of tuples (c1, c2, f, x, y) where f : c1 × c2 → c is
a ‘decomposition’ of c; and x ∈ P (c1) and y ∈ Q(c2). If we think of C as an algebraic theory, f can be
thought of as a term of sort c in terms of two variables of sorts c1 and c2; and the elements of P (c1) and
Q(c2) can be considered as elements of the algebra at sorts c1 and c2 respectively.

This is evidently a direct categorification of the stable semantics of disjunction. given in §3. However,
as this is now a coend, these data have to be appropriately quotiented: for any g : c′1 → c1, h : c′2 → c2,
t′1 ∈ P (c′1) and t

′
2 ∈ P (c′2), the tuples (c1, c2, f, g · t′1, h · t′2) and (c′1, c

′
2, f ◦ (g×h), t′1, t′2) are identified. This

guarantees that the choice of decomposition is ‘minimal.’ It is easy to prove that this object has the right
universal property. However, a conceptual proof that it is product-preserving eludes me.

Finally, notice that this is essentially the ‘free’ product of algebras, as expected. It is also clearly a
version of the Day convolution product on presheaves [35, §6.2]. It is in fact a known result of higher
algebra that the Day convolution is the coproduct of commutative algebra objects over a symmetric
monoidal ∞-category: see Lurie’s book [36, Lemma 3.2.4.7].

5.1 Completeness

We are now able to show completeness results for the categorical semantics of intuitionistic logic, i.e.
bicartesian closed categories: if C is a bicartesian closed category then it is distributive, and y : C −→
[Cop,Set]× is an embedding that preserves the bicartesian closed structure of C. Lemma 2.1 extends to
disjunction and falsity on objects, but also to proofs. The latter can be represented as terms of the typed
λ-calculus with sums and an empty type up to βη equality. We refer to [15,32] for background on the
categorical semantics of the typed λ-calculus.

Lemma 5.4 Let C be a bicartesian closed category.

(i) There is an isomorphism θA : JAK[Cop,Set]×
∼= y(JAKC) for any type A of the simply-typed λ-calculus.

(ii) If Γ ⊢M : A is a term of the typed λ-calculus, then the following diagram commutes:

JΓK[Cop,Set]×

y(JΓKC)

i ◦
∏

(x:A)∈Γ θA

JAK[Cop,Set]×

y(JAKC)

JMK

θA

y(JMK)

where JΓK def
=

∏
(x:A)∈ΓJAK, and i :

∏
(x:A)∈Γ y(JAKC)

∼=−→ y(
∏

(x:A)∈ΓJAKC) arises from the fact y

preserves finite products.
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Then, assuming that bicartesian closed categories are complete for the typed λ-calculus:

Theorem 5.5 The subclass of models consisting of [Cop,Set]× over a distributive C is complete for equa-
tional theory of the typed λ-calculus with sums and an empty type.

Proof. Let Γ ⊢ M,N : A be two terms with JMK = JNK when interpreted in any product-preserving
presheaf category [Cop,Set]× with C distributive. Pick any bicartesian closed C. By Lemma 5.4 we have
y(JMK) = y(JNK), where the interpretation is now in C. But y is faithful, so JMK = JNK in every
bicartesian closed category C. Then Γ ⊢M = N : A by the completeness of bicartesian closed categories.2

There is of course a converse, which shows that completeness of this class of models implies completeness
of the class of bicartesian closed categories. It is similar in spirit to Theorem 3.8.

5.2 Morphisms

Unlike most the previous dualities we have presented, the one in this section has been carefully studied
by Adamek, Lawvere, and Rosicky [6]. However, the terminology is different: instead of stable categories
they speak of algebraic categories; and instead of stable functors, i.e. functors preserving finite products,
they speak of morphisms of algebraic theories. In fact, the duality required here arises from Lawvere’s
algebraic theories [4].

To sketch this duality we must first look at the extension properties of Sind(C). Given any F : C −→ E ,
where E is a category with sifted colimits, there is a unique F! : [Cop,Set]× −→ E that extends F and
preserves sifted colimits, as in the following commuting diagram:

C [Cop,Set]×

E has sifted colimits

y

F
F!

(8)

This property is exactly what it means for [Cop,Set]× to be the sifted colimit completion [4, §4.9]. However,
we can also get a slightly more refined extension property. Suppose that F : C −→ E also preserves
coproducts, and that E is cocomplete. Then F! preserves all colimits and has a right adjoint:

C [Cop,Set]×

E is cocomplete

y

F
F! ⊣ F ⋆

(9)

The reason is that the usual functor F ⋆(e)
def
= HomE(F−, e) is then valued in [Cop,Set]×, and can readily

be shown to be right adjoint to F! [4, §4.15].
Then, given any stable f : C −→ D take the extension of y ◦ fop as in (9)

Cop [C,Set]×

[C,Set]×Dop

y

y

fop f! ⊣ f⋆ (10)

13
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We have that f⋆(P ) = Hom(y(f(−)), P ) ∼= P ◦ f acts by precomposition. It clearly preserves limits; it
also preserves sifted colimits, as they are computed pointwise in [C,Set]× [4, §9.3]. Such a functor is called
an algebraic functor [4, §9.4]. We thus obtain a (strict) 2-functor

[−,Set]× : Catopcc, stable −→ AlgCat

from the (strict) 2-category of Cauchy-complete stable categories, stable functors, and natural transfor-
mations to the (strict) 2-category of algebraic categories, algebraic functors, and natural transformations.
This functor is a biequivalence, and hence a 2-duality ; more details can be found in [4, §9]. Finally, this
can be further refined to 2-dualities that ‘preserve truth’ in terms of frames.

6 Two-dimensional stable semantics for modal logic

Definition 6.1 A stable profunctor on C is a profunctor R : Cop ×C −→ Set which preserves products in
its second argument, and for which ΛR : Cop −→ [C,Set]× preserves coproducts.

This corresponds precisely to an adjunction on [C,Set]×, by the universal property (9):

Cop [C,Set]×

[C,Set]×

y

ΛR
♦R ⊣ 2R

These functors are more directly expressed as follows:

J♦φKw
def
= ♦RJφKw =

∫ v∈C
JφKv ×R(v, w) J2φKw

def
= 2RJφKw = Hom[C,Set]×(R(w,−), JφK)

The expression for 2 follows from (9); it evidently preserves products. The expression for ♦ is the coend
formula for the left Kan extension along Yoneda [35, §2.3]; it is still the right expression, by the uniqueness
of adjoints. However, it is not easy to see that it preserves products in w: to see that, write JφK as a sifted
colimit and use the rules of coends to show that this set is isomorphic to lim−→(v,x)∈elJφK

R(v, w). The latter

clearly preserves products in w: R(v,−) does, and the colimit is sifted.
As in [30], these are the expected categorifications of the semantics of ♦ and 2.

6.1 Completeness

We can now show another completeness result like that of §5, which applies to intuitionistic modal proofs.
These are bicartesian closed categories C equipped with an adjunction ♦ ⊣ 2. They can be represented
syntactically by Clouston’s Fitch-style λ-calculus which is sound and complete for such models [13]. Then
y : C −→ [Cop,Set]× is an embedding that preserves all this structure: Scott’s lemma 2.1 extends to ♦
and 2, following exactly the proof in §2. Then, a result similar to Lemma 5.4 holds, leading to the

Theorem 6.2 The subclass of models consisting of categories [Cop,Set]× over a distributive C equipped
with an adjunction ♦ ⊣ 2 on [Cop,Set]× is complete for equational theory of intuitionistic modal proofs.

6.2 Morphisms

Following the lead of [30], the 2-duality of §5.2 can be restricted to a 2-duality

SProfopcc ≃ AlgCatO
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The (strict) 2-category on the left has Cauchy-complete categories equipped with a stable profunctor
as 0-cells; stable functors that preserve the profunctor as 1-cells; and natural transformations natural
transformations. The (strict) 2-category on the right has algebraic categories A equipped with an operation
2A : A −→ A that preserves limits and sifted colimits as 0-cells; algebraic functors F : A −→ B equipped
with natural transformations F2A ⇒ 2BF as 1-cells; and natural transformations as 2-cells. This is
essentially a direct categorification of the duality of §4.2. It can be further refined to a 2-duality where
the morphisms preserve truth on the left, and the operator and implication on the right.

7 Related work

Much of the development of §3 was based on the filter completion of a distributive lattice. However, the
dual notion of ideal completion is encountered more often. It plays a significant rôle in domain theory: the
ideal completion of a preorder is the free algebraic dcpo over an arbitrary set of compact-elements-to-be [1,
§2.2.6]. The category of algebraic dcpos and continuous maps is then equivalent to the category of preorders
and approximable relations, which appear rather similar to stable bimodules. The ideal completion also
plays a central rôle in Stone duality for distributive lattices [28, §II].

Bezhanishvili et al. [10] present a positive modal logic. Their semantics uses a meet-semilattice as
a frame. Every formula is interpreted as a filter over that, leading to the same falsity and disjunction
clauses as the ones I use here. However, the lack of joins and distributivity means that they cannot handle
implication. They also present some interesting links between their logic and logics of independence and
team semantics [45,31,46], to which the results of this paper might be applicable.

De Groot and Pattison [17] study the (∧×) fragment of intuitionistic logic with a meet-preserving
modality 2. They give it a semantics in semilattices, relating it to filters. Their semantics for 2 is based
on relations which are extremely close to stable bimodules.

Galal [22] explores a categorification of the Scott-continuous model of Linear Logic, which also consists
of prime algebraic lattices (but with weaker morphisms than the ones used here) [26,27,40,44]. The key
notion of directed-completeness is replaced by sifted colimits. No connection to Kripke semantics is made.
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