COMPUTATIONS CONCERNING THE CLASSIFICATION OF
EXTREMELY PRIMITIVE GROUPS

TIMOTHY C. BURNESS AND ADAM R. THOMAS

ABSTRACT. In this note we provide a record of the MAGMA and GAP computations used
in the paper [3] on the classification of extremely primitive groups. Throughout, we
freely adopt the notation and terminology in [3].

1. CODE AND EXAMPLES

Let G < Sym(2) be an almost simple primitive permutation group with socle Gy and
point stabilizer H = G,. Recall that G is extremely primitive if H acts primitively on
each of its orbits in Q \ {a}. Also recall that the base size of G, denoted by b(G, H) is the
minimal size of a subset B of €2 with the property that the pointwise stabilizer of B in G
is trivial. As noted in [3, Lemma 2.5], if b(G, H) = 2 then G is not extremely primitive.

In this section we present the MAGMA [1] and GAP [4] code we used to establish the
main computational results in [3]. We also include several concrete examples.

1.1. Extremely primitive. The MAGMA function ExtremelyPrimitive takes a permu-
tation group G as input. Then for each representative H of a conjugacy class of core-free
maximal subgroups of GG, the function attempts to find a random conjugate H9 such that
HNHY < H is non-maximal (the parameter n in the second line is an upper bound on the
number of random searches it will perform; typically we set n = 100). The function out-
puts a list of triples [a, b, ¢], where b is the order of the a-th conjugacy class representative
H and c is either 0 or 1. More precisely, ¢ = 1 if and only if the random search succeeded
in finding a conjugate HY such that H N HY < H is non-maximal. In particular, if ¢ =1
then we can conclude that the action of G on G/H is not extremely primitive.

ExtremelyPrimitive:= function(G)

n:=100;
M:=MaximalSubgroups (G) ;
A:=[];

for a in [1..#M] do
H:=M[a] ‘subgroup;
b:=#H;
c:=0;
if #Core(G,H) eq 1 then
for j in [1..n] do
g:=Random(G) ;
if (g in H eq false) and (IsMaximal(H,H meet H"g) eq false) then
c:=1;
break;
end if;
end for;
Append(~A, [a,b,c]);
end if;
end for;
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return A;
end function;

For the almost simple groups we are interested in, we will typically construct Aut(Gy)
as a permutation group by using the command AutomorphismGroupSimpleGroup and we
can then identify G as a subgroup of Aut(Gy).

Example 1.1. The following shows that G2(3) has no extremely primitive actions:

A:=AutomorphismGroupSimpleGroup("G2",3);
G:=Socle(A);
ExtremelyPrimitive(G) ;

which returns
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and the result follows.

Example 1.2. If we run the same code for G = G2(4), then we get
[
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and so the 6th subgroup H in this list requires further attention (here H = J3). To resolve
this case, we use CosetAction to explicitly construct G as a permutation group on the
set of cosets G/H and we then inspect each nontrivial H-orbit in turn:

:=AutomorphismGroupSimpleGroup("G2",4) ;
:=Socle(A);
:=MaximalSubgroups(G) ;
:=M[6] ‘subgroup;
,L,K:=CosetAction(G,H);
:=Stabilizer(L,1);
:=0rbits(H);
or i in [2..#0] do

[i,#0[il];

IsPrimitive(H,o0[i]);

A
G
M
H
f
H
o
f
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n n.
b

end for;
This returns

[ 2, 100 ]
true

[ 3, 315 ]
true

and we conclude that the action of G on G/H is extremely primitive (in addition, we see
that the orbits of H have size 1, 100 and 315). In the same way, we deduce that G2(4).2
acts extremely primitively on the set of cosets of Jo.2. These two groups feature in the
statement of [3, Theorem 1].

1.2. Base-two groups. The BaseTwo function below takes G as input as before. Then
for each representative H of a class of core-free maximal subgroups the function seeks by
random search to find an element g € G with H N H9 = 1. As before, the parameter
n in the second line is an upper bound on the number of random searches the function
performs (we usually set n = 100). Since b(G, H) > 3 if |H|?> > |G|, the function only
considers subgroups with |H|? < |G|. The output is a list of triples [a, b, |, one for each
class of maximal subgroups H, where a is a counter, b is the order of H and ¢ =1 if and
only if the random search finds an element g € G with H N HY = 1, otherwise ¢ = 0. In
particular, if ¢ = 1 then b(G, H) = 2.

BaseTwo:= function(G)

n:=100;
M:=MaximalSubgroups (G) ;
A:=[];

for a in [1..#M] do
H:=M[a] ‘subgroup;
b:=#H;
c:=0;
if (#Core(G,H) eq 1) and (#H"2 le #G) then
for j in [1..n] do
g:=Random(G) ;
if #(H meet H°g) eq 1 then
c:=1;
break;
end if;
end for;
Append(~A, [a,b,c]);
end if;
end for;
return A;
end function;

Example 1.3. Suppose G = G3(3). Then the following code gives the output below:

A:=AutomorphismGroupSimpleGroup("G2",3);

G:=Socle(A);
BaseTwo(G) ;
[

[ 1, 1092, 11,
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[ 2, 15612, 11,

[ 3, 576, 11,

[ 4, 1344, 0]
]

So for the first three subgroups in this list we conclude that b(G, H) = 2. However, the
final subgroup H with |H| = 1344 requires further attention. Here we explicitly construct
G as a permutation group on G/H and we determine the lengths of the nontrivial H-orbits:

A:=AutomorphismGroupSimpleGroup("G2",3);
:=Socle(A);

:=Maxima18ubgroups(G);

:=M[4] ‘subgroup;
,L,K:=CosetAction(G,H);
:=Stabilizer(L,1);

:=0rbits(H);

#H in [#o0[i] : i in [1..#0]];

oOmHIm=EQ

This returns false, so H does not have a regular orbit on G/H and thus b(G, H) > 3. By
random search, it is easy to find elements g1, go € G such that H N H9* N HY9 = 1, which
implies that b(G, H) = 3 in this case. Alternatively, #Stabilizer (H, [2,3]) returns 1
and thus b(G, H) < 3.

1.3. Variations. Notice that the above functions ExtremelyPrimitive and BaseTwo
both utilise the MaximalSubgroups command to calculate a complete set of represen-
tatives of the conjugacy classes of maximal subgroups of (G. This is somewhat restrictive.
Indeed, there are situations when we want to work with a specific maximal subgroup of G,
but MaximalSubgroups is not available. In these cases, we can often construct H directly
and then implement variations of the previous routines.

Example 1.4. Suppose G = Fy(2) and H = 3.U3(2)2.3.2. Here the maximal subgroups of
G are not available in MAGMA, but we can construct H by observing that H = Ng(Cg(z))
for an element z € G of order 3 with |Cg(z)| = 9|U3(2)|?> = 46656. Indeed, we can use
the following code to show that b(G, H) = 2:

A:=AutomorphismGroupSimpleGroup("F4",2);
G:=Socle(A);
repeat

x:=Random(G) ;
until (Order(x) mod 3 eq 0) and

(#Centralizer(G,x” (Order(x) div 3)) eq 46656);
H:=Normalizer(G,Centralizer(G,x” (Order(x) div 3)));
repeat

g:=Random(G) ;
until #(H meet H"g) eq 1;

In the same way, we deduce that b(G, H) = 2 for the action of G = F4(2).2 on the set of
cosets of H = 3.U3(2)2.3.2.2.

Example 1.5. Suppose G' = Fy(2) and H = L3(2)2.2. Here we use the fact that L3(2)
is generated by elements a and b with a®> = b3 = (ab)” = 1. Indeed, by random search
we can find elements a,b € G satisfying these relations such that L = (a,b) = L3(2) and
H = N¢(L). We can then check that b(G, H) = 2 in the usual manner.

A:=AutomorphismGroupSimpleGroup("F4",2);
G:=Socle(A);
repeat
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a:=Random(G) ;
b:=Random(G) ;

until
and
and

(Order(a) mod 2 eq 0) and (Order(b) mod 3 eq 0)
(Order(a”(Order(a) div 2)*b~(Order(b) div 3)) eq 7)
(#Normalizer (G,sub<G|a~ (Order(a) div 2),b~ (0Order(b) div 3)>)

eq 2*#PSL(3,2)°2);
H:=Normalizer (G,sub<Gla”~(Order(a) div 2),b~(0Order(b) div 3)>);
repeat

g:=Random(G) ;

until

#(H meet H°g) eq 1;

1.4. Character tables. Suppose the character tables of G and H are available in the
GAP Character Table Library [2]. If the fusion map from H-classes to G-classes is also
stored, then we can use GAP to compute |2& N H| precisely for all z € G. We can then

procee

(a)

d in one of two ways:

We can use the Orbit Counting Lemma to compute the rank of G and then seek
to rule out extreme primitivity via [3, Lemma 2.2] by inspecting the indices of a
set of representatives of the conjugacy classes of maximal subgroups of H (which
we may be able to compute using MAGMA).

In a different direction, we can use the information from the character tables to
compute

E .q 2
|z N H|
QG H) =) e (1.1)
i=1 i
precisely, where x1, ...,z represent the distinct G-classes of elements of prime

order. Then [3, Lemma 2.6] implies that b(G, H) =2 if Q(G,H) < 1.

Example 1.6. Suppose G = 2Fg(2) and H = Q7,(2). We claim that G is not extremely
primitive. To see this, we first observe that the character tables of G and H, together
with the corresponding fusion map, are available in [2]:

LoadPackage( "CTblLib" );
t:=CharacterTable("2E6(2)");;
t1:=CharacterTable("010-(2)");;
fus:=FusionConjugacyClasses(tl,t);;

Next we compute the rank of G by implementing the Orbit Counting Lemma:

S:=SizesConjugacyClasses(t);;
S1:=SizesConjugacyClasses(tl);;
a:=8ize(t)/Size(t1);;

w:=0;
for i

b

in [1..Size(fus)] do

b:=S[fus[i]];
z:=0;;

for

j in [1..Size(fus)] do

if fus[j] = fus[i] then

z:=z+31[j];;

fi;

od;

w:=w+S1[i]*z*a/b;;

od;

w/Size(t1);
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This returns 13, which is the rank of G. We now switch to MAGMA in order to compute
the indices of a set of representatives of the classes of maximal subgroups of H.

H:=POmegaMinus (10,2) ;
M:=MaximalSubgroups (H) ;

A:=[ #H/#M[i] ‘subgroup: i in [1..#M]];
a,b:=Maximum(A) ;

a;

It follows that |H : M| < 53616640 for every maximal subgroup M of H and we conclude
that G is not extremely primitive since 1 4 12.53616640 < |G : H]|.

As the next example demonstrates, this approach can still be effective even if the fusion
map is not available in [2].

Example 1.7. Suppose G = ?E(2).2 and H = O,(2). Here the character tables are
available, but the fusion map is not stored. However, we can use the GAP command
PossibleClassFusions to determine the set of possible fusion maps. We find that there
are two such maps and by calculating as above one can check that the rank of G is
independent of the choice of fusion map; it is 12 in both cases.

t:=CharacterTable("2E6(2).2");;
t1:=CharacterTable("010-(2).2");;
S:=SizesConjugacyClasses(t);;
S1:=SizesConjugacyClasses(tl);;
a:=Size(t)/Size(tl);;
F:=PossibleClassFusions(tl,t);;
for k in [1..Size(F)] do
fus:=F[k];;
w:=0;;
for i in [1..Size(fus)] do
b:=S[fus[i]l];
z:=0;;
for j in [1..8ize(fus)] do
if fus[j] = fus[i] then
z:=z+S1[j];;
fi;
od;
w:=w+S1[i]*z*a/b;;
od;
Print("\n", [k,w/Size(t1)]);
od;

We can now proceed as before to show that G is not extremely primitive, noting that
|H : M| < 263208960 for every maximal subgroup M of H.

Example 1.8. Suppose G = 2E4(2) and H = Q7(3). We claim that b(G, H) = 2. To
see this, we access the character tables of G and H in [2], and we find that there are 12
possible fusion maps. For each choice of fusion map we compute Q(G, H) (see (1.1))) and
we find that this is independent of the choice of fusion map. In particular,

1946811337
H) = 0200t
G, H) 5927075840 <
and thus b(G, H) = 2 as claimed.

t:=CharacterTable("2E6(2)");;
t1:=CharacterTable("07(3)");;
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S:=SizesConjugacyClasses(t);;
S1:=SizesConjugacyClasses(tl);;
0:=0rdersClassRepresentatives(t);;
F:=PossibleClassFusions(til,t);;
for k in [1..Size(F)] do
fus:=F[k];;
w:=0;;
for i in [1..Size(0)] do
if IsPrime(0[i]) then
a:=S8[il;;
b:=0;;
for j in [1..Size(fus)] do
if fus[j] = i then

b:=b+S1[j]1;;
fi;
od;
wi=w+(b~2)/a;;
fi;
od;
Print("\n", [k,w]);
od;

1.5. Lie type computations. In this section we explain how we can work with M AGMA’s
inbuilt functions for computing with groups of Lie type to construct certain subgroups of
exceptional groups. We can then obtain information on their conjugacy classes and the
action of class representatives on suitable modules (typically the adjoint module), which
allows us to estimate Q(G, H).

To begin with, let us first present some general code for obtaining the sort of information
we require on conjugacy classes. Let G be a subgroup of GL(V), where V is a finite
dimensional vector space over a finite field of characteristic p. Recall that if x € G has
prime order r, then x is semisimple if r # p and unipotent if r = p. We will use the
MAGMA function Classes to determine the sizes of the conjugacy classes of G and a set
of class representatives. We then use the functions SInfo and UInfo described below to
obtain the desired information on class representatives. Note that both functions take as
input the group G (given as a subgroup of GL(V')) and the output from Classes(G).

Each row of output of SInfo is of the form

[r,d], [c1,...,¢cn], €

where r # p is a prime, d is a non-negative integer and the ¢; are the sizes of the G-classes

2§ of semisimple elements with |z;| = r and dim Cy (x;) = d for each i. In addition,

¢ =), ¢. There is one row of output for each pair [r, d].

SInfo := function(G,cl)
A:=[1;
for i in [1..#cl] do
if IsPrime(cl[i][1]) and IsSemisimple(cl[i][3]) then
Append(~A, [c1[i] [1] ,Dimension(Eigenspace(cl[i] [3],1)),cl[i][2]1]);
end if;
end for;
B:={ [A[i1[1],A[i1[2]1] : i in [1..#A] };
B:=Sort([i : i in B]);
for i in [1..#B] do
C:=[];
D:=[];
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for j in [1..#A] do
if [A[jI1[1]1,A[j1[2]1] eq B[il then
Append("C,A[j1);
Append ("D,A[j1[3]);
end if;
end for;
printf "%o, %o, %o\n", B[i], D, &+D;
end for;
return " ";
end function;

For unipotent elements x € G, we use JordanForm to find the Jordan form of z on
V' and then the following function Jform converts the output of JordanForm so that the
Jordan block structure is transparent.

function Jform(j)
newjform:=[];
newjform[1]:=[j[1]1[2],0];
cur:=j[1];
curnum:=1;
for x in j do
if x eq cur then
newjform[curnum] [2]+:=1;
else
cur:=x;
curnum+:=1;
newjform[curnum] :=[x[2],1];
end if;
end for;
return Reverse(newjform);
end function;

The function UInfo outputs rows of the form

[alabl]a ceey [akabk]
(€1, .., cn
C

where the a;,b; are positive integers such that ) a;b; = dimV (so (alfl, . .,CLZ’“) is a

partition of dim V') and the ¢; are the sizes of the G-classes xZG of unipotent elements of
order p with Jordan form (Jﬁ},...,JﬁZ). Here J; denotes a standard unipotent Jordan
block of size ¢ and b; is the multiplicity of J,, in the Jordan form. In addition, c =), ¢;.

There is one row of output for each partition (alf, e aZ’“).

UInfo := function(G,cl)
A:=[1;
T:=[1;
for i in [1..#cl] do
if IsPrime(cl[i][1]) and IsUnipotent(cl[i] [3]) then
j1,j2,j3:=JordanForm(cl[i] [3]);
J:=[r: r in Jform(j3)];
Append(~A,J);
Append (“T,c1[i] [2]);
end if;
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end for;
B:={ A[i] : i in [1..#A] };
B:=Sort([i : i in B]);
for i in [1..#B] do
C:=[1;
D:=[];
for j in [1..#A] do
if A[j] eq B[i] then
Append (“C,A[j1);
Append ("D, T[j1);
end if;
end for;
for j in [1..#B[i]] do printf "%o", B[il[j]; end for; " ";
D; &+D; n II;
end for;

return " ";
end function;

Example 1.9. Suppose G = Spg(2), with V' the natural module. Then the output from
the functions SInfo and UInfo is as follows:

G:=Sp(8,2);
cl:=Classes(G);

SInfo(G,cl);

609280 1, 609280

12185600 1, 12185600

3655680 1, 3655680

10880 1, 10880

157925376 ], 157925376

13160448 1, 13160448

s 1128038400 ], 1128038400

17, 0 1, [ 2786918400, 2786918400 ], 5573836800

b

b

-

b
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3
3
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UInfo(G,cl);

(2, 1101, 6]
[ 255 ]
255

[2,21]1[1, 4]
[ 5355, 16065 ]
21420

(2,310[1, 2]
[ 321300 1]
321300

[2,4]
[ 64260, 963900 ]
1028160



10 TIMOTHY C. BURNESS AND ADAM R. THOMAS

So for example, Spg(2) has two classes of unipotent elements with Jordan form (J3) on
the natural module, with respective sizes 64260 and 963900.

Now let us turn to the construction of certain maximal rank subgroups of exceptional
groups of Lie type. For more details on these subgroups and the theory underpinning the
constructions below, we refer the reader to [6]. Here we briefly recall the general set up.

Let Go be a simple exceptional group of Lie type over [, and let G be a simple ad-
joint algebraic group over F, such that G, = Inndiag(Gp) for an appropriate Steinberg
endomorphism ¢ of G. We are primarily interested in the case where H = N@(T) is the
normalizer of a o-stable maximal torus T of G, so H = T.W(G) and W(Q) is the Weyl
group of G. As explained in [6, Section 1], o acts on W(G) and there is a bijection from
the set of o-classes of W(G) to the set of conjugacy classes of maximal tori in G, (recall
that the o-class of w € W(Q) is the subset {z twz : 2 € W(G)}). In the cases we are
interested in, the o-classes are precisely the conjugacy classes of W (G).

Suppose we want to construct the normalizer of a maximal torus of G corresponding
to the class of w € W(G) Then it is convenient to work with the subgroup Tow < Gow,
where by a slight abuse of notation we use cw to represent the composition of o and the
inner automorphism of G induced by a lift of w. Then the corresponding subgroup in
[ETRT Tgw.CW(@)(aw). In all but one case (see Example , the map ow acts on T
via s — 579 for s € T. We will then construct T,,, as a subgroup of G2, which is a
group defined over FFp2. For G = Eg, we may also want to consider the normalizer of a
maximal torus in the group Gg..2, where we have extended by a graph automorphism.
To construct these subgroups we will work in Inndiag(E7(q?)) since it has a Levi subgroup
containing Inndiag(Fg(g?)).2.

To make these constructions, we will use the Lie type machinery in MAGMA. First we
use the function GroupOfLieType to construct the appropriate group G = G'Uz over F 2
and then AdjointRepresentation yields a map from G to GL(V'), where V' is the adjoint
module for G (possibly defined over an extension of F2).

The following function MaxRank1 takes as input a Lie type Gp for the ambient simple
algebraic group G, such as "E7", and the field size q. The output is a subgroup

H = (Zy+1)" W(G) < G,

where 7 is the rank of G. If the optional setting graph is set to true then G = Eg and we
construct H = (Zy41)".W(G).2 < Inndiag(E7(g?)), which is the corresponding maximal
subgroup of G,2.2. Here H is returned as a subgroup of GL(V), where V is the adjoint
module for G (unless graph is true, in which case V is the adjoint module for E7(q?)).

function MaxRank1(Gp,q:graph:=false)
K:=GF(q~2) ;
GO:=GroupOfLieType (Gp,K:Isogeny:="Ad");
t:=PrimitiveElement (K) ;
if graph then

G:=GroupOfLieType ("E7",K:Isogeny:="Ad");

else
G:=GO;
end if;

Ad:=AdjointRepresentation(G : NoWarning) ;
W:=WeylGroup(G);
if graph then
E6Rts:=[r : r in [1..#Roots(W)] | Roots(W) [r][7] eq O 1;
Wgens:=Generators(Stabiliser(W,SequenceToSet (E6Rts)));
Tgens:=[TorusTerm(G,j,t"(q-1)) : j in [1..Rank(GO)]];
else
Wgens:=Generators (W) ;



EXTREMELY PRIMITIVE COMPUTATIONS 11

Tgens:=[j"(g-1) : j in Generators(StandardMaximalTorus(G)) [1..Rank(G0)]];
end if;
S:=sub<Codomain(Ad) |Ad(Tgens), Ad([elt<G|i> : i in Wgens])>;
return S;
end function;

Example 1.10. The following code shows how we can compute the number of involutions
in the maximal subgroup 3".W (E7) = 37.(2 x Spg(2)) < E7(2).

H:=MaxRank1 ("E7",2);
cl:=Classes(H);
&+[c1[i]1[2] : i in [1..#cl] | c1[i][1] eq 21;

728703
The next two examples describe some additional special cases.

Example 1.11. Here Gy = Eg(2) and Hy is the maximal rank subgroup 73:3'+2.SLy(3).
We need to construct both Hg and Ho.2 = Nayg(q,)(Ho). To do this, we use the function
MaxRank2 below, which constructs Hy and Hy.2 as subgroups of E7(8). Here the input is
either true or false; if the former, then Hj.2 is constructed, otherwise Hj is returned.
In both cases, the group is constructed as a subgroup of GL(V'), where V is the adjoint
module for E7(8).

In terms of the general set up discussed above, Hy corresponds to the o-class of the
Weyl group element

w = (1,3,71)(2,116,50)(4,26,95) ... € W(E;),

where we are viewing w € W(Ejg) as an element of W (E7). With respect to the standard
Lie notation and a set of simple roots {aq,...,ar} for E7 (labelled in the usual way), one
can then check that the toral elements

hal (01_2)h043 (Cl)v hOQ (CQ_Q)hﬁ(CQ)> ha5 (C§2)h0¢6 (03)

with ¢; € Fg generate Toyw = 73, where f = —aq — 209 — 203 — 30 — 205 — .

function MaxRank2(graph)
K:=GF(8);
t:=PrimitiveElement (K) ;
G:=Group0fLieType ("E7",K) ;
W:=WeylGroup(G);
Ad:=AdjointRepresentation(G);
Tgens:=[ TorusTerm(G,1,t"-2)*TorusTerm(G,3,t),
TorusTerm(G,2,t"-2)*TorusTerm(G,116,t),
TorusTerm(G,5,t"-2)*TorusTerm(G,6,t) 1;
WE6:=sub<W|[W.i : i in [1..6]]1>;
E6rts:=[r : r in [1..#Roots(W)] | Roots(W)[r][7] eq O 1;
WE6g:=Stabiliser (W,SequenceToSet (E6rts));
w:=[x : x in WE6 | 4°x eq 26 and 2°x eq 116 and Order(x) eq 31[1];
if graph then

Wgens:=[elt<G|i> : i in Generators(Centraliser (WE6g,w)) 1;
else

Wgens:=[elt<G|i> : i in Generators(Centraliser (WE6,w)) 1;
end if;
S := sub< Codomain(Ad) | [Ad(i) : i in Tgens cat Wgens] >;
return S;
end function;
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Example 1.12. Suppose G = 2FE4(2).3 and H = 3.U3(2)3.32.Symy is a maximal rank
subgroup. Here H is the fixed points of a o-stable maximal rank subgroup A3.Syms < Fg,
so a slightly different approach is required for this construction. The code below constructs
H as a subgroup of Fg(4).3.

With respect to a set of simple roots {1, ..., ag} for Eg (labelled in the usual way), we
choose the subsystem subgroup H® = A3 corresponding to {a1, a3, as, ag, ag, —ag}, where
ag is the highest root. In the code below, the elements x1 and x2 generate a subgroup
3.U3(2) contained in the first factor Ay, corresponding to {a1, as}. The elements wl and
w2 generate a subgroup of W(G) isomorphic to Syms, which normalizes H° by transi-
tively permuting the factors. It follows that the subgroup generated by x1,x2,wl,w2 is
isomorphic to 3.U3(2)3.Sym;. The remaining elements d1,d2 are diagonal automorphisms
of 3.U3(2)3, which are contained in the maximal split-torus of Inndiag(E¢s(4)).

K:=GF(4);

t:=PrimitiveElement (K) ;

G:=GroupOfLieType("E6" ,K:Isogeny:="Ad");

Ad:=AdjointRepresentation(G : NoWarning);

W:=WeylGroup(G);
x1:=elt<G|<1,1>,<3,1>,<7,t>,<14+36,t>,<3+36,t72>,<7+36,t"2>>;
x2:=e1t<G|<1,1>,<3,1>,<7,1>,<1+36,t°2>,<3+36,1>,<7+36, 1>>;

wi:=[w: win W | 1"w eq 6 and 6"w eq 72 and 72"w eq 1 and 2"w eq 3][1];
w2:=[w: win W | 1"w eq 5 and 5"w eq 1 and 3w eq 6 and 2"w eq 72][1];
Tgens:=Generators (StandardMaximalTorus(G)) ;
d1:=Tgens[1]*Tgens [2] *Tgens [3] “2*Tgens [4] *Tgens [5] ;

d2:=Tgens [1]*Tgens [2] *Tgens [3] *Tgens [4] *Tgens [5] *Tgens [6] ~2;
H:=sub<Codomain(Ad) |Ad([x1,x2,d1,d2]), [Ad(elt<G|i>) : i in [wil,w2]]>;
cl:=Classes(H);

&+[c1[il[2] : i in [1..#cl] | c1[i][1] eq 31;

492074

The above code shows that ig(H) = 492074, which is the key information we need in the
proof of [3, Lemma 4.12].

2. REsuLTS

Here we use the computational methods discussed in the previous section to verify the
relevant results stated in [3].

2.1. Small groups.

Theorem 2.1. Let G be an almost simple primitive group with socle Gy and point stabilizer
H, where Gy is one of

2By(8), 2B5(32), 2F4(2), 2D4(2), G2(2)', G2(3), G2(4), Ga(5).
Then G is extremely primitive if and only if (G, H) = (G2(4),J2) or (G2(4).2,J2.2).

Proof. In each case, we first construct Aut(Gp) as a permutation group via the command
AutomorphismGroupSimpleGroup and then we set G = Aut(Gy) or Gy (note that in each
case, there are at most two possibilities for GG). Next we check for extreme primitivity by
applying the function ExtremelyPrimitive from Section For Gy = G2(2) = Us(3)
we construct Aut(Gp) using PGammaU(3,3). This just leaves the case G = G2(4).a and
H = Js.ao with a € {1,2} and we show that G is extremely primitive by proceeding as in

Example O



EXTREMELY PRIMITIVE COMPUTATIONS 13

Go Hy Constructions Ref in [3]
E:(2) 3".W(Er) Hy < E7(4) Lemma 4.7
Eg(2) T73:312.S1y(3) Hp.2 < E7(8) Lemma 4.11
2Fs(2) 3°.W(Es) Hy.3 < Eg(4), Ho.Symg < E7(4) Lemma 4.11
2E(3) 4°5.W (Es) Hy < Eg(9), Ho.2 < E7(9) Lemma 4.11
2Fg(4) 5%.W(Es) Hy < E6(16), Hy.2 < E(16) Lemma 4.11
Fy(4)  5LW(Fy) Hy < F4(16) Lemma 4.15

TABLE 1. Normalizers of maximal tori

2.2. Maximal rank subgroups.

Proposition 2.2. If (Go, Hy) is one of the cases in Table[l], then b(G, H) = 2.

Proof. As explained in [3], in each case we need to construct H as a subgroup of GL(V)
for some module V for G and then get information on the sizes of the conjugacy classes of
H and the action of class representatives on V. For the constructions, we use the function
MaxRank1 from Section [1.5] except for the subgroup in the second row of Table [I| where
we proceed as in Example The relevant information on conjugacy classes and class
representatives is then obtained by applying the functions SInfo and UInfo.

If z € H is semisimple and V is the adjoint module for Gy (defined over a field extension
of Fy) then dimCy(z) = dim Cg(z) and we can use the output from SInfo to identify
dim Cg(z), which often allows us to determine the structure of Cg(z)?. In turn, this
information translates into a lower bound on |2%| and an upper an upper bound on |z“NH]|,
which yields an upper bound on the contribution to Q(G, H) from semisimple elements.
Similarly, the contribution from unipotent elements can be estimated by considering the
output from UInfo, noting that in almost all cases the Jordan form of z on the adjoint
module V' uniquely determines the G-class of x (see [5]). In the cases where Gy = E5(q)
and V is the adjoint module for a group of type EF7, we can proceed in a similar fashion,
using readily available information on the fusion of Fg.2-classes in E7.

In this way, we can estimate Q(G, H) and we verify the bound Q(G, H) < 1, which
gives b(G, H) = 2 via [3, Lemma 2.6].

In some of these cases, we only need partial information in order to derive an effective
upper bound on Q(G, H). For example, if Gy = Fg(2) and Hy = 73:3172.51L5(3) then the
following code shows that io(H) < 847 and then by arguing as in the proof of [3] Lemma
4.11] we deduce that Q(G, H) < 1:

H:=MaxRank2(true) ;
cl:=Classes(H);
&+[c1[i]1[2] : i in [1..#cl] | c1[i][1] eq 21;

847

In the remaining cases, we refer the reader to the proof of the relevant lemma in [3] (see
the reference in Table [1]) for further details. O
Lemma 2.3. If G = 2E4(2).3 and H = 3.U3(2)3.32.Symg, then b(G, H) = 2.

Proof. As explained in Example we calcuate that ig(H) = 492074 and then by
arguing as in the proof of [3, Lemma 4.12] we conclude that Q(G,H) < 1 and thus
b(G,H) =2. O

Lemma 2.4. If Gy = E§(2) and Hy = Q5,(2) then G is not extremely primitive.
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Proof. For ¢ = — we refer the reader to Examples and Now assume € = +, so
G = E4(2).2 and H = O;(2). This case requires a slightly modified approach because the
character table of G is not available in [2]. First we use [2] to access the character tables of
Gy and Hy and we find that there are 96 possible fusion maps from Hy-classes to G-classes.
Then by proceeding as in Example we deduce that Gy has rank 35 (this calculation
is independent of the choice of fusion map). Therefore, the rank of G is at most 35 and
we can complete the argument in the usual manner, noting that |H : M| < 16189440 for
every maximal subgroup M of H. O

Lemma 2.5. If Gy = F4(2) and
Hy € {L3(2)?.2,3.U3(2)2.3.2,Sp,(2) 1 Syms, Sp,(4).2}
then b(G, H) = 2.

Proof. For the first two cases, we refer the reader to Examples and For the
remaining two cases we have G = Aut(Go) and they are handled in a similar fashion.
First we construct G and Gy as permutation groups and then we construct a maximal
subgroup L = Spg(2) of Gy. To do this, we use the fact that Spg(2) = (a,b), where
the generators a and b satisfy the relations a?> = v = (ab)'” = (ab?)?' = 1 (see [§], for
example).

G:=AutomorphismGroupSimpleGroup("F4",2);

GO:=Socle(G);

repeat
a:=Random(GO) ;
b:=Random(GO) ;

until (Order(a) mod 2 eq 0) and (Order(b) mod 5 eq 0)
and (Order(a”(Order(a) div 2)*b~(0Order(b) div 5)) eq 17)
and (Order(a”(Order(a) div 2)*b~(2x0rder(b) div 5)) eq 21)
and (#Normalizer(GO,sub<G|a”(Order(a) div 2),b”~(0Order(b) div 5)>)
eq #PSp(8,2));

L:=Normalizer (GO,sub<Gla”~ (Order(a) div 2),b"~(0rder(b) div 5)>);

Next we take a set of representatives of the maximal subgroups of L and we identify
K1 = Spy(2) ! Sym, and Ko = Spy(4).2 by their orders. We then construct the relevant
maximal subgroups H of G by taking the normalizers of K71 and K5 in G. Finally, it is
easy to find an element g € G by random search such that H N H9 = 1.

M:=MaximalSubgroups (L) ;
exists(a){i : i in [1..#M] | #M[i] ‘subgroup eq #Sp(4,2) "2x2};
exists(®){i : i in [1..#M] | #M[i] ‘subgroup eq #Sp(4,4)*2};
for i in [a,b] do

H:=Normalizer(G,M[i] ‘subgroup) ;

repeat

g:=Random(G) ;

until #(H meet H"g) eq 1;

end for;

Lemma 2.6. If G = Fy(2) and H = 3D4(2).3, then G is not extremely primitive.

Proof. This is essentially identical to the case (G, H) = (*Es(2).2,074(2)), which we
discussed in Example Indeed, we use [2] to compute the rank of G and then we turn
to MAGMA in order to determine the indices of the maximal subgroups of H. In particular,
there are 4 possible fusion maps and we deduce that G has rank 7.
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The indices of the core-free maximal subgroups of H are as follows:
4064256, 978432,179712, 163072, 89856, 69888, 17472, 2457, 819

and we have |G : H| = 5222400. Let n; denote the i-th index in this list. Then to complete
the proof via [3, Lemma 2.2], we need to show that there is no tuple [aq,...,ag] of non-
negative integers such that ) . a; =6 and |G : H| =1+ ), a;n;. We can use MAGMA to
check this:

H:=AutomorphismGroupSimpleGroup("3D4",2);

M:=MaximalSubgroups (H) ;

A:={#H div #M[i] ‘subgroup: i in [1..#M] | #Core(H,M[i] ‘subgroup) eq 1};
#RestrictedPartitions(5222400-1,6,4A);

This returns 0 and we conclude that G is not extremely primitive. g

Lemma 2.7. If Gy = 3D4(q) and Hy = (¢*> — q + 1)%:SLy(3) with ¢ € {3,4}, then
b(G, H) = 2.

Proof. In both cases, H = Ng(P), where P is a Sylow (¢ — ¢ + 1)-subgroup of Gy, and
it is easy to check that b(G, H) = 2 (it is sufficient to check this for G = Aut(Gp)). For
example, here is the MAGMA code for the case ¢ = 4:

G:=AutomorphismGroupSimpleGroup("3D4",4);
GO:=Socle(G);
P:=SylowSubgroup(G0,13);
H:=Normalizer(G,P);
repeat

g:=Random(G) ;
until #(H meet H"g) eq 1;

0

Lemma 2.8. If Go = 3Dy(q) and Hy = (¢*> + q + 1)%:SLy(3) with q € {3,4,5}, then
b(G,H) = 2.

Proof. This is entirely similar to the previous lemma, noting that H = Ng(P) for a Sylow
r-subgroup P of Gy with r = 13, 7 and 31 when ¢ = 3, 4 and 5, respectively. O

2.3. Miscellaneous cases.
Lemma 2.9. If G = G2(7) and H = 23.13(2), then b(G,H) = 2.

Proof. Here we use MAGMA to construct G as a permutation group and then we find
H = Ng(L) by identifying an appropriate elementary abelian subgroup L of order 8 in
a Sylow 2-subgroup of G. It is then routine to find an element ¢ € G by random search
such that H N HY = 1.

G:=AutomorphismGroupSimpleGroup("G2",7) ;
P:=SylowSubgroup(G,2) ;
S:=Subgroups (P:0rderEqual:=8) ;
exists(a){i : i in [1..#S] | #Normalizer(G,S[i] ‘subgroup) eq 8*#SL(3,2)};
H:=Normalizer(G,S[a] ‘subgroup) ;
repeat
g:=Random(G) ;
until #(H meet H"g) eq 1;

Lemma 2.10. If Gy = Fy(2) and Hy = 2F4(2), then G is not extremely primitive.
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Proof. Here Hy = Cg,(x), where = is an involutory graph automorphism of Gy. This
observation allows us to construct Hy and we then use random search to find an element
g € Gy such that HynH§ = 1. Therefore, b(Gy, Hy) = 2 and Gy is not extremely primitive.
Note that |Hg| = 2'2(¢® 4+ 1)(2* — 1)(2° + 1).

G:=AutomorphismGroupSimpleGroup ("F4",2);

g:=Socle(G);
n:=2"12%65%x15%9;
repeat

x:=Random(G) ;
until Order(x) mod 2 eq O and #Centralizer(g,x” (Order(x) div 2)) eq n;
h:=Centralizer(g,x" (Order(x) div 2));
repeat
x:=Random(g) ;
until #(h meet h"x) eq 1;

To complete the proof, we may assume G = G¢.2 and H = Hy.2. Since HyN HY =1 it
follows that |H N HY| < 2 and thus H N HY is not a maximal subgroup of H. Therefore,
G is not extremely primitive. O

Lemma 2.11. If (Gg,soc(H)) is one of the following

(E6(4), Fiza), (Eo(4),(3)), (Fu(3),°Da(2)), (G2(11),J1), (G2(7),Us(3)),
then b(G, H) = 2.

Proof. First assume Gy = Eg(4) and soc(H) = Figa. Let V be the adjoint module for Gy,
so V is an irreducible 78-dimensional module for Gy over Fy and soc(H) acts irreducibly
on V. From the 2-modular character table of L = Fijy.2 (this is available in [2], for
example), we see that L has a unique 78-dimensional irreducible module over F, and
so we can identify this module with V. This allows us to use MAGMA to construct V'
as an irreducible module for L over F4 and we can then determine the action on V of
a set of conjugacy class representatives of L. To do this, we work with a permutation
representation of L of degree 3510, which is available in [8], and we use the functions
SInfo and UInfo defined in Section [L.5

I:=IrreducibleModulesBurnside(L,GF(4) :DimLim:=500) ;
for i in [1..#I] do
[i,Dimension(I[i])];
end for;
f:=Representation(I[2]);
cl:=Classes(L);
CL:=[];
for i in [1..#cl] do
Append ("CL,<c1[i][1],c1[i]1[2],£f(c1[i][3]1)>);
end for;

SInfo(L,CL);
UInfo(L,CL);

If z € L has prime order r > 3 then the output from SInfo(L,CL) allows us to read off
dim Cy (x) = dim Cg(x), where G = Fg is the ambient simple algebraic group. If r = 3
then dim Cy (z) uniquely determines C(z)° and for 7 > 5 we deduce that dim Cg(z) < 18.
As explained in the proof of [3, Lemma 7.11], this allows us to estimate the contribution
to Q(G, H) from semisimple elements. Similarly, the output from UInfo(L,CL) gives the
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Jordan form of each involution x € H. This uniquely determines the G-class of x and
we can then compute |¢& N L|. We get the results presented in the table below. Here,
we label the G-classes of involutions in Gy as in [7, Table 22.2.3] and we write 7 and 7’/
for representatives of the two G-classes of involutory graph automorphisms of Gy, where
CGO(T) = F4(4)

Jordan form of x G-class of z |29 N L]

(J32, Ji) A, 3510

(J32, T A2 1216215

(J35%, J¢) A3 36486450

(J3°, J75) T 61776

(J3°, J7) ' 19459440 + 22239360

This allows us to calculate the contribution to Q(G, H) from unipotent elements and
by combining this with the previous estimate for semisimple elements, we conclude that
Q(G, H) < 1 and thus b(G, H) = 2. We refer the reader to the proof of [3, Lemma 7.11]
for the details.

The remaining cases can be handled in an identical fashion. Indeed, in each case
soc(H) acts irreducibly on the adjoint module V' for Gy and by suitably modifying the
previous code, we can use MAGMA to calculate the action of the relevant conjugacy class
representatives on V for each x € H of prime order. Then as explained in [3, Section 7],
this information allows us to show that Q(G, H) < 1, which gives b(G, H) = 2. O

Lemma 2.12. If Gy = ?Eg(2) and soc(H) = Figa, then G is not extremely primitive.

Proof. Here (G, H) = (*E4(2), Figa) or (*Es(2).2, Fig.2) and we proceed as in Example
noting that the character tables of G and H, together with the associated fusion
map, are stored in [2]. In both cases we calculate that G has rank 8 and we note that
|G : H| = 1185415168.

To compute the indices of the maximal subgroups of H, it is convenient to use the
permutation representation of H of degree 3510, which is available in [§]:

M:=MaximalSubgroups (H) ;
[(#H div #M[i] ‘subgroup: i in [1..#M] | #Core(H,M[i] ‘subgroup) eq 1];

For H = Fig.2, we deduce that the indices of the maximal core-free subgroups of H are
as follows:

3510, 61776, 142155, 694980, 1216215, 1647360, 3612614,

3648645, 5125120, 12812800, 15206400, 17791488

and since 1+ 7.17791488 < |G : H|, we conclude that G is not extremely primitive.
Similarly, if H = Fiso, then

3510, 14080, 61776, 142155, 694980, 1216215, 1647360,
3592512, 3648645, 12812800, 17791488, 679311360
are the indices of the maximal subgroups of H. Since
1+6.17791488 4+ 679311360 < |G : H|

it follows that if G is extremely primitive, then H must have at least two orbits of length
679311360. But 1 + 2.679311360 > |G : H|, so this is not possible and thus G is not

extremely primitive. O

Lemma 2.13. If Gy = F4(2) and soc(H) = Ly(3), then G is not extremely primitive.
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Proof. Here (G, H) = (Fy(2),L4(3).2) or (F4(2).2,L4(3).2?) and we can proceed as in the
previous lemma, accessing the character table of H in GAP via

CharacterTable("L4(3).2_2") and CharacterTable("L4(3).272"),
respectively.

For (G, H) = (F4(2),L4(3).2) we calculate that G has rank 94 and using MAGMA we find
that |H : M| < 10530 for every maximal subgroup M of H. But 1+ 93.10530 < |G : H|
and thus G is not extremely primitive. Similarly, if (G, H) = (F4(2).2,L4(3).22) then G
has rank 66, |H : M| < 21060 and once again we deduce that G is not extremely primitive
since 1+ 65.21060 < |G : H|. O

Lemma 2.14. If Gy = 2E¢(2) and soc(H) = Q7(3), then b(G, H) = 2.

Proof. We proceed as in Example using a combination of [2] and MAGMA to compute
Q(G, H). More precisely, if G = 2Eg(2) and H = Q7(3), then the computation in Example

I8 gives

1946811337
QG H) = 5927075840
Similarly, if G = 2Eg(2).2 and H = SO7(3), then
5140272007
H)=———.
G, H) 13039566848
In both cases, Q(G, H) < 1 and thus b(G, H) = 2 by [3|, Lemma 2.6]. O
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