

Big Ideas in Science: Symmetry Perfect Symmetry

Tim Burness

School of Mathematics

Symmetry in science

- Physics (Next week's lecture!):
 - The physical laws of the universe (e.g. conservation of energy)
 - Relativity and quantum physics
- Chemistry: The symmetry of molecules and crystals
- Biology: Bilateral symmetry in multicellular organisms
- **Computer science:** The design and implementation of algorithms:

Symmetry → faster, more efficient computation

Psychology: Visual symmetry perception

etc. etc. ...

Symmetry in mathematics: Perfect symmetry

Symmetry in mathematics

$$\begin{pmatrix} 2 & 4 & -1 & 9 \\ 4 & 7 & 2 & 3 \\ -1 & 2 & 5 & 0 \\ 9 & 3 & 0 & 3 \end{pmatrix} \qquad x^2 + y^2 + z^2 = 12$$

$$x^2 + y^2 + z^2 = 12$$

Example: The symmetry of addition

Problem: Calculate the sum of the first 50 odd numbers

Answer: $(100 \times 50)/2 = 2500 = 50^2$

 $\label{lem:Generalisation: The sum of the first } n \ \ \mbox{odd numbers is}$

$$1 + 3 + 5 + \dots + (2n - 3) + (2n - 1) = (2n \times n)/2 = n^2$$

 $1+3+5+\cdots+(2n-3)+(2n-1)=n^2$

Problem: Calculate

$$1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{95} + \frac{1}{97} + \frac{1}{99}$$

Reversing the summation is not helpful, since

$$1 + \frac{1}{99} \neq \frac{1}{3} + \frac{1}{97}$$

and so on. This **broken symmetry** is reflected in the complexity of the solution:

Answer: $\frac{3200355699626285671281379375916142064964}{1089380862964257455695840764614254743075} \approx 2.94$

Example: Solving equations

Problem: Find the solutions to the equation $x^2 = 0$

Solutions: x = 0

The equation $x^2 - 1 = 0$

Solutions: x = 1 and x = -1

The equation $x^2 - 2 = 0$

Solutions: $x = \sqrt{2}$ and $x = -\sqrt{2}$

The equation $x^2 + 1 = 0$

By **symmetry**, we expect to find two solutions, but what are they?

$$\sqrt{-1}$$

To solve the equation $x^2 + 1 = 0$ we need to "invent" a new number

$$i = \sqrt{-1}$$

such that $i^2 = -1$, so

$$i^2 + 1 = (-i)^2 + 1 = 0$$

Solutions: x = i and x = -i

Note: This is similar to how we solve the equation x + 1 = 0, by "inventing" the number "-1". Negative numbers were not widely accepted until the 16th century!

Complex numbers

We now have a new number system, the **complex numbers**

$$\mathbb{C} = \{a + bi : a \text{ and } b \text{ are real numbers}\}\$$

e.g. 2-3i and $\sqrt{2}+\pi i$ are complex numbers.

We add and multiply in a natural way, remembering $i^2=-1$, e.g.

$$(2-3i) + (-4+7i) = (2-4) + (-3i+7i) = -2+4i$$

$$(2-3i) \times (-4+7i) = (2 \times -4) + (2 \times 7i) + (-3i \times -4) + (-3i \times 7i)$$

$$= -8+14i+12i-21i^{2}$$

$$= (-8+21) + (14i+12i)$$

$$= 13+26i$$

The complex plane

We can associate the complex number a+bi with the point in the plane with coordinates (a,b).

Conversely, any point in the plane corresponds to a complex number.

Applications

Complex numbers have fundamental applications throughout mathematics, science, engineering and technology. For example:

- Quantum physics
- Relativity
- Fluid dynamics
- Electrical engineering
- Digital signal processing

etc. etc.

The quadratic formula

We can use complex numbers to solve any quadratic equation. Consider

$$ax^2 + bx + c = 0$$

where a, b and c are numbers (with $a \neq 0$).

The solutions are given by the familiar quadratic formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Example:
$$x^2 - 10x + 40 = 0$$
: $a = 1$, $b = -10$, $c = 40$

$$x = \frac{10 \pm \sqrt{100 - 160}}{2} = 5 \pm \frac{1}{2}\sqrt{-60} = 5 \pm \sqrt{-15} = 5 \pm \sqrt{15}i$$

Symmetry in the solutions

Girolamo Cardano

Pzbrig2

Higher degree equations

Cardano also studied extensions of the quadratic formula to **cubic** and **quartic** equations. The formulae are **complicated(!)** e.g.

$$x = -\frac{b}{3a} + \sqrt[3]{-\frac{1}{2}\left(\frac{2b^3}{27a^3} - \frac{bc}{a^2} + \frac{d}{a}\right) + \sqrt{\frac{1}{4}\left(\frac{2b^3}{27a^3} - \frac{bc}{a^2} + \frac{d}{a}\right)^2 + \frac{1}{27}\left(\frac{c}{a} - \frac{b^2}{3a^2}\right)^3}} + \sqrt[3]{-\frac{1}{2}\left(\frac{2b^3}{27a^3} - \frac{bc}{a^2} + \frac{d}{a}\right) - \sqrt{\frac{1}{4}\left(\frac{2b^3}{27a^3} - \frac{bc}{a^2} + \frac{d}{a}\right)^2 + \frac{1}{27}\left(\frac{c}{a} - \frac{b^2}{3a^2}\right)^3}}$$

is a solution of the cubic equation

$$ax^3 + bx^2 + cx + d = 0$$

Problem: Is there a similar formula for solutions of the **quintic** equation

$$ax^5 + bx^4 + cx^3 + dx^2 + ex + f = 0$$

A mathematical theory of symmetry

By studying the **symmetries** of the solutions, **Évariste Galois** showed that there is no such formula for the quintic equation!

By encoding the symmetries in an algebraic object called a **group**, this incredible breakthrough marked the birth of a **mathematical theory of symmetry**.

Groups and symmetry: An example

- Fold paper in half long-ways, then open it out flat
- 2. Turn bottom left corner up to touch the fold line, making a sharp point with the bottom right corner, and fold
- 3. Fold the two red edges together, and then tuck in the top corner

- 4. Label the corners 1,2,3 on both sides, so each corner has the same label front and back
- 5. Imagine the outline of an equilateral triangle on your desk:

6. Check that there are **six** different ways (keeping track of the corners) to place your paper triangle onto this outline

The six configurations

The symmetries of an equilateral triangle

The symmetries of an equilateral triangle

Combining symmetries

We can "multiply" two symmetries by performing one after the other, e.g.

SO

and the "product" T*A is itself a symmetry. More precisely,

$$T \star A = R$$

The symmetry group

The symmetries of an equilateral triangle are **encoded** by its **symmetry group**

$$(\{I, C, A, T, L, R\}, \star)$$

Big idea: We can study and compare mathematical objects by investigating the (algebraic) properties of their corresponding symmetry groups.

Properties

- $\not k$ $I \star X = X \star I = X$ for any symmetry X
- Each symmetry occurs exactly once in each row and column
- \checkmark In particular, each symmetry has an "inverse", e.g. C*A = A*C = I, so A is the inverse of C
- ✓ Order matters, e.g. C*T ≠ T*C

Group Theory

The concept of a symmetry group can be generalised, leading to the notion of an **abstract group**, which are fundamental objects in Pure Mathematics.

Groups arise naturally in many different contexts, e.g.

$$\not$$
 $(\mathbb{Z},+)$ is a group, where $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3,\ldots\}$

$$\norm{\ensuremath{\kappa}}\xspace (\mathbb{C},+)$$
 is a group

$$\ensuremath{\,\,\diagup\,}$$
 $(\{1,-1,i,-i\}, imes)$ is a group. Here is the group table:

	1	-1	i	-i
1	1	-1	i	-i
-1	-1	1	-i	i
i	i	-i	-1	1
-i	-i	i	1	-1

Groups of matrices, groups of functions... etc. etc.

"Simple" groups

Let $G = \{I, C, A, T, L, R\}$ be the symmetry group of an equilateral triangle.

*	1	С	Α	Т	L	R
ı	I	С	Α	Т	L	R
С	С	Α	ı	R	Τ	L
Α	Α	I	С	L	R	Т
Т	Т	L	R	I	С	Α
L	L	R	Т	Α	-	С
R	R	C A I L R	L	С	Α	I

Consider the subgroups $H = \{I, C, A\}$ and $K = \{I, T\}$.

Every element of G is of the form X+Y, where X is in H and Y is in K, so

$$G = H \star K$$

is a "factorisation" of G.

The atoms of symmetry

We have "factorised" $G = H \star K$ as a "product" of H and K.

Here H and K are special because they cannot be factorised any further.

Groups like this are called **simple groups** – they play the role of prime numbers in group theory.

Key fact: Every group can be "factorised" as a "product" of simple groups, so the simple groups are the **basic building blocks** of all groups.

Big idea: Simple groups encode the **atoms of symmetry**.

Big problem: Find all the simple groups!

The Classification Theorem

The **Classification of Finite Simple Groups** is one of the most amazing achievements in the history of mathematics!

Theorem. Any finite simple group is one of the following:

- 1. A group with a prime number of elements
- 2. A group of "alternating" or "Lie type"
- 3. One of 26 "sporadic" groups
- This problem occupied a global team of mathematicians for several decades – the theorem was announced in 1980
- The proof is incredibly complicated it is over 10000 pages long!
- We The theorem provides us with a **periodic table of groups**, which gives a complete description of the atoms of symmetry

The Periodic Table Of Finite Simple Groups

Summary

- Symmetry is a central idea in mathematics, which arises in many different ways
- Symmetries can be exploited to find simple and elegant solutions
- Seeking symmetry has led to many fundamental breakthroughs that have revolutionised science and technology
- Mathematicians have developed the powerful language of group theory to study symmetry in all its forms, with many far reaching applications

Further "reading"

- Podcast series by lan Stewart: http://www2.warwick.ac.uk/newsandevents/podcasts/media/more/symmetry
- Video by Marcus du Sautoy: http://www.ted.com/talks/marcus_du_sautoy_symmetry_reality_s_riddle.html
- Video by Tim Burness and John Conway: http://www.youtube.com/watch?v=jsSeoGpiWsw
- lan Stewart, Why Beauty is Truth: The History of Symmetry, 2008
- lan Stewart, Symmetry: A Very Short Introduction, 2013
- Marcus du Sautoy, Finding Moonshine: A Mathematician's Journey Through Symmetry, 2009