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Symmetry in science

k£ Physics (Next week’s lecture!):

» The physical laws of the universe (e.g. conservation of energy)
» Relativity and quantum physics

k& Chemistry: The symmetry of molecules and crystals
k& Biology: Bilateral symmetry in multicellular organisms
ke Computer science: The design and implementation of algorithms:

Symmetry ~ faster, more efficient computation

k£ Psychology: Visual symmetry perception

etc. etc. ...



Symmetry in mathematics: Perfect symmetry




Symmetry in mathematics
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Example: The symmetry of addition

Problem: Calculate the sum of the first 50 odd numbers

1 3 5 95 97 99
+ - + - - +
99 97 95 5 3 1
100 100 100 --- 100 100 100

Answer: (100 x 50)/2 = 2500 = 502

Generalisation: The sum of the first n odd numbers is

143454+ 2n—-3)+2n—1)=(2nxn)/2=n?



14+3454--+2n—-3)+2n—-1)=n?

2n—1

o2n—3




Problem: Calculate

42ttt et et o
35 95 97 ' 99

Reversing the summation is not helpful, since
1 1 1
14+ — £ 2 4 —
+ 99 7 3 * 97

and so on. This broken symmetry is reflected in the complexity of the solution:

. 3200355699626285671281379375916142064964

: ~ 2.94
1089380862964257455695840764614254743075 )

Answer




Example: Solving equations

Problem: Find the solutions to the equation z2 =0

Y

Solutions: x = 0




The equation z° — 1 = 0

y=22-1

Solutions: x = landz = —1



The equation 22 — 2 =

0

y:x2—2

Solutions: z = V2 and z = —/2




The equation 22 +1 =0

y=a?+1

!
[

By symmetry, we expect to find two solutions, but what are they?



V-1

To solve the equation z° + 1 = 0 we need to “invent” a new number
1=+ —1

such that 2 = —1, so
24+1=(=9)2+1=0

Solutions: x = tand x = —¢

Note: This is similar to how we solve the equation  + 1 = 0, by “inventing” the
number “—1”. Negative numbers were not widely accepted until the 16th century!



Complex numbers

We now have a new number system, the complex humbers
C = {a+bi : aandb are real numbers}

e.g. 2 — 3i and v/2 + 7i are complex numbers.
We add and multiply in a natural way, remembering i> = —1, e.g.
2-3)+(-4+7)=2—-4)+(-3i+7i)=—-2+4i

(2 —3i) x (—4+7i) = (2 x —4) + (2 x Ti) + (=30 x —4) + (—3i x 74)
= —8 + 145 + 12 — 2142
= (=84 21) + (14i + 124)
=13 + 26i



The complex plane

We can associate the complex number a + bi with the point in the plane with
coordinates (a, b).

Conversely, any point in the plane corresponds to a complex number.

Im




Applications

Complex numbers have fundamental applications throughout mathematics,
science, engineering and technology. For example:

k£ Quantum physics

k£ Relativity

k¢ Fluid dynamics

k& Electrical engineering

k& Digital signal processing

etc. etc.



The quadratic formula

We can use complex numbers to solve any quadratic equation. Consider

ax’ +br+c=0

where a, b and ¢ are numbers (with @ # 0).

The solutions are given by the familiar quadratic formula:

. —b+ Vb2 —4ac
- 2a

Example: 2° — 102+ 40 =0:a=1,b= —10, c = 40

10 + /100 — 160 1
T = 2 :5:|:§\/—60:5:&\/—1525:&\/151’



Symmetry in the solutions
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Higher degree equations

Cardano also studied extensions of the quadratic formula to cubic and quartic
equations. The formulae are complicated(!) e.g.

Tr =

b " 3l 1 263
3a 2 \ 27a3

2b3

be " d) N 1 (
a2 a 4 \ 27a3

bc+d>2+ 1 (c )3
a2 a 27 \a 3a?

be

a2

n 3| 1/ 2b3
2 \ 27a3

d

a

be

a2

1 203
4 \ 27a3

is a solution of the cubic equation

+d)2+ 1 (c b2)3
a 27 \a 3a?

ar® +bx’ +cx+d=0

Problem: |s there a similar formula for solutions of the quintic equation

az® +bat +cad +dx® texr+f=0



A mathematical theory of symmetry

Evariste Galois
25.10.1811
31.05.1832

By studying the symmetries of the solutions, Evariste Galois showed that there
is no such formula for the quintic equation!

By encoding the symmetries in an algebraic object called a group, this incredible
breakthrough marked the birth of a mathematical theory of symmetry.



Groups and symmetry: An example

1. Fold paper in half long-ways, then open it out flat

2. Turn bottom left corner up to touch the fold line, making a sharp point with
the bottom right corner, and fold

3. Fold the two red edges together, and then tuck in the top corner



4. Label the corners 1,2,3 on both sides, so each corner has the same label
front and back

5. Imagine the outline of an equilateral triangle on your desk:

6. Check that there are six different ways (keeping track of the corners) to
place your paper triangle onto this outline



The six configurations
1 3 2
1 3 2



The symmetries of an equilateral triangle

1 1
| 4|> Identity symmetry
2 3 2 3
1 2
C L Clockwise rotation
2 3 3 1
1 3
A L Anticlockwise rotation




The symmetries of an equilateral triangle

1 1
T .
T — Top corner flip
2 3 3 2
1 3
L # Left corner flip
2 3 2 1
1 2
R . .
R — Right corner flip




Combining symmetries

We can “multiply” two symmetries by performing one after the other, e.g.

SO

1 2
—_—
2 3 1 3

and the “product” TxA is itself a symmetry. More precisely,

TxA =R



The symmetry group

0D —-—>»00
r—4I310—> >
O>» —r 3 dH -4
>—-—031D A
— O>»dr /DT

D=0 —|*
Irr4>»0 —|—

The symmetries of an equilateral triangle are encoded by its symmetry group

({I,C, A, T, L, R}, %)

Big idea: We can study and compare mathematical objects by investigating the
(algebraic) properties of their corresponding symmetry groups.



Properties

A0 —>»0O0
r—4I310—> >
O>» —r 3 d -
> -0 31D AHAr|r
— O>»dr DT

D> 0 —|*
Irr4>»0 —|—

K %X = X%l = X for any symmetry X
k& Each symmetry occurs exactly once in each row and column

kK In particular, each symmetry has an “inverse”, e.g. CxA = AxC =1,s0 A is
the inverse of C

ke Order matters, e.g. CxT # TxC



Group Theory

The concept of a symmetry group can be generalised, leading to the notion of an
abstract group, which are fundamental objects in Pure Mathematics.

Groups arise naturally in many different contexts, e.g.
¥ (Z,+)is agroup, where Z =4...,—-3,-2,-1,0,1,2,3,...}
k (C,+)is agroup
¥ ({1,—1,4,—i}, x) is a group. Here is the group table:

| 1 -1 i =i
1 -1 i —
1| -1 1 —i
il i =i -11
—~i| =i i 1 -1

k£ Groups of matrices, groups of functions... etc. etc.



“Simple” groups

Let G = {I,C, A, T, L, R} be the symmetry group of an equilateral triangle.

x| I C A T L R
/1 C A T L R
c/iC A I R T L
AlJ/A I C L R T
T|T L R I C A
LIL RT A I C
RIR T L C A |

Consider the subgroups H = {I,C, A} and K = {I, T}.

Every element of GG is of the form XxY, where X is in H and Y is in K, so
G=HxK

is a “factorisation” of G.



The atoms of symmetry

We have “factorised” G = H x K as a “product” of H and K.
Here H and K are special because they cannot be factorised any further.

Groups like this are called simple groups — they play the role of prime numbers
in group theory.

Key fact: Every group can be “factorised” as a “product” of simple groups, so the
simple groups are the basic building blocks of all groups.

Big idea: Simple groups encode the atoms of symmetry.

Big problem: Find all the simple groups!



The Classification Theorem

The Classification of Finite Simple Groups is one of the most amazing
achievements in the history of mathematics!

Theorem. Any finite simple group is one of the following:
1. A group with a prime number of elements
2. A group of “alternating” or “Lie type”
3. One of 26 “sporadic” groups

k& This problem occupied a global team of mathematicians for several
decades — the theorem was announced in 1980

k£ The proof is incredibly complicated — it is over 10000 pages long!

k£ The theorem provides us with a periodic table of groups, which gives a
complete description of the atoms of symmetry



The Periodic Table Of Finite Simple Groups
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Summary

k£ Symmetry is a central idea in mathematics, which arises in many different
ways

k£ Symmetries can be exploited to find simple and elegant solutions

k£ Seeking symmetry has led to many fundamental breakthroughs that have
revolutionised science and technology

k£ Mathematicians have developed the powerful language of group theory to
study symmetry in all its forms, with many far reaching applications



Further “reading”

k£ Podcast series by lan Stewart:
http://www?2.warwick.ac.uk/newsandevents/podcasts/media/more/symmetry

k£ Video by Marcus du Sautoy:
http://www.ted.com/talks/marcus_du_sautoy_symmetry_reality_s_riddle.html

k£ Video by Tim Burness and John Conway:
http://www.youtube.com/watch?v=jsSeoGpiWsw

k£ lan Stewart, Why Beauty is Truth: The History of Symmetry, 2008
k lan Stewart, Symmetry: A Very Short Introduction, 2013

k£ Marcus du Sautoy, Finding Moonshine: A Mathematician’s Journey
Through Symmetry, 2009



