Extremely primitive groups

Tim Burness

School of Mathematics University of Southampton

Joint work with Cheryl Praeger and Ákos Seress

Pure Mathematics Seminar Royal Holloway, University of London May 8th 2012

Introduction

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a finite transitive permutation group with nontrivial point stabilizer

$$G_{\alpha} = \{ x \in G : \alpha x = \alpha \}$$

- G primitive: G_{α} is a maximal subgroup of G
- *G* 2-transitive: G_{α} is transitive on $\Omega \setminus \{\alpha\}$
- *G* 2-**primitive**: G_{α} is primitive on $\Omega \setminus \{\alpha\}$
- G extremely primitive: G is primitive, and G_{α} is primitive on each of its orbits in $\Omega \setminus \{\alpha\}$
 - i.e. $G_{\alpha,\beta} < G_{\alpha}$ is maximal for all $\beta \in \Omega \setminus \{\alpha\}$

Introduction

Examples

- $G = S_n$ on n points
- *G* 2-**primitive:** By CFSG, all 2-transitive groups are known, hence all 2-primitive groups are known
 - e.g. $G = A_n$ or S_n on n points
 - e.g. $G = PSL_2(q)$ on the projective line
- $G = J_2$, $G_\alpha = PSU_3(3)$: $|\Omega| = 100 = 1 + 36 + 63$

The problem

Classify the extremely primitive permutation groups

The O'Nan-Scott Theorem

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite primitive permutation group with point stabilizer H and socle $S = T^d$, T simple.

• If $T = Z_p$ is abelian then

$$G = Z_p^d \rtimes H \leqslant Z_p^d \rtimes \operatorname{GL}_d(p) = \operatorname{AGL}_d(p)$$

is **affine**, with $H \leq GL_d(p)$ irreducible

- If T is nonabelian then one of the following holds:
 - G is of diagonal type or product type
 - G is a twisted wreath product
 - ▶ *G* is **almost simple**, i.e. S = T and $T \leq G \leq Aut(T)$

A reduction theorem

Extremely primitive groups are rather more restricted:

Theorem (Mann-Praeger-Seress, 2007)

If G is extremely primitive then G is affine or almost simple.

Moreover, if $G = Z_p^d \rtimes H \leqslant \mathsf{AGL}_d(p)$ is **affine** then one of the following holds:

- G is solvable: all examples are known
- p = 2, H is almost simple and either
 - G is 2-primitive (all examples known), or
 - G is simply primitive and either (d, H) is known, or (d, H) is one of finitely many additional possibilities

Affine groups

If G is affine, non-solvable and simply primitive then the known extremely primitive examples (d, Soc(H)) are as follows (each with p = 2):

(b)
$$(2k, A_{2k+1})$$
 $k \ge 2$, $(2k, A_{2k+2})$ $k \ge 3$

(c)
$$(2k, \Omega_{2k}^{\pm}(2)) \ k \geq 3$$

Conjecture (Mann-Praeger-Seress, 2007)

There are no additional extremely primitive affine groups.

Affine groups: A useful lemma

Suppose $G = \mathbb{Z}_p^d \rtimes H \leqslant \mathsf{AGL}_d(p)$ is affine and extremely primitive.

$$H \leqslant \operatorname{GL}_d(p)$$
 irreducible $\implies C_{\operatorname{GL}_d(p)}(H) = (\mathbb{F}_{p^a})^*$ with $a|d$
 $\implies H \leqslant \operatorname{GL}_{d/a}(p^a).a$

Lemma

Assume a < d. If $h \in H$ has an eigenvalue $\lambda \in \mathbb{F}_{p^a}$ then $\lambda = 1$, so H contains no nontrivial element of order dividing $p^a - 1$.

Suppose
$$0 \neq u \in Z_p^d$$
 and $u^h = \lambda u$ with $\lambda \in \mathbb{F}_{p^a}$. Set $U = \langle u \rangle_{\mathbb{F}_{p^a}}$. Then
$$C_H(u) = H_u \leqslant \langle h, H_u \rangle \leqslant N_H(U) < H$$

and $H_u < H$ is maximal, so $h \in H_u$ and $\lambda = 1$.

Corollary

If G is non-solvable then p=2.

Affine groups: Another useful lemma

Suppose $G = \mathbb{Z}_2^d \rtimes H \leqslant \mathsf{AGL}_d(2)$ is affine and extremely primitive.

Let \mathcal{M} be the set of maximal subgroups of $H = G_0$. For $M \in \mathcal{M}$, let fix(M) be the points in $\Omega = Z_2^d$ fixed by M.

Lemma

$$\sum_{M\in\mathcal{M}}(|\mathsf{fix}(M)|-1)=2^d-1, \text{ and } |\mathsf{fix}(M)|\leq 2^{d/2} \text{ for all } M\in\mathcal{M}.$$
 In particular, $|\mathcal{M}|>2^{d/2}.$

The lemma quickly follows from two easy observations:

- Suppose $M_1, M_2 \in \mathcal{M}$, $M_1 \neq M_2$ and $v \in \text{fix}(M_1) \cap \text{fix}(M_2)$. Then v is fixed by $\langle M_1, M_2 \rangle = H$, so v = 0 since H is irreducible.
- $v \neq 0 \implies H_v \in \mathcal{M}$ (since G is extremely primitive).

Wall's conjecture

Suppose $G = \mathbb{Z}_2^d \rtimes H \leqslant \mathsf{AGL}_d(2)$ is a primitive affine group.

By the lemma, if $|\mathcal{M}| \leq 2^{d/2}$ then G is **not** extremely primitive, so bounds on $|\mathcal{M}|$ are important here.

Conjecture (G.E. Wall, 1961)

 $|\mathcal{M}| \leq |H|$ for any finite group H

Theorem (Liebeck-Martin-Shalev, 2005)

Wall's conjecture holds if H is a sufficiently large almost simple group

If $|\mathcal{M}| \leq |H|$ and G is extremely primitive then $2^{d/2} < |H|$ and there are only a small number of explicit H-modules over \mathbb{F}_2 to consider.

For example, suppose $H=A_n$ or S_n with $n\geq 15$. Let V be a nontrivial irreducible \mathbb{F}_2H -module.

Theorem (G.D. James, 1983)

Either V is the fully deleted permutation module for H (of dimension n-2 or n-1), or dim $V \ge n(n-5)/2$.

Theorem (Liebeck-Shalev, 1996)

If n is sufficiently large then $|\mathcal{M}| \leq n!$

If $n \ge 17$ then $n! < 2^{n(n-5)/4}$, so the following corollary holds:

Corollary

There are only finitely many extremely primitive groups of the form $G = Z_2^d \rtimes H$, with $Soc(H) = A_n$ and $d \geq n$.

Almost simple groups

Let G be an almost simple group with socle T, so

$$T \leqslant G \leqslant Aut(T)$$

By CFSG, such a group belongs to one of four families:

- (i) G is a symmetric or alternating group (degree $n \ge 5$)
- (ii) G is a classical group, e.g. $G = L_n(q)$, $PGU_n(q)$, $PSp_n(q)$
- (iii) G is an **exceptional group**, e.g. $G = G_2(q), {}^2E_6(q), E_8(q)$
- (iv) G is a **sporadic group**, e.g. $G = M_{22}:2, Co_1, M$

Theorem (B-Praeger-Seress, 2011)

The almost simple extremely primitive groups of type (i), (ii) and (iv) have been classified.

Symmetric and alternating groups

Theorem

Let G be an almost simple group with socle $T = A_n$ and point stabilizer H. Then G is extremely primitive if and only if (G, H) is one of the following:

Rank	Conditions
(n+2)/4	$n \equiv 2 \pmod{4}$
2	$G \leqslant S_n$
2	n = 5

In the first example, Ω is the set of partitions of $\{1,\ldots,n\}$ into subsets of size n/2. If $n\equiv 0\ (\text{mod }4)$ then

$$G_{lpha,eta} = (S_{n/4} \wr V_4) \cap G < (S_{n/4} \wr D_8) \cap G < G_lpha$$
 for

$$\alpha = \{1, \dots, n/2\} \cup \{n/2 + 1, \dots, n\}$$

$$\beta = \{1, \dots, n/4, 3n/4 + 1, \dots, n\} \cup \{n/4 + 1, \dots, 3n/4\}$$

Sporadic groups

Theorem

If T is a sporadic group then G is extremely primitive, but not 2-primitive, if and only if (G, H) is one of the following $(\alpha = 1 \text{ or } 2)$:

$$(\mathsf{J}_2.\alpha,\mathsf{U}_3(3).\alpha),(\mathsf{HS}.\alpha,\mathsf{M}_{22}.\alpha),(\mathsf{Suz}.\alpha,\mathit{G}_2(4).\alpha)$$

$$(McL.\alpha, U_4(3).\alpha), (Ru, {}^2F_4(2)), (Co_2, U_6(2).2), (Co_2, McL)$$

The highest rank in this list is 6, for $(G, H) = (Co_2, McL)$:

$$|\Omega| = 47104 = 1 + 275 + 2025 + 7128 + 15400 + 22275$$

In addition, there are nine 2-primitive almost simple sporadic groups (in fact, every 2-transitive sporadic group is extremely primitive).

Classical groups

Theorem

If T is a classical group then G is extremely primitive if and only if (G, H) is one of the following:

T	Type of H	Conditions
$L_2(q)$	P_1	$q \ge 4$
$PSp_n(2)'$	$O_n^{\pm}(2)$	$n \ge 4$
$L_2(q)$	$D_{2(q+1)}$	G = T, $q > 2$, $q + 1$ Fermat
$L_4(2)$	A_7	
$U_4(3)$	$L_3(4)$	$G = T.2^2$ or $G = T.2$
$L_{3}(4)$	A_6	$G = T.2^2$ or $G = T.2$
L ₂ (11)	A_5	G = T

Main ingredients

- Detailed information on the structure and conjugacy classes of maximal subgroups of almost simple groups:
 - ► Alternating groups: O'Nan-Scott
 - Classical groups: Aschbacher, Kleidman-Liebeck, ...
 - Sporadic groups: Wilson et al.
- By Manning (1927), $H = G_{\alpha}$ acts faithfully on each orbit in $\Omega \setminus \{\alpha\}$, so we can apply the O'Nan-Scott theorem to H. In particular,
 - ► Soc(*H*) is a product of isomorphic simple groups
 - \triangleright F(H) is either trivial or elementary abelian
 - ► Z(H) is trivial
- Direct calculation and computation (e.g. using MAGMA)
- Recent work on **bases** for primitive permutation groups

Bases

A base of a permutation group $G \leq \operatorname{Sym}(\Omega)$ is a subset S of Ω such that the pointwise stabilizer of S in G is trivial.

The **base size**, denoted b(G), is the minimal size of a base for G.

Examples

- $G = S_n$, $\Omega = \{1, \ldots, n\} \implies b(G) = n 1$
- G = GL(V), $\Omega = V \implies b(G) = \dim V$

Suppose G is almost simple and extremely primitive. If $\alpha, \beta \in \Omega$, $\alpha \neq \beta$, then $G_{\alpha,\beta} < G_{\alpha}$ is maximal, so $G_{\alpha,\beta} \neq 1$ and hence b(G) > 2.

The base-two project

Classify the primitive permutation groups G with b(G) = 2

Symmetric and alternating groups

Theorem (B-Guralnick-Saxl, 2010)

Let G be an almost simple primitive group with socle A_n . Assume $H = G_{\alpha}$ acts primitively on $\{1, \ldots, n\}$. Then b(G) = 2 for all n > 12.

Consequently, for extreme primitivity, there are just two cases to deal with:

(i)
$$H = (S_k \times S_{n-k}) \cap G$$
 for some $1 \le k < n/2$;

(ii)
$$H = (S_k \wr S_{n/k}) \cap G$$
 with $2 \le k \le n/2$.

Consider (i): G is 2-primitive if k = 1. If k > 1 and $(G, k) \neq (A_n, 2)$ then Soc(H) is not a product of isomorphic simple groups.

If
$$(G, k) = (A_n, 2)$$
 then $H = G_{\{1,2\}} = S_{n-2}$ and

$$H_{\{2,3\}} = H_{1,2,3} < H_{1,2} < H$$

so G is not extremely primitive.

Sporadic groups

Theorem (B-O'Brien-Wilson, 2010)

The base size of every primitive almost simple sporadic group is known.

In most cases b(G)=2, e.g. if $G=\mathbb{M}$ then the only exception is the case $H=2.\mathbb{B}$ with b(G)=3. We inspect the list of exceptions.

From the structural constraints on H, we reduce to a list of cases with H almost simple. Using MAGMA and data in the Web Atlas, we reduce further to 15 specific cases (G, H).

Here G is **multiplicity free** – every irreducible constituent of 1_H^G has multiplicity 1. All such actions of sporadic groups are known (Breuer-Lux, 1996), and all subdegrees have been computed.

In this situation, no extremely primitive examples arise.

Classical groups

Let G be an almost simple classical group with socle T = Cl(V) and point stabilizer H. Roughly speaking, we say G is **standard** if $H \cap T$ is reducible on V, otherwise G is **non-standard**.

Standard groups have large base sizes, in general.

Example

If $G = PGL_n(q)$ and $H = P_1$ then b(G) = n + 1.

Theorem (B, 2007)

If G is non-standard then $b(G) \le 5$, with equality if and only if $G = U_6(2).2$ and $H = U_4(3).2^2$.

More recently, with Guralnick and Saxl, we have computed b(G) precisely for 'almost all' non-standard classical groups G.

Classical groups

Roughly, we get $b(G) \le 3$, with equality only if $H = C_G(x)$ for an involution $x \in Aut(T)$.

We have computed the exact value of b(G) when H belongs to Aschbacher's S collection of irreducible almost simple subgroups.

In the remaining cases:

- The structure of *H* rules out many cases
- We can often work directly with matrices to find an explicit $x \in G \setminus H$ such that $H \cap H^x < H$ is non-maximal
- For standard groups, Ω is a set of subspaces of V and we can work with explicit subspaces to find a non-maximal two-point stabilizer $G_{\alpha,\beta} < G_{\alpha}$

Classical groups: An example

Suppose $G = \mathsf{PSL}_n(q) = \mathsf{PSL}(V)$ and H is a subfield subgroup of type $\mathsf{GL}_n(q_0)$, where $q = q_0^r$ with r prime. If r > 2 then b(G) = 2. Suppose r = 2.

Here $H = C_G(\sigma)$, with $\sigma \in \operatorname{Aut}(G)$ a field aut of order 2. By fixing a basis $\{v_1, \ldots, v_n\}$ for V, we may assume $(a_{ij})^{\sigma} = (a_{ij}^{q_0})$. Then

$$H \cap H^{\mathsf{x}} = C_H(x^{-1}x^{\sigma})$$

for all $x \in G$. Write $\mathbb{F}_q^* = \langle \omega \rangle$ and set

$$x = \begin{pmatrix} 1 & \omega & \\ 0 & 1 & \\ \hline & & I_{n-2} \end{pmatrix} \in G, \ x^{-1}x^{\sigma} = \begin{pmatrix} 1 & \omega^{q_0} - \omega & \\ 0 & 1 & \\ \hline & & & I_{n-2} \end{pmatrix}$$

Then $H \cap H^x = C_H(x^{-1}x^{\sigma}) < H_U < H$, where $U = \langle v_2 \rangle$, hence G is not extremely primitive.

Some open problems

• Determine the extremely primitive groups of exceptional Lie type.

Here $b(G) \le 6$ (by B-Liebeck-Shalev, 2009), but we do not know all the base-two examples.

Current work with Guralnick and Saxl on bases for exceptional algebraic groups may be useful here.

- Prove the Mann-Praeger-Seress conjecture on affine groups (their list is complete) – a proof of Wall's conjecture for almost simple groups would be very helpful!
- Classify the base-two almost simple primitive permutation groups
- Calculate the base size of every primitive permutation group...