Extremely primitive groups

Tim Burness

School of Mathematics
University of Southampton

Joint work with Cheryl Praeger and Ákos Seress

Pure Mathematics Seminar
Royal Holloway, University of London
May 8th 2012
Introduction

Let $G \leq \text{Sym}(\Omega)$ be a finite transitive permutation group with nontrivial point stabilizer

$$G_\alpha = \{ x \in G : \alpha x = \alpha \}$$

- G **primitive**: G_α is a maximal subgroup of G
- G **2-transitive**: G_α is transitive on $\Omega \setminus \{\alpha\}$
- G **2-primitive**: G_α is primitive on $\Omega \setminus \{\alpha\}$
- G **extremely primitive**: G is primitive, and G_α is primitive on each of its orbits in $\Omega \setminus \{\alpha\}$

i.e. $G_{\alpha,\beta} < G_\alpha$ is maximal for all $\beta \in \Omega \setminus \{\alpha\}$
Introduction

Examples

- **$G = S_n$ on n points**

- **G 2-primitive:** By CFSG, all 2-transitive groups are known, hence all 2-primitive groups are known

 - e.g. $G = A_n$ or S_n on n points

 - e.g. $G = \text{PSL}_2(q)$ on the projective line

- **$G = J_2, G_\alpha = \text{PSU}_3(3): |\Omega| = 100 = 1 + 36 + 63$**

The problem

Classify the extremely primitive permutation groups
The O’Nan-Scott Theorem

Let $G \leq \text{Sym}(\Omega)$ be a finite primitive permutation group with point stabilizer H and socle $S = T^d$, T simple.

- If $T = Z_p$ is abelian then

 $$G = Z_p^d \rtimes H \leq Z_p^d \rtimes \text{GL}_d(p) = \text{AGL}_d(p)$$

 is affine, with $H \leq \text{GL}_d(p)$ irreducible

- If T is nonabelian then one of the following holds:

 - G is of **diagonal type** or **product type**
 - G is a **twisted wreath product**
 - G is **almost simple**, i.e. $S = T$ and $T \leq G \leq \text{Aut}(T)$
A reduction theorem

Extremely primitive groups are rather more restricted:

Theorem (Mann-Praeger-Seress, 2007)

If G is extremely primitive then G is affine or almost simple.

Moreover, if $G = \mathbb{Z}_p^d \rtimes H \leq \text{AGL}_d(p)$ is affine then one of the following holds:

- G is solvable: all examples are known
- $p = 2$, H is almost simple and either
 - G is 2-primitive (all examples known), or
 - G is simply primitive and either (d, H) is known, or (d, H) is one of finitely many additional possibilities.
Affine groups

If \(G \) is affine, non-solvable and simply primitive then the known extremely primitive examples \((d, \text{Soc}(H))\) are as follows (each with \(p = 2 \)):

(a) \((10, M_{12}), (10, M_{22}), (11, M_{23}), (11, M_{24}), (22, \text{Co}_3), (24, \text{Co}_1)\)
\((8, \text{L}_2(17)), (8, \text{Sp}_6(2))\)

(b) \((2k, A_{2k+1}) \ k \geq 2, (2k, A_{2k+2}) \ k \geq 3\)

(c) \((2k, \Omega^\pm_{2k}(2)) \ k \geq 3\)

Conjecture (Mann-Praeger-Seress, 2007)

There are no additional extremely primitive affine groups.
Affine groups: A useful lemma

Suppose $G = Z_p^d \rtimes H \leq AGL_d(p)$ is affine and extremely primitive.

$$H \leq GL_d(p) \text{ irreducible} \implies C_{GL_d(p)}(H) = (\mathbb{F}_{p^a})^* \text{ with } a|d$$

$$\implies H \leq GL_{d/a}(p^a).a$$

Lemma

Assume $a < d$. If $h \in H$ has an eigenvalue $\lambda \in \mathbb{F}_{p^a}$ then $\lambda = 1$, so H contains no nontrivial element of order dividing $p^a - 1$.

Suppose $0 \neq u \in Z_p^d$ and $u^h = \lambda u$ with $\lambda \in \mathbb{F}_{p^a}$. Set $U = \langle u \rangle \mathbb{F}_{p^a}$. Then

$$C_H(u) = H_u \leq \langle h, H_u \rangle \leq N_H(U) < H$$

and $H_u < H$ is maximal, so $h \in H_u$ and $\lambda = 1$.

Corollary

If G is non-solvable then $p = 2$.

Affine groups: Another useful lemma

Suppose $G = \mathbb{Z}_2^d \rtimes H \leq AGL_d(2)$ is affine and extremely primitive.

Let \mathcal{M} be the set of maximal subgroups of $H = G_0$. For $M \in \mathcal{M}$, let $\text{fix}(M)$ be the points in $\Omega = \mathbb{Z}_2^d$ fixed by M.

Lemma

$$\sum_{M \in \mathcal{M}} (|\text{fix}(M)| - 1) = 2^d - 1,$$
and $|\text{fix}(M)| \leq 2^{d/2}$ for all $M \in \mathcal{M}$.

In particular, $|\mathcal{M}| > 2^{d/2}$.

The lemma quickly follows from two easy observations:

- Suppose $M_1, M_2 \in \mathcal{M}$, $M_1 \neq M_2$ and $v \in \text{fix}(M_1) \cap \text{fix}(M_2)$. Then v is fixed by $\langle M_1, M_2 \rangle = H$, so $v = 0$ since H is irreducible.

- $v \neq 0 \implies H_v \in \mathcal{M}$ (since G is extremely primitive).
Wall’s conjecture

Suppose $G = \mathbb{Z}_2^d \rtimes H \leq AGL_d(2)$ is a primitive affine group.

By the lemma, if $|\mathcal{M}| \leq 2^{d/2}$ then G is not extremely primitive, so bounds on $|\mathcal{M}|$ are important here.

Conjecture (G.E. Wall, 1961)

$|\mathcal{M}| \leq |H|$ for any finite group H

Theorem (Liebeck-Martin-Shalev, 2005)

Wall’s conjecture holds if H is a sufficiently large almost simple group

If $|\mathcal{M}| \leq |H|$ and G is extremely primitive then $2^{d/2} < |H|$ and there are only a small number of explicit H-modules over \mathbb{F}_2 to consider.
For example, suppose $H = A_n$ or S_n with $n \geq 15$. Let V be a nontrivial irreducible $\mathbb{F}_2 H$-module.

Theorem (G.D. James, 1983)

Either V is the fully deleted permutation module for H (of dimension $n - 2$ or $n - 1$), or $\dim V \geq n(n - 5)/2$.

Theorem (Liebeck-Shalev, 1996)

If n is sufficiently large then $|\mathcal{M}| \leq n!$

If $n \geq 17$ then $n! < 2^{n(n-5)/4}$, so the following corollary holds:

Corollary

There are only finitely many extremely primitive groups of the form $G = \mathbb{Z}_2^d \rtimes H$, with $\text{Soc}(H) = A_n$ and $d \geq n$.
Almost simple groups

Let G be an almost simple group with socle T, so

$$T \leq G \leq \text{Aut}(T)$$

By CFSG, such a group belongs to one of four families:

(i) G is a **symmetric** or **alternating group** (degree $n \geq 5$)

(ii) G is a **classical group**, e.g. $G = L_n(q), \text{PGU}_n(q), \text{PSp}_n(q)$

(iii) G is an **exceptional group**, e.g. $G = G_2(q), ^2E_6(q), E_8(q)$

(iv) G is a **sporadic group**, e.g. $G = M_{22}:2, \text{Co}_1, \text{M}$

Theorem (B-Praeger-Seress, 2011)

The almost simple extremely primitive groups of type (i), (ii) and (iv) have been classified.
Symmetric and alternating groups

Theorem

Let G be an almost simple group with socle $T = A_n$ and point stabilizer H. Then G is extremely primitive if and only if (G, H) is one of the following:

<table>
<thead>
<tr>
<th>H</th>
<th>Rank</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_G((S_{n/2} \wr S_2) \cap G)$</td>
<td>$(n + 2)/4$</td>
<td>$n \equiv 2 \pmod{4}$</td>
</tr>
<tr>
<td>$N_G(A_{n-1})$</td>
<td>2</td>
<td>$G \leq S_n$</td>
</tr>
<tr>
<td>$N_G(D_{10})$</td>
<td>2</td>
<td>$n = 5$</td>
</tr>
</tbody>
</table>

In the first example, Ω is the set of partitions of $\{1, \ldots, n\}$ into subsets of size $n/2$. If $n \equiv 0 \pmod{4}$ then

$$G_{\alpha,\beta} = (S_{n/4} \wr V_4) \cap G < (S_{n/4} \wr D_8) \cap G < G_{\alpha} \text{ for}$$

$\alpha = \{1, \ldots, n/2\} \cup \{n/2 + 1, \ldots, n\}$

$\beta = \{1, \ldots, n/4, 3n/4 + 1, \ldots, n\} \cup \{n/4 + 1, \ldots, 3n/4\}$
Sporadic groups

Theorem

If T is a sporadic group then G is extremely primitive, but not 2-primitive, if and only if (G, H) is one of the following ($\alpha = 1$ or 2):

$$(J_{2,\alpha}, U_3(3).\alpha), (HS.\alpha, M_{22}.\alpha), (Suz.\alpha, G_2(4).\alpha)$$

$$(McL.\alpha, U_4(3).\alpha), (Ru, {2F}_4(2)), (Co_2, U_6(2).2), (Co_2, McL)$$

The highest rank in this list is 6, for $(G, H) = (Co_2, McL)$:

$$|\Omega| = 47104 = 1 + 275 + 2025 + 7128 + 15400 + 22275$$

In addition, there are nine 2-primitive almost simple sporadic groups (in fact, every 2-transitive sporadic group is extremely primitive).
Classical groups

Theorem

If T *is a classical group then* G *is extremely primitive if and only if* (G, H) *is one of the following:*

<table>
<thead>
<tr>
<th>T</th>
<th>Type of H</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_2(q)$</td>
<td>P_1</td>
<td>$q \geq 4$</td>
</tr>
<tr>
<td>$\text{PSp}_n(2)'$</td>
<td>$O_n^{\pm}(2)$</td>
<td>$n \geq 4$</td>
</tr>
<tr>
<td>$L_2(q)$</td>
<td>$D_{2(q+1)}$</td>
<td>$G = T$, $q > 2$, $q + 1$ Fermat</td>
</tr>
<tr>
<td>$L_4(2)$</td>
<td>A_7</td>
<td></td>
</tr>
<tr>
<td>$U_4(3)$</td>
<td>$L_3(4)$</td>
<td>$G = T.2^2$ or $G = T.2$</td>
</tr>
<tr>
<td>$L_3(4)$</td>
<td>A_6</td>
<td>$G = T.2^2$ or $G = T.2$</td>
</tr>
<tr>
<td>$L_2(11)$</td>
<td>A_5</td>
<td>$G = T$</td>
</tr>
</tbody>
</table>
Main ingredients

- Detailed information on the structure and conjugacy classes of maximal subgroups of almost simple groups:
 - Alternating groups: O’Nan-Scott
 - Classical groups: Aschbacher, Kleidman-Liebeck, ...
 - Sporadic groups: Wilson et al.

- By Manning (1927), $H = G_\alpha$ acts faithfully on each orbit in $\Omega \setminus \{\alpha\}$, so we can apply the O’Nan-Scott theorem to H. In particular,
 - $\text{Soc}(H)$ is a product of isomorphic simple groups
 - $F(H)$ is either trivial or elementary abelian
 - $Z(H)$ is trivial

- Direct calculation and computation (e.g. using Magma)

- Recent work on bases for primitive permutation groups
Bases

A **base** of a permutation group $G \leq Sym(\Omega)$ is a subset S of Ω such that the pointwise stabilizer of S in G is trivial.

The **base size**, denoted $b(G)$, is the minimal size of a base for G.

Examples

- $G = S_n$, $\Omega = \{1, \ldots, n\} \implies b(G) = n - 1$
- $G = GL(V)$, $\Omega = V \implies b(G) = \dim V$

Suppose G is almost simple and extremely primitive. If $\alpha, \beta \in \Omega$, $\alpha \neq \beta$, then $G_{\alpha,\beta} < G_\alpha$ is maximal, so $G_{\alpha,\beta} \neq 1$ and hence $b(G) > 2$.

The base-two project

Classify the primitive permutation groups G with $b(G) = 2$
Symmetric and alternating groups

Theorem (B-Guralnick-Saxl, 2010)

Let G be an almost simple primitive group with socle A_n. Assume $H = G_\alpha$ acts primitively on $\{1, \ldots, n\}$. Then $b(G) = 2$ for all $n > 12$.

Consequently, for extreme primitivity, there are just two cases to deal with:

(i) $H = (S_k \times S_{n-k}) \cap G$ for some $1 \leq k < n/2$;

(ii) $H = (S_k \wr S_{n/k}) \cap G$ with $2 \leq k \leq n/2$.

Consider (i): G is 2-primitive if $k = 1$. If $k > 1$ and $(G, k) \neq (A_n, 2)$ then \(\text{Soc}(H)\) is not a product of isomorphic simple groups.

If $(G, k) = (A_n, 2)$ then $H = G_{\{1,2\}} = S_{n-2}$ and

$$H_{\{2,3\}} = H_{1,2,3} < H_{1,2} < H$$

so G is not extremely primitive.
Sporadic groups

Theorem (B-O’Brien-Wilson, 2010)

The base size of every primitive almost simple sporadic group is known.

In most cases $b(G) = 2$, e.g. if $G = \mathbb{M}$ then the only exception is the case $H = 2.B$ with $b(G) = 3$. We inspect the list of exceptions.

From the structural constraints on H, we reduce to a list of cases with H almost simple. Using MAGMA and data in the Web Atlas, we reduce further to 15 specific cases (G, H).

Here G is multiplicity free – every irreducible constituent of 1_H^G has multiplicity 1. All such actions of sporadic groups are known (Breuer-Lux, 1996), and all subdegrees have been computed.

In this situation, no extremely primitive examples arise.
Classical groups

Let G be an almost simple classical group with socle $T = \text{Cl}(V)$ and point stabilizer H. Roughly speaking, we say G is standard if $H \cap T$ is reducible on V, otherwise G is non-standard.

Standard groups have large base sizes, in general.

Example

If $G = \text{PGL}_n(q)$ and $H = P_1$ then $b(G) = n + 1$.

Theorem (B, 2007)

If G is non-standard then $b(G) \leq 5$, with equality if and only if $G = \text{U}_6(2).2$ and $H = \text{U}_4(3).2^2$.

More recently, with Guralnick and Saxl, we have computed $b(G)$ precisely for ‘almost all’ non-standard classical groups G.
Classical groups

Roughly, we get \(b(G) \leq 3 \), with equality only if \(H = C_G(x) \) for an involution \(x \in \text{Aut}(T) \).

We have computed the exact value of \(b(G) \) when \(H \) belongs to Aschbacher’s \(S \) collection of irreducible almost simple subgroups.

In the remaining cases:

- The structure of \(H \) rules out many cases

- We can often work directly with matrices to find an explicit \(x \in G \setminus H \) such that \(H \cap H^x < H \) is non-maximal

- For standard groups, \(\Omega \) is a set of subspaces of \(V \) and we can work with explicit subspaces to find a non-maximal two-point stabilizer \(G_{\alpha,\beta} < G_{\alpha} \)
Suppose $G = \text{PSL}_n(q) = \text{PSL}(V)$ and H is a subfield subgroup of type $\text{GL}_n(q_0)$, where $q = q_0^r$ with r prime. If $r > 2$ then $b(G) = 2$. Suppose $r = 2$.

Here $H = C_G(\sigma)$, with $\sigma \in \text{Aut}(G)$ a field aut of order 2. By fixing a basis $\{v_1, \ldots, v_n\}$ for V, we may assume $(a_{ij})^\sigma = (a_{ij}^{q_0})$. Then

$$H \cap H^x = C_H(x^{-1}x^\sigma)$$

for all $x \in G$. Write $\mathbb{F}_q^* = \langle \omega \rangle$ and set

$$x = \begin{pmatrix} 1 & \omega & 0 \\ 0 & 1 & 1 \\ \hline & l_{n-2} \end{pmatrix} \in G, \quad x^{-1}x^\sigma = \begin{pmatrix} 1 & \omega^{q_0} - \omega \\ 0 & 1 \\ \hline & l_{n-2} \end{pmatrix}$$

Then $H \cap H^x = C_H(x^{-1}x^\sigma) < H_U < H$, where $U = \langle v_2 \rangle$, hence G is not extremely primitive.
Some open problems

- Determine the extremely primitive groups of exceptional Lie type.

 Here $b(G) \leq 6$ (by B-Liebeck-Shalev, 2009), but we do not know all the base-two examples.

 Current work with Guralnick and Saxl on bases for exceptional algebraic groups may be useful here.

- Prove the Mann-Praeger-Seress conjecture on affine groups (their list is complete) – a proof of Wall’s conjecture for almost simple groups would be very helpful!

- Classify the base-two almost simple primitive permutation groups

- Calculate the base size of every primitive permutation group...