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Abstract. A k-tuple (H1, . . . , Hk) of core-free subgroups of a finite group G is said to
be regular if G has a regular orbit on the Cartesian product G/H1 × · · · × G/Hk. The
regularity number of G, denoted R(G), is the smallest positive integer k with the property
that every such k-tuple is regular. In this paper, we develop some general methods for
studying the regularity of subgroup tuples in arbitrary finite groups, and we determine
the precise regularity number of all almost simple groups with an alternating or sporadic
socle. For example, we prove that R(Sn) = n − 1 and R(An) = n − 2. We also formulate
and investigate natural generalisations of several well-studied problems on base sizes for
finite permutation groups, including conjectures due to Cameron, Pyber and Vdovin. For
instance, we extend earlier work of Burness, O’Brien and Wilson by proving that R(G) 6 7
for every almost simple sporadic group, with equality if and only if G is the Mathieu group
M24. We also show that every triple of soluble subgroups in an almost simple sporadic group
is regular, which generalises recent work of Burness on base sizes for transitive actions of
sporadic groups with soluble point stabilisers.
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1. Introduction

Let G be a finite group and let H1, . . . ,Hk be a collection of core-free subgroups of G,
allowing repetitions. Consider the natural action of G on the Cartesian product

X = G/H1 × · · · ×G/Hk

and observe that G has a regular orbit on X if and only if

k⋂
i=1

Hgi
i = 1

for some elements gi ∈ G. We introduce the following definition.
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Definition. A k-tuple (H1, . . . ,Hk) of core-free subgroups of G is regular if G has a regular
orbit on X, and non-regular otherwise.

For k = 2 or 3, we will refer to regular and non-regular pairs or triples, respectively.
Clearly, the regularity of a given tuple is independent of the ordering of the subgroups in the
tuple. In addition, (H1, . . . ,Hk) is regular if and only if (Hg1

1 , . . . ,Hgk
k ) is regular for some

gi ∈ G, so we are free to replace each Hi by any conjugate. Given some group-theoretic
property P of a subgroup of G, such as maximal, soluble or nilpotent, we will say that
(H1, . . . ,Hk) has property P if every component subgroup in the tuple has this property
(we will always assume that the subgroups in any given tuple are core-free). It will also be
convenient to say that such a k-tuple is conjugate if each Hi is conjugate to H1.

Recall that if G 6 Sym(Ω) is a permutation group on a set Ω, then a subset of Ω is a base
if its pointwise stabiliser in G is trivial. So a conjugate tuple (H1, . . . ,Hk) is regular if and
only if G has a base of size k with respect to its natural action on G/H1. Of course, the
latter is equivalent to the bound k > b(G,H1), where b(G,H1) is the base size of G, which is
the minimal size of a base for the action of G on G/H1. There is a very substantial literature
on bases for finite permutation groups stretching all the way back to the nineteenth century,
finding an extensive range of applications and connections to other areas of group theory
and combinatorics (we refer the reader to the survey articles [4, 37, 39] and [8, Section 5] for
further details). In view of this connection, we introduce the following invariants.

Definition. Let G be a finite group.

(i) The regularity number of G, denoted R(G), is the minimal positive integer k such
that every k-tuple of core-free subgroups of G is regular.

(ii) The base number of G, denoted B(G), is the minimal positive integer k such that
b(G,H) 6 k for every core-free subgroup H of G.

Remark 1. Let us record some immediate remarks on these definitions:

(a) Clearly, we have B(G) 6 R(G). It turns out that there are examples where this
inequality is strict. For instance, if G is the sporadic simple group M11, then the
main theorem of [16] gives B(G) = 4, but we find that R(G) = 5. Indeed, G has
maximal subgroups H = M10 = A6.2 and K = L2(11), and one can check that the
4-tuple (H,H,K,K) is non-regular. In fact, we will show that there are infinitely
many finite simple groups with R(G) > B(G) + 1 (see Proposition 2.12). Moreover,
in Proposition 2.13 we prove that if G = GLn(2) with n > 5, then B(G) = n and
R(G) > 2(n− 1), so the difference R(G)−B(G) can be arbitrarily large.

(b) In [19], Cameron introduces several base-related invariants of a finite group G. Let
us define b2(G) to be the maximum, over all faithful permutation representations
of G, of the maximal size of a minimal base (recall that a base is minimal if no
proper subset is a base). Since B(G) is the minimal size of a minimal base over all
faithful transitive permutation representations of G, we have B(G) 6 b2(G). In [19,
Corollary 3.3], Cameron proves that b2(G) 6 σ(G) (also see Proposition 2.3), where
σ(G) is the maximal size of an independent subset of G (that is, σ(G) is the maximal
size of a subset S of G such that x 6∈ 〈S \ {x}〉 for all x ∈ S). By combining this
result with a theorem of Whiston [53] on independent subsets of symmetric groups,
it follows that

B(G) = b2(G) = σ(G) = n− 1

for G = Sn (see Corollary 2.4).

(c) Two related invariants of a finite group were studied in [11, 12]. The intersection
number of G is defined to be the minimal number of maximal subgroups of G whose
intersection coincides with the Frattini subgroup of G. And for a group with trivial
Frattini subgroup, the base number was defined in [12] to be the minimal base size
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over all faithful primitive permutation representations of G. The main results in
[11, 12] include sharp upper bounds on these invariants for almost simple groups.

A wide range of related invariants can be defined in this setting. Indeed, if P is a group-
theoretic property satisfied by certain core-free subgroups of G (such as maximality, solubil-
ity, nilpotency, etc.) then we can define RP(G) and BP(G) by restricting to tuples comprising
subgroups with property P. The flexibility of this set-up allows us to succinctly describe a
number of well-studied problems concerning bases for transitive groups, leading to natural
extensions and open problems in the more general regularity setting. Let us highlight three
main examples:

Vdovin’s conjecture. Let G be a finite group with trivial soluble radical and let Bsol(G) be
the maximal base size b(G,H) over all core-free soluble subgroups H of G. Then a conjecture
of Vdovin (see [41, Problem 17.41(b)]) asserts that Bsol(G) 6 5, which is a strengthening
of an earlier conjecture of Babai, Goodman and Pyber (see Conjecture 6.6 in [2]). The
example G = S8 with H = S4 o S2 shows that the bound in Vdovin’s conjecture would
be best possible (in fact, there are infinitely many examples with b(G,H) = 5). Although
Vdovin’s conjecture remains open, there has been some recent progress towards a positive
solution. For example, the main theorem of [9] establishes the bound Bsol max(G) 6 5 with
respect to soluble maximal subgroups, and Vdovin [48] has reduced the conjecture to almost
simple groups (recall that a finite group G is almost simple if there exists a non-abelian
simple group T such that T P G 6 Aut(T ); here T is the socle of G). In the latter setting,
the conjecture for groups with an alternating or sporadic socle is resolved in [3, 10], but the
general problem for groups of Lie type remains open.

Cameron’s conjecture. In a different direction, a highly influential conjecture of Cameron and
Kantor [21] from 1993 asserts that there exists an absolute constant c such that Bns(G) 6 c
for every almost simple group G. Here Bns(G) denotes the maximal base size b(G,H) over
all non-standard maximal subgroups H of G (roughly speaking, a maximal subgroup H is
standard if G is either a classical group and H acts reducibly on the natural module, or
G = Sn or An and H acts intransitively or imprimitively on {1, . . . , n}, otherwise H is non-
standard). This conjecture was proved by Liebeck and Shalev [36] (with an undetermined
constant) using a powerful probabilistic approach for studying bases. In response, Cameron
[20, p.122] conjectured that 7 is the optimal bound, with Bns(G) = 7 if and only if G = M24.
Cameron’s conjecture was proved in a series of papers by Burness et al. [7, 14, 15, 16].

Pyber’s conjecture. Another intensively studied conjecture on base sizes was proposed by
Pyber in the early 1990s [46, p.207]. Before stating the conjecture, first observe that if G is
a finite transitive permutation group of degree n with point stabiliser H, then

b(G,H) > logn |G|.

Pyber’s conjecture asserts that all primitive groups admit small bases in the sense that there
exists an absolute constant c such that b(G,H) 6 c logn |G| for every finite primitive group
G of degree n. Building on earlier work by several authors (see [17, 38, 47], for example),
the proof of Pyber’s conjecture was completed by Duyan et al. in [27]. This was extended
in [32], where the main theorem gives the explicit bound

b(G,H) 6 2 logn |G|+ 24.

Turning to the base number, suppose G is a finite group with a core-free maximal subgroup
and let m(G) be the minimal index of such a subgroup (in other words, m(G) is the minimal
degree of a faithful primitive permutation representation of G). Then

Bmax(G) > logm(G) |G|,

where Bmax(G) is the maximal base size of G over all primitive faithful permutation repre-
sentations (and we can define Rmax(G) with respect to tuples of core-free maximal subgroups
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of G). And the positive solution to Pyber’s conjecture implies that Bmax(G) 6 c logm(G) |G|
for some absolute constant c.

Here we propose natural extensions of the above base size conjectures of Pyber, Cameron
and Vdovin in the more general regularity setting.

Conjecture 1.

(i) There exists an absolute constant c such that

Rmax(G) 6 c logm(G) |G|
for every finite group G with a core-free maximal subgroup.

(ii) We have Rns(G) 6 7 for every finite almost simple group G, with equality if and only
if G = M24.

(iii) We have Rsol(G) 6 5 for every finite group G with trivial soluble radical.

In this paper, we develop some general techniques for studying the regularity number of a
finite group and we take the first steps towards establishing the above conjectures for almost
simple groups with socle an alternating or sporadic group. These results will be extended
to groups of Lie type in a follow up paper by Anagnostopoulou-Merkouri. We now state our
main results, first focussing on symmetric and alternating groups.

Let G be an almost simple group with socle T = An. We say that a core-free subgroup H
of G is primitive if H ∩T acts primitively on the set {1, . . . , n}, and we define Bprim(G) and
Rprim(G) accordingly. Similarly, we define Rintrans(G) and Rsol max(G) in terms of tuples of
intransitive and soluble maximal subgroups of G, respectively. (Of course, if G does not have
a core-free primitive subgroup, then Bprim(G) and Rprim(G) are undefined, and similarly for
Rsol max(G). For example, no proper subgroup of A34 acts primitively on {1, . . . , 34}.)

Theorem 1. Let G be an almost simple group with socle T = An.

(i) For G ∈ {Sn, An} we have R(G) = Rintrans(G) = B(G) = n− |Sn : G|.
(ii) Suppose G has a core-free primitive subgroup. Then Rprim(G) 6 6, with equality if

and only if G = A8. Moreover, if n > 13, then Rprim(G) = 2.

(iii) Suppose G has a soluble maximal subgroup. Then Rsol max(G) 6 5, with equality if
and only if G = S8. Moreover, if n > 17, then Rsol max(G) = 2.

Remark 2. Let us record some comments on the statement of Theorem 1.

(a) For T = A6 we note that R(G) = B(G) = 4 if G = PGL2(9), M10 or A6.2
2.

(b) Suppose G = Sn. Clearly, if H = Sn−1 is intransitive then the (n − 2)-tuple
(H, . . . ,H) is non-regular since the intersection of any n − 2 conjugates of H will
contain a transposition. More generally, we can determine all the maximal intran-
sitive non-regular (n − 2)-tuples for Sn (see Proposition 3.21); up to ordering and
conjugacy, they are of the form (H, . . . ,H,K), where H = Sn−1 and K = Sk ×Sn−k
for some 1 6 k 6 n/2. We refer the reader to Remark 3.23 for further comments.

(c) Notice that the natural actions of Sn and An on {1, . . . , n} immediately give the
lower bounds B(Sn) > n− 1 and B(An) > n− 2. So as a corollary to Theorem 1, we
deduce that B(Sn) = n− 1 and B(An) = n− 2. Following Cameron [19], we can also
show that B(Sn) = n − 1 by combining the bound B(Sn) 6 σ(Sn) with Whiston’s
theorem on independent subsets in [53], as discussed in Remark 1(b). Similarly, we
get B(An) = n− 2 (see Corollary 2.4).

(d) We have m(G) = n and thus Theorem 1(i) yields

R(G) = n− |Sn : G| < 2 logm(G) |G|

for all G ∈ {Sn, An} with n > 5. In particular, this establishes part (i) of Conjecture
1 for all symmetric and alternating groups.
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(e) The bound in (ii) extends the main theorem of [14] by establishing a stronger form of
Cameron’s conjecture (see Conjecture 1(ii)) for all almost simple groups with socle
an alternating group. We refer the reader to Table 1 in Section 3.1 for a complete list
of the groups G with Rprim(G) = k > 2, together with an example of a non-regular
primitive (k − 1)-tuple. The exact value of Bprim(G) is determined in [14] and we
deduce that Rprim(G) 6= Bprim(G) if and only if G = A8.

(f) Part (iii) extends the main theorem of [9] for groups with socle An and it establishes a
special case of Conjecture 1(iii). We have computed the exact value of Rsol max(G) in
all cases and the groups with Rsol max(G) = k > 2 are recorded in Table 2 (see Section
3.1) along with an example of a non-regular (k− 1)-tuple of the form (H, . . . ,H). In
particular, we have Rsol max(G) = Bsol max(G) for all n > 5.

In [3], Baykalov proves that Bsol(G) 6 5 for every almost simple group G with socle An
and a special case of Conjecture 1(iii) asserts that Rsol(G) 6 5. With the aid of Magma [5],
we have verified the latter bound for the groups with n 6 11 and we find that Rsol(G) = 5 if
and only if G = S8 (and up to conjugacy, the only non-regular soluble 4-tuple is (H,H,H,H)
with H = S4 o S2). We speculate that the following much stronger conjecture holds in this
setting.

Conjecture 2. We have Rsol(Sn) = Rsol(An) = 2 for all sufficiently large n.

As recorded in Table 2, we have Rsol max(G) = 3 for G = S16 since b(G,H) = 3 when
H = S4 oS4. More generally, if G = S16+m and H = (S4 oS4)×Sm < G with m 6 4, then with
the aid of Magma [5] we can show that b(G,H) = 3. We also note that b(G,H) = 2 when
G = S21 and H = (S4 o S4) × S4, which leads us to speculate that Rsol(Sn) = Rsol(An) = 2
for all n > 21. In the context of the above conjecture, it is also worth recalling a theorem of
Dixon [26], which states that |H| 6 24(n−1)/3 for every soluble subgroup H of G = Sn (with
equality if n = 4d and H = S4 o S4 o · · · o S4 is the iterated wreath product of d copies of S4).
In particular, Dixon’s bound implies that |H|3 < |G| for all n > 59.

For nilpotent subgroups, Zenkov [56] uses the Classification of Finite Simple Groups to
prove that Rnilp(G) 6 3 for every finite group G with trivial Fitting subgroup. This bound
is best possible (for instance, if G = S8 and H is a Sylow 2-subgroup, then b(G,H) = 3) and
interest in this problem can be traced all the way back to work of Passman in the 1960s.
For example, in [45], Passman proves that if G is a finite p-soluble group and P is a Sylow
p-subgroup, then there exist x, y ∈ G such that P ∩ P x ∩ P y = Op(G) is the p-core of G.

In [54], Zenkov proves that every nilpotent pair of subgroups of Sn or An (for n > 5)
is regular, with the single exception of the symmetric group S8. Computations in the low
degree groups lead us to propose the following conjecture.

Conjecture 3. If G = Sn or An with n > 13, then every pair of subgroups (H,K) is regular
when H is nilpotent and K is soluble.

Note that G = S12 has a non-regular pair (H,K), where H is a Sylow 2-subgroup and
K = S4 o S3, so the conjectured bound n > 13 would be best possible.

Now let us state our main result for almost simple sporadic groups, which establishes a
strong form of Conjecture 1 in this setting (in part (ii), c = 1 or 2).

Theorem 2. Let G be an almost simple sporadic group with socle T .

(i) The exact values of B(G) and R(G) are recorded in Table 3. In particular, R(G) 6 7,
with equality if and only if G = M24.

(ii) We have Rsol(G) 6 3, with equality if

G = M11, M12.c, M22.c, M23, M24, J2.c, HS.2, Co2, Fi22.c or Fi23.
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(iii) Suppose G has a soluble maximal subgroup. Then Rsol max(G) 6 3, with equality if
and only if T = M11, M12, J2, Fi22 or Fi23.

Remark 3. Some comments on the statement of Theorem 2 are in order.

(a) In part (i), the base number of every almost sporadic group G can be read off from
the main theorem of [16], which gives b(G,H) for every core-free maximal subgroup
H. As an immediate consequence of part (i), we observe that R(G) 6 B(G) + 1,
with equality if and only if G = M11 or M12.

(b) In Table 3 (see Section 4.1) we list all the large non-regular k-tuples with k =
R(G)− 1, up to conjugacy and ordering (large tuples are defined in Definition 4.1),
with the exception of the Baby Monster and the Monster (see Remark 4.11 for
comments on the latter two cases). It follows that the only non-regular 6-tuple arises
when G = M24 and every component is conjugate to H = M23.

(c) A more detailed result on Rsol(G) is given in Proposition 4.12. In particular, we have
computed Rsol(G) precisely unless T is one of the following groups:

Co1, HN, J4, Ly, Th, Fi′24, B, M.

In addition, for some of the groups with Rsol(G) = 3 we present a non-regular soluble
pair in Table 8. The complete list of non-regular soluble maximal pairs is recorded
in Table 10 (see Proposition 4.20).

(d) In part (iii), note that every almost simple sporadic group G has a soluble maximal
subgroup unless G = M12, M12.2, M24 or HS. For the latter groups, Rsol max(G) is
not defined.

(e) We refer the reader to Remark 4.22 for some comments on the existence of non-
regular pairs (H,K) with H nilpotent and K soluble. It is worth noting that we are
only aware of examples for the groups M22.2 and J2.2.

We conclude this introduction by briefly commenting on the proofs of Theorems 1 and 2,
which involve a combination of probabilistic, combinatorial and computational methods.

Let G be a finite group, let τ = (H1, . . . ,Hk) be a k-tuple of core-free subgroups and let

Q(G, τ) =
|{(α1, . . . , αk) ∈ Γ :

⋂k
i=1Gαi 6= 1}|

|Γ|
be the probability that a randomly chosen tuple in Γ = G/H1× · · ·×G/Hk is not contained
in a regular orbit of G, with respect to the uniform distribution on Γ. Notice that τ is regular
if and only if Q(G, τ) < 1.

By adapting earlier work of Liebeck and Shalev [36] on base sizes, we can estimate Q(G, τ)
in terms of fixed point ratios (see Lemma 2.1) and this provides a powerful tool for estab-
lishing the regularity of τ . Indeed, this approach is at the heart of our proof of parts (ii)
and (iii) in Theorem 1, where we can appeal to earlier work of Guralnick and Magaard [30]
and Maróti [40] in order to derive appropriate bounds on the relevant fixed point ratios. It
is also a key ingredient in our proof of Theorem 2, especially in our analysis of some of the
larger sporadic groups. For example, if G = M is the Monster then we can use the GAP
Character Table Library [6] to show that Q(G, τ) < 1 for every maximal triple τ , and by
combining this with the main theorem of [16] we deduce that R(M) = 3 and Rsol(M) 6 3.

In stark contrast, our proof of part (i) of Theorem 1 for G = Sn or An is essentially
constructive, and it relies on a highly combinatorial analysis of the stabilisers of subsets and
partitions of {1, . . . , n}. Here one of the key results is Lemma 3.15, which shows that if H1

and H2 are the stabilisers in G of uniform partitions, then we can typically find an element
g ∈ G such that H1 ∩Hg

2 fixes any given 2-element subset.
Our proof of Theorem 2 on sporadic groups is entirely computational, working with

Magma [5] and GAP [28]. For example, if τ = (H1, . . . ,Hk) is a maximal k-tuple then
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we can often use Magma to construct G and each Hi as subgroups of some symmetric group
Sn (typically where n = m(G) is the minimal degree of a faithful primitive permutation rep-
resentation of G) and then use random search to identify elements gi ∈ G with

⋂
iH

gi
i = 1.

On the other hand, if we are seeking to show that τ is non-regular, then in many cases we
can directly calculate the orbits of G on G/H1 × · · · × G/Hk in order to confirm the non-
existence of a regular orbit. Of course, these computations are not feasible for some of the
larger sporadic groups and they require a different approach. For instance, the probabilistic
method outlined above is often a very useful tool in this setting, working closely with the
detailed information on sporadic groups available in the GAP Character Table Library [6]
and the Web Atlas [49].

Notation. Our notation is all fairly standard. Let G be a finite group and let n be a positive
integer. We will write Cn, or just n, for a cyclic group of order n and Gn will denote the
direct product of n copies of G. An unspecified extension of G by a group H will be denoted
by G.H; if the extension splits then we may write G:H. We adopt the standard notation for
simple groups of Lie type from [34].

Organisation. We begin in Section 2 by presenting a number of preliminary results, which
we will need for the proofs of our main theorems. For example, the probabilistic technique
highlighted above is introduced in Section 2.1, and we provide a brief discussion of some of
our main computational methods in Section 2.4 (referring the reader to the supplementary
file [1] for more details). Our proof of Theorem 1 for Sn and An is given in Section 3,
where the details are divided into two subsections. In Section 3.1 we focus on the tuples
(H1, . . . ,Hk), where each Hi acts primitively on {1, . . . , n}, using fixed point ratio estimates
to prove parts (ii) and (iii) of Theorem 1. These results feed in to our proof of Theorem 1(i)
in Section 3.2, which requires an in-depth analysis of the tuples involving intransitive and
imprimitive subgroups. Finally, we present our proof of Theorem 2 in Section 4, handling
parts (i) and (ii) in Sections 4.1 and 4.2, respectively.

Acknowledgements. We thank Thomas Breuer, Derek Holt, Jürgen Müller and Eamonn
O’Brien for their generous assistance with some of the computations involving sporadic
groups. We also thank Peter Cameron for helpful comments and for drawing our attention
to his paper [19]. The first author thanks the Heilbronn Institute for Mathematical Research
for providing financial support during her doctoral studies at the University of Bristol.

2. Preliminaries

In this section, we record several preliminary results that we will need in the proofs of
our main theorems. More precisely, in Section 2.1 we adapt a probabilistic approach due to
Liebeck and Shalev [36] for bounding the base size of a finite permutation group, which gives
a useful technique for determining if a given subgroup tuple is regular. In Section 2.2, we
highlight a connection between the base and independence numbers of a finite group, which
was first observed by Cameron [19], and we use this to compute the base numbers B(Sn) and
B(An). Next, in Section 2.3 we record several results that apply in the special case where G
is almost simple. This includes Proposition 2.12, which shows that there are infinitely many
finite simple groups with B(G) < R(G). Finally, in Section 2.4 we briefly describe some of
the main computational methods we employ in this paper, with further details provided in
the supplementary file [1].

2.1. Probabilistic methods. Recall that if G 6 Sym(Ω) is a transitive permutation group
with point stabiliser H, then

fpr(x,Ω) =
|CΩ(x)|
|Ω|

=
|xG ∩H|
|xG|
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is the fixed point ratio of x ∈ G, where CΩ(x) = {α ∈ Ω : αx = α} is the set of fixed points
of x and xG is the conjugacy class of x in G. Note that fpr(x,Ω) is the probability that x
fixes a randomly chosen element of Ω (with respect to the uniform distribution on Ω).

In [36], Liebeck and Shalev introduced a powerful probabilistic method, based on fixed
point ratio estimates, for bounding the base size of a finite permutation group. They used
this approach to resolve the Cameron-Kantor base size conjecture from [21], which asserts
that there is an absolute constant c such that Bns(G) 6 c for every almost simple group G
(here Bns(G), as defined in Section 1, is the maximal base size b(G,H) over all non-standard
maximal subgroups H of G). The same approach was at the heart of the proof of Cameron’s
conjecture in the sequence of papers [7, 14, 15, 16], which established the optimal bound
Bns(G) 6 7 in this setting.

The following key lemma is a natural generalisation and it encapsulates our probabilistic
approach for studying the regularity of subgroup tuples.

Lemma 2.1. Let G be a finite group and let τ = (H1, . . . ,Hk) be a core-free tuple of subgroups
of G. Then τ is regular if

Q̂(G, τ) :=

t∑
i=1

|xGi | ·

 k∏
j=1

fpr(xi, G/Hj)

 < 1,

where x1, . . . , xt is a set of representatives of the conjugacy classes in G of elements of prime
order.

Proof. Set Γi = G/Hi and Γ = Γ1 × · · · × Γk. Let

Q(G, τ) =
|{(α1, . . . , αk) ∈ Γ :

⋂k
i=1Gαi 6= 1}|

|Γ|

be the probability that a randomly chosen tuple in Γ is not contained in a regular orbit. Then

τ is regular if and only if Q(G, τ) < 1, and thus it suffices to show that Q(G, τ) 6 Q̂(G, τ).
A k-tuple (α1, . . . , αk) ∈ Γ is not in a regular G-orbit if and only if there exists an element

x ∈ G of prime order such that αxi = αi for all i. Now the probability that an element x ∈ G
fixes a random element of Γ is equal to

|{(α1, . . . , αk) ∈ Γ : αxi = αi for all i}|
|Γ|

= |Γ|−1
k∏
j=1

|CΓj (x)| =
k∏
j=1

fpr(x,Γj)

and thus

Q(G, τ) 6
∑
x∈P

 k∏
j=1

fpr(x,Γj)

 =
t∑
i=1

|xGi | ·

 k∏
j=1

fpr(xi,Γj)

 = Q̂(G, τ),

where P =
⊔t
i=1 x

G
i is the set of prime order elements of G. The result follows. �

The following elementary result generalises [7, Lemma 2.1]. It provides a useful way to

produce an upper bound on the expression Q̂(G, τ) in Lemma 2.1.

Lemma 2.2. Let G be a finite group and let τ = (H1, . . . ,Hk) be a core-free tuple of subgroups
of G. Suppose x1, . . . , xm are elements in G such that |xGi | > B for all i and

∑m
i=1 |xGi ∩Hj | 6

Aj for all j. Then

m∑
i=1

|xGi | ·

 k∏
j=1

fpr(xi, G/Hj)

 6 B1−k ·
k∏
j=1

Aj
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Proof. We have

m∑
i=1

|xGi |·

 k∏
j=1

fpr(xi, G/Hj)

 =

m∑
i=1

|xGi |1−k ·

 k∏
j=1

|xGi ∩Hj |

 6 B1−k ·

 m∑
i=1

k∏
j=1

|xGi ∩Hj |


and thus

m∑
i=1

|xGi | ·

 k∏
j=1

fpr(xi, G/Hj)

 6 B1−k ·

 k∏
j=1

m∑
i=1

|xGi ∩Hj |

 6 B1−k ·
k∏
j=1

Aj ,

as claimed. �

2.2. Independent sets. A subset S of a finite group G is independent if none of its elements
lie in the subgroup generated by the others (that is to say, x 6∈ 〈S \ {x}〉 for all x ∈ S). For
example, {(1, 2), (2, 3), . . . , (n− 1, n)} is an independent generating set for G = Sn.

We define the independence number of G, denoted σ(G), to be the maximal size of an
independent subset of G.

Proposition 2.3. We have B(G) 6 σ(G) for every finite group G.

Proof. Suppose G acts faithfully on a set Ω and let B = {α1, . . . , αb} be a minimal base for
G (in the sense that no proper subset of B is a base). In [19], Cameron reveals a beautiful
connection with lattices in order to establish the bound b 6 σ(G) (see [19, Proposition 3.2]).
We can also argue directly as follows.

For all i ∈ {1, . . . , b} = [b], let

Hi =
⋂

j∈[b]\{i}

Gαj

and note that the minimality of B implies that each Hi is nontrivial. Fix a nontrivial element
gi ∈ Hi and observe that gi 6∈ Gαi . Then the gi are distinct and we claim that {g1, . . . , gb}
is an independent subset of G. To see this, set Ki = 〈g1, . . . , gi−1, gi+1, . . . , gb〉 for all i ∈ [b].
Since gj ∈ Gαi for all j 6= i, we have Ki 6 Gαi for all i. But gi 6∈ Gαi and thus gi 6∈ Ki. This
justifies the claim and we conclude that b 6 σ(G).

In particular, B(G) 6 σ(G), as required. �

We can now combine this observation with a theorem of Whiston [53] to compute the base
numbers of Sn and An (also see [19, Corollary 3.4]).

Corollary 2.4. For n > 5 we have B(Sn) = n− 1 and B(An) = n− 2.

Proof. By considering the natural action of Sn and An of degree n, we see that B(Sn) > n−1
and B(An) > n− 2. We now combine this trivial observation with the main theorem of [53],
which states that every independent subset in Sn has at most n− 1 elements, with equality
only if the subset generates Sn (for example, {(1, 2), (2, 3), . . . , (n− 1, n)} is an independent
subset of maximal size). It follows that σ(Sn) = n− 1 and σ(An) 6 n− 2, and we conclude
by applying Proposition 2.3. �

Remark 2.5. Let G = Sn or An, and let H be a core-free maximal subgroup of G. Through
the combined efforts of several authors, the base size b(G,H) is now known in all cases:

(a) H primitive on {1, . . . , n}: See [14]

(b) H imprimitive: See [12, 33, 43]

(c) H intransitive: See [24, 31, 42]
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2.3. Almost simple groups. Let G be a finite almost simple group with socle T , which
means that

T P G 6 Aut(T ),

where we identify T with its group of inner automorphisms. Let us define the regularity
and base number of G, denoted R(G) and B(G) respectively, as in Section 1, and recall that
R(G) > B(G). We begin by recording the following trivial observation, which applies in the
general setting.

Lemma 2.6. Let G be a finite group and let τ = (H1, . . . ,Hk) be a k-tuple of core-free
subgroups of G. Then τ is non-regular if

k∏
i=1

|Hi| > |G|k−1.

Proof. Clearly, G has a regular orbit on G/H1 × · · · ×G/Hk only if

|G| 6
k∏
i=1

|G : Hi|

and the result follows. �

Proposition 2.7. If G is a finite almost simple group, then B(G) > 3.

Proof. By [13, Proposition 2.5], G has a core-free subgroup H with |H|2 > |G| and thus
(H,H) is a non-regular pair by Lemma 2.6. �

It will be useful to introduce the following definition.

Definition 2.8. Let G be an almost simple group with socle T . We defineM(G) to be the
set of core-free subgroups of G that are maximal in some overgroup of T .

For example, H = AGL3(2) ∈ M(S8) since it is a maximal subgroup of A8 (and note
that H is not contained in a core-free maximal subgroup of S8). This definition allows us to
present the following elementary lemma, which tells us that in the almost simple setting, we
only need to consider tuples of subgroups in M(G) in order to bound R(G) from above.

Lemma 2.9. Let G be an almost simple group with socle T . Then R(G) 6 k if and only if
every k-tuple of subgroups in M(G) is regular.

Proof. The forward implication is clear, so let us assume every k-tuple of subgroups inM(G)
is regular and let τ = (H1, . . . ,Hk) be an arbitrary core-free tuple. Then each Hi is contained
in a subgroup Mi ∈M(G) and the regularity of (M1, . . . ,Mk) immediately implies that τ is
also regular. �

Remark 2.10. Notice that |G : T | 6 2 for every almost simple group G we are considering
in Theorems 1 and 2, with the single exception of the special case G = A6.2

2. If G = T.2 and
H < T is maximal, then H is contained in a core-free maximal subgroup of G if NG(H) 6= H.
So it follows that R(G) 6 k if and only if every k-tuple of subgroups in M′(G) is regular,
where the latter comprises the core-free maximal subgroups of G, together with any maximal
subgroups H of T with NG(H) = H. This minor refinement of Lemma 2.9 will be useful in
the proof of Theorem 2 (see the discussion at the start of Section 4.1).

The following easy observation will be useful when we study soluble tuples for sporadic
groups in Section 4.2.

Lemma 2.11. Let G be a finite group and let H be a simple subgroup of G with Rsol(H) 6 k.
Then every core-free soluble k-tuple of subgroups of G of the form τ = (H1, . . . ,Hk) with
H1 < H is regular.
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Proof. Since Rsol(H) 6 k, there exist gi ∈ H such that

1 = Hg1
1 ∩

k⋂
i=2

(Hi ∩H)gi =
k⋂
i=1

Hgi
i

and the result follows. �

As noted in Remark 1(a), there are examples where the trivial bound B(G) 6 R(G) is a
strict inequality. In fact, we can show that there are infinitely many simple groups with this
property.

Proposition 2.12. There are infinitely many finite simple groups G with B(G) < R(G).

Proof. Let G = SL3(q), where q > 3 and q 6≡ 1 (mod 3). Let V be the natural module and
let H = P1 be the stabiliser in G of a 1-dimensional subspace of V . Similarly, let K be the
stabiliser of a 2-space. Then b(G,H) = b(G,K) = 4 and by applying the main theorem of
[7] we deduce that B(G) = 4. So in order to prove the proposition, it suffices to establish
the following claim:

Claim. (H,H,K,K) is a non-regular 4-tuple.

To see this, let 〈v1〉 and 〈v2〉 be distinct 1-spaces and choose v3 so that β = {v1, v2, v3} is
a basis for V . Let Hi be the stabiliser of 〈vi〉 and let L = H1 ∩H2, so |L| = q2(q − 1)2. Set
Ω = G/K and identify Ω with the set of 2-dimensional subspaces of V . It suffices to show
that b(L,Ω) > 3. Equivalently, we need to show that no point stabiliser Lα (with α ∈ Ω)
has a regular orbit on Ω.

Set U1 = 〈v1, v2〉, U2 = 〈v1, v3〉 and U3 = 〈v2, v3〉. Then these 2-spaces represent three
distinct L-orbits, with respective lengths 1, q and q. In addition, the stabiliser in L of
U4 = 〈v1 + v2, v3〉 is the subgroup

L4 =


 a 0 b

0 a b
0 0 a−2

 : a ∈ F×q , b ∈ Fq


with respect to the basis β, whence the L-orbit of U4 has size q(q−1). Since |Ω| = q2+q+1, we
deduce that L has exactly 4 orbits on Ω, with respective stabilisers Li = LUi for i = 1, 2, 3, 4.

So to prove the claim, it just remains to show that none of these point stabilisers has a
regular orbit on Ω. This is clear for i = 1, 2, 3 since |Li| > |Ω|. So let us consider L4. Clearly,
the L4-orbits of U1 and U4 both have length 1, and it is straightforward to show that U2

and U3 lie in distinct L4-orbits of length q. So these four orbits have already covered 2q + 2
points in Ω and we note that |Ω| − (2q + 2) < |L4|. Therefore, L4 does not have a regular
orbit on Ω and the proof of the claim (and proposition) is complete. �

The previous proposition shows that there are infinitely many finite simple groups with
B(G) < R(G). This observation is extended in our next result, which demonstrates the
existence of simple groups G for which R(G)−B(G) can be arbitrarily large.

Proposition 2.13. Let G = Ln(2) with n > 5. Then B(G) = n and R(G) > 2(n− 1).

Proof. First observe that G = GL(V ), where V is an n-dimensional vector space over F2.
Let H be a maximal subgroup of G. If H acts irreducibly on V , then the main theorem of

[7] implies that b(G,H) 6 4. Now assume H is reducible, which means that we can identify
G/H with the set Ω of k-dimensional subspaces of V for some positive integer k 6 n/2.
Clearly, if k = 1 then Ω coincides with the set of nonzero vectors in V , in which case a subset
of Ω is a base if and only if it is a basis and thus b(G,H) = n. So in order to prove that
B(G) = n, it suffices to show that b(G,H) 6 n for all 2 6 k 6 n/2. To see this, fix a basis
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{e1, . . . , en} for V and define the following k-dimensional subspaces of V :

V1 = 〈e1, e2, . . . , ek〉
V2 = 〈e2, e3, . . . , ek+1〉

...

Vn = 〈en, e1, . . . , ek−1〉

Let Li be the setwise stabiliser of Vi in G and set L =
⋂
i Li. Now each basis vector ei is

contained in exactly k of these subspaces, say Va1 , . . . , Vak , and one checks that
⋂
j Vaj = 〈ei〉.

Since we are working over F2, it follows that L fixes each ei and thus L = 1. In other words,
{V1, . . . , Vn} is a base for G and we conclude that b(G,H) 6 n, as required.

Let H and K be the stabilisers of a 1-space and an (n − 1)-space, respectively. In order
to show that R(G) > 2(n− 1), it suffices to prove the following claim.

Claim. The (2n−3)-tuple τ = (H, . . . ,H,K, . . . ,K) comprising n−1 copies of H and n−2
copies of K is non-regular.

To see this, let g1, . . . , gn−1 be arbitrary elements in G and set L =
⋂
iH

gi . Here Hgi is
the stabiliser of a nonzero vector vi ∈ V and L contains the following elementary abelian
2-subgroup (with respect to an appropriate basis for V )

J =

{(
In−1 A

0 I1

)
: A ∈ Fn−1

2

}
Note that L = J if the vi are linearly independent and we work with a basis of the form
{v1, . . . , vn−1, vn} for V .

So to prove the claim, it suffices to show that b(J,Ω) > n− 1, where J is defined as above
(with respect to a basis {v1, . . . , vn−1, vn} for V ) and Ω is the set of (n − 1)-dimensional
subspaces of V . Notice that if τ denotes the inverse-transpose graph automorphism of G,
then we have b(J,Ω) = b(Jτ ,Γ), where Γ is the set of nonzero vectors in V , so we need to
show that b(Jτ ,Γ) > n− 1.

Let w1, . . . , wn−2 be arbitrary nonzero vectors in V and write

wi = bi,1v1 + · · ·+ bi,n−1vn−1 + bi,nvn

for all i. Let B = (bi,j) be the (n− 2)× (n− 1) matrix corresponding to the coefficients of
vj for j < n. Then the pointwise stabiliser of the wi in Jτ is the set of matrices of the form(

In−1 0
A I1

)
∈ Jτ

where A = (a1, . . . , an−1) ∈ Fn−1
2 and BAT = 0. Since the kernel of the linear map Fn−1

2 →
Fn−2

2 corresponding to B is obviously nonzero, it follows that the pointwise stabiliser of the
wi in Jτ is nontrivial. In turn, this implies that b(Jτ ,Γ) = b(J,Ω) > n − 1 and thus τ is
non-regular as claimed. �

Remark 2.14.

(a) Notice that in Proposition 2.13 we assume G = Ln(2) with n > 5. For n = 3 we get
B(G) = 3 and R(G) = 4. However, the case n = 4 is different since L4(2) ∼= A8 and
thus B(G) = R(G) = 6 (as a special case of Theorem 1(i)).

(b) We expect R(G) = 2(n − 1) when G = Ln(2) and n > 3, which would imply that
R(G) < 2B(G). In particular, this would be consistent with Conjecture 1(i), which
asserts (as a special case) that there is an absolute constant c such that R(G) <
c ·B(G) for every finite simple group G.
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2.4. Computational methods. To conclude this preliminary section, we briefly discuss
some of the main computational methods we apply in this paper. All of our computations
are performed using Magma [5] (version 2.28-4) and GAP [28] (version 4.11.1). We refer the
reader to the supplementary file [1] for further details, including sample code.

Let G be a finite group and let τ = (H1, . . . ,Hk) be a k-tuple of core-free subgroups with
k > 2. As noted in Lemma 2.6, τ is non-regular if

∏
i |Hi| > |G|k−1.

2.4.1. Random search. If a suitable permutation or matrix representation of G is available,
then random search often provides an efficient way to show that τ is regular. Here the aim
is to find elements gi ∈ G, in terms of the given representation, such that

k⋂
i=1

Hgi
i = 1.

Typically, we are interested in the case where τ is a maximal tuple, which means that each
component Hi is a core-free maximal subgroup of G.

Of course, the groups Sn and An are naturally defined in terms of a permutation represen-
tation. For an almost simple sporadic group G 6∈ {J4,Ly,Th,B,M}, we use the Magma func-
tion AutomorphismGroupSimpleGroup to construct G as a permutation group on n points,
where n = m(G) is the minimal degree of a faithful permutation representation. Similarly,
for G ∈ {J4,Ly,Th} we can use the function MatrixGroup to construct G as a matrix group.
For example, this allows us to view the Lyons group as a subgroup of GL111(5). However,
the largest sporadic groups B and M do not admit a permutation or matrix representation
that is suitable for direct computation, so they will require a different approach (for exam-
ple, 97239461142009186000 ∼ 9.7 × 1019 is the minimal degree of a faithful permutation
representation of M).

Given a suitable representation of G, we can use the Magma function MaximalSubgroups

to construct a complete set of representatives of the conjugacy classes of maximal subgroups
of G. For example, this is effective for all G ∈ {Sn, An} with n 6 200. And similarly for
all sporadic groups G, unless G ∈ {Fi′24,Fi24,Th}. For the latter groups, we can construct
the maximal subgroups we will need to work with via explicit generators presented in the
Web Atlas [49], which are given as words in the standard generators for G (these generators
can also be constructed using the GAP package AtlasRep [52]). We can of course filter the
output from MaximalSubgroups if we are just interested in soluble maximal subgroups, or
the maximal subgroups of Sn that act primitively on {1, . . . , n}, etc.

For some of the groups we are interested in, we can replace MaximalSubgroups by other
Magma functions, such as SolubleSubgroups and NilpotentSubgroups, which return a
complete set of representatives of the conjugacy classes of soluble (respectively, nilpotent)
subgroups of G (not surprisingly, the effectiveness of the latter functions is more limited for
groups of large order). We can also iteratively apply MaximalSubgroups in order to descend
deeper into the subgroup lattice of G. For example, this will be a useful technique in the
proof of Theorem 2(ii), when we are seeking to show that Rsol(G) 6 3 in the setting where
G is a sporadic group and the function SolubleSubgroups is unavailable (see the proofs of
Lemmas 4.16 and 4.17, for instance).

2.4.2. Orbit computations. Suppose we can construct G and each Hi, in terms of a suitable
permutation or matrix representation, and let us assume random search is inconclusive. Here
it is useful to observe that τ is regular if and only if H1 has a regular orbit on

Y = G/H2 × · · · ×G/Hk.

So assuming that the indices |G : Hi| are not prohibitively large, we can use the Magma
function CosetAction to construct the action on G on each set G/Hi with i > 2, which will
allow us to calculate all of the orbits of H1 on Y and then determine whether or not τ is
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regular. Note that in order to conclude that τ is non-regular, it suffices to find a collection
of distinct non-regular H1-orbits Y1, . . . , Yt such that

∑
i |Yi| > |Y | − |H1|.

In the special case k = 2, we can also use DoubleCosetRepresentatives to calculate the
size of every (H1, H2) double coset in G, noting that τ is regular if and only if there exists
a double coset of size |H1||H2|.

Remark 2.15. There are a handful of maximal pairs τ = (H1, H2) for G ∈ {J4,Ly,Th}
where we have |H1||H2| < |G|, random search is inconclusive and both of the above methods
for determining whether or not τ is regular are ineffective due to the very large size of the
indices |G : H1| and |G : H2|. We thank Derek Holt, Jürgen Müller and Eamonn O’Brien
for resolving these special cases, which are presented in Lemma 4.8. In particular, Müller
used the GAP package Orb [44] to show that the maximal pair for G = J4 with

H1 = 23+12.(S5 × L3(2)), H2 = 21+12.3.M22:2

is non-regular (here we have |G : H1| = 131358148251 and |G : H2| = 3980549947).

2.4.3. Character theory. If we have access to the character tables of G and each compo-
nent subgroup Hi, together with the fusion maps from Hi-classes to G-classes, then we can
compute

fpr(x,G/Hi) =
|xG ∩Hi|
|xG|

precisely for all x ∈ G and all i. In turn, this allows us to evaluate the expression Q̂(G, τ)

in Lemma 2.1, recalling that τ is regular if Q̂(G, τ) < 1. This can be an effective way to
produce a list of candidate non-regular k-tuples, which can then be analysed using other
methods (such as random search, as described above).

The character table of every almost simple sporadic group G is available in the GAP
Character Table Library [6]. In addition, if G 6= M, then the character table of every
maximal subgroup of G is also available in [6] and we can use the GAP function Maxes to
access the associated fusion maps on conjugacy classes. For G 6= M, this allows us to compute

Q̂(G, τ) for every maximal tuple τ (if G = M, we can handle some, but not all, maximal
tuples in the same way, using the function NamesOfFusionSources to access the relevant
character tables and fusion maps). We will rely heavily on this probabilistic approach to
prove Theorem 2 for the large sporadic groups, including B and M (see the proofs of Lemmas
4.7, 4.9 and 4.10, for example).

3. Symmetric and alternating groups

In this section we assume G is an almost simple group with socle An and our aim is to prove
Theorem 1. We begin in Section 3.1 by considering parts (ii) and (iii), focussing initially on
primitive tuples (indeed, part (iii) quickly follows from part (ii) since every soluble maximal
subgroup of G is primitive when n > 17). And then in Section 3.2 we turn our attention to
the regularity number, proving part (i) of Theorem 1. To do this, we first handle the tuples
where each subgroup acts intransitively on {1, . . . , n} (see Section 3.2.1). The imprimitive
tuples are then treated in Section 3.2.2 and we bring everything together in Section 3.2.3,
where we complete the proof of Theorem 1.

3.1. Primitive subgroups. Let G be an almost simple group with socle T = An and
recall that a subgroup H of G is said to be primitive if H ∩ T acts primitively on the set
[n] = {1, . . . , n}. We define Rprim(G) to be the minimal positive integer k such that every
core-free primitive k-tuple of subgroups of G is regular. Similarly, Bprim(G) is the maximal
base size b(G,H) over all core-free primitive subgroups H of G. Of course, if G does not
have a core-free primitive subgroup, then Rprim(G) and Bprim(G) are undefined.

In this section we will prove parts (ii) and (iii) of Theorem 1. As a consequence, we
establish a strong form of Conjecture 1(ii) for symmetric and alternating groups, and we
take the first steps towards Conjecture 1(iii) in this setting.
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Rprim(G) G τ

6 A8 (AGL3(2)1,AGL3(2)1,AGL3(2)1,AGL3(2)2,AGL3(2)2)

5 S6 (PGL2(5),PGL2(5),PGL2(5),PGL2(5))
4 A6 (L2(5),L2(5),L2(5))

A6.2 6= S6 (L2(5),L2(5),L2(5))

A6.22 (L2(5),L2(5),L2(5))
A7 (L2(7)1,L2(7)1,L2(7)2)

S8 (PGL2(7),PGL2(7),PGL2(7))

3 A5 (D10,D10)
S5 (AGL1(5),AGL1(5))

S7 (L2(7),L2(7))

A9 (PΓL2(8),PΓL2(8))
S9 (AGL2(3),AGL2(3))

S10 (PΓL2(9),PΓL2(9))

A11 (M11,M11)
S11 (M11,M11)

A12 (M12,M12)

S12 (M12,M12)

Table 1. Almost simple groups G with socle An and Rprim(G) > 2

Let us briefly outline our approach. We begin by handling the groups of small degree in
Proposition 3.1 below, which are amenable to direct computation in Magma [5]. Our method
for dealing with the general case relies on the probabilistic approach described in Section
2.1. To do this, we will apply two key results in order to derive the required fixed point ratio
estimates, which we combine in the statement of Theorem 3.3. The first is a theorem of
Maróti [40] on the orders of core-free primitive subgroups of Sn. The second main ingredient
is a theorem of Guralnick and Magaard [30] on the minimal degree of primitive subgroups,
which we can use to obtain lower bounds on the conjugacy class sizes of prime order elements
lying in a primitive subgroup. Our approach is similar to the one adopted in [14], where the
main theorem states that Bprim(G) 6 5, with Bprim(G) = 2 if n > 13.

In order to establish the bound Rprim(G) 6 k, it suffices to show that every k-tuple of
primitive subgroups in M(G) is regular, where M(G) is the set of core-free subgroups that
are maximal in some subgroup of G containing T (see Definition 2.8 and Lemma 2.9). In
fact, if G = Sn or An then we only need to consider tuples involving subgroups in M′(G),
which is the set of core-free maximal subgroups of G, together with any maximal subgroups
H of T with NG(H) = H (see Remark 2.10).

We begin by establishing part (ii) of Theorem 1 for the groups with n < 60.

Proposition 3.1. Let G be an almost simple group with socle T = An, where n < 60, and
assume G has a core-free primitive subgroup.

(i) We have Rprim(G) 6 6, with equality if and only if G = A8.

(ii) If n > 13, then Rprim(G) = 2. For n 6 12, the groups with Rprim(G) = k > 2 are
recorded in Table 1, together with a non-regular primitive tuple τ = (H1, . . . ,Hk−1).

Proof. This is a routine Magma [5] computation. For n > 13, we can use random search
(see Section 2.4.1) to show that every primitive pair (H1, H2) with Hi ∈ M′(G) is regular.
Similarly, for n 6 12 it is straightforward to identify all the non-regular pairs (H1, H2) with
Hi ∈ M(G), which we can then use to determine any non-regular triples with components
inM(G). If required, we can then extend the analysis to 4-tuples and 5-tuples, which allows
us to deduce that every primitive 6-tuple is regular. �

Remark 3.2. We record some remarks on the statement of Proposition 3.1.

(a) Notice that if n 6 12, then G = A10 is the only group with Rprim(G) = 2. Here
H = M10 represents the unique class of primitive maximal subgroups of G and one
checks that b(G,H) = 2, so every primitive pair for G is regular.
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(b) By inspecting [14], we deduce that if n < 60 then Rprim(G) = Bprim(G) unless
G = A7 or A8, where we have

Rprim(A7) = Bprim(A7) + 1 = 4

Rprim(A8) = Bprim(A8) + 2 = 6

(c) The group G = A8 has two conjugacy classes of maximal subgroups isomorphic to
AGL3(2), represented by H and K. Here b(G,H) = b(G,K) = 4, but we find that
the 5-tuple (H,H,H,K,K) is non-regular, as indicated in the first row of Table 1
(we use subscripts 1 and 2 to distinguish representatives of the two classes).

(d) Similarly, G = A7 has two classes of maximal subgroups isomorphic to L2(7) and
(H,H,K) is a non-regular triple, where H and K represent these two conjugacy
classes (note that b(G,H) = b(G,K) = 3).

In order to complete the proof of Theorem 1(ii), we may assume n > 60. So G = Sn or
An, and our goal is to prove that Rprim(G) = 2.

Recall that the minimal degree of a subgroup H of G, denoted µ(H), is the minimal
number of points in [n] = {1, . . . , n} moved by a non-identity element of H. That is,

µ(H) = min{supp(x) : 1 6= x ∈ H}

where supp(x), the support of x, is the number of points moved by x.
As explained above, we will complete the proof of Theorem 1(iii) by applying the prob-

abilistic approach encapsulated in Lemma 2.1, which relies on key theorems of Maróti [40]
and Guralnick and Magaard [30]. We combine (and slightly simplify) both results in the
following statement.

Theorem 3.3. Suppose n > 60 and H ∈M(G) is primitive. Then either

|H| < n1+dlog2 ne and µ(H) > n/2−
√
n,

or one of the following holds:

(i) H = (Sl o Sk) ∩G in its product action on n = lk points, where l > 5 and k > 2, and
we have µ(H) = 2lk−1.

(ii) H = Sl ∩G in its action on the k-element subsets of {1, . . . , l}, so n =
(
l
k

)
with l > 5

and 2 6 k < l/2, and we have µ(H) = 2
(
l−2
k−1

)
.

Proof. The bound on |H| follows immediately from [40, Theorem 1.1]. Now let us turn to
the minimal degree of H. By [30, Theorem 1], if we exclude the cases recorded in (i) and
(ii), then either µ(H) > n/2, or H = O(V ) is an orthogonal group over the field F2 acting
on a set of hyperplanes of the natural module V . In each of the latter cases, the exact value
of µ(H) is given in the statement of [30, Theorem 1] and it is easy to check that the desired
bound µ(H) > n/2−

√
n is satisfied. �

Next we seek lower bounds on the size of a conjugacy class xG defined in terms of the
support of x. This will allow us to translate the minimal degree bound in Theorem 3.3 into
a lower bound on |xG|, which applies whenever x is a prime order element contained in an
appropriate primitive subgroup of G. The following result holds for all n > 5.

Lemma 3.4. Let G = Sn or An with n > 5 and suppose x ∈ G has prime order r with
supp(x) = m >

√
n. Then |xG| > f2(m), with |xG| > f3(m) if r is odd, where

fs(m) =
n!

sm/sdm/se!(n−m)!
.

Proof. First observe that we may assume G = Sn. To see this, suppose G = An and recall
that |xG| = |xSn | unless x is an r-cycle and r ∈ {n − 1, n}. If r = n then m = n and the
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desired conclusion holds since

|xG| = 1

2
(n− 1)! >

n!

3n/3dn/3e!
>

n!

2n/2dn/2e!
And similarly if r = n− 1. So for the remainder, we will assume G = Sn.

Suppose x has cycle-type (ra, 1n−ar) for some a > 1. Then supp(x) = ar and

|xG| = n!

raa!(n− ar)!
.

In particular, the result follows immediately if r = 2, so we may assume r is odd.
Suppose there exists an element y ∈ G of prime order q < r with supp(y) = m. Then it

is easy to check that qm/q(m/q)! > rm/r(m/r)! and thus |xG| > |yG|. In particular, if m is
even then we immediately deduce that |xG| > f2(m). And the same conclusion holds for m
odd since

2m/2((m+ 1)/2)! > rm/r(m/r)!

for every odd prime r dividing m. Finally, in order to establish the bound |xG| > f3(m) it
suffices to show that

3m/3dm/3e! > rm/r(m/r)!
and this is straightforward to verify. �

We now bring the minimal degree bound in Theorem 3.3 in to play, which allows us to
derive a lower bound on the conjugacy class sizes of elements of prime order contained in a
primitive maximal subgroup of Sn or An. In the statement, we refer to the function fs(m)
defined in Lemma 3.4.

Lemma 3.5. Let G = Sn or An with n > 60 and suppose x ∈ H has prime order r, where
H ∈M(G) is primitive.

(i) We have |xG| > f2(`), with |xG| > f3(`) if r is odd, where ` = d2
√
ne.

(ii) If µ(H) > n/2−
√
n, then |xG| > f2(`′) with `′ = dn/2−

√
ne.

Proof. Set m = supp(x). By applying Theorem 3.3, we deduce that µ(H) > 2
√
n, which

in turn implies that d2
√
ne 6 m 6 n. By Lemma 3.4, it follows that |xG| > f2(m), with

|xG| > f3(m) if r is odd, and it is straightforward to show that both lower bounds are
minimal when m = d2

√
ne, which establishes (i). Part (ii) is entirely similar. �

We will also need an upper bound on the number of involutions in a primitive subgroup
H ∈M(G), which is denoted by i2(H).

Lemma 3.6. If n > 5, then i2(H) 6 5(n−1)/6
√
|H| for every subgroup H of Sn.

Proof. First recall that i2(H) 6
√
k|H|, where k is the number of conjugacy classes in H

(this standard bound is easily obtained by considering the Frobenius-Schur indicators of the

complex irreducible characters of H). By the main theorem of [29] we have k 6 5(n−1)/3 and
the result follows. �

Corollary 3.7. Let G = Sn or An with n > 60 and suppose H ∈ M(G) is primitive as in
part (i) or (ii) of Theorem 3.3. Then

i2(H) 6 d
√
ne!(1 + 5(

√
n−1)/6)2.

Proof. First assume that H = (Sl o Sk) ∩ G, where n = lk, l > 5 and k > 2, and note that
it suffices to bound i2(Sl o Sk). For k = 2, Lemma 3.6 implies that there are fewer than

(1 + 5(l−1)/6(l!)1/2)2 involutions in the base group Sl × Sl of the wreath product, and there
are exactly l! additional involutions in H. Therefore,

i2(H) 6 (1 + 5(l−1)/6(l!)1/2)2 + l! < l!(1 + 5(l−1)/6)2.



18 MARINA ANAGNOSTOPOULOU-MERKOURI AND TIMOTHY C. BURNESS

And for k > 3 one can check that

i2(H) 6 |Sl o Sk| = ( k
√
n)!kk! 6 d

√
ne!(1 + 5(

√
n−1)/6)2 = f(n).

Now assume H = Sl ∩ G and n =
(
l
k

)
, where l > 5 and 2 6 k < l/2. For k = 2, Lemma

3.6 implies that

i2(H) 6 i2(Sl) 6 5(l−1)/6(l!)1/2 < 5
√

2n/6d
√

2n+ 1e!1/2 = g(n)

and it is easy to check i2(H) 6 |H| 6 l! < g(n) for k > 3 and n > 60. The result now follows
since g(n) 6 f(n) for all n > 60. �

We are now in a position to prove Theorem 1(ii).

Proof of Theorem 1(ii). In view of Proposition 3.1, we may assume n > 60, so G = Sn or
An, and our goal is to prove that Rprim(G) = 2. To do this, it suffices to show that every
primitive pair τ = (H1, H2) is regular, where H1, H2 ∈M(G). Define

Q̂(G, τ) =
t∑
i=1

|xGi ∩H1| |xGi ∩H2|
|xGi |

as in Lemma 2.1, where x1, . . . , xt is a set of representatives of the conjugacy classes in G of

elements of prime order, and recall that τ is regular if Q̂(G, τ) < 1.
First assume that µ(H1) > n/2 −

√
n. Then |xGi ∩H1| = 0 if supp(xi) < n/2 −

√
n and

thus

Q̂(G, τ) =
s∑
i=1

|yGi ∩H1| |yGi ∩H2|
|yGi |

where y1, . . . , ys represent the classes of prime order elements with support at least n/2−
√
n.

By combining Lemmas 2.2 and 3.5(ii) with Maróti’s bound in Theorem 3.3 on the orders of
H1 and H2, we deduce that

Q̂(G, τ) 6 n2+2dlog2 ne · 2`/2d`/2e!(n− `)!
n!

,

where ` = dn/2−
√
ne. One checks that this upper bound is less than 1 for all n > 60.

By the same argument, τ is regular if µ(H2) > n/2 −
√
n, so to complete the proof we

may assume that both H1 and H2 are described as in item (i) or (ii) in Theorem 3.3. Write

Q̂(G, τ) = α+ β,

where α is the contribution from involutions, and note that |Hi| 6 2d
√
ne!2 for i = 1, 2.

Then by combining Lemmas 2.2 and 3.5 with Corollary 3.7, we obtain the bounds

α 6 i2(H1)i2(H2) · 2m/2dm/2e!(n−m)!

n!

6
(
d
√
ne!(1 + 5(

√
n−1)/6)2

)2
· 2m/2dm/2e!(n−m)!

n!
and

β 6 |H1||H2| ·
3m/3dm/3e!(n−m)!

n!
6 4d

√
ne!4 · 3m/3dm/3e!(n−m)!

n!
,

where m = d2
√
ne. Together, these bounds imply that α+ β < 1 and the result follows. �

Part (iii) of Theorem 1 now follows as an easy corollary. Recall that Rsol max(G) is the
minimal integer k such that every k-tuple of soluble maximal subgroups of G is regular.

Proof of Theorem 1(iii). For n 6 16 we can use Magma to verify the result (in Table 2
we record all the groups G with Rsol max(G) = k > 2, together with a non-regular soluble
maximal (k − 1)-tuple of the form (H, . . . ,H)). And if n > 17, then every soluble maximal
subgroup of G is primitive and therefore Rsol max(G) = 2 since Rprim(G) = 2 by part (ii) of
Theorem 1. �
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Rsolmax(G) G H

5 S8 S4 o S2

4 S5 S4

S6 S3 o S2

A6.22 (S3 o S2).2

A8 (S4 o S2) ∩G
3 A5 A4

A6 (S3 o S2) ∩G
A6.2 = PGL2(9) D20

A6.2 = M10 32:Q8

A7 (S4 × S3) ∩G
S7 S4 × S3

A9 (S3 o S3) ∩G
S9 S3 o S3

A12 (S4 o S3) ∩G
S12 S4 o S3

A16 (S4 o S4) ∩G
S16 S4 o S4

Table 2. Almost simple groups G with socle An and Rsol max(G) > 2

3.2. The regularity number. Let G = Sn or An with n > 5. In this section we complete
the proof of Theorem 1 by determining the regularity number of G. By considering the base
size of the natural action of G on [n] = {1, . . . , n}, it suffices to show that R(G) 6 k, where
k = n − 1 if G = Sn and k = n − 2 if G = An. So in view of Lemma 2.9, we just need to
verify that every k-tuple of subgroups inM(G) is regular, whereM(G) is the set of core-free
subgroups of G that are maximal in Sn or An.

The proof divides naturally into three cases since any subgroup in M(G) acts intransi-
tively, imprimitively or primitively on [n]. Recall that we define Rintrans(G) to be the minimal
integer k such that every k-tuple of intransitive subgroups (H1, . . . ,Hk) of G is regular. Sim-
ilarly, Rimprim(G) is defined with respect to imprimitive subgroups (note that if n is a prime
number, then every transitive subgroup of G is primitive, so Rimprim(G) is not defined in
this case).

In Section 3.2.1 we begin by handling the intransitive tuples, presenting several lemmas
that will allow us to prove that Rintrans(Sn) = n − 1 and Rintrans(An) = n − 2 via a direct
construction (see Proposition 3.10). The imprimitive tuples are then studied in Section
3.2.2. Here the analysis is more complicated and we rely on two key results (Lemmas 3.14
and 3.15), which may be of independent interest. Roughly speaking, our strategy is to reduce
the imprimitive case to a situation involving intransitive subgroups, which we have already
handled in Section 3.2.1. Finally, we complete the proof of Theorem 1 by combining our work
on intransitive and imprimitive tuples with our results on primitive subgroups in Section 3.1.
The details are presented in Section 3.2.3.

3.2.1. Intransitive tuples. Our main result in this section is Proposition 3.10, which gives

Rintrans(Sn) = n− 1 and Rintrans(An) = n− 2.

Throughout this section we fix an integer n > 5 and we define Wn to be the set of subsets
of [n] = {1, . . . , n} of size at most n/2. Following Halasi [31], if α ∈ [n] and A ⊆ Wn, then
we refer to

NA(α) = {X ∈ A : α ∈ X}
as the neighbourhood of α with respect to A.

Lemma 3.8. Let A = {X1, . . . , Xk} ⊆ Wn and set H =
⋂k
i=1Hi, where Hi is the setwise

stabiliser of Xi in Sn.

(i) For all α, β ∈ [n], we have NA(α) 6= NA(β) if and only if α and β are contained in
different H-orbits.
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(ii) In particular, H = 1 if and only if NA(α) 6= NA(β) for all distinct α, β ∈ [n].

Proof. Since (ii) follows immediately from (i), we just need to establish the claim in (i).
First assume α and β lie in distinct orbits of H. Then H does not contain the transposition
g = (α, β) ∈ Sn, which means thatXg

i 6= Xi for some i. Therefore, eitherXi ∈ NA(α)\NA(β)
or Xi ∈ NA(β) \NA(α), and thus NA(α) 6= NA(β).

Conversely, suppose NA(α) 6= NA(β). Then we may assume there exists a set Xi ∈ A
such that α ∈ Xi and β 6∈ Xi. Consider an element g ∈ Sn such that αg = β. Then Xg

i 6= Xi

and thus g 6∈ H, which in turn implies that α and β are in distinct H-orbits. �

We now present a lemma that will play a key role in the proof of Proposition 3.10. It will
also be used repeatedly in the proof of Theorem 1 in Section 3.2.3.

Lemma 3.9. Let a1, . . . , ak be positive integers such that a1 6 a2 6 · · · 6 ak 6 n/2, where
2 6 k < n. For each i ∈ {1, . . . , k}, let Xi be the following ai-element subset of [n] and let

H =
⋂k
i=1Hi, where Hi is the stabiliser of Xi in Sn:

X1 = {1, . . . , a1}
X2 = {2, . . . , a2 + 1}

...

Xk−1 = {k − 1, . . . , n− 1, 1, 2, . . . , ak−1 − (n− k + 1)}
Xk = {k, . . . , n− 1, 1, 2, . . . , ak − (n− k)}

(1)

Then H 6 Sym({k, . . . ,m})× Sym({m+ 1, . . . , n}), where m = max {α : α ∈ Xk}.

Proof. Let A = {X1, . . . , Xk}. First we show that NA(α) 6= NA(β) for all distinct α, β ∈
{1, . . . , k, n}. To do this, we may assume α < β.

If β = n, then NA(β) is empty, whereas Xα ∈ NA(α), whence NA(α) 6= NA(β). Now
assume β 6 k and suppose that α ∈ Xβ and β ∈ Xα. The containment of α in Xβ implies
that (n− 1)− β + 1 +α 6 aβ and thus β −α > n/2 since aβ 6 n/2. Similarly, since β ∈ Xα

we have β−α+ 1 6 aα, so β−α < n/2 and we have reached a contradiction. It follows that
either α 6∈ Xβ or β 6∈ Xα, whence NA(α) 6= NA(β) as required.

With a very similar argument, we can show that NA(α) 6= NA(β) for all α ∈ {1, . . . , k−1}
and β ∈ {k, . . . ,m}. In addition, we claim that NA(γ) is empty for all γ > m + 1. This is
clear if m = n− 1, so we may assume m < n− 1 and thus Xk = {k, k + 1, . . . ,m}. For each
i ∈ {1, . . . , k} we have

|Xi| = ai 6 ak = m− k + 1 < γ − k + 1,

so γ 6∈ Xi and NA(γ) is indeed empty as claimed. In particular, since i ∈ Xi and δ ∈ Xk for
all δ ∈ {k, . . . ,m}, this means that NA(γ) 6= NA(δ) for all γ > m+ 1 and all δ ∈ {1, . . . ,m}.

Putting all of this together and applying Lemma 3.8, we deduce the following:

(a) The points 1, . . . , k, n are contained in distinct H-orbits.

(b) Each α ∈ {1, . . . , k − 1} and β ∈ {k, . . . ,m} are contained in distinct H-orbits.

(c) Each α ∈ {1, . . . ,m} and β ∈ {m+ 1, . . . , n} are contained in distinct H-orbits.

As a consequence, H acts trivially on {1, . . . , k−1} and it preserves the subsets {k, . . . ,m}
and {m+ 1, . . . , n}. In other words,

H 6 Sym({k, . . . ,m})× Sym({m+ 1, . . . , n})

as required. �

We are now in a position to establish our main result on intransitive tuples.

Proposition 3.10. For all n > 5, we have Rintrans(Sn) = n− 1 and Rintrans(An) = n− 2.
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Proof. First observe that the intransitive (n − 2)-tuple (Sn−1, . . . , Sn−1) is non-regular, so
Rintrans(Sn) > n− 1. Similarly, Rintrans(An) > n− 2, so we just need to establish the upper
bounds Rintrans(Sn) 6 n− 1 and Rintrans(An) 6 n− 2.

Suppose G = Sn or An, and let τ = (K1, . . . ,Kn−2) be an (n − 2)-tuple of intransitive
subgroups of G. We may embed each Ki in the setwise stabiliser Li = Sai × Sn−ai in Sn of
some subset of [n] of size ai 6 n/2, and by reordering we may assume that ai 6 ai+1 for all
i. We claim that there exist elements gi ∈ G such that

n−2⋂
i=1

Lgii 6 〈(α, β)〉, (2)

where α = n−1 and β ∈ {n−2, n}. Since G acts transitively on the set of k-element subsets
of [n] for any fixed k 6 n/2, we just need to define a collection of subsets X1, . . . , Xn−2 of

[n] such that |Xi| = ai and H =
⋂n−2
i=1 Hi 6 〈(α, β)〉, where Hi is the setwise stabiliser of Xi

in Sn. To do this, we can define the sets X1, . . . , Xn−2 as in (1) (with k = n− 2), and then
by applying Lemma 3.9 we deduce that H 6 〈(α, β)〉 as required.

For G = An we immediately deduce that τ is regular and thus Rintrans(An) 6 n − 2. So
for the remainder, let us assume G = Sn and let τ ′ = (K1, . . . ,Kn−1) be an intransitive

(n − 1)-tuple. By the above argument, we have
⋂n−2
i=1 K

gi
i 6 〈(α, β)〉 for some gi ∈ G. Now

Kn−1 is contained in the setwise stabiliser in G of some k-element subset of [n] with k 6 n/2.
Of course, we can choose a k-set Xn−1 containing α but not β, in which case the stabiliser of
Xn−1 in G does not contain the transposition (α, β). In other words, there exists an element
gn−1 ∈ G such that

n−1⋂
i=1

Kgi
i 6 〈(α, β)〉 ∩Kgn−1

n−1 = 1

and we conclude that τ ′ is regular. This completes the proof of the proposition. �

3.2.2. Imprimitive tuples. In this section we focus on imprimitive tuples and our main result
is Proposition 3.18, which states that

Rimprim(Sn) 6 n− 1 and Rimprim(An) 6 n− 2

for all composite integers n > 6 (recall that if n is a prime, then every transitive subgroup
of Sn is primitive). To establish this bound for G = Sn, we need to prove that every (n− 1)-
tuple of the form (Sa1 o Sb1 , . . . , San−1 o Sbn−1) is regular, where n = aibi and ai > 2 for
all i. And similarly for G = An with respect to (n − 2)-tuples with components of the
form (Sai o Sbi) ∩ G. Throughout this section we assume n > 6 is composite and we write
[n] = {1, . . . , n}.
Remark 3.11. Let G = Sn or An with n > 6 composite. We have not attempted to
seek sharper estimates on Rimprim(G) because the above bounds (together with some of the
auxiliary results presented below) will be sufficient for our proof of Theorem 1(i). However,
it seems reasonable to expect that the bounds in Proposition 3.18 are far from best possible.
Indeed, the main theorem of [43] yields

Bimprim(G) 6 log2 n+ 2,

which leads us to speculate that Rimprim(G) = O(log2 n). With the aid of Magma, we have
checked that Rimprim(G) 6 6 for all n < 32, but here we do not pursue this any further.

We begin by defining some useful terminology that arises naturally in this setting. We will
say that a partition X of [n] is uniform if every part has size `, where 1 < ` < n, and we will
refer to X as an `-partition. If X is an `-partition, then the stabiliser of X in Sn is defined
to be the largest subgroup H 6 Sn that preserves the partition, so we have H = S` o Sn/`.
Similarly, the stabiliser in An is the subgroup H ∩An.

Let X1 and X2 be uniform partitions of [n] with parts of size a and b, respectively. Choose
an ordering of the parts P1, . . . , Pk comprising X1, where k = n/a, and assign the colour ci
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to every point in Pi, where c1, . . . , ck are distinct. Then the corresponding colour function is
the map χ : [n]→ {c1, . . . , ck}. We say that a part Q of X2 has colour sequence (cq1 , . . . , cqb)
if there is a bijection from Q to the multiset of colours {cq1 , . . . , cqb} such that each point
in Q is mapped to its assigned colour. And if R is another part of X2 with colour sequence
(cr1 , . . . , crb), we will say that Q and R are colour-equivalent if there exists a permutation of
the colour set {c1, . . . , ck} mapping the multiset {cq1 , . . . , cqb} to the multiset {cr1 , . . . , crb}.
Finally, we say that a part of X2 is monochrome if all of its points have the same colour.

We begin with an easy lemma.

Lemma 3.12. Let X1, X2 be defined as above and let Hi be the stabiliser of Xi in Sn. If
g ∈ H1 ∩H2 and Q is a part of X2, then Q and Qg are colour-equivalent.

Proof. Since g ∈ H1, it follows that any two elements in [n] with the same colour are mapped
under g to elements of the same colour. In particular, Q and Qg are colour-equivalent. �

Lemma 3.13. Let X be an `-partition of [n] with parts P1, . . . , Pk, where ` > 3. Fix α ∈ Pi
and β ∈ Pj, where i 6= j, and let Y = Xt be the `-partition with parts Qi = P ti , where
t = (α, β) ∈ Sn. If HX and HY denote the stabilisers of X and Y in Sn, then HX ∩ HY

fixes {α, β} setwise.

Proof. For each s ∈ {1, . . . , k}, assign the colour cs to the points in Ps, where c1, . . . , ck are
distinct. Note that

Qs =

 Ps if s 6= i, j
(Pi \ {α}) ∪ {β} if s = i
(Pj \ {β}) ∪ {α} if s = j

for all s ∈ {1, . . . , k}. Fix an element g ∈ HX ∩HY .
Suppose Qgi 6= Qi. Then since Qs = Ps is monochrome for all s 6= i, j, Lemma 3.12 implies

that Qgi = Qj is the only option. Moreover, since any two points in [n] of the same colour
must be mapped to points of the same colour by any element in HX , it follows that βg = α.
Similarly, if Qgi = Qi then βg = β.

If we now repeat the above argument, with Qi replaced by Qj , we deduce that either g
interchanges Qi and Qj , in which case βg = α and αg = β, or g fixes both Qi and Qj , which
means that αg = α and βg = β. The result follows. �

As an application of Lemma 3.13 we can now establish the following technical result, which
will be an important ingredient in our proof of Proposition 3.18.

Lemma 3.14. Suppose n = 2` is even and A is an m-element subset of [n] with 3 6 m < n.
Then there exist `-partitions X1, . . . , Xm of [n] such that

⋂m
i=1Hi fixes A pointwise, where

Hi is the stabiliser of Xi in Sn.

Proof. It suffices to show that there exists a collection of `-partitions Y1, . . . , Ym with re-
spective stabilisers L1, . . . , Lm in Sn such that L =

⋂m
i=1 Li fixes some m-set B pointwise.

Indeed, the partitions Xi = Y g
i will then have the required property, where g ∈ Sn is chosen

such that Bg = A.
We will define appropriate partitions Yi, with parts labelled Pi,1 and Pi,2, and stabiliser

Li in Sn. For Y1 and Y2 we set

P1,1 = {1, 2, . . . , `}, P1,2 = {`+ 1, `+ 2, . . . , n}
and

P2,1 = {2, 3, . . . , `+ 1}, P2,2 = {1, `+ 2, . . . , n}.
We then define Y3, . . . , Ym iteratively, treating the cases m 6 `+ 1 and m > `+ 1 separately.

First assume m 6 `+ 1. Here we define

Pi,1 = {1, . . . , `+ 1} \ {i− 1}, Pi,2 = {`+ 2, . . . , n} ∪ {i− 1} (3)

for i > 3, which means that

P2,1 = (P1,1 \ {1}) ∪ {`+ 1}, P2,2 = (P1,2 \ {`+ 1}) ∪ {1}
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and

Pi,1 = (Pi−1,1 \ {i− 1}) ∪ {i− 2}, Pi,2 = (Pi−1,2 \ {i− 2}) ∪ {i− 1}
for all i > 3. Therefore, Lemma 3.13 implies that L1∩L2 fixes {1, `+1} setwise, and similarly
Li−1 ∩ Li fixes {i− 2, i− 1} setwise for each i > 3. In particular, L =

⋂m
i=1 Li fixes each of

the following 2-sets

{1, `+ 1}, {1, 2}, {2, 3}, . . . , {m− 2,m− 1},
and hence L fixes the m-set {1, 2, . . . ,m− 1, `+ 1} pointwise.

Finally, suppose m > `+ 1. For 3 6 i 6 `+ 1 we define the two parts of Yi as in (3), and
for i > `+ 1 we set

Pi,1 = {2, . . . , `} ∪ {i}, Pi,2 = {1, `+ 1, . . . , n} \ {i}.

As above, we deduce that
⋂`+1
i=1 Li fixes {1, . . . , `+ 1} pointwise. For i = `+ 2, note that

Pi,1 = (P2,1 \ {i− 1}) ∪ {i}, Pi,2 = (P2,2 \ {i}) ∪ {i− 1}

and for i > `+ 2 we have

Pi,1 = (Pi−1,1 \ {i− 1}) ∪ {i}, Pi,2 = (Pi−1,2 \ {i}) ∪ {i− 1}.

Therefore, by applying Lemma 3.13, we deduce that
⋂m
i=`+2 Li fixes each of the 2-sets

{`+ 1, `+ 2}, {`+ 2, `+ 3}, . . . , {m− 1,m}

setwise and thus L =
⋂m
i=1 Li fixes {1, . . . ,m} pointwise. �

We are now ready to present the following lemma, which will play an essential role in our
proof of Proposition 3.18. It will also be used in Section 3.2.3, where we complete the proof
of Theorem 1. The proof is long and technical, so we partition the argument into a number
of separate and clearly defined cases.

Lemma 3.15. Let G = Sn or An, and let Xi be an ai-partition of [n] for i = 1, 2, where
a1 > a2. Let α, β ∈ [n] be distinct and assume that either

(i) n/2 > a1 > 3; or

(ii) a1 = n/2, a2 > 3 and α and β are contained in different parts of X1.

Then there exists an element g ∈ G such that H1 ∩Hg
2 fixes {α, β} setwise, where Hi is the

stabiliser of Xi in G.

Proof. Write k = n/a1, m = n/a2 and let P1, . . . , Pk be the parts of X1. We assign the
colour ci to the points in Pi, where c1, . . . , ck are distinct, and we let χ be the corresponding
colour function on [n]. In order to prove the lemma, we need to construct an a2-partition
X3 of [n] with stabiliser H3 such that H1 ∩H3 fixes {α, β} setwise. Indeed, the transitivity
of G on the set of a2-partitions of [n] implies that H3 = Hg

2 for some g ∈ G and the desired
result follows.

First assume (i) holds, so n/2 > a1 > 3 and k = n/a1 > 3. There are two different cases
to consider, according to whether or not a2 = 2.

Case 1. n/2 > a1 > a2 > 3

We begin by assuming a2 > 3. We will write Pi = {pi1, . . . , pia1} for each i and we consider
two subcases, according to the position of α and β in the parts of X1.

Case 1(a). α and β are in different parts of X1

Without loss of generality, we may assume that α = p11 ∈ P1 and β = p21 ∈ P2. We first
construct an a2-partition Y of [n] with parts Q1, . . . , Qm and stabiliser HY in G by setting

Q1 = {α, p22, . . . , p2a2}, Q2 = {β, p12, . . . , p1a2}
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and we define Q3, . . . , Qm by partitioning the remaining points in [n] into sets of size a2 in
the following order:

p1(a2+1), . . . , p1a1 , p31, . . . , p3a1 , p2(a2+1), . . . , p2a1 , p41, . . . , p4a1 , . . . , pk1, . . . , pka1 .

Notice that Q1 and Q2 are the only parts of Y with respective colour sequences (c1, c2, . . . , c2)
and (c2, c1, . . . , c1). Moreover, if i 6= j then our construction implies that Y has parts with
colour sequences (ci, cj , . . . , cj) and (cj , ci, . . . , ci) if and only if {i, j} = {1, 2}.

Let x ∈ H1 ∩HY . Then Lemma 3.12 implies that Qx1 has colour sequence (ci, cj , . . . , cj)
for some i 6= j. Since a2 > 3, we deduce that P x1 = Pi and P x2 = Pj , which in turn implies
that Qx2 has colour sequence (cj , ci, . . . , ci). So as noted above, we have (i, j) = (1, 2) or
(2, 1). If (i, j) = (1, 2) then Qx1 = Q1 and we deduce that αx = α. On the other hand, if
(i, j) = (2, 1) then Qx1 = Q2 and αx = β.

Similarly, by repeating the argument with Q1 replaced by Q2, we deduce that βx ∈ {α, β}.
Therefore, H1 ∩HY fixes {α, β} setwise, as required.

Case 1(b). α and β are contained in the same part of X1

By relabelling, we may assume that α, β ∈ P1, say α = p11 and β = p12. We now define
a new a2-partition Y of [n] with parts Q1, . . . , Qm and stabiliser HY in G. To construct Y ,
we first set

Q1 = {α, p21, . . . , p2(a2−1)}, Q2 = {β, p31, . . . , p3(a2−1)},
so Q1 and Q2 have respective colour sequences (c1, c2, . . . , c2) and (c1, c3, . . . , c3). We then
divide the remaining points of [n] into parts Q3, . . . , Qm of size a2 in such a way that none
of these parts has colour sequence (c1, ci, . . . , ci) with i > 2.

Observe that we can always construct such a partition. To justify this claim, first assume
a1 = 3, so a2 = 3 and k = m > 3. Here we can set Q3 = {p13, p23, p33} and then define
Q4, . . . , Qm arbitrarily, noting that none of the latter parts will contain any points with
colour c1. Now assume a1 > 4 and write a1− 2 = sa2 + r, where s > 0 and 0 6 r < a2. Here
we can define Q3, . . . , Qs+2 so that they all have colour sequence (c1, . . . , c1). If r 6= 1 then
we can define Qs+3 so that it contains exactly r points with colour c1, while the remaining
parts Qs+4, . . . , Qm contain no points from P1. And if r = 1 then we can choose Qs+3 so
that it contains points from P1, P2 and P3, while none of the remaining parts in Y contain
any points with colour c1. This justifies the claim.

Before continuing the analysis of Case 1(b), let us pause to provide a brief outline of
the argument. We are seeking to construct an a2-partition W of [n] with stabiliser HW ,
containing the parts Q1 and Q2 defined above, with the property that {Q1, Q2}x = {Q1, Q2}
for all x ∈ H1 ∩ HW . Indeed, if we have such a partition, then H1 ∩ HW fixes {α, β} and
the result follows. Set Y0 = Y , which is the a2-partition defined above. If Y0 does not have
the desired property, then we will construct a new partition Y1 = Y g

0 with parts Qgi for some
carefully chosen transposition g ∈ Sn. We can then repeat this process and we will prove
that it produces a partition W = Yt with the desired property after finitely many iterations.

We start by inspecting the partition Y constructed above. Fix an element x ∈ H1 ∩HY

and consider the image of Q1 under x.
First assume Qx1 = Q1. Here P x1 = P1 and P x2 = P2 since a2 > 3, whence αx = α and Qx2

has colour sequence (c1, ci, . . . , ci) for some i > 2. Then by the construction of Y , it follows
that Qx2 = Q2 and thus βx = β. Similarly, if Qx1 = Q2 then P x1 = P1 and αx = β, which in
turn implies that Qx2 = Q1 and βx = α.

So if Qx1 ∈ {Q1, Q2} for all x ∈ H1 ∩HY , then H1 ∩HY fixes {α, β} and we are done. So
let us assume there exists an element x ∈ H1 ∩HY such that Qx1 = Qa for some a > 3. Now
Qx1 has colour sequence (ci, cj , . . . , cj), where i 6= j and i > 2. More precisely, χ(αx) = ci and
therefore χ(βx) = ci since α and β are in the same part of X1. It follows that Qx2 has colour
sequence (ci, c`, . . . , c`) for some ` 6= i, and we note that ` 6= j since P x2 6= P x3 . Fix γ1 ∈ Qx1
and δ1 ∈ Qx2 such that χ(γ1) = cj and χ(δ1) = c`, and let g1 ∈ Sn be the transposition
(γ1, δ1). Note that the parts of Y containing γ1 and δ1 are both colour-equivalent to Q1.
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At this point, we now switch to the a2-partition Z = Y1 = Y g1 , with parts R` = Qg1` for
1 6 ` 6 m. Let HZ be the stabiliser of Z in G and let x ∈ H1 ∩HZ . Notice that R1 = Q1

and R2 = Q2 since γ1, δ1 6∈ Q1 ∪Q2.
By arguing as above, we deduce that either Rx1 = R1 and αx = α, or Rx1 = R2 and

αx = β, or Rx1 = Ra for some a > 3. Let us assume that we are in the latter situation. Then
as above, we note that Rx1 has colour sequence (ci, cj , . . . , cj) for some i > 2 with i 6= j,
and it follows that Rx2 has colour sequence (ci, c`, . . . , c`) for some ` 6= i, j. We now choose
γ2 ∈ Rx1 and δ2 ∈ Rx2 such that χ(γ2) = cj and χ(δ2) = c`, and we construct the a2-partition
Y2 = Y g2

1 = Y g1g2 , where g2 = (γ2, δ2) ∈ Sn.
We can now repeat this process until after t steps we obtain an a2-partition W = Yt = Y g

of [n] containing the parts Q1 and Q2, where g = g1 · · · gt is a product of transpositions and
Qx1 ∈ {Q1, Q2} for all x ∈ H1 ∩HW . We claim that this process does indeed produce such a
partition after finitely many iterations. To see this, first observe that if a ∈ {2, . . . , t}, then
the parts comprising the partition Ya = Y g1···ga are as follows:

Qg1···gaj =


Q
g1···ga−1

j if {γa, δa} 6∈ Qg1···ga−1

j

Q′ = (Q
g1···ga−1

j \ {γa}) ∪ {δa} if γa ∈ Qg1···ga−1

j

Q′′ = (Q
g1···ga−1

j \ {δa}) ∪ {γa} if δa ∈ Qg1···ga−1

j

(4)

In particular, notice that the parts of Ya−1 = Y g1···ga−1 containing γa and δa are both colour-
equivalent to Q1 = Q

g1···ga−1

1 , whereas Q′ and Q′′ are not. Therefore, the number of parts
that are colour-equivalent to Q1 strictly decreases with each iteration, and this justifies the
claim since our initial partition Y has only finitely many parts.

So we now have an a2-partitionW containing the partsQ1 andQ2 such thatQx1 ∈ {Q1, Q2}
for all x ∈ H1 ∩ HW . In particular, this implies that P x1 = P1 and αx ∈ {α, β} for all
x ∈ H1 ∩HW . So to complete the analysis of Case 1(b), it suffices to show that Q1 and Q2

are the only parts in W with colour sequence (c1, ci, . . . , ci) for some i > 2. Indeed, if this
property is satisfied then Qx2 ∈ {Q1, Q2} and βx ∈ {α, β} for all x ∈ H1 ∩HW , which means
that every element in H1 ∩HW fixes {α, β} setwise, as required.

So it just remains to justify the colour sequence claim, which we will do via induction
on t, recalling that W = Yt = Y g and g = g1 · · · gt as defined above. For the base case
t = 0 we have W = Y and we know that Y has the desired property by construction. Now
assume t > 1 and suppose that Q1 and Q2 are the only parts in Yt−1 with colour sequence
(c1, ci, . . . , ci) for some i > 2. From (4), we see that every part in Yt, other than Q′ and Q′′,
is also a part of Yt−1, so Q1 and Q2 are the only parts in Yt \ {Q′, Q′′} with colour sequence
(c1, ci, . . . , ci) for some i > 2. The claim now follows since it is clear to see that neither Q′

nor Q′′ is colour-equivalent to Q1 or Q2.
This completes the proof of the lemma in Case 1.

Case 2. n/2 > a1 > 3, a2 = 2

In order to complete the proof of the lemma in case (i), we may assume a2 = 2. As above,
set k = n/a1 and let P1, . . . , Pk be the parts of X1. For each i, it will be convenient to
write p(i−1)a1+1, . . . , pia1 for the points in Pi, to which we assign the colour ci as before. Let
χ : [n]→ {c1, . . . , ck} be the corresponding colour function.

Case 2(a). α and β are contained in the same part of X1

We may assume α, β ∈ P1, say α = p1 and β = p2. Consider the 2-partition Y of [n] with
parts

{p1, p2}, {p3, pn/2+2}, {p4, pn/2+3}, . . . , {pn/2+1, pn}

and let HY be the stabiliser of Y in G. Note that every part of Y , other than {p1, p2}, is of
the form {pi, pn/2−1+i} for some i > 3. Since the parts in X1 have size a1 < n/2, it follows
that pi and pn/2−1+i cannot both be contained in the same part of X1. Therefore, no part



26 MARINA ANAGNOSTOPOULOU-MERKOURI AND TIMOTHY C. BURNESS

of Y , other than {p1, p2}, is colour-equivalent to {α, β}, and by applying Lemma 3.12 we
deduce that {α, β} is fixed by H1 ∩HY .

Case 2(b). α and β are contained in different parts of X1

We may assume α ∈ P1 and β ∈ P2, say α = p1 and β = pa1+1. We now consider two
subcases, according to the parity of a1.

First assume a1 > 3 is odd, which means that k = n/a1 is even. Define a 2-partition Y of
[n] with the following parts

{p1, pa1+1}, {p2, p3}, . . . , {pa1−1, pa1}, {pa1+2, pa1+3}, . . . , {p2a1−1, p2a1},
{p2a1+1, p3a1+1}, . . . , {p3a1 , p4a1}, . . . , {pn−2a1+1, pn−a1+1}, . . . , {pn−a1 , pn}

Note that every part in the second row is of the form {pi, pa1+i} for some i > 2a1 + 1. We
claim that each x ∈ H1 ∩HY fixes {α, β} setwise.

First note that {α, β} cannot be mapped by x to any of the following parts

{p2, p3}, . . . , {pa1−1, pa1}, {pa1+2, pa1+3}, . . . , {p2a1−1, p2a1}

since the latter are all monochrome (see Lemma 3.12). Now assume {α, β}x = {pi, pa1+i} for
some i > 2a1 + 1. Then since α ∈ P1 and χ(αx) 6= c1, c2, it follows that P x1 = Pj for some
j > 3 and thus {p2, p3} ⊆ P1 must be mapped by x to some part of Y with colour sequence
(cj , cj). But no part of Y has such a colour sequence, so this possibility cannot arise and we
conclude that H1 ∩HY fixes {α, β} setwise.

To complete the argument in Case 2(b), we may assume a1 > 4 is even. Here we define a
2-partition Y with parts

{p1, p2a1+1}, {pa1+1, p2a1+2}, {p2, pa1+2}, . . . , {pa1 , p2a1}, {p2a1+3, p2a1+4}, . . . , {pn−1, pn}

and our goal is to show that H1 ∩HY fixes {α, β} setwise. Let x ∈ H1 ∩HY and recall that
α = p1 and β = pa1+1. We proceed by considering the images of the parts {p1, p2a1+1} and
{pa1+1, p2a1+2} under x.

First observe that {p1, p2a1+1} and {pa1+1, p2a1+2} are non-monochrome, so neither of
them can be moved by x to any of the monochrome parts {p2a1+3, p2a1+4}, . . . , {pn−1, pn}.

Next assume {p1, p2a1+1}x = {pi, pa1+i} for some i ∈ {2, . . . , a1}. This implies that the
point p2a1+1 ∈ P3 has colour c1 or c2, so P x3 ∈ {P1, P2} and thus {p2a1+3, p2a1+4}x has
colour sequence (cj , cj) for some j ∈ {1, 2}. However, there is no such part in Y , so this
situation does not arise. This means that {p1, p2a1+1}x 6= {pi, pa1+i} with i ∈ {2, . . . , a1},
and similarly we deduce that the same conclusion holds for {pa1+1, p2a1+2}x.

We have now shown that x either fixes the parts {p1, p2a1+1} and {pa1+1, p2a1+2}, or it
interchanges them.

We claim that if x fixes {p1, p2a1+1}, then it must fix p1 = α. Suppose otherwise, so αx =
p2a1+1. Since x ∈ H1, it follows that P x1 = P3, so the parts {p2, pa1+2}, . . . , {pa1 , p2a1} must
all be mapped by x to some part of Y with colour sequence (c3, ci) for some i 6= 3. However,
there is only one such part, namely {pa1+1, p2a1+2}, so we have reached a contradiction since
a1 > 3. Similarly, since x fixes {pa1+1, p2a1+2}, we deduce that βx = β.

Finally, let us assume x interchanges the parts {p1, p2a1+1} and {pa1+1, p2a1+2}. As in the
previous paragraph, we know that P x1 6= P3, so we must have αx = px1 = pa1+1 = β. This
implies that P x3 = P3 and therefore βx = α.

In conclusion, every element in H1 ∩HY fixes {α, β} setwise and this completes the proof
of the lemma in case (i).

Finally, let us assume (ii) holds, so a1 = n/2, a2 > 3 and α and β lie in different parts of
X1. If a2 = n/2 then the desired conclusion follows from Lemma 3.13, so we may assume
that a2 < n/2. As before, set m = n/a2 and note that m > 3.

Write P1 = {p1, . . . , pn/2} and P2 = {pn/2+1, . . . , pn} for the parts of X1 and assign the
colours c1 and c2, respectively. We may assume that α = p1 and β = pn/2+1. We now
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construct an a2-partition Y of [n] with parts Q1, . . . , Qm and stabiliser HY in G, where

Q1 = {p1, pn/2+2, . . . , pn/2+a2}, Q2 = {pn/2+1, p2, . . . , pa2}
and we define Q3, . . . , Qm by partitioning the remaining points in [n] into subsets of size
a2 with respect to the ordering pa2+1, . . . , pn/2, pn/2+a2+1, . . . , pn. To complete the proof, it
suffices to show that every element in H1 ∩HY fixes {α, β} setwise.

To see this, we first claim that Q2 is the only part of Y which is colour-equivalent to Q1

(other than Q1 itself). Seeking a contradiction, suppose that Qi is colour-equivalent to Q1

for some i > 3. From the construction of Y , this is only possible if n/2 ≡ 1 (mod a2), which
means that a2 divides n− 2 and n. But this is absurd since a2 > 3. This justifies the claim.
Similarly, Q1 is the only part of Y , other than Q2, which is colour-equivalent to Q2.

Let x ∈ H1 ∩ HY and suppose that Qx1 6= Q1. From the previous claim we see that
Qx1 = Q2 and Qx2 = Q1, which in turn implies that αx = β and βx = α since a2 > 3. Finally,
let us assume Qx1 = Q1. Then Qx2 = Q2 and we deduce that αx = α and βx = β. So in all
cases, we conclude that x fixes {α, β} setwise and the proof of the lemma is complete. �

Remark 3.16. Notice that in Lemma 3.15(ii) we assume the points α and β are contained
in different parts of X1. Indeed, the conclusion is sometimes false if we drop this condition
(for instance, it is straightforward to check that it fails to hold when a1 = a2 = n/2).

We need one more ingredient before we are in position to prove our main result on im-
primitive tuples. This is a special case of a more general result on base sizes for the action
of Sn and An on partitions (see [12, Proposition 2.4 and Remark 2.8]).

Proposition 3.17. Let G = Sn or An, where n > 8 is even, and let H = S2 o Sn/2 be the
stabiliser in Sn of a 2-partition of [n]. Then there exist x, y ∈ G such that H ∩Hx∩Hy = 1.

We are now ready to prove our main result on imprimitive tuples.

Proposition 3.18. Let n > 6 be a composite integer. Then

Rimprim(Sn) 6 n− 1, Rimprim(An) 6 n− 2.

Proof. Let G = Sn or An and let τ = (J1, . . . , Jk) be a tuple of imprimitive subgroups of G
with k = n− |Sn : G|. We need to show that τ is regular.

To do this, we may first embed each Ji in a maximal imprimitive subgroup Li = Sai o Sbi
of Sn, where n = aibi and ai > 2 for all i, and we may assume that

n/2 > a1 > a2 > · · · > an−2 > 2.

It suffices to show that there exist elements gi ∈ G such that(
k⋂
i=1

Lgii

)
∩G = 1. (5)

The result for n 6 7 can be checked with the aid of Magma, so we will assume n > 8. Our
goal is to prove the following claim:

Claim (?). There exist elements gi ∈ G such that
⋂n−2
i=1 L

gi
i 6 〈(n− 1, n)〉.

Indeed, suppose the claim is true. For G = An we have k = n− 2, whence (5) holds and
the result follows. Now assume G = Sn and let Xn−1 be any an−1-partition of [n] with the
property that n− 1 and n are contained in different parts. Then the stabiliser of Xn−1 in G
is of the form L

gn−1

n−1 for some gn−1 ∈ G and we deduce that (5) holds, which completes the
proof of the proposition.

So it just remains to establish Claim (?). In view of the transitivity of G on the set of
`-partitions of [n] for any `, it suffices to construct ai-partitions Xi of [n] for 1 6 i 6 n − 2
such that

H =

n−2⋂
i=1

Hi 6 〈(n− 1, n)〉,
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where Hi is the stabiliser of Xi in Sn. (In the course of the proof, we will define various
ai-partitions Xi and we will always write Hi for the stabiliser of Xi in Sn.)

First observe that if an−4 = 2, then each Li with i ∈ {n − 4, n − 3, n − 2} is of the form
S2 o Sn/2, in which case Proposition 3.17 implies that

Ln−4 ∩ Lxn−3 ∩ L
y
n−2 = 1

for some x, y ∈ G. So for the remainder of the proof, we may assume that an−4 > 3. We
now divide the argument into four cases.

Case 1. a1 < n/2

The argument in this case follows very easily from Lemma 3.15. Consider the a1-partition

X1 = {{1, 2, . . . , a1}, {a1 + 1, . . . , 2a1}, . . . , {n− a1 + 1, . . . , n}}.

Suppose an−3 > 3. By applying Lemma 3.15(i), we can define an a2-partition X2 such
that H1 ∩H2 fixes {1, 2}. The same lemma also implies that there is an a3-partition X3 so
that H2 ∩ H3 fixes {2, 3}. And by iteratively applying the same lemma, we can define an
ai-partition Xi such that Hi−1 ∩ Hi fixes {i − 1, i} for all 4 6 i 6 n − 2. It follows that

H =
⋂n−2
i=1 Hi fixes {1, . . . , n− 2} pointwise and thus H 6 〈(n− 1, n)〉 as required.

The case an−3 = 2 is very similar. By arguing as above, using an−4 > 3, we can define an
ai-partition Xi for 2 6 i 6 n− 3 such that

⋂n−3
i=1 Hi acts trivially on {1, . . . , n− 3}. We now

define the 2-partition

Xn−2 = {{1, n− 2}, {2, n− 1}, {3, n}, {5, 6}, . . . , {n− 4, n− 3}}.

Since
⋂n−3
i=1 Hi fixes 1, 2 and 3, it follows that

⋂n−2
i=1 Hi must also fix n − 2, n − 1 and n,

which forces
⋂n−2
i=1 Hi = 1.

Case 2. a1 = n/2 and a2 < n/2

Set

X1 = {{1, 3, . . . , n/2 + 1}, {2, n/2 + 2, . . . , n}}

and assume an−3 > 3 for now. Since the points 1 and 2 are contained in different parts of X1,
Lemma 3.15(ii) implies that we can find an a2-partition X2 such that H1 ∩H2 fixes {1, 2}.
We can then appeal to Lemma 3.15(i), as in Case 1, to iteratively construct an ai-partition

Xi for 3 6 i 6 n− 2 such that
⋂n−2
i=2 Hi fixes each of the subsets

{2, 3}, {3, 4}, . . . , {n− 3, n− 2}.

Consequently,
⋂n−2
i=1 Hi fixes {1, . . . , n− 2} pointwise and the desired result follows.

The case an−3 = 2 is very similar. Here we define X2, . . . , Xn−3 as above, so that
⋂n−3
i=1 Hi

fixes {1, . . . , n− 3} pointwise. By setting

Xn−2 = {{1, n− 2}, {2, n− 1}, {3, n}, {5, 6}, . . . , {n− 4, n− 3}}

as in Case 1, we deduce that
⋂n−2
i=1 Hi = 1.

Case 3. a1 = a2 = n/2 and a3 < n/2

First note that a3 > 3 since n > 8 and an−4 > 3. We define two (n/2)-partitions

X1 = {{1, 4, . . . , n/2 + 2}, {2, 3, n/2 + 3, . . . , n}}
X2 = {{2, 4, . . . , n/2 + 2}, {1, 3, n/2 + 3, . . . , n}}

and we note that H1∩H2 fixes {1, 2} by Lemma 3.13. In addition, since 2 and 3 are contained
in different parts of X2, Lemma 3.15(ii) allows us to construct an a3-partition X3 such that
H2 ∩H3 fixes {2, 3}.
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Suppose an−3 > 3. By applying Lemma 3.15(i), we can iteratively construct an ai-partition

Xi for 4 6 i 6 n−2 such that Hi−1∩Hi fixes {i−1, i} for all such i. It follows that
⋂n−2
i=1 Hi

fixes the 2-sets

{1, 2}, {2, 3}, . . . , {n− 3, n− 2}
and thus

⋂n−2
i=1 Hi 6 〈(n− 1, n)〉.

Now assume an−3 = 2. As above, we can appeal to Lemma 3.15(i) in order to construct
partitions X4, . . . , Xn−3 such that Hi−1 ∩Hi fixes {i− 1, i} for all i ∈ {4, . . . , n− 3}. Then⋂n−3
i=1 Hi fixes {1, . . . , n − 3} pointwise and we complete the argument by defining the 2-

partition

Xn−2 = {{1, n− 2}, {2, n− 1}, {3, n}, {5, 6}, . . . , {n− 4, n− 3}},
which forces

⋂n−2
i=1 Hi = 1.

Case 4. ai = n/2 for some i > 3

Let k ∈ {1, . . . , n−2} be maximal such that ak = n/2. By appealing to Lemma 3.14, there

exist (n/2)-partitions X1, . . . , Xk such that
⋂k
i=1Hi fixes {1, . . . , k} pointwise. If k = n− 2

we are done, so we may assume k 6 n− 3.
Suppose ak+1 = 2. Here k + 1 ∈ {n− 3, n− 2} and we define

Xk+1 = {{1, n− 3}, {2, n− 2}, {3, n− 1}, {4, n}, . . . , {n− 5, n− 4}}.

Since n > 8, we note that
⋂k
i=1Hi fixes 1, 2, 3 and 4, whence

⋂k+1
i=1 Hi = 1.

Now assume ak+1 > 3. Since k is fixed by
⋂k
i=1Hi, there must exist some j ∈ {1, . . . , k}

such that k and k + 1 lie in different parts of Xj (if not, then
⋂k
i=1Hi would contain the

transposition (k, k + 1)). Then Lemma 3.15(ii) implies that we can construct an ak+1-
partition Xk+1 such that Hj ∩ Hk+1 fixes {k, k + 1}. If k = n − 3, then the argument is
complete, so we may assume that k 6 n− 4 for the remainder of the proof.

First assume an−3 > 3. Here we use Lemma 3.15(i) to construct appropriate partitions
Xk+2, . . . , Xn−2 so that Hi−1 ∩ Hi fixes {i − 1, i} for all i ∈ {k + 2, . . . , n − 2}. It follows

that
⋂n−2
i=1 Hi fixes the 2-sets {k, k + 1}, . . . , {n− 3, n− 2} and thus

⋂n−2
i=1 Hi 6 〈(n− 1, n)〉,

as claimed.
Finally, suppose an−3 = 2. Since an−4 > 3, we can construct partitions Xk+2, . . . , Xn−3

via Lemma 3.15(i) so that Hi−1 ∩ Hi fixes {i − 1, i} for all i ∈ {k + 2, . . . , n − 3}. Then⋂n−3
i=1 Hi fixes {1, . . . , n− 3} pointwise and so by setting

Xn−2 = {{1, n− 2}, {2, n− 1}, {3, n}, {5, 6}, . . . , {n− 4, n− 3}}

we conclude that
⋂n−2
i=1 Hi = 1.

This completes the proof of Claim (?) and the result follows. �

3.2.3. Proof of Theorem 1. We are now ready to complete the proof of Theorem 1 by showing
that R(Sn) = n− 1 and R(An) = n− 2 as in part (i). To do this, we will bring together our
earlier work in Sections 3.1, 3.2.1 and 3.2.2; the key ingredient is the following theorem.

Theorem 3.19. Let G = Sn or An with n > 13, and let τ = (H1, . . . ,Hn−2) be a core-free
tuple of subgroups of G. Then there exist elements gi ∈ G and α, β ∈ [n] such that

n−2⋂
i=1

Hgi
i 6 〈(α, β)〉.

Proof. In view of Lemma 2.9, we may assume that Hi ∈M(G) for all i.
Suppose H1 and H2 both act primitively on {1, . . . , n}. Since n > 13, Theorem 1(ii)

implies that Rprim(Sn) = 2 and thus H1 ∩ Hg2
2 = 1 for some g2 ∈ G. Therefore, for the

remainder, we may assume that there is at most one primitive subgroup in τ . By reordering
the subgroups, if necessary, we may also assume that if Hi is intransitive, Hj is imprimitive
and Hk is primitive, then i < j and k = n− 2.
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Set σ = (a, b, c), where a, b and c are the number of intransitive, imprimitive and primitive
subgroups in τ , respectively. Then the possibilities for σ are as follows, where k > 1:

(n− 2, 0, 0), (0, n− 2, 0), (n− 3, 0, 1), (0, n− 3, 1), (k, n− k − 2, 0), (k, n− k − 3, 1).

We now consider each possibility in turn.

Case 1. σ = (n− 2, 0, 0) or (0, n− 2, 0)

First assume σ = (n−2, 0, 0). Here τ is an intransitive tuple and this case was handled in
the proof of Proposition 3.10 (see (2)). Similarly, τ is an imprimitive tuple if σ = (0, n−2, 0)
and we can appeal to Claim (?) in the proof of Proposition 3.18.

Case 2. σ = (n− 3, 0, 1) or (0, n− 3, 1)

Next assume σ = (n − 3, 0, 1), so Hn−2 is primitive and we have Hi = (Sai × Sn−ai) ∩G
for 1 6 i 6 n − 3, where 1 6 ai 6 n/2 and we may assume that a1 6 a2 6 · · · 6 an−3.
For i ∈ {1, . . . , n − 3}, we define the specific ai-sets Xi in (1) (see the proof of Lemma 3.9)
and we write Li for the stabiliser of Xi in G. Then Li = Hgi

i for some gi ∈ G and Lemma

3.9 implies that
⋂n−3
i=1 Li fixes {1, . . . , n− 4} pointwise. If n > 40, then the lower bound on

µ(Hn−2) in Theorem 3.3 implies that supp(x) > 8 for every nontrivial element x ∈ Hn−2,
and with the aid of Magma it is easy to check that the same conclusion holds for all n in
the range 13 6 n < 40. This immediately implies that(

n−3⋂
i=1

Li

)
∩Hn−2 = 1

and the result follows.
A very similar argument applies when σ = (0, n − 3, 1). Here Hi = (Sai o Sbi) ∩ G for

i ∈ {1, . . . , n− 3}, where n = aibi and ai, bi > 2. We may assume that a1 > a2 > · · · > an−3.
By arguing as in the proof of Proposition 3.18, we can construct an ai-partition Xi for
i ∈ {1, . . . , n − 3} with stabiliser Li in G such that

⋂n−3
i=1 Li fixes {1, . . . , n − 3} pointwise.

We now complete the argument as above, appealing to the fact that supp(x) > 8 for all
1 6= x ∈ Hn−2.

Case 3. σ = (k, n− k − 2, 0)

Here k ∈ {1, . . . , n− 3} and recall that we arrange the component subgroups of τ so that
for i 6 k we have Hi = (Sai × Sn−ai) ∩ G with ai 6 n/2, and Hi = (Sbi o Sci) ∩ G for
i > k, where n = bici and bi > 2. In addition, we may assume that a1 6 a2 6 · · · 6 ak and
bk+1 > bk+2 > · · · > bn−2.

We start by defining the sets X1, . . . , Xk as in (1) and we write Li for the stabiliser of
Xi in G. Then for each i ∈ {k + 1, . . . , n − 2} we need to construct a bi-partition Yi with

stabiliser Li such that
⋂n−2
i=1 Li 6 〈(α, β)〉 for some α, β ∈ [n]. To do this, we will handle the

special case k ∈ {n− 4, n− 3} separately.

Case 3(a). k ∈ {n− 4, n− 3}
First assume k = n−3 and recall that m = max{α : α ∈ Xk}, so m ∈ {n−3, n−2, n−1}.

Set L =
⋂n−3
i=1 Li. Then by applying Lemma 3.9 we deduce that either L 6 Sym(X) with

X = {n−3, n−2, n−1} or {n−2, n−1, n}, or L 6 Sym(X)×Sym(Y ) with X = {n−3, n−2}
and Y = {n− 1, n}.

Suppose L 6 Sym(X) with X = {n− 3, n− 2, n− 1} and let Xn−2 be a bn−2-partition of
[n] such that the part P containing n− 1 does not contain n− 2 nor n− 3. Let Ln−2 be the
stabiliser of Xn−2 in G. Then L fixes every point in P , with the possible exception of n− 1,
so
⋂n−2
i=1 Li fixes {1, . . . , n − 4, n − 1, n} pointwise and so it is contained in 〈(n − 3, n − 2)〉.

An entirely similar argument applies if L 6 Sym(X) with X = {n − 2, n − 1, n}, so let us
assume L 6 Sym(X)×Sym(Y ) with X = {n−3, n−2} and Y = {n−1, n}. Here we choose
a bn−2-partition Xn−2 so that the part containing n does not intersect {n− 3, n− 2, n− 1}.
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If Ln−2 denotes the stabiliser of Xn−2, then by arguing as above, we deduce that
⋂n−2
i=1 Li

fixes n, so it must also fix n− 1 and it is therefore contained in 〈(n− 3, n− 2)〉.
A very similar argument applies when k = n− 4. Set L =

⋂n−4
i=1 Li, so Lemma 3.9 implies

that either L 6 Sym(X) with X = {n− 4, n− 3, n− 2, n− 1} or {n− 3, n− 2, n− 1, n}, or
L 6 Sym(X)×Sym(Y ) with X = {n−4, n−3, n−2} and Y = {n−1, n}, or X = {n−4, n−3}
and Y = {n− 2, n− 1, n}.

Suppose L 6 Sym(X) with X = {n−4, n−3, n−2, n−1}. Choose a bn−3-partition Xn−3

with stabiliser Ln−3 such that the part containing n−1 does not intersect {n−4, n−3, n−2}.
Then by arguing as above, we deduce that

⋂n−3
i=1 Li fixes n − 1 and is therefore contained

in Sym(Y ) for Y = {n − 4, n − 3, n − 2}. We can now complete the argument as in the
case k = n − 3. Similarly, if L 6 Sym(X) × Sym(Y ) with X = {n − 4, n − 3, n − 2} and
Y = {n− 1, n}, then we define a bn−3-partition Xn−3 so that the part containing n does not

meet {n− 4, n− 3, n− 2, n− 1}. Then
⋂n−3
i=1 Li fixes n and is therefore contained in Sym(Z)

for Z = {n− 4, n− 3, n− 2}. By choosing a bn−2-partition Xn−2 so that the part containing

n − 2 does not contain n − 4 nor n − 3, we conclude that
⋂n−2
i=1 Li 6 〈(n − 4, n − 3)〉, as

required.
The other two possibilities (with k = n− 4) are entirely similar and we omit the details.

Case 3(b). k 6 n− 5

Now assume k 6 n − 5. Set L =
⋂k
i=1 Li and note that L fixes {1, . . . , k − 1} pointwise

by Lemma 3.9. In addition, the same lemma implies that k and n are contained in distinct
L-orbits. Therefore, it suffices to construct appropriate partitions Xk+1, . . . , Xn−2 of [n] with

stabilisers Lk+1, . . . , Ln−2 such that
⋂n−2
i=k+1 Li fixes {k + 1, . . . , n − 2} pointwise. Indeed,

this will imply that
⋂n−2
i=1 Li 6 〈g〉, where g = (k, n− 1) or (n− 1, n).

Suppose bn−4 = 2, in which case Hi = (S2 oSn/2)∩G for all i ∈ {n− 4, n− 3, n− 2}. Here

Proposition 3.17 implies that there exists gi ∈ G such that
⋂n−2
i=n−4H

gi
i = 1. Therefore, for

the remainder of Case 3(b) we may assume that bn−4 > 3.
Let us first consider the special case where bi ∈ {2, n/2} for all i, in which case n > 14 is

even. Here we have bk+1 = bn−4 = n/2 and we let j ∈ {n− 4, n− 3, n− 2} be maximal such
that bj = n/2. We now consider several separate cases.

Suppose j 6 k+ 2. Since j > n− 4, this means that k ∈ {n− 6, n− 5} and thus bn−2 = 2.
Since n/2 > 7, we can define a 2-partition Xn−2 with the property that all of the points
k, . . . , n lie in different parts. For ` ∈ {k, . . . , n}, write P` for the part of Xn−2 containing
`. Since P` contains at least one point fixed by L, it follows that L ∩ Ln−2 fixes P`, where
Ln−2 is the stabiliser of Xn−2. In turn, this implies that L ∩Ln−2 fixes every ` ∈ {k, . . . , n}
and thus L ∩ Ln−2 = 1.

Now assume j > k + 3. Here Lemma 3.14 implies that we can construct a bi-partition Xi

for i ∈ {k + 1, . . . , j} such that
⋂j
i=k+1 Li fixes {k + 1, . . . , j} pointwise. If j = n − 2, then

we are done, so let us assume j = n− 4 or n− 3. Note that bn−2 = 2, so n > 14 is even.

Since j + 1 > n− 3, we deduce that
⋂j
i=1 Li 6 Sym({k, n− 3, . . . , n}). Since n/2 > 7, we

can construct a 2-partition Xj+1 such that each point ` ∈ {k, n− 3, . . . , n} is contained in a

distinct part P`. If Lj+1 denotes the stabiliser of Xj+1, then it is easy to see that
⋂j+1
i=1 Li = 1

and the result follows.
To complete the argument in Case 3(b), we may assume br 6∈ {2, n/2} for some r. If

bn−2 > 3, then we can proceed as in the proof of Proposition 3.18 to produce a bi-partition
Xi for each i ∈ {k+1, . . . , n−2} such that

⋂n−2
i=k+1 Li fixes {k+1, . . . , n−2} pointwise, where

Li is the stabiliser of Xi. Finally, suppose bn−2 = 2 and let j ∈ {n−3, n−2} be minimal such
that bj = 2. As in the proof of Proposition 3.18, we can construct a bi-partition Xi for all

i ∈ {k+1, . . . , j} such that
⋂j
i=k+1 Li fixes {k+1, . . . , j} pointwise, whence the desired result

follows if j = n−2. On the other hand, if j = n−3 then
⋂j
i=1 Li 6 Sym({k, n−2, n−1, n})
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and we obtain
⋂n−2
i=1 Li = 1 by taking Ln−2 to be the stabiliser of a 2-partition of [n] such

that the points k, n− 2, n− 1 and n all lie in distinct parts.

Case 4. σ = (k, n− k − 3, 1)

In order to complete the proof of the theorem, we may assume σ = (k, n−k−3, 1) for some
k ∈ {1, . . . , n − 4}. As before, we order the subgroups in τ so that Hi = (Sai × Sn−ai) ∩ G
for i 6 k and Hi = (Sbi o Sci) ∩ G for i ∈ {k + 1, . . . , n − 3}, where ai 6 n/2, n = bici
and bi > 2. In addition, Hn−2 is primitive and we assume that a1 6 a2 6 · · · 6 ak and
bk+1 > bk+2 > · · · > bn−3. As noted in Case 2, we have supp(x) > 8 for all 1 6= x ∈ Hn−2.
We define the sets X1, . . . , Xk as in the statement of Lemma 3.9, with stabiliser Li, and we

set L =
⋂k
i=1 Li. By the lemma, we note that L fixes {1, . . . , k − 1} pointwise.

If k > n− 6 then Lemma 3.9 implies that every element in L =
⋂k
i=1 Li moves at most 7

points in [n], whence L∩Hn−2 = 1 and the result follows. Now assume k 6 n−7. Here we can
proceed as in Case 2 to produce a bi-partition Xi with stabiliser Li for i ∈ {k+ 1, . . . , n− 3}
such that

⋂n−3
i=k+1 Li fixes {k + 1, . . . , n− 3} pointwise. Therefore, every element in

⋂n−3
i=1 Li

moves at most 4 points and we conclude that(
n−3⋂
i=1

Li

)
∩Hn−2 = 1

as required. �

Remark 3.20. One can check that the conclusion to Theorem 3.19 also holds for G = Sn or
An with 5 6 n 6 12, with the exception of G = S6. Indeed, if G = S6 and τ = (H,H,H,H),
where H = S5 is primitive, then τ is non-regular and H does not contain a transposition.

Finally, we are now in a position to complete the proof of Theorem 1.

Proof of Theorem 1. It just remains to prove that R(Sn) 6 n− 1 and R(An) 6 n− 2. The
groups with n 6 12 can be handled using Magma (see [1] for the details), so we may assume
n > 13. For G = An, the result now follows immediately from Theorem 3.19, so for the
remainder we will assume G = Sn. Let τ = (H1, . . . ,Hn−1) be a core-free tuple of subgroups

of G. By Theorem 3.19, there exists gi ∈ G such that
⋂n−2
i=1 H

gi
i 6 〈(α, β)〉 for some α, β ∈ [n],

so we just need to show that

H
gn−1

n−1 ∩ 〈(α, β)〉 = 1

for some gn−1 ∈ G. This is clear if Hn−1 is primitive (no core-free primitive subgroup of G
contains a transposition). And if Hn−1 6 Sk × Sn−k is intransitive, then the result follows
because we can always find a k-element subset of [n] that contains α, but not β. Similarly,
if Hn−1 6 Sa o Sb is imprimitive with a, b > 2, then the result follows because we can find
an a-partition of [n] with the property that α and β are contained in distinct parts. This
completes the proof of the theorem. �

With the proof of Theorem 1 in hand, we conclude this section by briefly considering the
problem of determining all the non-regular (n− 2)-tuples for Sn, and the analogous problem
for An with respect to (n − 3)-tuples. Clearly, if G = Sn and H = Sn−1 is the stabiliser of
a point in {1, . . . , n}, then the maximal intransitive (n− 2)-tuple (H, . . . ,H) is non-regular.
In the following result, we determine all the maximal intransitive (n− 2)-tuples for Sn.

Proposition 3.21. Let G = Sn with n > 5 and let τ be a maximal intransitive (n−2)-tuple.
Then up to conjugacy and reordering, τ is non-regular if and only if

τ = (H, . . . ,H,K),

where H = Sn−1 and K = Sk × Sn−k for some 1 6 k 6 n/2.
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Proof. First assume τ = (H1, . . . ,Hn−2) has the given form, so Hn−2 = Sk × Sn−k and
Hi = Sn−1 for all 1 6 i 6 n− 3. Then for any gi ∈ G we observe that

n−3⋂
i=1

Hgi
i = Sym(X),

where X is a subset of [n] = {1, . . . , n} with |X| > 3. And so if Y is any subset of [n] of

size k, then either |X ∩ Y | > 2 or |X ∩ ([n] \ Y )| > 2 and thus
⋂n−2
i=1 H

gi
i always contains a

transposition. In particular, τ is non-regular.
To complete the proof, suppose σ = (L1, . . . , Ln−2) is a maximal intransitive (n−2)-tuple,

where Li = Sai × Sn−ai and

1 6 a1 6 a2 6 · · · 6 an−2 6 n/2

with an−3 > 2. We need to show that σ is regular. To do this, define the ai-sets X1, . . . , Xn−4

as in the statement of Lemma 3.9, with respective stabilisers Ki. Set H =
⋂n−4
i=1 Ki. Then

Lemma 3.9 implies that either

(a) H 6 Sym(X) with X = {n− 4, n− 3, n− 2, n− 1} or {n− 3, n− 2, n− 1, n};
(b) H 6 Sym(X) × Sym(Y ) with X = {n − 4, n − 3, n − 2} and Y = {n − 1, n}, or

X = {n− 4, n− 3} and Y = {n− 2, n− 1, n}.
We now define the sets

Xn−3 = {n− 3, n− 2, 1, 2, . . . , an−3 − 2}, Xn−2 = {n− 2, n− 1, 1, 2, . . . , an−2 − 2}

with stabilisers Kn−3 and Kn−2 respectively (so if an−3 = 2, then Xn−3 = {n − 3, n − 2}).
Then

⋂n−2
i=1 Ki = 1 and we are done. �

Remark 3.22. For G = An, an entirely similar argument shows that the maximal intransi-
tive (n− 3)-tuples for G are precisely those of the form (H, . . . ,H,K), up to conjugacy and
reordering, where H = An−1 and K = (Sk × Sn−k) ∩G for some 1 6 k 6 n/2.

Remark 3.23. It would be interesting to extend Proposition 3.21 by giving a complete
classification of all the non-regular (n − 2)-tuples for G = Sn. Notice that if n = 2m is
even, H = Sn−1 and K = Sm o S2, then it is easy to see that (H, . . . ,H,K) is a non-regular
(n− 2)-tuple with a transitive component subgroup. And by replacing K by the index-two
subgroup L = Sm × Sm, we obtain a non-regular (n − 2)-tuple containing a non-maximal
subgroup. For n > 5 odd, we are not aware of any non-regular (n− 2)-tuples for G that are
not of the form described in Proposition 3.21.

4. Sporadic groups

For the remainder of the paper, we assume G is an almost simple sporadic group with
socle T and our aim is to prove Theorem 2. We begin in Section 4.1 by computing the exact
regularity number of G, which establishes part (i) of Theorem 2. We then prove part (ii)
in Section 4.2, where we show that every soluble triple of subgroups of G is regular. We
apply computational methods throughout this section, working extensively with Magma [5]
and GAP [28]. We refer the reader to Section 2.4 for a brief overview of some of the main
methods, which complements the more detailed discussion in the supplementary file [1].

As explained in Wilson’s survey article [50], the maximal subgroups of G are known up
to conjugacy, apart from the problem of determining the status of a handful of candidate
almost simple maximal subgroups of the Monster M (and the latter ambiguity appears to
have been recently resolved by Dietrich et al. in [25]). In addition, the character table of G
is available in the GAP Character Table Library [6], together with the character tables of all
the maximal subgroups of G and the associated fusion maps on conjugacy classes (excluding
G = M). A great deal of useful information about the sporadic groups is available in the
Web Atlas [49].
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4.1. The regularity number. Let G be an almost simple sporadic group with socle T , so
G = T or T.2. Recall that we defineM(G) to be the set of core-free subgroups of G that are
maximal in either G or T (so if G = T , then M(G) is just the set of maximal subgroups of
G). As noted in Remark 2.10, if G = T.2 and H < T is maximal with NG(H) 6= H, then H
is contained in a core-free maximal subgroup of G. Therefore, if we define M′(G) = A ∪ B,
where

A = {core-free maximal subgroups of G}
B = {maximal subgroups H of T with NG(H) = H}

then

B(G) = max{b(G,H) : H ∈M′(G)}
and R(G) is the smallest positive integer k such that every k-tuple of subgroups in M′(G)
is regular. For the remainder of this section, it will be convenient to work with the following
definition (note that if G = T , then every large tuple is maximal, and vice versa).

Definition 4.1. A k-tuple of subgroups (H1, . . . ,Hk) of G is large if each component sub-
group Hi is contained in the set M′(G) defined above.

Recall that B(G) > 3 by Proposition 2.7. We begin by recording the exact base number,
which is easily obtained from [16].

Proposition 4.2. Let G be an almost simple sporadic group with socle T . Then the base
number B(G) is recorded in Table 3.

Proof. If G = T , then we can immediately read off B(G) from the main theorem of [16], so
let us assume G = T.2 and H ∈M′(G). If H is maximal in G, then b(G,H) is computed in
[16], so we may assume that H < T is maximal and NG(H) = H. Here b(T,H) is recorded
in [16], which is clearly an upper bound for b(G,H).

By inspecting [16], we see that G = M12.2 is the only group that arises where B(T ) is
greater than the maximal value of b(G,H) over all core-free maximal subgroups H of G. Here
it is easy to check that if H = M11 < T , then b(G,H) = 5 and we deduce that B(G) = 5. �

Now let us turn to the regularity number of G. Our main result is the following, which
establishes part (i) of Theorem 2. See Remark 4.5 below for comments on the information
recorded in the final column of Table 3. In (ii), we write B and M for the Baby Monster and
Monster groups, respectively.

Proposition 4.3. Let G be an almost simple sporadic group with socle T .

(i) The regularity number R(G) = k is recorded in Table 3.

(ii) For G 6= B,M, a complete list of the large non-regular (k − 1)-tuples, up to ordering
and conjugacy, is presented in the final column of Table 3.

As an immediate corollary, we obtain a strong form of Conjecture 1(ii) for almost simple
sporadic groups.

Corollary 4.4. We have R(G) 6 7, with equality if and only if G = M24. Moreover, if
G = M24 then a 6-tuple is non-regular if and only if every component subgroup is conjugate
to M23.

Remark 4.5. Suppose G 6= B,M and R(G) = k. In the final column of Table 3 we list all
the large non-regular (k− 1)-tuples for G, up to conjugacy and ordering. To do this, we use
the notation (a1, . . . , ak−1) ∈ Nk−1 to encode each tuple τ = (H1, . . . ,Hk−1), noting that the
corresponding subgroups are recorded in Tables 4 and 5. So for example, if G = J3.2, then
(H1, H2) = (L2(17) × 2, (3 ×M10):2) is the non-regular pair labelled (3, 4) in Table 3. We
refer the reader to Remark 4.11 for comments on the groups B and M we are excluding here.
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G B(G) R(G)

M11 4 5 (1, 1, 2, 2), (1, 2, 2, 2)

M12 5 6 (1, 1, 1, 2, 2), (1, 1, 2, 2, 2)
M12.2 5 5 (1, 1, 1, 1), (1, 1, 1, 2)

M22 5 5 (1, 1, 1, 1), (1, 1, 1, 2)

M22.2 5 5 (1, 1, 1, i), (1, 1, 2, 2), (1, 1, 2, 4), 1 6 i 6 5
M23 6 6 (1, 1, 1, 1, 1)

M24 7 7 (1, 1, 1, 1, 1, 1)

J1 3 3 (1, 1), (1, 2)
J2 4 4 (1, 1, 1)

J2.2 4 4 (1, 1, i), 1 6 i 6 4

J3 3 3 (1, i), 1 6 i 6 8
J3.2 3 3 (1, i), (3, 4), (3, 6), (4, 4), 1 6 i 6 7

HS 4 4 (1, 1, 1, i), (1, 1, 2, 2), (1, 1, 3, 3), 1 6 i 6 3
HS.2 5 5 (1, 1, 1, i), 1 6 i 6 4

McL 5 5 (1, 1, 1, 1)

McL.2 5 5 (1, 1, 1, 1)
He 4 4 (1, 1, 1), (1, 1, 2)

He.2 4 4 (1, 1, 1), (1, 1, 2)

Suz 4 4 (1, 1, i), (1, 2, 2), (1, 2, 3), (1, 3, 3), 1 6 i 6 7
Suz.2 4 4 (1, 1, i), (1, 2, 2), (1, 2, 3), (1, 3, 3), 1 6 i 6 9

O′N 3 3 (1, i1), (2, i2), j 6 ij 6 4

O′N.2 3 3 (1, i), (2, 3), (3, 3), 1 6 i 6 3
HN 3 3 (1, i1), (2, i2), (3, 3), j 6 ij 6 12

HN.2 3 3 (1, i), (2, j), (2, 12), (3, 3), (3, 4), 1 6 i 6 12, 2 6 j 6 10

Co3 6 6 (1, 1, 1, 1, 1)
Co2 6 6 (1, 1, 1, 1, 1)

Co1 5 5 (1, 1, 1, 1)
Ru 4 4 (1, 1, 1)

Fi22 5 5 (1, 1, 1, 1), (1, 1, 1, 2)

Fi22.2 6 6 (1, 1, 1, 1, 1)
Fi23 5 5 (1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 2, 2), (1, 2, 2, 2)

Fi′24 5 5 (1, 1, 1, 1), (1, 1, 1, 2)

Fi24 5 5 (1, 1, 1, i), 1 6 i 6 3
J4 3 3 (1, i), (2, j), (3, 3), 1 6 i 6 5, 2 6 j 6 4

Ly 3 3 (1, i1), (2, i2), j 6 ij 6 6

Th 3 3 (1, i), (2, 2), 1 6 i 6 4
B 4 4 See Remark 4.11

M 3 3 See Remark 4.11

Table 3. The base and regularity numbers for sporadic groups

Let G be an almost simple sporadic group with socle T . Our proof of Proposition 4.3 is
entirely computational, working with Magma (version 2.28-4) [5] and GAP (version 4.11.1)
[28]. In particular, the information available in the GAP Character Table Library [6] is
essential for handling some of the larger groups. We begin by dividing the 26 possibilities
for T into the following four collections, and we will handle each one in turn:

A1 = {M11,M12,M22,M23,M24, J1, J2, J3,HS,McL,He, Suz,O′N,Ru,Co3,Co2,Fi22,Fi23}
A2 = {Co1,HN,Fi′24}
A3 = {J4,Ly,Th}
A4 = {B,M}

Lemma 4.6. The conclusion to Proposition 4.3 holds for the groups with T ∈ A1.

Proof. We begin by reading off B(G) = b from Proposition 4.2 and we fix a large (b−1)-tuple
σ = (H1, . . . ,Hb−1). As noted in Lemma 2.6, if

b−1∏
i=1

|Hi| > |G|b−2,



36 MARINA ANAGNOSTOPOULOU-MERKOURI AND TIMOTHY C. BURNESS

1 2 3 4 5 6

M11 M10 L2(11)
M12 M11 M11

M12.2 M11 A6.22

M22 L3(4) 24:A6

M22.2 L3(4).2 24:S6 25:S5 23:L3(2)× 2 A6.22

M23 M22

M24 M23

J1 L2(11) 19:6

J2 U3(3)
J2.2 U3(3):2 3.A6.22 21+4.S5 22+4:(3× S3).2

J3 L2(16):2 L2(19) L2(19) 24:(3×A5) L2(17) (3×A6).2

J3.2 L2(16):4 24:(3×A5).2 L2(17)× 2 (3×M10):2 32+1+2:8.2 21+4:S5

HS M22 U3(5):2 U3(5):2

HS.2 M22.2 L3(4):22 S8 × 2 U3(5):2

McL U4(3)

McL.2 U4(3):2

He Sp4(4):2 22.L3(4).S3

He.2 Sp4(4):4 22.L3(4).D12

Suz G2(4) 3.U4(3).2 U5(2) 21+6.U4(2) 35:M11 J2:2

Suz.2 G2(4):2 3.U4(3).22 U5(2):2 21+6.U4(2).2 35:(M11 × 2) J2:2× 2
O′N L3(7):2 L3(7):2 J1 4.L3(4):2

O′N.2 L3(7):2 71+2:(3×D16) J1 × 2

HN A12 2.HS.2 U3(8):3 21+8.(A5 ×A5).2 (D10 ×U3(5)).2 51+4.21+4.5.4
HN.2 S12 4.HS.2 U3(8):6 21+8.(A5 ×A5).2.2 5:4×U3(5) 51+4.21+4.5.4.2

Co3 McL.2

Co2 U6(2):2
Co1 Co2
Ru 2F4(2)
Fi22 2.U6(2) 210.M22

Fi22.2 2.U6(2).2

Fi23 2.Fi22 PΩ+
8 (3):S3

J4 211:M24 21+12.3.M22:2 210:L5(2) 23+12.(S5 × L3(2)) U3(11):2

Ly G2(5) 3.McL:2 53.L3(5) 2.A11 51+4.4S6 35:(2×M11)
Th 3D4(2):3 25.L5(2) 21+8.A9 U3(8):6

Fi′24 Fi23 2.Fi22.2

Fi24 Fi23 × 2 (2× 2.Fi22):2 S3 × PΩ+
8 (3):S3

Table 4. The subgroups recorded in Table 3, Part I

7 8 9 10 11 12

M12.2 S4 × S3 S5

J3 32+1+2:8 21+4:A5

J3.2 L2(19)
Suz 22+8:(A5 × S3)

Suz.2 24+6:3.S6 (A4 × L3(4):2):2 22+8:(S5 × S3)

HN 26.U4(2) (A6 ×A6).D8 23+2+6.(3× L3(2)) 52+1+2.4.A5 M12.2 M12.2
HN.2 26.U4(2).2 (S6 × S6).22 23+2+6.(3× L3(2)).2 52+1+2.4.A5.2 34:2.(S4 × S4).2 M12.2

Table 5. The subgroups recorded in Table 3, Part II

then G does not have a regular orbit on G/H1 × · · · ×G/Hb−1 and thus σ is non-regular, so
let us assume otherwise.

We use the Magma functions AutomorphismGroupSimpleGroup and MaximalSubgroups

to construct G and each Hi as subgroups of Sn, where n = m(G) is the minimal degree
of a faithful primitive permutation representation of G. We can then randomly search for
elements gi ∈ G such that

⋂
iH

gi
i = 1. If our search is successful after a specified number of

attempts, then σ is regular and we repeat for the next (b−1)-tuple in our list. In every case,
this process quickly produces a distinguished collection of large (b − 1)-tuples that require
closer inspection in order to determine their regularity status (of course, there has to be at
least one such tuple since B(G) = b).
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Let σ = (H1, . . . ,Hb−1) be a large tuple for which random search is inconclusive. Now σ
is regular if and only if H1 has a regular orbit on Y = G/H2×· · ·×G/Hb−1, and we can use
Magma to determine whether or not such an orbit exists. To do this, we first reorder the
subgroups in σ so that |H1| is minimal. We then use the function CosetAction to construct
G as a permutation group on each set Γi = G/Hi with 2 6 i 6 b−1 and we compute a set of
orbit representatives {α1, . . . , αm} for the action of H1 on Γ2, with corresponding stabilisers
Li = (H1)αi . If b = 3 then σ is regular if and only if at least one of these stabilisers is trivial.
And if b = 4, then we can repeat the process; for each i, we find a set of orbit representatives
for the action of Li on Γ3 and we determine if any of the corresponding stabilisers in Li are
trivial. And similarly for b > 5. In this way, we obtain the complete list of large non-regular
(b− 1)-tuples, up to ordering and conjugacy.

Next observe that a b-tuple (H1, . . . ,Hb−1, Hb) is non-regular only if (H1, . . . ,Hb−1) is
non-regular, so we can work through our list of non-regular (b − 1)-tuples, proceeding as
above, to determine whether or not there are any non-regular b-tuples.

For G 6= M11, M12, we find that there are no such tuples and we conclude that R(G) =
B(G) = b. In addition, the list of large non-regular (b − 1)-tuples is presented in the final
column of Table 3 (see Remark 4.5). However, large non-regular b-tuples do exist when
G = M11 or M12; it is easy to determine all such tuples, and it is also easy to check that
every (b+ 1)-tuple is regular. So in these two cases, we deduce that R(G) = B(G) + 1. �

Lemma 4.7. The conclusion to Proposition 4.3 holds for the groups with T ∈ A2.

Proof. First assume G = Co1, so B(G) = 5. Here it is possible to proceed as in Case 1, but
there is a more efficient way to handle the computation, which we can also implement in
some of the other remaining cases.

Let σ = (H1, . . . ,H4) be a maximal 4-tuple and define Q̂(G, σ) as in Lemma 2.1. Recall

that σ is regular if Q̂(G, σ) < 1. The character tables of G and each maximal subgroup Hi

are available in the GAP Character Table Library [6], together with the fusion map from
Hi-classes to G-classes. This allows us to compute

fpr(x,G/Hi) =
|xG ∩Hi|
|xG|

for every element x ∈ G, which in turn allows us to calculate Q̂(G, σ). In this way, we can

determine all the maximal 4-tuples σ with Q̂(G, σ) > 1, up to conjugacy and ordering. The
complete list is as follows:

(1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 1, 3), (1, 1, 1, 4), (1, 1, 1, 5), (1, 1, 1, 6),

corresponding to the labelling

1: Co2, 2: 3.Suz:2, 3: 211:M24, 4: Co3, 5: 21+8.Ω+
8 (2), 6: U6(2):S3

Suppose σ = (H1, . . . ,H4) is a maximal 4-tuple with Q̂(G, σ) > 1, where we have Hi = Co2

for 1 6 i 6 3. As before, we can use Magma to construct G and each component Hi as
subgroups of Sn (with n = |G : H1| = 98280) and we can use random search to show that
the tuples (1, 1, 1, j) with 2 6 j 6 6 are regular. By [16] we know that b(G,H1) = 5, so
(1, 1, 1, 1) is non-regular. Finally, for each representative H of a conjugacy class of maximal
subgroups of G, we define τ = (H1, . . . ,H4, H) with Hi = Co2 for all i and then using GAP

we find that Q̂(G, τ) < 1. This allows us to conclude that every maximal 5-tuple is regular
and thus R(G) = B(G) = 5.

We can handle the groups G = HN and HN.2 in a similar fashion. In both cases we

have B(G) = 3 and we can use GAP to determine all the large pairs σ with Q̂(G, σ) > 1.
This yields a short list of candidate non-regular pairs and it is straightforward to show that

Q̂(G, τ) < 1 for every large triple τ , whence R(G) = B(G) = 3.
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To complete the proof in these two cases, we inspect each large pair σ = (H1, H2) with

Q̂(G, σ) > 1. As before, if |H1||H2| > |G| then σ is non-regular. In order to handle the
remaining cases, we first use Magma to construct G, H1 and H2 as subgroups of Sn with
n = 1140000. In several cases, we can then use random search to find an element x ∈ G with
H1 ∩Hx

2 = 1, which allows us to conclude that σ is regular.
For example, if G = HN.2 then this approach reduces the problem to determining whether

or not the following pairs are regular:

(1, 11), (1, 12), (1, 13), (2, 10), (2, 11), (2, 12), (2, 13), (3, 4)

with respect to the corresponding subgroups:

1: S12, 2: 4.HS.2, 3: U3(8):6, 4: 21+8.(A5 ×A5).22

10: 52+1+2.4.A5.2, 11: 34:2.(S4 × S4).2, 12: M12.2, 13: 31+4:4.S5

Let Ki be the subgroup numbered i in this list. Since the given permutation representation
of G (of degree 1140000) corresponds to the action of G on the cosets of K1 = S12, it is easy
to show that K13 has a regular orbit on G/K1, but K11 and K12 do not. So (1, 13) is regular
and (1, 11), (1, 12) are non-regular. Similarly, using CosetAction we can show that K11 and
K12 have regular orbits on G/K2, but K10 and K13 do not. In the same way, we deduce
that K4 does not have a regular orbit on G/K3. Therefore, (2, 11) and (2, 12) are regular,
whereas (2, 10), (2, 13) and (3, 4) are non-regular. The case G = HN is very similar.

Next assume G = Fi′24, so B(G) = 5 and we claim that R(G) = 5. To see this, we first use

the GAP Character Table Library to identify all the maximal 4-tuples σ with Q̂(G, σ) > 1.
The tuples that arise are of the form (1, 1, 1, i) with 1 6 i 6 6, where the component
subgroups are labelled as follows:

1: Fi23, 2: 2.Fi22.2, 3: (3× PΩ+
8 (3).3).2, 4: Ω−10(2), 5: 37.Ω7(3), 6: 31+10:U5(2).2

Therefore, any non-regular maximal 5-tuple must be of the form

τ = (H1, H2, H3, H4, H5)

(up to conjugacy and ordering), where H1 = H2 = H3 = Fi23 and H4 is one of the six

subgroups listed above. Using GAP we find that Q̂(G, τ) > 1 if and only if H4 = H5 = Fi23,
which is regular since B(G) = 5. Therefore R(G) = B(G) = 5 and it just remains to
determine all the non-regular maximal 4-tuples.

To do this, we return to the above list of maximal 4-tuples σ with Q̂(G, σ) > 1, noting
that (1, 1, 1, 1) is non-regular by [16]. To handle the remaining possibilities, we first use
Magma to construct G as a permutation group of degree 306936, which corresponds to the
action of G on the cosets of Fi23. The command MaximalSubgroups is not effective, but
we can construct representatives of the relevant conjugacy classes of maximal subgroups
using explicit generators in the Web Atlas [49], which are given as words in the standard
generators for G (more precisely, we work in L = G.2 = Fi24 and we use explicit generators
to construct NL(H), intersecting with G to get H). Then random search shows that each
4-tuple (1, 1, 1, i) with 3 6 i 6 6 is regular.

Finally, suppose σ = (H,H,H,K), where H = Fi23 and K = 2.Fi22.2. Here we can work
directly with the permutation representation of G of degree 306936, which corresponds to
the action of G on Γ = G/H. It is straightforward to compute the order of every 3-point
stabiliser with respect to the action of K on Γ and we find that every such stabiliser is
nontrivial. This immediately implies that σ is non-regular and this completes the proof for
G = Fi′24. The case G = Fi24 is entirely similar. �

Next we turn to the groups in A3. We begin by establishing the non-regularity of a certain
collection of maximal pairs.

Lemma 4.8. All of the maximal pairs (H,K) in Table 6 are non-regular.
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G H K |G : H|
Ly G2(5) 35:(2×M11) 8835156

3.McL.2 51+4:4S6 9606125
3.McL.2 35:(2×M11) 9606125

Th 3D4(2):3 21+8.A9 143127000
3D4(2):3 U3(8):6 143127000

J4 211.M24 U3(11).2 173067389

21+12.3.M22.2 23+12.(S5 × L3(2)) 3980549947

Table 6. The non-regular pairs in Lemma 4.8

Proof. First observe that |H||K| < |G| in every case, so we cannot appeal to Lemma 2.6.
Using Magma, we can construct G, H and K as subgroups of the matrix group GLd(p),
where (d, p) = (111, 5), (248, 2) and (112, 2) for G = Ly, Th and J4, respectively. This allows
us to randomly search for an element g ∈ G with H ∩Kg = 1, but this search is inconclusive
in every case. In addition, the size of |G : H| is prohibitive and we are not able to use
CosetAction to construct G as a permutation group on G/H, as we have done in previous
cases.

We thank Derek Holt (personal communication) for resolving the first 6 cases in Table 6.
To illustrate his approach, let us assume G = Ly, H = G2(5) and K = 35:(2 ×M11), as in
the first row of the table, and consider the irreducible module V = F111

5 for G. Holt proceeds
by identifying an irreducible 7-dimensional submodule W for H, which he then uses, via the
function OrbitImage, to construct G as a permutation group on G/H. Then as before, he
shows that (H,K) is non-regular by determining all of the K-orbits on G/H. The other 5
cases are handled in a similar fashion.

Finally, suppose G = J4 and τ = (H,K), where

H = 21+12.3.M22.2, K = 23+12.(S5 × L3(2)).

This case is more difficult since the index |G : H| = 3980549947 is very large. We are
grateful to Jürgen Müller (personal communication) for resolving this case (which was later
independently verified by Holt). Müller did this by using the GAP package Orb [44] to
establish the existence of 54 non-regular K-orbits on Γ = G/H (via random search), labelled
Γ1, . . . ,Γ54, with the property that

|G : H| −
54∑
i=1

|Γi| = 3980549947− 3980074560 < |K|.

This immediately implies that K has no regular orbit on G/H, so (H,K) is non-regular and
the proof of the lemma is complete. �

Lemma 4.9. The conclusion to Proposition 4.3 holds for the groups with T ∈ A3.

Proof. Here G = Ly, Th or J4, with B(G) = 3 for each group. As in previous cases, we can

use GAP to show that Q̂(G, τ) < 1 for every maximal triple τ , whence R(G) = B(G) = 3
and it just remains to determine all the non-regular maximal pairs.

All three cases are very similar, so for brevity we will assume G = Th. As usual, we begin

by using GAP to find all the maximal pairs σ = (H1, H2) with Q̂(G, σ) > 1, which yields the
following list:

(1, i), (2, 2), (2, 3), (3, 3)

with 1 6 i 6 5. Here the relevant subgroups are as follows:

1: 3D4(2):3, 2: 25.L5(2), 3: 21+8.A9, 4: U3(8):6, 5: (3×G2(3)):2.

From [16], we see that (1, 1) and (2, 2) are non-regular, whereas (3, 3) is regular. And by
computing orders, we deduce that (1, 2) is non-regular. We can then use Magma and random
search to show that (1, 5) and (2, 3) are regular, working inside the matrix group GL248(2).
Finally, we note that the two remaining pairs (1, 3) and (1, 4) were handled in Lemma 4.8. �
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In order to complete the proof of Proposition 4.3, we may assume G = B or M.

Lemma 4.10. The conclusion to Proposition 4.3 holds for the groups with T ∈ A4.

Proof. First assume G = B is the Baby Monster and note that B(G) = 4. As before, the
character table of G and every maximal subgroup of G is available in the GAP Character
Table Library [6]. Moreover, if H is a maximal subgroup, then the fusion map from H-classes
to G-classes is also available unless H = (22 × F4(2)):2. In order to handle the latter case,
we can use the function PossibleClassFusions to determine a list of 64 candidate fusion
maps and we find that each fixed point ratio fpr(x,G/H) is independent of the choice of

map. Therefore, we can compute Q̂(G, τ) precisely for every maximal k-tuple τ and we can
now proceed as we have done in previous cases.

First we use GAP to determine the list of maximal triples σ with Q̂(G, σ) > 1:

(1, 1, i), (1, 1, 6), (1, 1, 7), (1, 2, 2)

where 1 6 i 6 4 and the relevant maximal subgroups are labelled as follows:

1: 2.2E6(2):2, 2: 21+22.Co2, 3: Fi23, 4: 29+16.Sp8(2),
5: Th, 6: (22 × F4(2)):2, 7: 22+10+20.(M22:2× S3)

(6)

Working with this list of candidate non-regular triples, it is easy to check that Q̂(G, τ) < 1
for every maximal 4-tuple τ and thus R(G) = B(G) = 4. We refer the reader to Remark
4.11(a) for comments on the problem of determining all the non-regular maximal triples
when G = B.

Finally, let us assume G = M is the Monster, so B(G) = 3 by [16]. We claim that

Q̂(G, τ) < 1 for every maximal triple τ , which implies that R(G) = B(G) = 3.
First recall that G has 46 conjugacy classes of maximal subgroups (see the main theorem

of [25]). For 31 of these classes, the character table of a representative H and the fusion
map from H-classes to G-classes is available in the GAP Character Table Library [6] via the
function NamesOfFusionSources. The relevant subgroups are as follows:

2.B 21+24.Co1 3.Fi24 22.2E6(2):S3

31+12.2.Suz:2 S3 × Th (D10 ×HN).2 51+6:2.J2.4
(7:3×He):2 (A5 ×A12):2 53+3.(2× L3(5)) (A6)3.(2× S4)
(A5 ×U3(8):3):2 52+2+4:(S3 ×GL2(5)) (L3(2)× Sp4(4):2).2 71+4:(3× 2S7)
(52:[24]×U3(5)).S3 (L2(11)×M12):2 (A7 × (A5 ×A5):22):2 54:(3× 2.L2(25)).2
72+1+2:GL2(7) M11 ×A6.2

2 (S5)3:S3 132:2.L2(13).4
(72:(3× 2A4)× L2(7)).2 (13:6× L3(3)).2 131+2:(3× 4S4) L2(71)
L2(59) L2(41) 41:40

LetM1 denote this set of maximal subgroups of G and let x1, . . . , xt be a complete set of
representatives of the conjugacy classes in G of elements of prime order. Let τ = (H1, H2, H3)
be a triple of subgroups with each Hi ∈M1 and recall that

Q̂(G, τ) =

t∑
i=1

|xGi | ·

 3∏
j=1

fpr(xi, G/Hj)

 .

We can use the stored fusion maps in GAP to compute fpr(xi, G/H) for all i and all H ∈M1,
whence

Q̂(G, τ) 6
t∑
i=1

aib
3
i , (7)

where

ai = |xGi |, bi = max{fpr(xi, G/H) : H ∈M1}.
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r cr
2 11734592583376 23 90321336548400569373425664000000

3 500595349782528000 29 86565910978666325606400
5 9367743238695946498867200 31 134025209071820199715405824000000

7 3954417208796381184000 41 1680

11 3147561728201838023619379200000 47 88399605983540982791012352000000
13 447153330533129256960000 59 1740

17 61099727665094502811435008000000 71 2520

19 109336354769116478715199488000000

Table 7. The values of cr in the proof of Lemma 4.10

For example, if x1 is a 2A-involution, then

a1 = 97239461142009186000, b1 =
56416310497

467497409336582625

(with fpr(x1, G/H) = b1 if H = 2.B). It is entirely straightforward to check that the upper

bound in (7) yields Q̂(G, τ) < 1 and thus τ is regular.
So to complete the proof, we need to extend our analysis to triples containing one or more

subgroups from the remaining 15 conjugacy classes of maximal subgroups H for which the
fusion map from H-classes to G-classes is not available in [6].

Let r be a prime divisor of |G| and define

ir(H) = |{x ∈ H : |x| = r}|, cr = min{aibi : |xi| = r}.
Notice that if

ir(H) 6 cr (8)

for all r, then fpr(xi, G/H) 6 bi for all i. So by our previous calculation, if S is a collection
of subgroups of G such that (8) holds for all r and all H ∈ S, then every triple of subgroups
in S is regular. For the reader’s convenience, the values of cr are recorded in Table 7.

We claim that the inequality in (8) holds (for every prime r) when H is any one of the
following maximal subgroups:

(L2(11)× L2(11)).4, 112:(5× 2A5), U3(4):4, L2(29):2, 72:SL2(7), L2(19):2, L2(13):2

33+2+6+6.(L3(3)× SD16), 32+5+10.(M11 × 2S4), (32:2× PΩ+
8 (3)).S4

23+6+12+18.(L3(2)× 3S6), 22+11+22.(M24 × S3)

Indeed, in each case we can work with a permutation representation of H in the Web Atlas
[49], which allows us to compute ir(H) and then verify the desired bound. For example,
if H = 22+11+22.(M24 × S3) then the Web Atlas provides a representation of H on 294912
points and we compute:

i2(H) = 43521572863, i3(H) = 32114946867200, i5(H) = 68457483730944

i7(H) = 1564742485278720, i11(H) = 23897885229711360, i23(H) = 182870773931704320,

noting that ir(H) = 0 for all other primes. It is routine to check that (8) holds. Similarly, if
H = 25+10+20.(S3×L5(2)) or 210+16.Ω+

10(2), then one checks that the upper bound on ir(H)
given in [16, Proposition 3.8] is sufficient.

Finally, let us assume H = 38.PΩ−8 (3).2. Here the Web Atlas provides a permutation
representation of H on 805896 points and as before we can use this to compute ir(H) for
every prime divisor r of |G|. In this way, we find that the inequality in (8) holds unless
r = 41. More precisely, G has a unique class of elements of order 41 and we get

i41(H) = 16245625881139200 > c41 = 1680.

However, if we now redefine bi to be i41(H)/ai (for the unique i such that |xi| = 41) then
it is easy to check that the inequality

∑
i aib

3
i < 1 is still satisfied and we conclude that any

maximal triple involving H is regular.
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Putting all of this together, it follows that every maximal triple is regular and thus R(G) =
B(G) = 3. �

This completes the proof of Proposition 4.3. In particular, this concludes our proof of
Theorem 2(i).

Remark 4.11. Let us briefly comment on the problem of determining all the non-regular
maximal k-tuples for G = B,M with k = R(G)− 1.

(a) For G = B we have proved that R(G) = B(G) = 4, but we have not been able to
classify all the non-regular triples. Let σ be a maximal triple and recall that we can

compute Q̂(G, σ) with the aid of the GAP Character Table Library [6]. In this way,
we deduce that σ is non-regular only if it is one of the following:

(1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 1, 4), (1, 1, 6), (1, 1, 7), (1, 2, 2),

where we are using the numbering in (6). We know that (1, 1, 1) is non-regular by
[16], and it is also easy to see that (1, 1, 2) is non-regular by comparing orders. It
remains an open problem to determine the regularity status of the following triples:

(1, 1, 3), (1, 1, 4), (1, 1, 6), (1, 1, 7), (1, 2, 2).

(b) For the Monster G = M we have R(G) = B(G) = 3 and we have not attempted to
determine the non-regular maximal pairs for G. From [16], we see that (2.B, 2.B) is
the only non-regular conjugate maximal pair. In fact, [10, Theorem 3.1] implies that
this is the only conjugate non-regular pair for G since b(G,H) = 2 for every nontrivial
proper subgroup H 6= 2.B. By comparing orders, we also note that (2.B, 21+24.Co1)
is non-regular.

4.2. Soluble subgroups. In this final section, we complete the proof of Theorem 2 by
establishing the bound Rsol(G) 6 3 for all almost simple sporadic groups. This generalises
the main theorem of [10], where the weaker bound Bsol(G) 6 3 is established. It also
establishes a strong form of Conjecture 1(iii) in this setting. Our main result is the following.

Proposition 4.12. We have Rsol(G) 6 3 for every almost simple sporadic group G. More
precisely,

Rsol(G) =

 2 if G ∈ A1

3 if G ∈ A2

2 or 3 if G ∈ A3

where

A1 = {J1, J3, J3.2,HS, Suz, Suz.2,McL,McL.2,Ru,He,He.2,Co3,O
′N,O′N.2}

A2 = {M11,M12,M12.2,M22,M22.2,M23,M24, J2, J2.2,HS.2,Co2,Fi22,Fi22.2,Fi23}
A3 = {Co1,HN,HN.2, J4,Ly,Th,Fi′24,Fi24,B,M}

Remark 4.13. Let us record some comments on the statement of Proposition 4.12.

(a) Clearly, we have Rsol(G) 6 R(G), so the main bound Rsol(G) 6 3 follows immediately
from Proposition 4.3 when G is one of the following:

J1, J3, J3.2, O′N, O′N.2, HN, HN.2, J4, Ly, Th, M.

(b) We can determine all the non-regular soluble pairs for the following groups

M11, M12, M12.2, M22, M22.2, M23, M24, J2, J2.2, HS.2 (9)

In particular, if G = M23, then (H,H) is the only non-regular soluble pair, up to
conjugacy, where

H = 24:(3×A4):2 < 24:(3×A5):2 < G
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G H K Comments

M11 U3(2):2 U3(2)

M12 AGL2(3) ASL2(3)
M12.2 AGL2(3) 42:D12.2 H < M12 < G, K < G

M22 24:(32:4) 24:S4 H < 24:A6 < G, K < 24:A6 < G

M22.2 24:(S3 o S2) 24:(S4 × S2) H < 24:S6 < G, K < 24:S6 < G
M24 26:3.(S3 o S2) 26:(7:3× S3) H < 26:3.S6 < G, K < 26:(L3(2)× S3) < G

J2 22+4:(3× S3) 22+4:32

J2.2 22+4:(3× S3).2 22+4:(3× S3)

Table 8. The subgroups H and K in Remark 4.13(b)

is a second maximal subgroup of G. Similarly, G = HS.2 has a unique non-regular
soluble pair, up to ordering and conjugacy, namely (H,K), where

H = 21+6.S4 < 21+6.S5 < G

K = 43:(2× 7:3) < 43:(2× L3(2)) < G

are both second maximal subgroups. In Table 8, for each of the remaining groups
in (9), we record a non-regular conjugate pair (H,H) with |H| maximal, and also a
non-regular non-conjugate pair (H,K) with |H||K| maximal (in every case, K is a
second maximal subgroup of G, and H is either maximal or second maximal).

(c) For the remaining groups in A2, namely Co2, Fi22, Fi22.2 and Fi23, a non-regular
conjugate soluble pair (H,H) is recorded in [10, Table 1]. But in these cases we
have not classified all the non-regular soluble pairs. By inspecting [10, Table 2], we
observe that (H,K) is a non-regular non-conjugate pair for G = Fi22.2, where the
first component H = 31+6.23+4:32:2.2 is maximal and K = 31+6.23+4:32:2 < H is
an index-two subgroup. Similarly, if G = Fi23 then (H,K) is non-regular, where
H = 31+8.21+6.31+2.2S4 is maximal and K is the unique index-two subgroup of H.

(d) We have not been able to determine Rsol(G) precisely for the groups in A3. By [10,
Theorem 2], none of these groups, with the possible exception of the Baby Monster
B, has a non-regular conjugate soluble pair. Determining the existence (or otherwise)
of such a pair for B remains an open problem.

(e) We refer the reader to the end of Section 4.2 for some brief comments regarding the
regularity of nilpotent pairs (H,K) in almost simple sporadic groups, as well as the
pairs (H,K) with H nilpotent and K soluble.

Let G be an almost simple sporadic group with socle T . In order to prove Proposition
4.12 we will adopt a computational approach, working with Magma (version 2.28-4) [5] and
GAP (version 4.11.1). It will be convenient to divide up the possibilities for T as follows:

B1 = {M11,M12,M22,M23,M24, J1, J2, J3,HS,McL,He,Suz,Ru,Co3,O
′N}

B2 = {Co2,Fi22,Fi23,HN, J4,Ly,Th,M}
B3 = {Co1,Fi′24}
B4 = {B}

Before we begin the proof, it will be helpful to introduce the following notation. For a
positive integer k, let Ck(G) be the set of subgroups H of G with the property that there
exists a chain of subgroups

H = H0 < H1 < H2 < · · · < Hk−1 < Hk = G

where H1 is insoluble and each Hi is a maximal subgroup of Hi+1. For instance, C1(G) is
the set of maximal subgroups of G. In addition, let Dk(G) be the set of soluble subgroups
in Ck(G), and let P(G) be the set of all non-Sylow p-subgroups of G, ranging over all prime
divisors p of |G|.
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Definition 4.14. Let H 6 G be a subgroup and let d be a positive integer. If H is soluble,
we define Sd(H) = {H}. Otherwise, we take Sd(H) to be a set of representatives of the
G-classes of subgroups in the set(

Cd(H) ∪
d−1⋃
k=1

Dk(H)

)
\ P(H)

For example, ifG = H = M11, then S2(H) contains the soluble maximal subgroups U3(2):2
and 2S4, together with a representative of each conjugacy class of maximal subgroups of
M10 = A6.2, L2(11) and S5.

The key property here is that for any positive integer d, every soluble subgroup of H is
G-conjugate to a subgroup of at least one group in Sd(H). It follows that Rsol(G) 6 3 if
there exist positive integers dj such that every triple τ = (H1, H2, H3) is regular, where the
components of τ range over the subgroups in

t⋃
j=1

Sdj (Mj)

with respect to a complete set of representatives {M1, . . . ,Mt} of the conjugacy classes of
maximal subgroups of G.

Lemma 4.15. The conclusion to Proposition 4.12 holds for the groups with T ∈ B1.

Proof. Let G be an almost simple sporadic group with socle T ∈ B1. Working with Magma,
we first use the function AutomorphismGroupSimpleGroup to construct a faithful primitive
permutation representation of G of minimal degree. We then use SolubleSubgroups to
obtain a complete set of representatives of the conjugacy classes of soluble subgroups of G.
Let S(G) be the set obtained by removing all the non-Sylow p-subgroups, ranging over all
the prime divisors p of |G|. We then use random search to determine a list of candidate
non-regular soluble pairs (H1, H2), where |H1| > |H2| and Hi ∈ S(G) for i = 1, 2.

Clearly, if random search reveals that every pair (H1, H2) with Hi ∈ S(G) is regular, then
Rsol(G) = 2. So let us assume that there is at least one such pair (H1, H2) for which our
random search is inconclusive. Then as in the proof of Proposition 4.3, we can determine
the regularity status of (H1, H2) by computing the orbits of H2 on G/H1 via the function
CosetAction. In this way, we obtain the complete list of non-regular soluble pairs, up to
ordering and conjugacy, and we can easily extract the information highlighted in part (b) of
Remark 4.13. Of course, if we find that there are no such pairs, then Rsol(G) = 2.

To complete the argument, let us assume G has at least one non-regular soluble pair. In
order to show that every soluble triple is regular, we consider each non-regular soluble pair
(H1, H2) in turn, and we construct the triples τ = (H1, H2, H3), where H3 runs through
the set S(G). Using random search, it is straightforward to verify that τ is regular and we
conclude that Rsol(G) = 3 in each of these cases. �

Lemma 4.16. The conclusion to Proposition 4.12 holds for the groups with T ∈ B2.

Proof. If T ∈ {HN, J4,Ly,Th,M} then R(G) = 3 by Proposition 4.3 and thus Rsol(G) 6 3,
as required. For the remainder, let us assume T ∈ {Co2,Fi22,Fi23}. In these cases, the main
theorem of [10] gives Bsol(G) = 3, so we just need to show that every soluble triple is regular
in order to conclude that Rsol(G) = 3. To do this, we need to modify the computational
approach adopted in the proof of Lemma 4.15 since the Magma function SolubleSubgroups

is ineffective for the groups we are working with here. We proceed as follows.
For now, let us assume G 6= Fi22.2, so G = T . As before, we begin by constructing G as a

permutation group and we use the Magma function MaximalSubgroups to obtain a complete
set of representatives of the conjugacy classes of maximal subgroups of G. Then for each
maximal subgroup H, we construct the set of subgroups S3(H) as defined in Definition 4.14.
In this way, we obtain a set of subgroups with the property that every soluble subgroup of G
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is contained in a conjugate of at least one member of the set. We can then use random search
to show that every triple of the form (J1, J2, J3) is regular, where each Ji is contained in
S3(Hi) for some maximal subgroup Hi of G, and this allows us to conclude that Rsol(G) 6 3.

In practice, to improve the efficiency of the latter computation, we first run through triples
of the form (J1, H2, H3), where J1 ∈ S3(H1) and the Hi are representatives of the classes of
maximal subgroups of G. Given H2 and H3, if random search is inconclusive for at least one
triple of the form (J1, H2, H3), then we run through the set of triples τ = (J1, J2, H3) with
Ji ∈ S3(Hi) for i = 1, 2, and in every case we find that τ is regular.

Finally, suppose G = Fi22.2. We know that Rsol(T ) = 3 by the above argument, so Lemma
2.11 implies that every soluble triple of the form (H,K,L) with H < T is regular. So we can
proceed as above, using the additional fact that we can discard any triples with a component
contained in T . �

Lemma 4.17. The conclusion to Proposition 4.12 holds for the groups with T ∈ B3.

Proof. First assume G = Fi′24. Here we proceed as in the proof of Proposition 4.3, using the
information in the GAP Character Table Library [6] to determine all the maximal triples σ

with Q̂(G, σ) > 1. It turns out that this inequality holds only if at least one of the component
subgroups is Fi23. But we know that Rsol(Fi23) = 3 by Lemma 4.16, so Lemma 2.11 implies
that every soluble triple is regular and thus Rsol(G) 6 3.

Next assume G = Co1. Here we observe that the largest maximal subgroup of G is
Co2, and we have Rsol(Co2) = 3 by Lemma 4.16. Similarly, Rsol(Co3) = 2 by Lemma
4.15. Therefore, Lemma 2.11 implies that a soluble triple is regular if it has a component
contained in one of the maximal subgroups Co2 or Co3 of G. We can now use GAP, as in
the previous case, to determine all the maximal triples σ = (H1, H2, H3), up to ordering and

conjugacy, such that Q̂(G, σ) > 1 and Hi 6= Co2,Co3 for all i. We find that there are just 12
such triples, up to conjugacy and reordering, which only involve subgroups from 6 distinct
conjugacy classes of maximal subgroups of G.

At this point, we switch to Magma and we construct G and each of the 6 relevant maximal
subgroups inside Sn, where n = |G : Co2| = 98280. Using random search, we find that 10
of the 12 relevant maximal triples are regular and it just remains to consider the maximal
triples (H1, H2, H3), where

H1 = H2 = 3.Suz:2, H3 = 3.Suz:2 or 211:M24.

We now complete the argument by proceeding as in the proof of Lemma 4.16, working with
the subgroup collections S3(Hi) and random search to show that each triple of the form
(J1, H2, H3) with J1 ∈ S3(H1) is regular. In this way, we conclude that every soluble triple
of subgroups of G is regular and thus Rsol(G) 6 3.

Finally, let us assume G = Fi24. Since we have already established the bound Rsol(T ) 6 3,
Lemma 2.11 implies that every soluble triple containing a subgroup of T is regular.

We begin by using GAP to determine all the core-free maximal triples σ with Q̂(G, σ) > 1.
Switching to Magma, we then use the Web Atlas [49] to construct G and each relevant
maximal subgroup Hi as subgroups of Sn, where n = 306936. By applying random search,
we can then reduce the candidate non-regular core-free maximal triples (H1, H2, H3) to a
specific list of 18 possibilities (up to conjugacy and reordering), all of which include the
component H1 = Fi23 × 2. Next we construct the set S3(H1) defined in Definition 4.14. By
removing any subgroups that are contained in T , we obtain a subset S3(H1)′ of size 103.
Then by applying random search, we can show that every triple of the form (J1, H2, H3) is
regular, where Ji ∈ S3(H1)′, unless H2 = H1 and H3 is one of the following:

Fi23 × 2, (2× 2.Fi22):2, S3 × PΩ+
8 (3):S3, O−10(2).

Finally, we handle these cases by showing that every triple of the form (J1, J2, H3) is regular
(via random search), where Ji ∈ S3(H1)′ for i = 1, 2. �
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To complete the proof of Proposition 4.12, we may assume G = B is the Baby Monster.

Lemma 4.18. The conclusion to Proposition 4.12 holds for the groups with T ∈ B4.

Proof. Here G = B and we begin by considering a maximal triple σ. As noted in the proof

of Lemma 4.10, we can use the GAP Character Table Library [6] to show that Q̂(G, σ) < 1
unless σ is of the form (1, 1, i) or (1, 2, 2), where i ∈ {1, 2, 3, 4, 6, 7} and the relevant subgroups
are labelled as in (6). We immediately deduce that if τ is a soluble triple and none of the
components are contained in a maximal subgroup 2.2E6(2):2, then τ is regular.

For the remainder of the proof, set

L = 2.2E6(2):2, Z = Z(L) = 〈z〉, L̄ = L/Z = 2E6(2):2.

As in [10, Section 4.1], write L̄′ = 2E6(2) = (Xσ)′, where X = E6 is a simple algebraic group
of adjoint type over an algebraically closed field of even characteristic and σ is a Steinberg
endomorphism of X such that

Xσ = {x ∈ X : xσ = x} = Inndiag(2E6(2)) = 2E6(2):3.

Let M0 be a set of representatives of the conjugacy classes of maximal subgroups of G,
excluding L, and define

M =M1 ∪M2,

where

M1 = {maximal subgroups of L, other than 2.2E6(2)}
M2 = {maximal subgroups of 2.2E6(2) < L}

Note that every soluble subgroup of L is contained in a subgroup K ∈ M. Then in view of
the above GAP calculation, it suffices to prove the following claim:

Claim. Let σ = (H1, H2, H3) be a triple of subgroups of G, where H1 ∈ M and H2, H3 ∈
M0 ∪M. Then Q̂(G, σ) < 1.

To prove the claim, we proceed as in the proof of Lemma 4.10, where we showed that
R(M) = 3. First observe that we can use the GAP Character Table Library [6] to compute
fpr(x,G/H) for every maximal subgroup H and every element x ∈ G. Let x1, . . . , xt be a
complete set of representatives of the conjugacy classes in G of elements of prime order and
set ai = |xGi | and

bi = max{fpr(xi, G/H) : H ∈M0} (10)

for all 1 6 i 6 t. It follows immediately that the bound in (7) holds for every maximal triple
τ = (H1, H2, H3) with Hi ∈ M0 for all i. Moreover, we check that this upper bound yields

Q̂(G, τ) < 1 and thus τ is regular. So in order to prove the claim, it suffices to show that

fpr(xi, G/H) 6 bi (11)

for all 1 6 i 6 t and all H ∈ M. For the reader’s convenience, the values of bi are recorded
in Table 9, with respect to the standard labelling of the conjugacy classes in G (see [22]).

Fix a subgroup H ∈ M2, so H is a maximal subgroup of J = 2.2E6(2). Then Z 6 H
and thus H̄ = H/Z is a maximal subgroup of the simple group J̄ = J/Z = 2E6(2). The
possibilities for H̄ (up to conjugacy) have been determined by Wilson [51], which confirms
that the list of maximal subgroups presented in the Atlas [22] is complete (also see [23]).
We observe that H̄ = K̄ ∩ J̄ for some core-free maximal subgroup K̄ = K/Z of L̄ = L/Z =
2E6(2):2, whence H 6 K and K is contained in M1. Therefore, we only need to prove that
(11) holds for each subgroup H ∈M1.

Suppose H ∈ M1, so H 6= 2.2E6(2) is a maximal subgroup of L = 2.2E6(2):2. Then
Z 6 H and H̄ = H/Z is a maximal subgroup of the almost simple group L̄. As above, the
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i xi bi
1 2A 793/2950425

2 2B 269689951/11707448673375
3 2C 13/33634845

4 2D 303281/780496578225

5 3A 11/105887475
6 3B 2/5353200125

7 5A 11/22299902235

8 5B 2/93659589387
9 7A 1/37166503725

10 11A 1/780496578225
11 13A 1/126996316160000

12 17A 1/253992632320000

13 19A 1/22892381208576000
14 23A 1/11707448673375

15 23B 1/11707448673375

16 31A 1/45784762417152000
17 31B 1/45784762417152000

18 47A 1/3843461129719173164826624000000

19 47B 1/3843461129719173164826624000000

Table 9. The bi values in (10)

possibilities for H̄ have been determined by Wilson [51] and we deduce that H̄ is one of the
following:

Parabolic: P1,6, P2, P3,5, P4

Algebraic: O−10(2), S3 ×U6(2):2, S3 × Ω+
8 (2):S3, U3(8):6, (L3(2)× L3(4):2).2,

31+6:23+6:32:22, U3(2):2×G2(2), F4(2)× 2
Almost simple: SO7(3), Fi22:2

Here we adopt the standard notation for the maximal parabolic subgroups of L̄, which corre-
sponds to the usual labelling of the nodes of the Dynkin diagram of type E6. The algebraic
subgroups are of the form NL̄(Yσ), where Y is a positive dimensional non-parabolic σ-stable
closed subgroup of the ambient algebraic group X. For example, if H̄ = 31+6:23+6:32:22

then the connected component of Y is of type A3
2 and we will refer to SU3(2)3 as the type

of H̄. We extend this usage of type to the other algebraic subgroups, which provides an
approximate description of the given subgroup’s structure.

Let π(H̄) be the set of prime divisors of |H̄| and recall that our goal is to verify the bound
in (11) for all i. Let ir(H) be the number of elements of order r in H and observe that

i2(H) = 2i2(H̄) + 1, ir(H) = ir(H̄)

for every odd prime r. We now consider each possibility for H̄ in turn.

Case (a). H̄ = (L3(2)× L3(4):2).2

Let x ∈ G be an element of prime order r ∈ π(H̄) = {2, 3, 5, 7} and note that |H| = 2|H̄| =
27095040. It is easy to check that the trivial bound |xG∩H| 6 |H| is sufficient unless x ∈ 2A.
Since H̄ 6 A, where A = Aut(L3(2) × L3(4)), we deduce that i2(H̄) 6 i2(A) = 98199 and
thus

|xG ∩H| 6 i2(H) 6 196399

for x ∈ 2A. This bound is sufficient.

Case (b). H̄ = 31+6:23+6:32:22

Here π(H̄) = {2, 3} and once again we find that the trivial bound |xG ∩H| 6 |H| is good
enough unless x ∈ 2A. So let us assume x ∈ 2A. Then by inspecting the proof of [18, Lemma
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4.12], noting that i2(SU3(2)) = 9, we deduce that i2(H̄) 6 α+ β, where

α =

(
3

1

)
9 +

(
3

1

)
92 + 93 +

(
3

2

)
|SU3(2)| · |SU3(2)|

|SL2(2)|

β = 3(1 + 9)|SU3(2)|+
(
|SU3(2)|
|SL2(2)|

)3

This yields |xG ∩H| 6 i2(H) 6 154927 and the desired bound follows.

Case (c). H̄ = S3 ×U6(2):2, S3 × Ω+
8 (2):S3, U3(8):6 or U3(2):2×G2(2)

In each of these cases, with the aid of Magma, it is easy to compute ir(H) for all r ∈ π(H)
and we find that the bound |xG∩H| 6 ir(H) is sufficient unless H̄ = S3×U6(2):2 and x ∈ 2A.
In the latter case, the proof of [10, Lemma 4.6] gives |xG∩H| 6 7033 and this bound is good
enough.

Case (d). H̄ = O−10(2), SO7(3), Fi22:2 or F4(2)× 2

Let x ∈ G be an element of prime order r. If r = 2 then |xG ∩H| is recorded in [10, Table
5] and the desired bound quickly follows (see Remark 4.19). Now assume r is odd. Here we
can compute ir(H) from the character table of H̄, which is available in [6], and in every case
it is easy to check that the bound |xG ∩H| 6 ir(H) is sufficient.

Case (e). H̄ = P1,6, P2, P3,5 or P4

To complete the proof, we may assume H̄ is a maximal parabolic subgroup of L̄. Note
that the precise structure of H̄ is recorded in [10, Table 6]. In addition, let us observe that
π(H) = {2, 3, 5, 7} ∪ P, where P = {17} for P1, P = {11} for P1,6, and P is empty for P3,5

and P4. Let x ∈ G be an element of order r ∈ π(H).
If r = 2 or 3, then |xG ∩H| is recorded in [10, Tables 5 and 6] and it is easy to check that

(11) holds for all relevant i. Now assume r ∈ {5, 7} ∪ P. Here one can check that the trivial
bound

|xG ∩H| 6 |H| 6 2|P2| = 223|U6(2)|
is sufficient for r > 7, so we may assume r = 5 and thus x ∈ 5A or 5B. Now L has a unique
conjugacy class of elements of order 5 and the fusion map from L-classes to G-classes shows
that this class is contained in the G-class labelled 5A. So we may assume x ∈ 5A and thus

|xG ∩H| = i5(H) = i5(H̄).

In addition, let us observe that if H̄ = P3,5 or P4, then |H| 6 2|P4| = 2323|L3(4)| and the
crude bound |xG∩H| 6 2|P4| is good enough. Therefore, we are free to assume that H̄ = P1,6

or P2.
Let x ∈ H be an element of order 5 and let x̄ be the image of x in H̄ = H/Z. Then

fpr(x̄, L̄/H̄) =
i5(H̄)

|x̄L̄|
and by applying [35, Theorem 2], noting that x̄ ∈ L̄ is semisimple, we deduce that

|xG ∩H| = i5(H̄) 6 |x̄L̄| · 1

3 · 26
.

Now
|x̄L̄| = 759250790513639424, |xG| = 9367743238695946498867200

and we conclude that

fpr(x,G/H) 6
3954431200591872

9367743238695946498867200
<

11

22299902235
= b7,

as required. �

This completes the proof of Theorem 2.
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G H K

M11 U3(2):2 U3(2):2, 2S4

M12 32:2S4 32:2S4, 21+4:S3, 42:D12

21+4:S3 21+4:S3, 42:D12

42:D12 42:D12

M12.2 21+4:S3.2 21+4:S3.2, 42:D12.2, 31+2:D8

42:D12.2 42:D12.2

31+2:D8 31+2:D8

J2 22+4:(3× S3) 22+4:(3× S3), 52:D12

J2.2 22+4:(3× S3).2 22+4:(3× S3).2, 52:(4× S3)

Fi22 31+6:23+4:32:2 31+6:23+4:32:2

Fi22.2 31+6:23+4:32.2.2 31+6:23+4:32.2.2
Fi23 31+8.21+6.31+2.2S4 31+8.21+6.31+2.2S4

Table 10. The pairs (H,K) in Proposition 4.20

Remark 4.19. In the proof of Lemma 4.18 we appealed to the information in [10, Table 5].
Here we take the opportunity to correct three inaccuracies in this table:

(a) For H̄ = O−10(2) we have |2D ∩H| = 79942500, rather than 79943000.

(b) And for H̄ = F4(2) × 2, the stated sizes of 2A ∩ H and 2C ∩ H are out by 1; the
correct values are 139232 and 355284576, respectively.

We finish by presenting Proposition 4.20 below, which gives the exact value of Rsol max(G)
for every almost simple group G with a soluble maximal subgroup. By inspecting [50], for
example, it is easy to see that G has such a subgroup unless G = M22, M22.2, M24 or HS.

Proposition 4.20. Let G be an almost simple sporadic group with socle T and assume G
has a soluble maximal subgroup. Then

Rsol max(G) =

{
3 if T = M11, M12, J2, Fi22 or Fi23

2 otherwise.

Moreover, if Rsol max(G) = 3 then every soluble maximal non-regular pair (H,K) is recorded
in Table 10, up to conjugacy and ordering.

Proof. As noted above, the assumption that G has a soluble maximal subgroup means that
G 6∈ {M22,M22.2,M24,HS}. In addition, if

G ∈ {M23,HS.2,McL,Suz,Suz.2,Ru,Co3,Co2,O
′N,Fi22,Fi22.2,Fi23,Fi′24},

then G has a unique class of soluble maximal subgroups, so every soluble maximal pair is
conjugate and the result follows from [16].

Next assume G ∈ {M11,M12,M12.2, J2, J2.2} is one of the remaining groups appearing
in Table 10. In each of these cases, an entirely straightforward Magma computation shows
that a soluble maximal pair (H,K) is non-regular if and only if it is one of the cases recorded
in the table (up to conjugacy and ordering).

In each of the remaining cases, we can use the GAP Character Table Library [6] to compute

Q̂(G, τ) precisely for every soluble maximal pair τ = (H,K). In this way, we deduce that

Q̂(G, τ) < 1, which implies that τ is regular, unless G = He.2 and H = K = 24+4.(S3×S3).2,
or G = J3.2 and H = K = 22+4:(S3 × S3). In both cases, the main theorem of [16] implies
that τ is regular. �

Remark 4.21. The group M12 has two distinct classes of soluble maximal subgroups iso-
morphic to 32:2S4; in Table 10, we write 32:2S4 for a representative of either one of these
classes.

Remark 4.22. Zenkov’s main theorem in [55] states that every nilpotent pair of subgroups
in an almost simple sporadic group is regular. Here we briefly comment on the existence (or
otherwise) of non-regular pairs (H,K), where H is nilpotent and K is soluble.
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(a) Clearly, if Rsol(G) = 2, then every nilpotent-soluble pair is regular, so we may assume
G ∈ A2 ∪ A3 as defined in the statement of Proposition 4.12.

(b) If G = M22.2 then there are precisely 7 non-regular pairs (H,K), up to ordering and
conjugation, where H is nilpotent and K is soluble. For example, we can take H to
be a Sylow 2-subgroup and K to be the following second maximal subgroup

K = 24:(S3 o S2) < 24:S6 < G.

For each such pair (H,K) we find that K has Fitting length 3, which is the maximal
Fitting length of all soluble subgroups of G.

(c) Similarly, G = J2.2 has a unique non-regular pair (H,K) of this form. Here H is a
Sylow 2-subgroup and K = 22+4:(3×S3).2 is a maximal subgroup of G. Once again,
the Fitting length of K is 3 and one checks this is the maximal Fitting length of all
soluble subgroups of G.

We have checked computationally that the examples in (b) and (c) are the only non-regular
nilpotent-soluble pairs associated with any of the groups in A2. We are not aware of any
additional examples for the groups in A3.
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