COMPUTATIONS CONCERNING THE REGULARITY NUMBER OF
ALMOST SIMPLE GROUPS

MARINA ANAGNOSTOPOULOU-MERKOURI AND TIMOTHY C. BURNESS

ABSTRACT. In this supplementary file we present the MAGMA and GAP computations used
in our main paper [I] on the regularity number of almost simple groups with socle an
alternating or sporadic group. Throughout, we freely adopt the notation and terminology
introduced in [I].
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1. MAGMA FUNCTIONS

We begin by presenting several MAGMA [2] functions for studying the regularity of core-
free tuples of subgroups of a finite group. We use version 2.28-4 of MAGMA for all of the
computations.

1.1. Random search. The function RandomReg takes as input a group G, an ordered tuple
M = [Hy,..., Hy] of core-free subgroups of G, a positive integer N and a set A of k-tuples
of integers of the form [aq,...,a], where k > 2 and 1 < a; < ¢ for all 4.

The function outputs a subset B of A comprising the tuples [aq,...,ax] in A for which
random search (with at most N attempts) has failed to find elements g; € G such that

k
(HS =1.
i=1

In other words, the output corresponds to a list of candidate non-regular k-tuples, where
each component subgroup is in M.
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RandomReg := function(G,M,N,A)

B:=[1;
if #A ne O then
k:=#A[1];
for i in [1..#A] do
a:=A[i];
z:=0;
for j in [1..N] do
X:=[Random(G) : i in [1..k-1]];
L:=M[a[1]];
for 1 in [2..k] do
L:=L meet M[a[1]]"X[1-1];
end for;
if #L eq 1 then
z:=1;
break j;
end if;
end for;
if z eq O then
Append(“B,a);
end if;
end for;
end if;
return B;

end function;

1.2. Regular orbits. Our next function RegOrbits takes as input a group G and a k-tuple
S =[Hy,..., Hy] of core-free subgroups of G, where k > 2. It returns the number of regular
orbits of Hy on G/Hy X --- x G/Hg_1. Note that S is regular if and only if Hy has at least
one regular orbit.

RegOrbits := function(G,S)

fi=[*x];
for i in [1..#S-1] do
g,K,L:=CosetAction(G,S[i]);
Append(“f,g);
end for;
t:=1;
L:=[S[#s]1];
while t le #S-1 do
Li:=[1;
for i in [1..#L] do
R:=f[t]1(L[i]);
0:=0rbits(R);
L1:=[Stabilizer(R,Representative(o[j]))@ef[t] : j in [1..#o0]];
end for;
L:=L1;
ti=t+1;
end while;
return #[i : i in [1..#L] | #L[i] eq 1];

end function;

We now use RegOrbits in the following function RegPlus. Here the input is a group G,
an ordered tuple M = [Hy,..., H;] of core-free subgroups of G and a set A of k-tuples of
integers [a1,...,a], where k > 2 and 1 < a; < ¢ for all i. The output is the complete set of
tuples [ai,...,a] in A such that (Hy,,...,H,,) is non-regular.

RegPlus := function(G,M,A)

B:=[];

if #A ne O then
k:=#A[1];
for a in A do
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S:=[M[a[il] : i in [1..k]];
if RegOrbits(G,S) eq O then
Append("B,a);
end if;
end for;
end if;
return B;

end function;

We are in a position to present our main function for finding non-regular tuples, which
combines all of the above functions. The input for RegTuples is a group GG, an ordered tuple
M = [Hy,..., H] of core-free subgroups of G, a positive integer N and a set A of k-tuples

of integers [a1,...,ax], where k > 2 and 1 < a; < ¢ for all i. The output is the complete set
of tuples [ay,...,ax] in A such that (H,,, ..., Hy,) is non-regular.
To do this, the function first identifies any tuples [ay, ..., ar] in A such that
k
[T1Hal> 16",
i=1

which immediately implies that (Hg,, ..., H,, ) is non-regular. We then use RandomReg to try
to show that the remaining tuples are regular by finding random conjugates of the component
subgroups with trivial intersection (up to at most N attempts per tuple). Finally, we apply
the function RegPlus on the set of tuples for which random search has failed, and the
complete list of non-regular tuples in A is returned as output.

RegTuples := function(G,M,N,A)

B:=[1;
if #A ne O then
k:=#A[1];
A1:=[];
for a in A do
if &x[#M[i] : i in a] gt #G~(k-1) then
Append("B,a);
else
Append(~Al,a);
end if;
end for;

D:=[];
if #A1 ne O then
C:=RandomReg(G,M,N,A1) ;
if #C ne O then
D:=RegPlus(G,M,C);
end if;
end if;

if #D ge 1 then
for d in D do
Append("B,d) ;
end for;
end if;
end if;

return B;
end function;

The following function RegTuplesPlus will also be useful. Here the input is a finite group
G, an ordered tuple M = [Hy, ..., H;] of subgroups of G and positive integers ¢ and N with
¢ > 2. The output is the minimal integer k > ¢ such that every k-tuple of subgroups in M is
regular, together with the number of non-regular (k — 1)-tuples with components in M (up
to ordering) and the set of such (k — 1)-tuples.
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RegTuplesPlus := function(G,M,1,N)

C:=[1;

k:=1;

Al:=CartesianPower ([1..#M],k);
Al:=[[x[i]: i in [1..k]] : x in A1];
Al:=[x : x in A1l | x eq Sort(x)];

R:=RegTuples(G,M,N,A1);
Append(“C,R);

while #R ne 0 do
k:=k+1;
A1:=[1;
for r in R do
for i in [1..#M] do
s:=Append(r,i);
Append(TAl,s);
end for;
end for;
Al:={Sort(x) : x in Al};
Al:=[x : x in A1];
R:=RegTuples(G,M,N,Al1);
if #R ne O then
Append(“C,R);
end if;
end while;

E:=[];

for 4 in C[#C] do
F:=[];
for i in d do

Append (“F,M[i]);

end for;
Append ("E,F) ;

end for;

return k, #E, E, C[#C];
end function;

1.3. Soluble subgroups. We will also use some functions that are specifically designed to
handle tuples of soluble subgroups. Recall that if G is a finite group with soluble radical
R(G) = 1, then we define R (G) to be the minimal &k such that every k-tuple of core-free
soluble subgroups of G is regular.

Our first function Sol takes as input a finite group G with R(G) = 1 and a positive integer
N. It returns the integer Ry (G) = k. In addition, if &k > 3 then it also returns the number
of non-regular soluble (k — 1)-tuples (up to conjugacy and ordering), as well as the actual
tuples themselves (and if £ = 2, it returns 0 and an empty tuple).

Sol := function(G,N)

M:=SolubleSubgroups (G) ;
M:=[M[i] ‘subgroup : i in [1..#M] | #PrimeFactors(#M[i] ‘subgroup) ge 2];
P:=PrimeFactors (#G) ;
for p in P do
Append ("M, SylowSubgroup(G,p)) ;
end for;

return RegTuplesPlus(G,M,2,N);
end function;

Notice that the previous function relies on MAGMA’s ability to execute the command
SolubleSubgroups, which is not going to be possible for several sporadic groups we need
to consider in the proof of [I, Theorem 2]. In some of these more difficult cases, our next
function MaxSolubleSubgps can be used as a substitute. Here the input is a finite group G,
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a subgroup H and a positive integer d. The output is a certain collection S of subgroups of
H, denoted Sy(H) in [I Definition 4.14], which has the property that if K < H is soluble,
then K9 < L for some g € G and L € S.

If H is soluble, then S = {H}, so let us assume H is insoluble. For each integer 1 < k < d,
let Cr(G) be the set of subgroups L of H with the property that there exists a chain of
subgroups

L=Log<Ihi<Lo<---<Lp1<Ly=H
where L; is insoluble and each L; is a maximal subgroup of L; ;. For instance, C;(H) is the
set of maximal subgroups of H. In addition, let Di(H) be the set of soluble subgroups in
Cr(H), and let P(H) be the set of all non-Sylow p-subgroups of H, ranging over all prime
divisors p of |H|. Then S is defined to be a complete set of representatives of the G-classes
of subgroups in the set

d—1
Ca(H) U | Do) | \ P(H).
k=1

Here the key property is the fact that if K < H is soluble, then K9 < L for some g € G and
LesS.

MaxSolubleSubgps := function(G,H,d)

a:=1;

S:=[1;

NS:=[];

if IsSoluble(H) then
Append (“S,H) ;

else
Append (*NS,H) ;

end if;

while (#NS ge 1) and (a le d) do
NS1:=[1;
for H in NS do
M1:=MaximalSubgroups (H) ;
M1:=[M1[i] ‘subgroup : i in [1..#M1]];
for i in [1..#M1] do
b:=exists(K){K : K in S | IsConjugate(G,K,M1[i])};
if IsSoluble(M1[i]) and (b eq false) then
Append(~S,M1[i]);

else
Append ("NS1,M1[i]);

end if;

end for;
end for;
NS:=NS1;

a:=a+l;

end while;

if #NS ge 1 then
for H in NS do
b:=exists(K){K : K in S | IsConjugate(G,K,H)};
if b eq false then
Append(“S,H) ;
end if;
end for;
end if;

S:=[S[i] : i in [1..#S] | #PrimeFactors(#S[i]) ge 2];
P:=PrimeFactors (#H) ;
for p in P do
Append (~S,SylowSubgroup(H,p)) ;
end for;

D:=[#S[i] : i in [1..#S]]1;
ParallelSort ("D, ~S);
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S:=Reverse(S);
return S;

end function;

We also define the following function So1lMax. The input is a finite group G and a positive
integer N; the function computes Rgolmax(G) (if G does not contain a soluble maximal
subgroup, then Ry max(G) is not defined and the code returns “0”).

SolMax := function(G,N)

M:=MaximalSubgroups(G) ;
M:=[M[i] ‘subgroup : i in [1..#M] | IsSoluble(M[i] ‘subgroup) and #Core(G,M[i] ‘subgroup) eq 1];

if #M eq O then
a:=0;
b:=0;
c:=[1;
else
a,b,c:=RegTuplesPlus(G,M,2,N);
end if;

return a, b, c;
end function;

2. GAP FUNCTIONS

In this section we present our main GAP [6] functions, working with version 4.11.1. These
functions rely on the GAP Character Table Library [3] in order to access stored character
tables and associated fusion maps, and they play a key role in the proof of [I, Theorem 2]
on sporadic groups.

2.1. Probabilistic methods. Let G be a finite group and let 7 = (Hy,..., Hg) be a k-
tuple of core-free subgroups of G. As in [I}, Section 2.1], let Q(G, 7) be the probability that
a randomly chosen element in G/H; x --+ x G/Hj, lies in a regular orbit of G and note
that 7 is regular if and only if Q(G,7) < 1. In [I, Lemma 2.1] we established the bound

~

Q(G, 1) < Q(G, 1), where

m k
QG,7)=>_[a¥] - | [] for(z:, G/ Hj)
=1

J=1

and x1,...,ZTy is a set of representatives of the conjugacy classes in G of elements of prime
order.

Suppose the character table of G is available in [3] and the GAP function Maxes is exe-
cutable, which allows us to access the character table of every maximal subgroup of G. In
addition, let us assume that the function FusionConjugacyClasses is effective with respect
to the character table of every maximal subgroup of G. Then we can use GAP to compute

~

Q(G, 1) precisely for any given k-tuple 7 of maximal subgroups of G.

Remark 2.1. Let G be an almost simple sporadic group. In every case, the character table
of G is available in [3] and we can use Maxes to access the character table of every maximal
subgroup, unless G = M is the Monster. In addition, if G # B, M, then the fusion map from
H-classes to G-classes is available in [3] for every maximal subgroup H of G. The same is true
when G = B is the Baby Monster, with the single exception of the case H = (22 x Fy(2)):2,
for which the fusion map is not known.

Our first function QProb takes as input the character table t of a finite group G, a tuple
M = [t1,...,t,] of character tables of subgroups of G (where t; is the character table of H;),
the tuple F' = [f1,..., fr], where f; is the fusion map from H;-classes to G-classes, and a set
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A of k-tuples of positive integers [a1, . .

the complete set of k-tuples [a1, ..., az] in A such that Q(G,7) > 1 for 7 = (H,,, ..., H,,).

QProb := function(t,M,F,A)

., ag], where 1 < a; < r for all i. The function returns

local S, 0, r, B, A2, A1, a, a1, P, i, SO, t1, D, z, G, j, S1, fus, c, k, b;

S:=SizesConjugacyClasses(t);;
0:=0rdersClassRepresentatives(t);;
r:=Size(A[1]);;

B:=[1;;
A2:=[1;;
for a in A do
Al1:=[1;;
for i in a do
Add(A1,Size(CharacterTable(M[i])));;
od;
al:=Product (Al);;
if al <= Size(t) (r-1) then
Add(A2,a);;
else
Add(B,a);;
fi;
od;

if Size(A2) = O then

B:=A;;
else
P:=[1;;

for i in [1..Size(0)] do
if IsPrime(0[i]) then
Add(P,i);;
fi;
od;

S0:=[1;;

for i in [1..Size(M)] do
t1:=CharacterTable(M[i]);;
Add(S0,SizesConjugacyClasses(tl));;

od;

for D in A2 do
z:=0;;
for i in P do
a:=S[il;;
G:=[1;;
for j in D do
S1:=50[j];;
fus:=F[j];;
c:=0;;
for k in [1..Size(fus)] do
if fus[k] = i then
c:=c+S1[k];;
fi;
od;
Add(G,c/a);;
od;
b:=Product(G);;
if Size(G) > O then
z:=z+ax*b;;
fi;
od;
if z >= 1 then
Add(B,D);;
fi;
od;
fi;
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Sort(B);;

return B;
end;

We now use QProb in the function QGAP given below. As before, the function takes t, M
and F' as input, together with an integer k > 2. For all £ € {k,k + 1,k + 2} it returns a
complete list of the ¢-tuples 7 with component subgroups in M such that @(G, T) > 1. See
the example given below.

QGAP := function(t,M,F,k)
local B,C,i,P,A,p,q,B1,b,j,Cl,c,D;

B:=[1..Size(M)];;

C:=[1;;

for i in [1..k] do
Add(c,B);

od;

P:=Cartesian(C);;

A:=[1;;

for p in P do
q:=ShallowCopy(p);;

Sort(p);;
if q = p then
Add(A,p);
fi;
od;

B:=QProb(t,M,F,A);;

if Size(B) > O then
B1:=[1;;
for i in [1..Size(B)] do
b:=B[i];;
for j in [1..8ize(M)] do
Add (B1,Concatenation(b, [j1));;
od;
od;
for p in Bl do
Sort(p);
od;
Bil:=Set(B1);;
C:=QProb(t,M,F,B1);;
else
C:=[1;;
fi;

if Size(C) > O then
C1:=[1;;
for i in [1..Size(C)] do
c:=C[il;;
for j in [1..Size(M)] do
Add(C1,Concatenation(c, [j1));;
od;
od;
for p in C1 do
Sort(p);
od;
C1l:=Set(C1);;
D:=QProb(t,M,F,C1);;
else
D:=[1;;
fi;

Sort(B);;
Sort(C);;
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Sort(D);;
return [B,C,D];
end;

Example 2.2. Suppose G = Mi1. Then the following code return the complete set of
maximal ¢-tuples with Q(G,7) > 1 and ¢ € {4,5,6}.

CharacterTable("M11");;

CHH

Maxes(t);;

;;

or i in [1..Size(m)] do
t1:=CharacterTable(m[i]);;

Add (F,FusionConjugacyClasses(tl,t));;
od;

q:=QGAP(t,m,F,k);;

ql1l; ql2]; ql3]1;

t
k
m
F
f

This returns
[[1,
[1

1,1, 11, [1, »1,2,21,01,2,2,2],
> 2, 41, [2 4]

1,1,21,[1,1
,2,2,21,[2, 2,2, ]
[r2 2,2, 2,211
[1]

It follows that every maximal 6-tuple is regular and thus R(G) < 6. In addition, we see that
7= (H,H,H, H, H) is the only maximal 5-tuple with Q(G,7) > 1, up to conjugacy, where
H =1y(11).

3. SYMMETRIC AND ALTERNATING GROUPS

3.1. Regularity number. Let G be an almost simple group with socle T' = A,, and recall
that the regularity number of G, denoted R(G), is the minimal integer k such that every
core-free k-tuples of subgroups of G is regular.

Proposition 3.1. Let G = S, or A, with 5 < n <12. Then R(G) =n —|S, : G|.

Proof. The MAGMA code below outputs [n, R(Sy), R(Ay)] for all n in the given range. To
do this, we use the function RegTuplesPlus (see Section [1.2)), setting | = [n/2] and taking
M to be the set M’'(G) of representatives of the G-classes of core-free maximal subgroups of
G, together with representatives of any maximal subgroups H of A, with Ng(H) = H (see
[1, Remark 2.10]).

for n in [5..12] do
:=Sym(n) ;
:=Socle(G);

1:=n div 2;

H @

M:=MaximalSubgroups(G) ;

M:=[M[i] ‘subgroup : i in [1..#M] | #Core(G,M[i] ‘subgroup) eq 1];
M1:=MaximalSubgroups (T);

M2:=[M1[i] ‘subgroup : i in [1..#M1]];

M1:=[M1[i] ‘subgroup : i in [1..#M1] | #Normaliser(G,M1[i] ‘subgroup) eq #M1[i] ‘subgroup];

for H in M1 do
a:=exists(K){K : K in M | IsConjugate(G,H,K)};
if a eq false then
Append ("M, H) ;
end if;
end for;

D:=[#M[i] : i in [1..#M]];
ParallelSort ("D, "M);
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M:=Reverse (M) ;

al,a2,a3,a4:=RegTuplesPlus(G,M,1,100);
b1,b2,b3,b4:=RegTuplesPlus(T,M2,1,100);
[n,a1,b1];

end for;

g

Proposition 3.2. We have R(G) = 4 for every almost simple group G # Ag, Se with socle
Ag.

Proof. We use the following code to compute the regularity number of the three relevant
groups (namely, PGL(9), Mg and Ag.22).

G:=AutomorphismGroupSimpleGroup("A6") ;
T:=Socle(G);
M2:=MaximalSubgroups(T) ;
M2:=[M2[i] ‘subgroup : i in [1..#M2]];
S:=LowIndexSubgroups (G,#G div #T);
for j in [2,3,5] do
G:=8[jl;
M1:=MaximalSubgroups(G) ;
M1:=[M1[i] ‘subgroup : i in [1..#M1]];
Mi:=[H : H in M1 | #Core(G,H) eq 1];
if j 1t 5 then
M3:=[H : H in M2 | #Normalizer(G,H) eq #H];
M:=M1 cat M3;
else
M:=M1;
for k in [2..4] do
M3:=MaximalSubgroups (S[k]);
M3:=[M3[i] ‘subgroup : i in [1..#M3] | #Core(G,M3[i] ‘subgroup) eq 1];
M:=M cat M3;
end for;
end if;

al,a2,a3,a4:=RegTuplesPlus(G,M,2,100);
[j,a1];
end for;

g

3.2. Primitive subgroups. Let G be an almost simple group with socle T = A, and
recall that a subgroup H of G is primitive if H N'T acts primitively on {1,...,n}. We
define Rpyim(G) to be the minimal integer k such that every k-tuple of core-free primitive
subgroups of G is regular (if G does not have a core-free primitive subgroup, then Rpyim(G)
is undefined).

Suppose G € {S,, 4,,} with 5 < n < 60. The following MAGMA code returns

[, Rprim (), Rprim (An)]

for all n in the required range. In addition, X[n| = [A, B], where A is the set of non-regular
(k — 1)-tuples for S,, (with components in M’(G)) where k = Rprim(Sy), and similarly B is
the set of non-regular maximal (¢ — 1)-tuples for A,, where £ = Rpim(4,).

X:=[01,00,0,071;
for n in [5..59] do
G:=Sym(n) ;
T:=A1t(n);
M1:=MaximalSubgroups(G) ;
M2:=MaximalSubgroups(T) ;
M1:=[M1[i] ‘subgroup : i in [1..#M1]];
M2:=[M2[i] ‘subgroup : i in [1..#M2] | IsPrimitive(M2[i] ‘subgroup)];
Mi:=[H : H in M1 | #Core(G,H) eq 1 and IsPrimitive(H meet T)];
M3:=[H : H in M2 | #Normaliser(G,H) eq #H];
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M1:=M1 cat M3;

al,a2,a3,a4:=RegTuplesPlus(G,M1,2,100);
b1,b2,b3,b4:=RegTuplesPlus(T,M2,2,100);
Append ("X, [a3,b3]) ;
[n,a1,b1];

end for;

The following code shows that Rp.im(G) = 4 for every almost simple group G # Ag, Sg
with socle Ag.

X:=[1;
G:=AutomorphismGroupSimpleGroup("A6") ;
T:=Socle(G);
M2:=MaximalSubgroups(T) ;
M2:=[M2[1i] ‘subgroup : i in [1..#M2] | IsPrimitive(M2[i] ‘subgroup)];
S:=LowIndexSubgroups (G,#G div #T);
for j in [2,3,5] do
G:=S[j];
M1:=MaximalSubgroups (G) ;
M1:=[M1[i] ‘subgroup : i in [1..#M1]1];
Mi:=[H : H in M1 | #Core(G,H) eq 1 and IsPrimitive(H meet T)];
if j 1t 5 then
M3:=[H : H in M2 | #Normalizer(G,H) eq #H];
M:=M1 cat M3;
else
M:=M1;
for k in [2..4] do
M3:=MaximalSubgroups(S[k]);
M3:=[M3[i] ‘subgroup : i in [1..#M3]];
M3:=[H : H in M3 | #Core(G,H) eq 1 and IsPrimitive(H meet T)];
M:=M cat M3;
end for;
end if;

al,a2,a3,a4:=RegTuplesPlus(G,M,2,100);
Append(“X,a3);
[3,a1];

end for;

3.3. Imprimitive subgroups. Recall that Rimprim(G) is the minimal integer & such that
every k-tuple of imprimitive subgroups of G is regular.

Proposition 3.3. Let G = S,, or A,, with 6 < n < 30 composite. Then Rimprim(G) < 6.
Proof. We use the following MAGMA code to verify the result:

for n in [6..30] do
if IsPrime(n) eq false then
D:=Divisors(n);

M:=[];
for G in [Sym(n),Alt(n)] do
M1:=[1;
for i in [2..#D-1] do
a:=D[i];

b:=n div a;
Append (“M1,WreathProduct (Sym(a) ,Sym(b)) meet G);
end for;
Append ("M, M1) ;
end for;

al,a2,a3,a4:=RegTuplesPlus(Sym(n),M[1],6,500) ;
b1,b2,b3,b4:=RegTuplesPlus (Alt(n),M[2],6,500) ;
[n,a1,b1];
end if;
end for;
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3.4. Soluble subgroups.

Proposition 3.4. Suppose G = S,, or A, with 5 <n < 11. Then Rs(G) < 5, with equality
if and only if G = Ss.

Proof. We use the following code to compute Rg,)(G) in each case. This relies on the function
Sol, which we defined in Section

for n in [5..11] do
G:=Sym(n) ;
T:=Alt(n);
A1:=[1;
A2:=[];
al,bl,cl:=Sol(G,100);
a2,b2,c2:=S01(T,100);
Append(“Al,c1);
Append(~A2,c2);
n; [al,b1]; [a2,b2]; " ";
end for;

For example, for n = 5 we get the output [4,2], [3,6], which tells that Rs,)(S5) = 4 and
Ryo1(As) = 3, as well as the fact that S5 has exactly 2 non-regular soluble triples, whereas

Ajs has 6 non-regular soluble pairs (up to conjugacy and ordering). O
Proposition 3.5. Suppose G = Sig4m and H = (S40S4) X Sy, where 0 < m < 4. Then
b(G,H) = 3.

Proof. For each m, the following code constructs G and H, and it uses random search to
show that b(G, H) < 3. It then computes the number of (H, H) double cosets in G with size
|H|?, which is zero in every case, whence b(G, H) = 3 as claimed.

for m in [0..4] do
G:=Sym(16+m) ;
if m eq O then
H:=WreathProduct (Sym(4) ,Sym(4)) ;
else
H:=DirectProduct (WreathProduct (Sym(4) ,Sym(4)),Sym({17..16+m}));
end if;
repeat
x1:=Random(G) ;
x2:=Random(G) ;
until
#(H meet H"x1 meet H"x2) eq 1;
R,S:=DoubleCosetRepresentatives(G,H,H) ;
[m,#[s : s in S | s eq #H"2]];
end for;

g

Proposition 3.6. Suppose G = S, or A, with 5 < n < 16, and assume G has a soluble
mazimal subgroup. Then

5 ifn=38
4 ifn=25,6
Reotmax(5n) = 4 3 zf;n: 7,9,12,16
2 ifn=11,13
and
4 ifn=28
Rsolrnax(An) = 3 Zf’I’L = 5, 6, 7, 9, 12, 16
2 ifn=13

Proof. Here we use the function SolMax (see Section[L.3)). For n in the given range, note that
Sy (respectively, A,) has a soluble maximal subgroup unless n € {10, 14, 15} (respectively,
n € {10,11, 14,15}).
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Note that “[0,0]” in the output signifies that G does not have a soluble maximal sub-
group. In all other cases, “[k,1]” means that Rgmax(G) = k and [ is the number of
non-regular soluble maximal (k — 1)-tuples, up to conjugacy and ordering (unless k = 2, in
which case | = 0). For Rgomax(G) = k > 3, the procedure below also constructs all the
non-regular soluble maximal (k — 1)-tuples, up to conjugacy and ordering.

for n in [5..16] do
G:=Sym(n) ;
T:=A1t(n);
Al:=[];
A2:=[];
al,bl,cl:=SolMax(G,100);
a2,b2,c2:=S01Max (T, 100);
Append (“A1,c1);
Append (TA2,c2);
n; [al,b1]; [a2,b2]; " ";

end for;
Il
Proposition 3.7. Let G # Sg, Ag be an almost simple group with socle Ag. Then
By = { 4 G = Ag.22
SOl max 3 otherwise
Proof. We use the following code to check this:
G:=AutomorphismGroupSimpleGroup("A6") ;
S:=LowIndexSubgroups (G,#G div #Socle(G));
for i in [2,3,5] do
G:=S[i]l;
Al:=[];
al,bl,cl:=SolMax(G,100);
Append(“A1,cl);
[i,a1,b1];
end for;
Il

4. SPORADIC GROUPS

Let G be an almost simple sporadic group with socle T'. The proof of [I, Theorem 2] relies
entirely on computational methods. Here we detail all of the computations.

4.1. The regularity number. The regularity number of G is determined in [1l, Proposition
4.3] and here we present the code we used to calculate this number. We also determine all the
large (k—1)-tuples (up to conjugacy and reordering), where k = R(G); the latter information
is recorded in the final column of [I, Table 3] (the term large tuple is defined in [I, Definition
4.1]). As in [I], Section 4.1], we proceed by dividing the possibilities for T" in to the following
collections:

A = {Mll,Mlg,MQQ,M23,M24,J1,Jg,J3,HS,MCL,H€,SuZ,O/N,Ru, Cos, Cog, Figg, Fiag}
Ay = {Coy, HN, Fi/24}
As = {J4,Ly, Th}
Ay = {B, M}
Proposition 4.1. The conclusion to [I, Proposition 4.3] holds if T € Aj;.

Proof. We use the following MAGMA code, which relies on the function RegTuplesPlus
defined in Section Note that the tuples V1 and V2 list the base numbers of the groups
T and T.2, respectively, which can be read off from [5] (see [I, Proposition 4.2]).
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U:=["M11","M12", "M22" , "M23" , "M24" " J1" nJ2m nJ3" WHS" "McL","He","Suz","ON","Ru","Co3","Co2","Fi22","Fi23"];
vi:=[4,5,5,6,7,3,4,3,4,5,4,4,3,4,6,6,5,5];
v2:=[0,5,5,0,0,0,4,3,5,5,4,4,3,0,0,0,6,0];

for u in [1..#U] do
t:=U[ul;
G:=AutomorphismGroupSimpleGroup(t) ;
T:=Socle(G);
M2:=MaximalSubgroups(T) ;
M2:=[M2[i] ‘subgroup : i in [1..#M2]];
D:=[#M2[i] : i in [1..#M2]];
ParallelSort(~D, ~“M2);
M2:=Reverse(M2);

if #G ne #T then
M1:=MaximalSubgroups(G) ;
M1:=[M1[i] ‘subgroup : i in [1..#M1] | #Core(G,M1[i] ‘subgroup) eq 1];
M3:=[H : H in M2 | #Normalizer(G,H) eq #H];
for H in M3 do
a:=exists(K){K : K in M1 | IsConjugate(G,K,H)};
if a eq false then
Append ("M1,H) ;
end if;
end for;
D:=[#M1[i] : i in [1..#M1]1];
ParallelSort ("D, "M1);
M1:=Reverse(M1);
end if;

al,a2,a3,a4:=RegTuplesPlus(T,M2,V1[u]-1,100);
if #G ne #T then
b1,b2,b3,bd:=RegTuplesPlus(G,M1,V2[u]l-1,100);

else
b1:=0;
b4:=[];
end if;
t.ai.a4. n ". bl.b4. n n. n ",
end for;

Proposition 4.2. The conclusion to [I, Proposition 4.3] holds for G = Co;.

Proof. Here we need to show that R(G) = 5 and the only non-regular core-free 4-tuple is
(H,H,H, H), up to conjugacy, where H = Coy. As explained in the proof of [I, Proposition
4.3], we begin by using the GAP function QGAP to determine all the maximal 4-tuples and
5-tuples T with @(G,T) > 1.

t:=CharacterTable("Col");;

k:=3;;

m:=Maxes(t);;

F:=[1;;

for i in [1..Size(m)] do
t1:=CharacterTable(m[i]);;
Add (F ,FusionConjugacyClasses(tl,t));;

od;
q:=QGAP(t,m,F,k);;
ql2]; ql3];

This returns the following list of 4-tuples:
[1,1,1,1], [1,1,1,2], [1,1,1,3], [1,1,1,4], [1,1,1,5], [1,1,1,6] (1)

and no 5-tuples are returned. As a consequence, we deduce that every core-free 5-tuple is
regular and thus R(G) < 5. Since [5] gives B(G) = 5, we conclude that R(G) = 5.
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The first tuple in corresponds to (H, H, H, H) with H = Coy, which we know is non-
regular from [5]. Putting this tuple to one side, we switch to MAGMA and we use our function
RandomReg to show that the remaining 4-tuples in are all regular:

G:=AutomorphismGroupSimpleGroup("Col");
M:=MaximalSubgroups (G) ;

M:=[M[i] ‘subgroup : i in [1..#M]];
A:=[#M[i] : i in [1..#M1];
ParallelSort(~A, “M);

M:=Reverse (M) ;

for i in [1..#M] do [i,#M[il]; end for;

A:=[[1,1,1,2]1,01,1,1,31,01,1,1,41,01,1,1,51,[1,1,1,61];

R:=RandomReg(G,M,100,4) ;
R;

This returns an empty tuple and the proof is complete. O
Proposition 4.3. The conclusion to [I, Proposition 4.3] holds for T'= HN.

Proof. First assume G = T. We use the function QGAP to determine all the core-free pairs
and triples 7 with Q(G,7) > 1.

ot

:=CharacterTable ("HN");;

=255

:=Maxes(t);;

F:=[1;;

for i in [1..Size(m)] do
t1:=CharacterTable(m[i]);;
Add (F ,,FusionConjugacyClasses(tl,t));;

od;

q:=QGAP(t,m,F,k);;

ql1l; ql21;

8 =

This outputs

rcs,11,01,21,01,31,01,41, 01,571, [1,61,[1,7]1,
[2,21,[2,31,[2,41,[2,51,[2,61, (2,71, [3,31,
(1,81, 01,91, (1,101, 1,117, [1,127], [1,13]1, [1, 141,
[2,81,[2,91,[2,101]1, [2, 111, [2,121,[2, 131, [3,41,
(3,71, 03,91, 04,41, (4,71, (4,81, (7,71, (7,81,
[8,81]1

[ 1]

and thus every core-free triple for G is regular. In particular, R(G) = 3. We then switch to
MAGMA to determine the regularity status of the pairs 7 with Q(G, 1) > 1:

G:=AutomorphismGroupSimpleGroup ("HN") ;
G:=Socle(G);

M:=MaximalSubgroups (G) ;

M:=[M[i] ‘subgroup : i in [1..#M]];
A:=[#M[i] : i in [1..#M]];
ParallelSort(~A, "M);

M:=Reverse (M) ;

for i in [1..#M] do [i,#M[il]; end for;

A:=([1t,11]1,0121,21]1,01,81,01,41,01,511,02t,61,[1,7]1,[1,81,[1,9171,[1, 101,
[+, 121,01,121,01,131,01,141,02,2171,[2,31,[2,41]1,[2,51,[2,61,[2,7]1,
[2,81,[2,91,[2,10]1,[2,111,[2,12],[2,131,[8,31,[3,41,[3,71,[3,91,
[4,41,04,71,04,81,L7,71,[7,871,[8,81];

R:=RegTuples(G,M,100,4);
Sort(R);
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This outputs

tcs,t1,02,21,01,331,01,41,02,5]1,01,6]1,01,7],01,81,[1,91,[1, 101,
(1, 111,0t,12]1,02,2171,02,31,[2,41,[2,51]1,[2,61,[2,71]1,[02,81,[2,91,
(2, 101,02, 111,02,12]1,[3,31]1]1

We now repeat the calculation for G = HN.2, working with tuples of subgroups in M'(G).
First we use MAGMA to determine the maximal subgroups H of T" with Ng(H) = H, up to
conjugacy in G.

G:=AutomorphismGroupSimpleGroup ("HN") ;
T:=Socle(G);
M:=MaximalSubgroups(T) ;
M:=[M[i] ‘subgroup : i in [1..#M]];
A:=[#M[i] : i in [1..#M]];
ParallelSort("A, "M);
M:=Reverse (M) ;
for i in [1..#M] do

H:=M[i];

if #Normaliser(G,H) eq #H then

[i,#M[i1];

end if;

end for;

This returns

[ 11, 190080 1, [ 12, 190080 1

and we note that these two subgroups are conjugate in G (and isomorphic to Mj2.2). We
now carry out the GAP analysis on pairs and triples.

t:=CharacterTable("HN.2");;

t1:=CharacterTable("HN");;

k:=2;;

m:=[];;

a:=Maxes(t);;

al:=Maxes(t1);;

for i in [2..Size(a)] do
Add(m,alil);;

od;

Add(m,a1[11]1);;

F:=[1;;
for i in [1..Size(m)] do
t1:=CharacterTable(m[i]);;
Add (F,FusionConjugacyClasses(tl,t));;
od;
q:=QGAP(t,m,F,k);;
ql1]; ql2]1;

This outputs

tt11,02,21,0¢,3731,01,411,02,51,02,6]1,01,7],01,81,[1,91]1,[1, 101,
[1,121,01,121,01,131,[2,21,[2,31,[2,41,[2,51,[2,61,[2,71,
[2,81,[2,9]1,[2,101,[2,111]1,[2,12]1,[2,13]1,[3,31,[3,41,[3,51,

(3, 71,(8,81,[3,91,[4,41,[4,51,[4,61,[4,71,04,81,[4,91,[5,71,
trz,71,07,81,07,91,[8,81]

and thus R(G) = 3. As before, we now switch to MAGMA to determine the regularity status
of the pairs 7 with Q(G, 1) > 1.
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G:=AutomorphismGroupSimpleGroup ("HN") ;
T:=Socle(G);

M:=MaximalSubgroups (G) ;

M:=[M[i] ‘subgroup : i in [1..#M] | #Core(G,M[i] ‘subgroup) eq 1];
A:=[#M[i] : i in [1..#M]];
ParallelSort("A, "M);

M:=Reverse (M) ;
M1:=MaximalSubgroups(T) ;

M1:=[M1[i] ‘subgroup : i in [1..#M11];
A:=[#M1[i] : i in [1..#M11];
ParallelSort(~A, "M1);
M1:=Reverse(M1);

Append ("M,M1[11]);

for i in [1..#M] do
[i,#M[i]];

end for;
A:={[1,11,01,271,01,31,[1,41,01,51,[1,61,[1,71,[1,81,[1,91,[1, 101,
(1,111,011, 227,01, 131,02,21,02,31,[2,41,[2,51,[2,61,[2,71,
[2,81,[2,91,[2,10]1,[2,1111,[2,12171,[2,131,[83,31,[3,41,[3,51,
(s, 71,0s3,81,[8,91,[4,41,(4,51,[4,61,04,71]1,[4,81,04,91,[5,71,
rrz, 71,07, 81,07,91,[8,81I1;
R:=RegTuples(G,M,100,4);
Sort(R);
This returns
rc+,11,02,21,01,371,01,41,(l1,5]1,[1,61,01,7]1,[1,87]1,[1,91,[1, 101,
(1,111,001, 131,02,2731,[2,831,[2,41,[2,51]1,[2,61,[2,71,[2,81,[2,91,
[2,101,02,13]1,[3,31,[3,41]1

Proposition 4.4. The conclusion to [1, Proposition 4.3] holds for T = Fi,,.

Proof. First assume G = T. We begin by applying QGAP to determine all the core-free
4-tuples and 5-tuples 7 with Q(G, 1) > 1:

ot

:=CharacterTable("Fi24’");;

=353

m:=Maxes(t);;

F:=[1;;

for i in [1..Size(m)] do
t1:=CharacterTable(m[i]);;
Add (F,FusionConjugacyClasses(tl,t));;

od;

q:=QGAP(t,m,F,k);;

ql2]; ql31;

ol

This outputs

tcs,1,1,273,02,1,1,27,02,1,1,31,[1,1,1,47,01,1,1,57],[1,1,1,617]

(rtt,1,1,1,111

It follows that = = (H,H,H, H, H) is the only maximal 5-tuple with @(G,T) > 1, where
H = Fig3, and we know that this is regular by [5]. Therefore, R(G) = 5 and it remains to
determine all the non-regular maximal 4-tuples. To do this, we switch to MAGMA, noting
that (H, H, H, H) is non-regular since b(G, H) = 5.

Given the above list of candidate non-regular maximal 4-tuples, we need to construct the
following maximal subgroups of G:

1: Figg, 2:2.Fin.2, 3: (3 x PQJ(3).3).2, 4:Qp(2), 5:37.07(3), 6:3'110:U;5(2).2
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We do this using generators for the corresponding maximal subgroups of 7.2 = Fiay, which
are available in the Web Atlas [10], noting that each subgroup H is of the form M NT, where
M is a maximal subgroup of T'.2.

G:=AutomorphismGroupSimpleGroup("Fi24");
T:=Socle(G);

[We construct the relevant maximal subgroups]

for i in [1..#M] do
[i,#M[1i1];
end for;

This returns

4089470473293004800 ]
258247006617600 ]
89139236659200 ]
25015379558400 ]
10028164124160 ]
4848782653440 ]

L B W e W B e B |
o O WN -

Next we observe that (H, H, H, K) is regular if and only if K has a trivial 3-point stabiliser
in its action on G/H. The given permutation representation of G corresponds to the action
of G on G/H, so this criterion is easy to check:

for i in [1..6] do
H:=M[i];
0:=0rbits(H);
A:=[];
for il in [1..#0] do
H1l:=Stabilizer (H,Representative(o[il]));
ol:=0rbits(H1);
for i2 in [1..#01] do
H2:=Stabilizer (H1,Representative(o1[i2]));
02:=0rbits(H2);
for i3 in [1..#02] do
H3:=Stabilizer (H2,Representative(02[i3]));
Append (TA,#H3) ;
end for;
end for;
end for;
if 1 in A then
w:=1;
else
w:=0;
end if;
[i,w];
end for;

This outputs

(1,01, 2,01, (3,11, (4,11, [5,1],[6,1]

and we conclude that (1,1,1,4) with 1 < ¢ < 6 is non-regular if and only if i = 1 or 2.

Now assume G = T.2. First we need to determine the subgroups in M’(G). By inspecting
[8, Table 1.1], we see that there are six classes of maximal subgroups H of T with Ng(H) = H,
namely two classes for each of the following subgroups: He.2, Us(3).2, Ly(13).2. In terms of
[3] and the output of Maxes with respect to the character table of T, these subgroups are
numbered 13,14,21,22,23,24. Note that the two T-classes of maximal subgroups isomorphic
to He.2 are fused in G. And similarly for those of type U3(3).2 and La(13).2.
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t:=CharacterTable("Fi24");;

t0:=CharacterTable("Fi24’");;

k:=3;;

m:=[];;

a:=Maxes(t);;

al:=Maxes(t0);;

for i in [2..Size(a)] do
Add(m,alil);;

od;

for i in [13,21,23] do
Add(m,a1[il);;

od;

F:=[1;;
for i in [1..Size(a)-1] do
t1:=CharacterTable(m[i]);;

Add (F,FusionConjugacyClasses(tl,t));;
od;
f1:=FusionConjugacyClasses(t0,t);;
for i in [Size(a)..Size(a)+2] do

t1:=CharacterTable(m[i]);;

f:=FusionConjugacyClasses(t1,t0);;
fus:=[1;;

for j in [1..S8ize(£)] do

Add(fus,f1[£[j11);;

od;

Add(F,fus);;
od;

q:=QGAP(t,m,F,k);;
ql2]; ql31;

This outputs

,1,1,31,[1,1,1,4],
, 1, 1,811

—
e

(rfe,1,1,1,11]1

Here the subgroup labelled by 1 is H = Fia3 x 2 and by inspecting [5] we see that (1,1,1,1,1)
is regular, whereas (1,1, 1,1) is non-regular. So it just remains to determine the regularity
status of the tuples (1,1,1,4) with ¢ € {2,3,4,5,6,8}. To do this we switch to MAGMA and
we construct the relevant maximal subgroups (using the generators in the Web Atlas).

G:=AutomorphismGroupSimpleGroup ("Fi24");
[We construct the relevant maximal subgroups]

for i in [1..#M] do
[i,#M[1i1];
end for;

This returns (note that M[7] is the subgroup labelled 8 above, namely (2 x 22.Ug(2)):53):

, 8178940946586009600 ]
, 516494013235200 ]

, 178278473318400 ]
50030759116800 1]

, 20056328248320 ]

, 9697565306880 ]

, 441447874560 1]

L e B e B e B e |
N O O W N
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Note that the given permutation representation of G corresponds to the action of G on G/H.
Moreover, a 4-tuple of the form (H, H, H, K) is regular if and only if K has a trivial 3-point
stabiliser in its action on G/H.

for i in [1..7] do
H:=M[i];
0:=0rbits(H);
A:=[1;
for il in [1..#0] do
H1:=Stabilizer (H,Representative(o[il]));
ol:=0rbits(H1);
for i2 in [1..#o01] do
H2:=Stabilizer (H1,Representative(o1[i2]));
02:=0rbits(H2);
for i3 in [1..#02] do
H3:=Stabilizer (H2,Representative(02[i3]));
Append (TA,#H3) ;
end for;
end for;
end for;
if 1 in A then
w:=1;
else
w:=0;
end if;
[i,w];
end for;

This outputs

(1,01, [2,01, (3,01, (4,11, 05,11, [6,1]1, [7,1]

and we conclude that (1,1,1,7) with ¢ € {1,2,3,4,5,6,8} is non-regular if and only if i €
{1,2,3}. 0

Proposition 4.5. The conclusion to [I, Proposition 4.3] holds for T'= Ly.
Proof. As usual, we begin by applying QGAP to identify the maximal pairs and triples 7 with

~

QG,T) > 1

t:=CharacterTable("Ly");;

k:=2;;

m:=Maxes(t);;

F:=[1;;

for i in [1..Size(m)] do
t1:=CharacterTable(m[i]);;
Add (F ,FusionConjugacyClasses(tl,t));;

od;

q:=QGAP(t,m,F,k);;

ql1l; ql2];

This outputs

(01,101,012, 2]
[2,21,[2

[ ]

and thus R(G) = 3. By inspecting [5] we deduce that the pairs (1,1) and (2,2) are non-
regular, whereas (4, 4) is regular. By comparing orders, we see that (1,2), (1,3), (1,4), (1,5),
(2,3) and (2,4) are also non-regular. This leaves us to handle the following pairs:

(1,6), (1,7), (2,5), (2,6), (2,7)
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We now switch to MAGMA, constructing G and each of the relevant maximal subgroups
in the matrix group GLi11(5). Random search then reveals that the pairs (1,7) and (2,7)
are regular, but it is inconclusive in the three remaining cases.

G:=MatrixGroup("Ly",3);
a,M:=MaximalSubgroups(G,"Ly") ;
M:=[M[i] ‘group : i in [1..#M]];

repeat
x:=Random(G) ;
until
LMGOrder (M[1] meet M[7]°x) eq 1;

repeat
x:=Random(G) ;
until
LMGOrder (M[2] meet M[7]°x) eq 1;

Finally, we consider the remaining pairs (H, K) labelled (1,6), (2,5) and (2,6), with
respect to the following maximal subgroups:

1: Go(5), 2:3.McL.2, 5:5'7%:485 6:3%:(2 x My;)

We thank Derek Holt (personal communication) for resolving these three cases; using MAGMA,
he was able to show that they are all non-regular. To do this, he considers the action of H on
the module V = Fi!! for G, finding a d-dimensional submodule, where d = 7 for H = G»(5)
and d = 21 for H = 3.McL.2. The function OrbitAction is then used to construct the
permutation representation of G on G/H and the conclusion follows by calculating all of the
K-orbits on G/H. O

Proposition 4.6. The conclusion to [I, Proposition 4.3] holds for T' = Th.

Proof. First we use QGAP to identify the maximal pairs and triples 7 with @(G, T) > 1:

t:=CharacterTable("Th");;

k:=2;;

m:=Maxes(t);;

F:=[1;;

for i in [1..Size(m)] do
t1:=CharacterTable(m[il);;
Add (F,FusionConjugacyClasses(tl,t));;

od;

q:=QGAP(t,m,F,k);;

ql1]; ql2];

This outputs

tre,21,01,21,01,31,01,41,01,51,02,21,02,31,10[3,31]1

[ 1]

and so we conclude that R(G) = 3. By inspecting [5], we see that (1,1) and (2,2) are non-
regular, whereas (3,3) is regular. By comparing orders, (1,2) is also non-regular and this
leaves us to handle the following pairs:

(1,3), (1,4), (1,5), (2,3).

Switching to MAGMA, we can construct G and each relevant maximal subgroup inside
GL24s(2) and then it is easy to check that the pairs (1,5) and (2, 3) are regular:
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G:=MatrixGroup("Th",1);
a,M:=MaximalSubgroups(G,"Th") ;
M:=[M[i] ‘group : i in [1..#M]];

repeat
x:=Random(G) ;
until
LMGOrder (M[1] meet M[5]°x) eq 1;

repeat
x:=Random(G) ;
until
LMGOrder (M[2] meet M[3]°x) eq 1;

We thank Derek Holt for showing that the remaining pairs (1,3) and (1,4) are both non-
regular (personal communication). To do this, he proceeded as in the Lyons group case,
working with MAGMA and the action of H = 3D4(2):3 on the module F3%® to construct the
permutation representation of G on G/H (which has degree 143127000). By calculating all
of the orbits of K, he was able to conclude that K has no regular orbits, so the relevant
pairs (H, K) are non-regular. O

Proposition 4.7. The conclusion to [I, Proposition 4.3] holds for T' = Jy.

Proof. As usual, we begin by applying the function QGAP to determine all the maximal pairs
and triples 7 with Q(G,7) > 1:

t:=CharacterTable("J4");;

k:=2;;

m:=Maxes(t);;

F:=[1;;

for i in [1..Size(m)] do
t1:=CharacterTable(m[i]);;
Add (F ,FusionConjugacyClasses(tl,t));;

od;

q:=QGAP(t,m,F,k);;

ql1]; ql2];

This outputs

tcs, 11,011,271, 01,31,01,471,01,51,0[02,21,1[2,31,
(2,41, 02,571, 03,31, [3,41]1

[ 1]

and thus R(G) = 3. By inspecting [5], we see that (1,1), (2,2), and (3,3) are non-regular.
And by comparing orders, we deduce that (1,2), (1,3) (1,4) and (2,3) are also non-regular.

This leaves the pairs
(L,5), (2,4), (2,5), (3,4)

We can use MAGMA to show that the latter two are regular, working with a matrix repre-
sentation of G over [Fy of dimension 112:

G:=MatrixGroup("J4",1);
a,M:=MaximalSubgroups(G,"J4") ;
M:=[M[i] ‘group : i in [1..#M]1];

repeat
x:=Random(G) ;
until
LMGOrder (M[2] meet M[5]°x) eq 1;

repeat
x:=Random(G) ;
until
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LMGOrder (M[3] meet M[4]°x) eq 1;

This leaves the pairs (1, 5) and (2,4), both of which we claim are non-regular. Here the first
pair is (H, K), where H = 2'1. My and K = Us3(11).2. In this case, Derek Holt (personal
communication) was able to construct G as a permutation group on G/H (as before, by
considering an appropriate submodule with respect to the action of H on IE‘%H) and then
calculate all of the K-orbits. However, this approach is not feasible for the pair (2,4), where
we have

(H,K) = (2'712.3.M95.2, 25712.(S5 x L3(2)),

due to the size of the degree |G : H| = 3980549947. We thank Jiirgen Miiller (personal
communication) for resolving this case. To do this, he used the GAP package ORB [9]
to establish the existence of sufficiently many distinct K-orbits on G/H to rule out the
possibility of a regular orbit. Miiller’s computation was subsequently (and independently)
verified by Derek Holt, using a different approach with MAGMA. O

Proposition 4.8. The conclusion to [I, Proposition 4.3] holds for G = B.

Proof. Here B(G) = 4 and so it suffices to show that every maximal 4-tuple 7 is regular. To
do this, we use our function QGAP to show that @(G, 7) < 1, noting that a small adjustment
is required because the fusion map from H-classes to G-classes is not available in [3] when
H = (22 x F4(2)):2. To get aorund this, we use the function PossibleClassFusions, which
returns a list of 64 possible fusion maps. We find that the fixed point ratios fpr(xz, G/H) are
independent of the choice of candidate fusion map, which then allows us to work with QGAP
in the usual manner.

t:=CharacterTable("B");;
k:=2;;
m:=Maxes(t);;
F:=[1;;
for i in [1..5] do
tl:=CharacterTable(m[i]);;
Add (F,FusionConjugacyClasses(t1,t));;
od;
t1:=CharacterTable(m[6]);;
P:=PossibleClassFusions(t1,t);;
Add(F,P[1]1);;
for i in [7..Size(m)] do
t1:=CharacterTable(m[i]);;
Add (F ,FusionConjugacyClasses(tl,t));;
od;
q:=QGAP(t,m,F,k);;
ql2]; ql31;

This outputs

trse, 2,11, 01,1,271,01,1,31,01,1,471,01,1,671,01,1,71,[1,2,21]1

[ 1]

and we deduce that R(G) = 4. O
Proposition 4.9. The conclusion to [I, Proposition 4.3] holds for G = M.

Proof. First recall that G has 46 conjugacy classes of maximal subgroups. For 31 of these
classes, the character table of a representative H and the fusion map from H-classes to G-

classes is available in the GAP Character Table Library [3] via the function NamesOfFusionSources.
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The relevant subgroups are as follows, and we use M to denote this collection of subgroups:

2.B 21+24.C01 3.F124 22.2E6(2)353
31+12.2.SHZ22 Sg x Th (Dlo X HN)2 51+622.J2.4

(7:3 x He):2 (A5 x Aq2):2 5313.(2 x L3(5)) (Ag)3.(2 x Sy)

(A5 x Us(8):3):2 52T2+4:(S3 x GLa(5)) (L3(2) x Spy(4):2).2  7'4:(3 x 257)

(5%:[2%] x U3(5)).S3 (La(11) x Mj2):2 (A7 x (A5 x A5):22):2 5%:(3 x 2.12(25)).2
72+1+2:GL2(7) M11 X A6.22 (S5)3:S'3 1322L2(13)4

(72:(3 x 244) x Ly(7)).2  (13:6 x L3(3)).2 13142:(3 x 48y) Ly(71)

Ly(59) L,(41) 41:40
Let x1, ..., x: be a complete set of representatives of the conjugacy classes in GG of elements

of prime order and set
a; = \xZG\, b; = max{fpr(z;, G/H) : H € M} (2)

for all 1 <7 <t. We can use GAP to calculate these numbers:

t:=CharacterTable("M");;
S:=SizesConjugacyClasses(t);;
0:=0OrdersClassRepresentatives(t);;
s:=NamesOfFusionSources(t);;
B:=[36,29,6,39,10,31,34,11,12,13,14,15,16,17,18,35,19,20,21,22,23,24,25,26,27,28,38,9,8,7,33] ;;
for i in B do
Print ([i,Size(CharacterTable(s[i]))], " ", s[i], "\n");
od;

F:=[1;;

for i in B do
t1:=CharacterTable(s[i]);;
Add (F,FusionConjugacyClasses(t1,t));;

od;

a:=[1;;
b:=[1;;
P:=[1;;

for i in [1..Size(0)] do
if IsPrime(0[i]) then
Add(P,i);;
Add(a,S[il);;
fi;
od;

S0:=[1;;

for i in B do
tl:=CharacterTable(s[i]);;
Add(S0,SizesConjugacyClasses(tl));;

od;

for i in P do
G:=[1;;
for j in [1..S8ize(B)] do
fus:=F[jl;;
S1:=50[j];;
c:=0;;
for k in [1..Size(fus)] do
if fus[k] = i then
c:=c+S1[k];;
fi;
od;
Add(G,c);;
od;
Add (b,Maximum(G) /S[il);;
od;
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Moreover, we can check that ), a,;b? < 1, which implies that every triple of subgroups in
My is regular.

z:=0;;

for i in [1..Size(a)] do
z:=z+a[i]*b[i]"3;

od;

z < 1;

We now extend the analysis to maximal triples containing subgroups from the remaining
classes of maximal subgroups. Let H be one of these subgroups and define

ir(H)=|{x € H : |z| =7}, ¢ =min{a;b; : |x;| =71}
for each prime divisor r of |G|. Notice that if
ir(H) < e (3)

for all r, then fpr(x;, G/H) < b; for all i. So by our previous calculation, if S is a collection
of subgroups of G such that holds for all  and all H € S, then every triple of subgroups
in § is regular.

R:=PrimeDivisors(Size(t));;
A:=[1;;
for r in R do
B:=[1;;
for i in [1..Size(P)] do
if O[P[i]] = r then
Add(B,ali]l*b[il);;
fi;
od;
Add(A,B);;
od;
c:=[1;;
for i in [1..Size(A)] do
Add(C,Minimum(A[il));;
od;
R;
C;

This returns

[2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71 ]
[ 11734592583376, 500595349782528000, 9367743238695946498867200, 3954417208796381184000,
3147561728201838023619379200000, 447153330533129256960000, 61099727665094502811435008000000,

109336354769116478715199488000000, 90321336548400569373425664000000, 86565910978666325606400,
134025209071820199715405824000000, 1680, 88399605983540982791012352000000, 1740, 2520 ]

First consider the following 12 maximal subgroups of G:
(La(11) x Lo(11)).4, 112%:(5 x 245), Us(4):4, 15(29):2, 7%:SLa(7), L2(19):2, La(13):2
33+2+6+6.(L3(3) X SD16), 32+5+10.(M11 X 254), (3212 X PQ;(g))S4

22+11+22.(M24 > Sg), 23+6+12+18.(L3(2) > 3S6)

In each of these cases, we can work with a permutation representation of H in the Web Atlas
[10] in order to compute é,(H), which then allows us to verify the bound in (3).
For example, the following MAGMA code handles the case H = (La(11) x La(11)).4:
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R:=[ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71 1;

C:=[ 11734592583376, 500595349782528000, 9367743238695946498867200,
3954417208796381184000, 3147561728201838023619379200000,
447153330533129256960000, 61099727665094502811435008000000,
109336354769116478715199488000000, 90321336548400569373425664000000,
86565910978666325606400, 134025209071820199715405824000000, 1680,
88399605983540982791012352000000, 1740, 2520 1;

H<x,y>:=PermutationGroup<24|\[13,14,15,16,17,18,19,20,21,22,23,24,10,9,8,7,6,5,4,3,2,1,11,12],
\[10,5,7,8,2,9,3,4,6,1,12,11,14,15,16,17,18,19,20,21,22,23,13,24]>;

cl:=Classes(H);
A:=[];
for j in [1..#R] do
r:=R[j];
z:=0;
for i in [2..#cl] do
if cl[il[1] eq r then
z:=z+cl[i] [2];
end if;
end for;
if z gt C[j] then
Append(~A, [r,z,C[j11);
end if;
end for;
A;

This returns an empty tuple, which means that holds for every prime divisor r of |G].
Next assume H is one of the following maximal subgroups:

25+10+20.053 % L5(2)), 210+16j)ib(2)

Here an upper bound on ¢,(H) is given in [0, Proposition 3.8] and one checks that the
inequality in holds for all 7.

Finally, it just remains to consider the maximal subgroup H = 3%.Pg (3).2. Here the
Web Atlas provides a permutation representation of H on 805896 points and as before we
can use this to compute i,(H) for every prime divisor r of |G|. In this way, we find that the
inequality in holds unless r = 41. More precisely, G has a unique class of elements of
order 41 and we get

i1 (H) = 16245625881139200 > c41 = 1680.

However, if we now redefine b; to be i41(H)/a; (for the unique i such that |z;| = 41) then it
is easy to check that the inequality ), aibg’ < 1 is still satisfied.

We conclude that every maximal triple is regular, which completes the proof for G =
M. O

4.2. Soluble triples. As before, let G be an almost simple sporadic group with socle T'. In
this section, we present full details of the proof of [1, Proposition 4.12], which establishes the
bound R, (G) < 3. Asin [1, Section 4.2], we divide the possibilities for 7" in to the following
collections:

By = {Mi1, M12, Mag, Moz, Moy, J1, Jo, J3, HS, McL, He, Suz, Ru, Coz, O'N}
By = {Coq, Figg, Figs, HN, J4, Ly, Th, M}
Bs = {Coy, Fiy, }
By = {B}
Proposition 4.10. The conclusion to [I, Proposition 4.12] holds if T € By.
Proof. We apply the MAGMA function Sol from Section
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U:=["M11","M12", "M22" , "M23" , "M24" " J1" nJ2n nJ3" “WHS" "McL","He","Suz","Ru","Co3","ON"];

for t in U do
G:=AutomorphismGroupSimpleGroup(t) ;
T:=Socle(Q);
al,bl,c1:=S01(G,100);
if #G eq #T then
t;[al,b1]; " ";
else
a2,b2,c2:=S01(T,100);
t; [a2,b2];[al,b1]; " ";
end if;
end for;

Proposition 4.11. The conclusion to [1, Proposition 4.12] holds if T € Bs.

Proof. As explained in the proof of [I, Lemma 4.16], we may assume 7" € {Coq, Figa, Fisz}
and our goal is to show that every soluble triple is regular. First we handle the groups
with G = T'. The following code uses the function MaxSolubleSubgps from Section to
construct the subgroup collections S3(H) as H runs through a set of representatives of the
conjugacy classes of maximal subgroups of G (see [1, Definition 4.14]).

U:=["Co2","Fi22","Fi23"];

for t in U do
G:=AutomorphismGroupSimpleGroup(t) ;
G:=Socle(G);
M:=MaximalSubgroups (G) ;
M:=[M[i] ‘subgroup : i in [1..#M]];
D:=[#M[i] : i in [1..#M]];
ParallelSort ("D, "M);
M:=Reverse (M) ;

S:=[1;
S0:=[1;
for i in [1..#M] do
S1:=[1;
A:=MaxSolubleSubgps(G,M[i],3);
for H in A do
Append(~S1,H);
a:=exists(K){K : K in S | IsConjugate(G,K,H)};
if a eq false then
Append(~S,H);
end if;
end for;
Append(~S0,81) ;
end for;
D:=[#S[i] : i in [1..#S1];
ParallelSort ("D, ~S);
S:=Reverse(S);

Al:=CartesianPower ([1..#M],2);
A1:=[[x[i]: 1 in [1..2]] : x in A1];
Al:=[x : x in A1l | x eq Sort(x)];

A:=[];
g:=#G;
for a in Al do
for k in [1..#S] do
b:=[M[al1]],M[a[2]],S[k]];
if &x[#b[i] : i in [1..3]] gt g"2 then
Append(~A,a);
break k;
else
w:=0;
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for i in [1..50] do
x1:=Random(G) ;
x2:=Random(G) ;
if #(b[1] meet b[2]"x1 meet b[3]°x2) eq 1 then
w:=1;
break i;
end if;
end for;
if w eq O then
Append(~A,a);
break k;
end if;
end if;
end for;
end for;

if #A eq O then
B:=[];
else
B:=[];
for k in [1..#A] do
a:=A[k];
b:=a;
A1:=s0[al11];
A2:=50[a[2]];
[k,#A,#B]; a; [#A1,#A2]; " ";
for j in [a[2]..#M] do
H1:=M[j];
for H2 in Al do
for H3 in A2 do
w:=0;
for i in [1..100] do
x1:=Random(G) ;
x2:=Random(G) ;
if #(H1 meet H2"x1 meet H3°x2) eq 1 then
w:=1;
break i;
end if;
end for;
if w eq O then
Append("b,j);
Append ("B,b) ;
break j;
end if;
end for;
end for;
end for;
end for;
end if;
t; B;
end for;

For G = Fisg, this returned [ [2,2,2] 1. We use the following procedure to settle this
case:

G:=AutomorphismGroupSimpleGroup ("Fi23");
M:=MaximalSubgroups (G) ;
M:=[M[i] ‘subgroup : i in [1..#M]];
D:=[#M[i] : i in [1..#M1];
ParallelSort ("D, "M);
M:=Reverse(M) ;
S:=MaxSolubleSubgps(G,M[2],4);
for i in [1..#S] do
for j in [i..#S] do
repeat
x1:=Random(G) ;
x2:=Random(G) ;
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until #(M[2] meet S[il"x1 meet S[jl"x2) eq 1;
end for;
end for;

It remains to handle the case G = Figg.2. Recall that our goal is to show that Rs,)(G) = 3
and by the above procedure we know that Rg,(7") = 3. Therefore, [I, Lemma 2.11] implies
that any soluble triple (H, K, L) with at least one component in 7' is regular. We now
proceed as above, excluding any triples containing a subgroup in T'.

G:=AutomorphismGroupSimpleGroup("Fi22") ;

T:=Socle(G);

M:=MaximalSubgroups (G) ;

M:=[M[i] ‘subgroup : i in [1..#M] | #Core(G,M[i] ‘subgroup) eq 1];
D:=[#M[i] : i in [1..#M]];

ParallelSort ("D, "M);

M:=Reverse (M) ;

S:=[1;
S0:=[1;
for i in [1..#M] do
Ss1:=[1;
A:=MaxSolubleSubgps(G,M[i],4);
for H in A do
if #(H meet T) ne #H then
Append (“S1,H);
a:=exists(K){K : K in S | IsConjugate(G,K,H)};
if a eq false then
Append ("S,H) ;
end if;
end if;
end for;
Append (~S0,51) ;
end for;
D:=[#S[i] : i in [1..#S]];
ParallelSort ("D, ~S);
S:=Reverse(S);

Al:=CartesianPower ([1..#M],2);
A1:=[[x[i]: i in [1..2]] : x in A1];
Al:=[x : x in Al | x eq Sort(x)];

A:=[1;
g:=#G;
for a in Al do
for k in [1..#S] do
b:=[M[al[1]],M[a[2]],S[k]];
if &x[#b[i] : i in [1..3]] gt g"2 then
Append(~A,a);
break k;
else
w:=0;
for i in [1..50] do
x1:=Random(G) ;
x2:=Random(G) ;
if #(b[1] meet b[2]"x1 meet b[3]"x2) eq 1 then
w:=1;
break i;
end if;
end for;
if w eq O then
Append(TA,a);
break k;
end if;
end if;
end for;
end for;
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if #A eq O then
B:=[];
else
B:=[];
for k in [1..#A] do
a:=A[k];
b:=a;
A1:=S0[al1]];
A2:=50[a[2]];
[k,#A,#B]; a; [#A1,#A2]; " ";
for j in [a[2]..#M] do
H1:=M[j];
for H2 in Al do
for H3 in A2 do
w:=0;
for i in [1..100] do
x1:=Random(G) ;
x2:=Random(G) ;
if #(H1 meet H2°x1 meet H3°x2) eq 1 then
w:=1;
break i;
end if;
end for;
if w eq O then
Append(~b,j);
Append ("B, D) ;
break j;
end if;
end for;
end for;
end for;
end for;
end if;
B;

This returns [ [1,1,1] 1. So to complete the argument for G = Figo.2 it suffices to show
that every triple of the form (Hy, Ha, Hs) with each H; contained in S3(H) is regular, where
H = 2.Ug(2).2 is the largest core-free maximal subgroup of G. The following procedure
carries out this computation.

:=AutomorphismGroupSimpleGroup ("Fi22");

:=Socle(G);

:=MaximalSubgroups(G) ;

M:=[M[i] ‘subgroup : i in [1..#M] | #Core(G,M[i] ‘subgroup) eq 11;
D:=[#M[i] : i in [1..#M]];

ParallelSort ("D, "M);

M:=Reverse(M) ;

=H @

S:=[1;
H:=M[1];
A:=MaxSolubleSubgps(G,H,3);
for H in A do

if #(H meet T) ne #H then

Append (~S,H) ;

end if;

end for;

B:=[];
for i in [1..#S] do
for j in [i..#S] do
for k in [j..#S] do
repeat
x1:=Random(G) ;
x2:=Random(G) ;
until
#(S[1i] meet S[j]l"x1 meet S[k]"x2) eq 1;
end for;
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end for;
end for;

Proposition 4.12. The conclusion to [I, Proposition 4.12] holds if T € Bs.

Proof. First assume G = Fi},. Here the following GAP code shows that every non-regular
maximal triple for G has an Fiss component, whence Rg,(G) < 3 by [1, Lemma 2.11] since
we have already shown that Ry (Fizs) = 3.

t:=CharacterTable("Fi24’");;

k:=2;;

m:=Maxes(t);;

F:=[1;;

for i in [1..Size(m)] do
tl:=CharacterTable(m[i]);;
Add (F,FusionConjugacyClasses(t1,t));;

od;

q:=QGAP(t,m,F,k);;

ql2];

This returns

rrs+ 1,131, 01,1,21,01,1,31,001,1,41,001,1,51,0[1,1,61, [1,1,71,
(11,81, 01t,1,91,01,1,101,[1,1,121,[1,1,127,[1,1,131],
[1,1,14],C1,1,15], [1,1,161]1,01,2,27,[1,2,31,1[1,2,4],

(1, 2,51, 01,2,61,[1,3,31,[1,3,41,[1,3,51,0[1,3,61,1[1,4,41]1

and the result follows since “1” is the label for Fiss.

Next assume G = Coj. The smaller Conway groups H = Coy and Cogs arise as maximal
subgroups of G and we have already shown that Ry (H) < 3. Therefore, every soluble triple
with a component subgroup in Coy or Cos is regular. We begin by using GAP to identify all
the maximal triples o with @(G, o) > 1, excluding any triples with a Cog or Cos component:

ot

:=CharacterTable("Col");;
1=2;5
m:=Maxes(t);;
F:=[1;;
for i in [1..Size(m)] do
t1:=CharacterTable(m[i]);;
Add (F,FusionConjugacyClasses(t1,t));;
od;
q:=QGAP(t,m,F,k);;
for a in q[2] do
if (1 in a) = false and (4 in a) = false then
Add(A,a);;
fi;
od;
A;

w

This returns

1, 02,2,71,02,3,31,02,3,51,
1, [3,3,6]1

—
[an o]

—,
NN
w N
D N

Next we switch to MAGMA and we construct G and each of the 6 relevant maximal
subgroups inside 5,, where n = 98280. We then apply random search to show that 10 of the
12 maximal triples above are regular.
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G:=AutomorphismGroupSimpleGroup("Col");
M:=MaximalSubgroups (G) ;

M:=[M[i] ‘subgroup : i in [1..#M]];
A:=[#M[i] : i in [1..#M]];
ParallelSort("A, "M);

M:=Reverse(M);

for i in [1..#M] do [i,#M[il]; end for;

A:=[[2,2,21,02,2,31,[2,2,51,[2,2,61,[2,2,71,02,3,31,1[2,3,5]1,
(2,3, 61,025,511, 1[3,3,3]1,0[3,3,51,1[3,3,611;

R:=RandomReg(G,M,100,A);
R;

This returns:

(02 2,21,[02,2,3]1]

Finally, we proceed as follows to show that Ry (G) < 3:

S:=MaxSolubleSubgps(G,M[2],3);
for j in [2,3] do
Hi:=M[j];
H2:=M[2];
for i in [1..#S] do
H3:=S[i];
repeat
x1:=Random(G) ;
x2:=Random(G) ;
until
#(H1 meet H2"x1 meet H3°x2) eq 1;
end for;
end for;

To complete the proof, let us assume G = Figy = T'.2. We know that Ry (7T) < 3, so we
can ignore all the soluble triples with at least one component contained in 7. We begin by
determining all of the core-free maximal triples o with Q(G, o) > 1:

ot

:=CharacterTable("Fi24");;

1=255

m:=Maxes(t);;

F:=[1;;

for i in [1..Size(m)] do
t1:=CharacterTable(m[i]);;

Add (F,FusionConjugacyClasses(tl,t));;

=

od;
q:=QGAP(t,m,F,k);;
A:=[1;;

for a in q[2] do
if (1 in a) = false then
Add(A,a);;
fi;
od;
A;

This outputs

[ , 2,21, 02,2,31,02,2,41,[2,2,51,[2,2,61,
, 2,71, 02,2,81,[2,2,91,0[2,2,101, [2, 2,111,
, 2,121, [2,2,131, [2,2,141, [2,2,15], [2, 2, 161,
s ,3,41,02,3,51,[2,3,61,1[2,3,7]1,

NN NDNDNDNN
D> W WNNN

, 02,565,671, [2,5, 71,

L B e B e B e B e

2, 3 > » 3, ,

2,383,101, 02,4,41,[02,4,51,0[2,4,61,
2, 4

2, 6
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We switch to MAGMA to handle these cases. To do this, we use the generators in the Web
Atlas [I0] to construct a representative of each conjugacy class of maximal subgroups of G.

G:=AutomorphismGroupSimpleGroup("Fi24");
M:=[Socle(G)];

[We construct the relevant maximal subgroups]

for i in [1..#M] do
[i,#M[1i1];
end for;

This returns

1255205709190661721292800 ]
8178940946586009600 ]
516494013235200 ]
178278473318400 ]
50030759116800 ]
20056328248320 ]
9697565306880 ]
1002795171840 ]
441447874560 ]

10, 321052999680 1

11, 35814871872 ]

12, 27549901440 ]

13, 25082265600 ]

14, 3963617280 ]

15, 3963617280 ]

16, 305690112 ]

© 0N O WN -

Lo B T T e T e T e R T e T B s e T e B e B e B |

Z,
D
»
o

we use random search to further reduce the list of maximal triples we need to consider.

=

e, ———
-
—

, 2,21, [02,2,31,[2,2,4]1,[02,2,51,0[2,2,61,
, 71, [2,2,81,[2,2,9]1,[2,2,101, [2, 2, 111,
, 121, [02,2,131,[2,2,141,[2,2,151, [2,2, 161,
,[2,3,41,[02,3,51,[2,3,61,1[2,3,71,
,[2,3,101,[2,4,41,[2,4,51,[2, 4,61,

[2, 4

[2, 6

>

, ,91,02,5,51,[2,5,61, [2,5,7]1,
, 71, 02,7, 711;

>

NN NNDDNDN
DB W WNNN
O N O w
[y R '

> 3

g:=#G;
Bi:=[1;
B2:=[];
for i in [1..#A] do
[i,#B1,#B2];
a:=A[i];
if &x[#M[al[il] : i in [1..3]] ge g"2 then
Append(~B1,a);
else
w:=0;
for j in [1..10] do
x1:=Random(G) ;
x2:=Random(G) ;
if #(M[al[1]] meet M[a[2]]°x1 meet M[a[3]]1"x2) eq 1 then
w:=1;
break j;
end if;
end for;
if w eq O then
Append(“B2,a) ;
end if;
end if;
end for;
B:=B1 cat B2;
B;
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This returns

1,02,2,31,[2,2,41,[2,2,571,[2,2,61,[2,2,71,[2,2,8],
1,02,2,101,[2,2,111,[2,2,12171,[2,2,13]1,[2,3,31,
1,02,3,51,[2,3,61,[2,3,71,[2,4,4]

[ N
N NN
w NN
s O N

s>

3 s>

and we further reduce this list as follows:

S:=MaxSolubleSubgps(G,M[2],3);
S:=[H : H in S | #(H meet M[1]) ne #H];

A:=[[2,2,21,[2,2,31,[2,2,41,[2,2,51,[2,2,61,[2,2,71,[2,2,81,
[2,2,91,[2,2,101,[2,2,111,[2,2,121,[2,2,131,[2,3,31,
[2,3,41,[2,3,51,[2,3,61,[2,3,71,[2,4,411;

B:=[1;

for i in [1..#A] do

a:=A[i];
H2:=M[a[2]];
H3:=M[a[3]];
for j in [1..#S] do
H1:=S[j];
w:=0;

for k in [1..10] do
x1:=Random(G) ;
x2:=Random(G) ;
if #(H1 meet H2"x1 meet H3°x2) eq 1 then
w:=1;
break k;
end if;
end for;
if w eq O then
Append(“B,a);
break j;
end if;
end for;
end for;
B;

This returns

[ [2,2,2]1,[02,2,3831,[2,2,41,[2,2,51]1

and we complete the proof as follows:

A:=[ [2,2,2]1,[2,2,31,[2,2,41,[2,2,511;
for i in [1..#A] do
a:=A[i];
H3:=M[a[3]];
for j in [1..#S] do
for k in [j..#S] do
H1:=S[j];
H2:=S[k];
w:=0;
repeat
x1:=Random(G) ;
x2:=Random(G) ;
until #(H1 meet H2°x1 meet H3°x2) eq 1;
end for;
end for;
end for;
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Proposition 4.13. The conclusion to [Il, Proposition 4.12] holds for all groups G with socle
T e By.

Proof. Here G = B is the Baby Monster. Let x1,...,x; be a complete set of representatives
of the conjugacy classes of elements of prime order in G. Using the GAP Character Table
Library [3], we start by computing

a; = |z%), b; = max{fpr(z;, G/H) : H € My}

for each i, where My is a set of representatives of the conjugacy classes of maximal subgroups
of G, excluding 2.2Fg(2):2. In addition, we check that

t
Zalbg’ <1,
i=1

which implies that every maximal triple for G is regular, so long as it does not contain a
component conjugate to 2.2 Eg(2):2.

t:=CharacterTable("B");;
S:=SizesConjugacyClasses(t);;
0:=0rdersClassRepresentatives(t);;
m:=Maxes(t);;
F:=[1;;
for i in [1..5] do
t1:=CharacterTable(m[i]);;
Add(F,FusionConjugacyClasses(tl,t));;
od;
t1:=CharacterTable(m[6]);;
P:=PossibleClassFusions(t1,t);;
Ad4a(F,P[11);;
for i in [7..Size(m)] do
t1:=CharacterTable(m[i]);;
Add (F,FusionConjugacyClasses(t1,t));;

od;

a:=[1;;
b:=[1;;
P:=[1;;
Q:=[1;;

for i in [1..Size(0)] do
if IsPrime(0[i]) then
Add(P,i);;
Add(a,S[i]);;
Add(Q,0[il);;
fi;
od;

50:=[1;;

for i in [1..S8ize(m)] do
t1:=CharacterTable(m[i]);;
Add(S0,SizesConjugacyClasses(tl));;

od;

for i in P do
G:=[1;;
for j in [2..Size(m)] do
fus:=F[jl;;
S1:=50[j];;
c:=0;;
for k in [1..Size(fus)] do
if fus[k] = i then
c:=c+S1[k];;
fi;
od;
Add(G,c);;
od;
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Add (b,Maximum(G) /S[i]);;
od;

z:=0;;

for i in [1..Size(a)] do
z:=z+a[i]*b[i]"3;

od;

z < 1;

Set L = 2.2F4(2):2 and write M = M U Ma, where
M = {maximal subgroups of L, other than 2.2F4(2)}
My = {maximal subgroups of 2.2E¢(2) < L}

It suffices to show that
for(z;, G/H) < b
forall 1 <i<tandall He M. We use MAGMA to do this.

P:=[ 2, 2,2, 2,3, 3, 5,5, 7, 11, 13, 17, 19, 23, 23, 31, 31, 47, 47 1;

a:=[ 13571955000, 11707448673375, 156849238149120000, 355438141723665000,
10725600877608960000, 63622675428068556800000, 9367743238695946498867200,
692463580204404365196263424, 7360369687546815106252800000,
3147561728201838023619379200000, 13316607311623160869158912000000,
61099727665094502811435008000000, 109336354769116478715199488000000,
90321336548400569373425664000000, 90321336548400569373425664000000,
134025209071820199715405824000000, 134025209071820199715405824000000,
88399605983540982791012352000000, 88399605983540982791012352000000 1;

b:=[ 793/2950425, 269689951/11707448673375, 13/33634845, 303281/780496578225,
11/105887475, 2/5353200125, 11/22299902235, 2/93659589387, 1/37166503725,
1/780496578225, 1/126996316160000, 1/253992632320000, 1/22892381208576000,
1/11707448673375, 1/11707448673375, 1/45784762417152000,
1/45784762417152000, 1/3843461129719173164826624000000,
1/3843461129719173164826624000000 ] ;

As explained in the proof of [I, Lemma 4.18], we only need to consider the subgroups
H € M. Let Z be the centre of L and write H = H/Z, which is a maximal subgroup of
the almost simple group L = L/Z = 2FEg(2):2.

We begin with H = (L3(2) x L3(4):2).2:

:=DirectProduct (PSL(3,2),PSL(3,4));
:=AutomorphismGroup(G) ;
:=PermutationGroup(A);
:=#A div 3;
Q:=PrimeFactors(h);
B:=[1;
for i in [1..#a] do
if (P[i] in Q) and (h/ali]l gt bl[il) then
Append(“B,i);
end if;
end for;
B;
cl:=Classes(A);
z:=4+[c1[i][2] : i in [1..#cl] | c1[i][1] eq 2];
(2%z+1)/al1] 1le b[1];

= ]

Next we handle H = 3116:23%6:32:22 followed by H = S3 x Ug(2):2, S3 x Qg (2):53, Us3(8):6
and [I3(2)22 X (;2(2):

h:=3"7*2"9%372%272%2;
Q:=[2,3];
B:=[1;
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for i in [1..#a] do
if (P[i] in Q) and (h/ali]l gt b[i]) then
Append(“B,1i);
end if;
end for;
B;

A:=[1;
G:=AutomorphismGroupSimpleGroup("U",6,2);
S:=LowIndexSubgroups(G,#G div #Socle(G));
Append ("A,DirectProduct (Sym(3),S[2]));

G:=AutomorphismGroupSimpleGroup("0+",8,2);
Append (~A,DirectProduct (Sym(3),G));

G:=AutomorphismGroupSimpleGroup("U",3,8);
S:=LowIndexSubgroups (G,#G div #Socle(G));
Append (“A,S[71);

G:=PSU(3,2);

L:=AutomorphismGroup(G) ;
L:=PermutationGroup(L) ;
S:=LowIndexSubgroups (L,#L div #G);
G1:=S[5];
G2:=AutomorphismGroupSimpleGroup("U",3,3);
Append (~A,DirectProduct (G1,G2)) ;

for j in [1..#A] do
H:=A[j];
h:=2x#H;
Q:=PrimeFactors(h);
cl:=Classes(H);
c:=[1;
for q in Q do
if q eq 2 then
Append (~C,2%&+[c1[i][2] : i in [1..#cl] | cl[il[1] eq ql+1);
else
Append (“C,&+[c1[i][2] : i in [1..#cl] | c1[il[1] eq ql);
end if;
end for;
B:=[1;
for i in [1..#a] do
c:=exists(k){k : k in [1..#Q] | Q[k] eq P[il};
if ¢ eq true then
if (C[k]l/alil gt b[i]) then
Append("B,1i);
end if;
end if;
end for;
js By "M
end for;

37

For the subgroups H = 07,(2), SO7(3), Fig2.2 and 2 x Fy(2), we use GAP to access the
corresponding character tables and associated data on conjugacy classes. Here we work with

the tuples a and b define above:

U:=["010-(2).2","07(3).2","Fi22.2","2xF4(2)"];;

C1:=[20164, 793815, 36757748, 799425001 ;;

C2:=[730, 22464, 309960, 995085];;

€3:=[139232, 4524975, 355384576, 1061489520];;

C4:=[65287, 1219725, 41760576, 115887915];;

¢:=[C1,C2,C3,C4];;

for i in [1..8ize(U)] do
t1:=CharacterTable(U[i]);;
ol:=0OrdersClassRepresentatives(tl);;
s1:=SizesConjugacyClasses(tl);;
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R:=PrimeDivisors(Size(t1));;
B:=[1;;
for r in R do
if r = 2 then
D:=C[i];;
for j in [1..Size(D)] do
if D[j1/alj] > b[j] then
Add(B,j);;
fi;
od;
else
z:=0;;
for j in [1..S8ize(o1)] do
if 01[j] = r then
z:=z+s1[jl;;
fi;
od;
for k in [1..Size(Q)] do
if Q[x] = r then
if z/alk] > bl[k] then
Add(B,k) ;;
fi;
fi;
od;
fi;
od;
Print(U[i],"\n",B,"\n","\n");
od;

For the parabolics, we switch back to MAGMA and we appeal to the information in [4]
Tables 5 and 6].

h1:=2%2"24*#S0Minus(8,2) ;

h2:=2%2"21*#PSU(6,2) *2;

h3:=2*%2"31*#A1t (5) *#PSL(3,2)*2;

hé:=2%2"29%#PSL(3,4) *2%6;
C1:=[138296,4871775,355401728,1119260008,3315597312,79859548160] ;
C2:=[451640,16107103,927793152,2597999976,58617495552,51673825280] ;
C3:=[31800,595551,31129600,101543272,266338304,4697620480] ;
C4:=[66616,1443423,46202880,166458728,1763704832,4697620480] ;
H:=[h1,h2,h3,h4];

c:=[C1,C2,C3,C4];

for i in [1..4] do
B:=[];
h:=H[i];
F:=PrimeFactors(h);
D:=C[i];
for j in [1..6] do
if D[jl/alj]l gt b[jl then
Append(“B, j);
end if;
end for;
for j in [7..#P] do
if (P[j] in F) and (h/alj]l gt b[jl) then
Append ("B, j);
end if;
end for;
i; By " "
end for;

t1:=CharacterTable(m[1]);;
fus:=FusionConjugacyClasses(tl,t);;
ol:=0rdersClassRepresentatives(tl);;
A:=[1;;

for i in [1..Size(o1)] do
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if o1[i] = 5 then
Add (A,ClassNames (t){[fus[i]1});;
fi;
od;
A;

Thisreturns [ [ "5a" ] 1, which tells us that L has a unique conjugacy class of elements
of order 5, and they are contained in the G-class labelled 5A. Finally, we apply [7, Theorem
2], which tells us that if H is a maximal parabolic subgroup and x € G has order 5, then
|29 N H| =i5(H) < |#%]/192 and it is easy to check that this bound is good enough.

s:=SizesConjugacyClasses(t);;
s1:=SizesConjugacyClasses(t1);;
A:=[1;;
B:=[1;;
c:=1/192;;
for i in [1..S8ize(o1)] do
if o1[i] = 5 then
Add(a,s1[il);;
Add(B,s[fus[i]]);;
fi;
od;
(c*A[11)/B[1] < b[7];

0

4.3. Soluble maximal pairs. In this section, we present the computations used in the
proof of [I, Proposition 4.20]. We begin by handling the groups with socle M1, M2 or Js.

U:=["M11", "M12", "J2"];
for u in U do
G:=AutomorphismGroupSimpleGroup (u) ;
T:=Socle(G);
if #G ne #T then
al,bl,c1:=S0lMax(G,100);
a2,b2,c2:=So0lMax (T, 100);
A1:=[];
A2:=[];
for ¢ in cl1 do
Append (“A1, [#c[1],#c[2]11);
end for;
for ¢ in c2 do
Append (A2, [#c[1],#c[2]11);

end for;

u; [a1,b1]; A1; " "; [a2,b2]; A2; "™ "; " ",
else

al,bl,c1:=S0lMax(G,100);

Al:=[];

for ¢ in cl1 do
Append (~A1, [#c[1],#c[211);
end for;
u; [al,b1]; A1; ™ "; " vy
end if;
end for;

Next we use GAP to handle the remaining groups with two or more conjugacy classes of
soluble maximal subgroups, excluding the Monster. Note that V[i] gives the labels of the
soluble maximal subgroups of G = U[i] (up to conjugacy, consistent with the labelling used
by the Maxes function). So for example, G = J; has 5 classes of soluble maximal subgroups,
labelled 2,4,5,6 and 7.

U:=["J1" ,"J3","J3.2","He","He.2","McL.2","0’N.2","Col","HN","HN.2", "Ly" ,"Th","J4","Fi24", "B"] s

V1:=[2,4,5,6,7];;
Vv2:=[7,9];;
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v3:=[6,8,91;;

V4:=[8,11];;
V5:=[8,9,12];;
V6:=[9,10];;

V7:=[5,7,8];;
V8:=[15,21];;

V9:=[6,13];;
V10:=[7,12];;
V11:=[8,9];;

vi2:=[6,7,9,11,15];;

V13:=[7,11,12,13];;

V14:=[20,21];;

V15:=[17,30];;
v:=[v1,v2,vV3,v4,V5,V6,V7,V8,V9,V10,V11,V12,V13,V14,V15];;

for j in [1..Size(U)] do
u:=U[jl;;
v:=V[jl;;
t:=CharacterTable(u);;
s:=Maxes(t);;
m:=[1;;

for i in [1..Size(s)] do
if i in v then

Add(m,s[i]);;

fi;

od;

k:=2;;

F:=[1;;

for i in [1..Size(m)] do
t1:=CharacterTable(m[i]);;
Add (F,FusionConjugacyClasses(tl,t));;

od;

q:=QGAP(t,m,F,k);;

if Size(q[1]) > O then
c:=[1;;
for i in [1..Size(q[1])] do

Add(c, [s[vlq[11[i1[111],s[vq[1]1[i1[21111);;

od;
else

c:=q[1];;
fi;
Print(u,"\n",c,"\n",q[2],"\n","\n");

od;

This returns an empty pair of tuples, with the exception of the following two cases:

J3.2
[ [ "27(2+4):(S3xS3)", "27(2+4):(S3xS83)" 1 1]
[ 1]

He.2
[ [ "27(4+4).(S3x83).2", "27(4+4).(S3x83).2" ] ]
[ 1

Finally, we handle the Monster G = M:

:=CharacterTable("M");;
:=NamesOfFusionSources(t);;
:=[33,38];;
:=[13;;
for i in [1..Size(s)] do
if i in v then
Add(m,s[i]);;
fi;
od;
k:=2;;
F:=[1;;
for i in [1..Size(m)] do

8 < 0 o
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t1:=CharacterTable(m[i]l);;

Add(F ,FusionConjugacyClasses(tl,t));;
od;
q:=QGAP(t,m,F,k);;
ql1l;

This returns [ ] and thus Rsmax(G) = 2. This completes the proof of [1, Proposition 4.20].

4.4. Nilpotent-soluble pairs. In this final section, we consider the existence of non-regular
pairs (H, K), where H is nilpotent and K is soluble (see [I, Remark 4.22]).
First we handle the following groups:

Mi1, Mi2.2, Mgo.2, Ma3, Mag, J2.2, HS.2
The following MAGMA code shows that such pairs only arise when G = Mgs.2 or Jo.2.

U::["Mllll "M12II ||M22II IIM23” IIM24" IIJ2I| IIHSII] .
A:=[1;

for u in U do
G:=AutomorphismGroupSimpleGroup(u) ;
T:=Socle(G);
N1:=NilpotentSubgroups(G);
S1:=SolubleSubgroups(G) ;
N1:=[N1[i] ‘subgroup : i in [1..#N1] | #PrimeFactors(#N1[i] ‘subgroup) ge 2];
S1:=[S1[i] ‘subgroup : i in [1..#S1] | #PrimeFactors(#S1[i] ‘subgroup) ge 2];
P:=PrimeFactors (#G) ;
for p in P do
Append (“N1, SylowSubgroup(G,p));
Append (~S1,SylowSubgroup(G,p));
end for;
D:=[#N1[i] : i in [1..#N1]];
ParallelSort ("D, ~N1);
N1:=Reverse(N1);
D:=[#S1[i] : i in [1..#S111;
ParallelSort("D, ~S1);
S1:=Reverse(S1);
u; [#N1,#S1];

B:=[1;
for r in [1..#N1] do
for s in [1..#S1] do
H:=N1[r];
K:=S1[s];
w:=0;
for i in [1..100] do
x:=Random(G) ;
if #(H meet K"x) eq 1 then
w:=1;
break i;
end if;
end for;
if w eq O then
Append ("B, [r,s]);
end if;
end for;
end for;
Append(~A,B);
#B; " "y
end for;

And we can repeat for G = Mjo, Moy, Jo and HS in order to show that none of these
simple groups admit a non-regular nilpotent-soluble pair:

U:: ["M12|| , "M22|l , l|J2|| s "HS"] ;
A:=[1;

for u in U do
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G:=AutomorphismGroupSimpleGroup(u) ;
G:=Socle(G);

N1:=NilpotentSubgroups(G) ;
S1:=SolubleSubgroups(G) ;
N1:=[N1[i] ‘subgroup : i in [1..#N1] | #PrimeFactors(#N1[i] ‘subgroup) ge 2];
S1:=[S1[i] ‘subgroup : i in [1..#S1] | #PrimeFactors(#S1[i] ‘subgroup) ge 2];
P:=PrimeFactors (#G) ;
for p in P do
Append ("N1,SylowSubgroup(G,p));
Append(~S1,SylowSubgroup(G,p));
end for;
D:=[#N1[i] : i in [1..#N1]];
ParallelSort(~D, ~“N1);
N1i:=Reverse(N1);
D:=[#S1[i] : i in [1..#S1]];
ParallelSort ("D, ~S1);
S1:=Reverse(S1);
u; [#N1,#S1];

B:=[];
for r in [1..#N1] do
for s in [1..#S1] do
H:=N1[r];
K:=S1[s];
w:=0;
for i in [1..100] do
x:=Random(G) ;
if #(H meet K"x) eq 1 then
w:=1;
break i;
end if;
end for;
if w eq O then
Append ("B, [r,s]);
end if;
end for;
end for;
Append(~A,B);
#B; " "
end for;

We claim that if G € {Figo, Fis.2, Cog, Fizs}, then every nilpotent-soluble pair is regu-
lar. To do this, we proceed as above, but we replace SolubleSubgroups by our function
MaxSolubleSubgps. Similarly, we replace NilpotentSubgroups by the following function,
which returns a set Ny(H) of subgroups of H, which is the exact analogue of Sy(H) for
nilpotent subgroups (see [I, Definition 4.14]).

MaxNilpSubgps := function(G,H,d)

a:=1;
S:=[1;
NS:=[];

if IsNilpotent(H) then
Append (~S,H);

else
Append (NS, H) ;

end if;

while (#NS ge 1) and (a le d) do
NS1:=[1;
for H in NS do
M1:=MaximalSubgroups (H) ;
M1:=[M1[i] ‘subgroup : i in [1..#M1]];
for i in [1..#M1] do
b:=exists(K){K : K in S | IsConjugate(G,K,M1[i])};
if IsNilpotent(M1[i]) and (b eq false) then
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Append ("S,M1[i]);

else
Append ("NS1,M1[i]);

end if;

end for;
end for;
NS:=NS1;

a:=atl;

end while;

if #NS ge 1 then
for H in NS do
b:=exists(K){K : K in S | IsConjugate(G,K,H)};
if b eq false then
Append (“S,H);
end if;
end for;
end if;

S:=[S[i] : i in [1..#S] | #PrimeFactors(#S[i]) ge 2];
P:=PrimeFactors (#H) ;
for p in P do
Append(~S, SylowSubgroup(H,p)) ;
end for;

D:=[#S[i] : i in [1..#S1];
ParallelSort("D, ~S);
S:=Reverse(S);

return S;

end function;

Proposition 4.14. If G € {Figg, Fiss.2, Cog, Fias}, then every nilpotent-soluble pair is reg-
ular.

Proof. For G = Figg, we proceed as follows, working with the subsets N5(G) and S5(G)
obtained via MaxNilpSubgps and MaxSolubleSubgps, respectively.

U:=["Fi22"];
A:=[1;

for u in U do
G:=AutomorphismGroupSimpleGroup (u) ;
G:=Socle(Q);
N1:=MaxNilpSubgps(G,G,5);
S1:=MaxSolubleSubgps(G,G,5);
B:=[1;
for r in [1..#N1] do
for s in [1..#S1] do
H:=N1[r];
K:=S1[s];
w:=0;
for i in [1..100] do
x:=Random(G) ;
if #(H meet K"x) eq 1 then
w:=1;
break i;
end if;
end for;
if w eq O then
Append ("B, [r,s]);
end if;
end for;
end for;
Append(~A,B);
#B; " "
end for;
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B;

This returns [ ] and we conclude that every nilpotent-soluble pair is regular. We can repeat
the calculation for G = Fizs.2 = T'.2, noting that we only need to show that every nilpotent-
soluble pair (H, K) with H, K £ T is regular.

If we repeat for G = Cog, then the above procedure returns two inconclusive pairs (H, K),
where K is soluble and H is non-nilpotent. To handle these cases, we apply the function
MaxNilpSubgps to construct the set N5(H) and we then use random search to check that
each pair (J, K) with J € N3(H) is regular.

Finally, the group G = Fis3 can be handled in a similar fashion. We begin by constructing
the sets N4(G) and S4(G), and we find that there are 104 inconclusive pairs (H, K) with
H € Ny(G) and K € S4(G). For each of these pairs, we construct N3(H) and S3(K), and
then random search shows that each (J, L) with J € N3(H) and L € S3(K) is regular. In
this way, we conclude that every nilpotent-soluble pair for Fisg is regular. Il
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