Bases for permutation groups Lecture 5

Tim Burness, University of Bristol

Today

- Jan Saxl's base-two project
- Summary of the main results
- The Saxl graph of a base-two permutation group
- Saxl graphs: Results and open problems
- t.burness@bristol.ac.uk

https://seis.bristol.ac.uk/~tb13602/padova2021.html •Link

Base-two groups

Definition

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group with point stabilizer H. Then G is a **base-two** group if b(G) = 2.

$$egin{aligned} G ext{ is base-two }& \Longleftrightarrow \ H\cap H^g=1 ext{ for some }g\in G\ & \iff \ H ext{ has a regular orbit on }\Omega\ & \iff \ Q(G,2)<1 \end{aligned}$$

where Q(G, 2) is the probability that a random pair of points in Ω do not form a base for G.

Recall that

$$Q(G,2) \leqslant \sum_{i=1}^{k} |x_i^G| \operatorname{fpr}(x_i)^2 =: \widehat{Q}(G,2).$$

Note. Base-two groups arise naturally in many applications.

Jan's base-two project

Problem. Can we classify the finite primitive base-two groups?

Primitive groups

Let $G \leq \text{Sym}(\Omega)$ be a finite primitive permutation group with point stabilizer H.

By the **O'Nan-Scott theorem**, *G* is one of the following:

Туре	Description
Affine	$G = V: H \leq AGL(V), H \leq GL(V)$ irreducible
Almost simple	$T \triangleleft G \leqslant \operatorname{Aut}(T)$
Diagonal type	$T^k \triangleleft G \leqslant T^k.(\operatorname{Out}(T) \times P), P \leqslant S_k$
Product type	$S^k \triangleleft G \leqslant L \wr P$, L primitive, $\operatorname{soc}(L) = S$, $P \leqslant S_k$
Twisted wreath	$G = T^k : P, P \leqslant S_k$

Progress

Let G be a **diagonal type** primitive group, so

$$T^k \leq G \leq T^k.(\operatorname{Out}(T) \times P)$$

and either $P \leq S_k$ is primitive, or k = 2 and P = 1.

Theorem (Fawcett, 2013)

If $P \neq A_k, S_k$, then b(G) = 2.

Moreover, if $A_k \leq P$ then b(G) = 2 only if 2 < k < |T|.

Let G be a twisted wreath product: $G = T^k : P$ with $P \leq S_k$ transitive.

Theorem (Fawcett, 2021)

P quasiprimitive $\implies b(G) = 2$

Base-two affine groups

Let $G = V: H \leq AGL(V)$ be a primitive affine group, where $V = (\mathbb{F}_p)^d$ and $H \leq GL(V)$ is irreducible. Note that

 $b(G) = 2 \iff H \text{ has a regular orbit on the irreducible } \mathbb{F}_p H \text{-module } V$ $\iff V \neq \bigcup_{1 \neq h \in H} C_V(h)$

where $C_V(h) = \{v \in V : v^h = v\}$ is the 1-eigenspace of h on V.

So the base-two project for affine groups is equivalent to a (hard!) problem in representation theory:

Determine the pairs (H, V), where H is a finite group, V is a faithful irreducible $\mathbb{F}_{p}H$ -module and H has a regular orbit on V.

The coprime case

Suppose *H* is **quasisimple** and |H| is indivisible by *p*.

Theorem (Goodwin (2000); Köhler & Pahlings (2001))

In this setting, all the base-two affine groups G = VH are known.

This contributed to the solution of the k(GV) problem, completed by Gluck, Magaard, Riese & Schmid in 2004.

In turn, this proved a conjecture of Brauer on defect groups of blocks.

■ The main technique is to show that in most cases,

$$\left|\bigcup_{1\neq h\in H}C_V(h)\right|<|V|,$$

which implies that H has a regular orbit on V.

A coprime example

Suppose $H = M_{11}$, so $d \in \{10, 11, 16, 44, 45, 55\}$ and $p \ge 7$, $p \ne 11$. Note that $C_V(h) \subseteq C_V(h^\ell)$ for all $h \in H$, $\ell \ge 1$. Write

$$\mathcal{P} = \{ \text{prime order elements in } H \} = \bigcup_{i} y_{i}^{H}$$

Fact. *H* is generated by 4 conjugates of y_i , so dim $C_V(y_i) \leq 3d/4$. If *H* has no regular orbit on *V*, then $V = \bigcup_{x \in \mathcal{P}} C_V(x)$ and thus $p^d = |V| \leq \sum |y_i^H| |C_V(y_i)| \leq |H| p^{3d/4} = 7920 p^{3d/4}$

$$p^{a} = |V| \leq \sum_{i} |y_{i}^{n}| |C_{V}(y_{i})| < |H| p^{3a/4} = 7920 p^{3a/2}$$

For $d \ge 16$, this holds iff (d, p) = (16, 7).

In fact, H has a regular orbit on V in every case.

The modular case

Theorem (Hall, Liebeck & Seitz, 1992)

Suppose G = VH, H quasisimple and $V = (\mathbb{F}_p)^d$. Then either b(G) = 2, or one of the following holds:

- *H* is a group of Lie type in characteristic p;
- $H = A_n$, $p \leq n$ and V is the fully deleted permutation module; or
- (H, V) is one of finitely many cases (undetermined).

Theorem

- **Fawcett**, O'Brien & Saxl, 2016: H/Z(H) alternating
- **Fawcett**, Müller, O'Brien & Wilson, 2019: H/Z(H) sporadic
- **Lee, 2020:** H/Z(H) Lie type in characteristic $r \neq p$
- **Lee**, **2021**: H/Z(H) Lie type in characteristic p (in progress)

Almost simple groups

Let $G \leq \text{Sym}(\Omega)$ be an almost simple primitive group with socle G_0 and point stabilizer H.

Progress on the base-two problem:

- B, 2020: *H* solvable ✓
- **James, 2006:** G standard with G_0 alternating \checkmark
- **B** et al. 2010/11: G_0 alternating or sporadic \checkmark
- G standard with G_0 classical: In progress (there are examples)
- *G* non-standard, *G*₀ Lie type: Partial results (e.g. *G*₀ classical, $H \in S$); work in progress

Note. There are essentially no results for product type groups.

The Saxl graph

Definition (B & Giudici, 2020)

Let $G \leq \text{Sym}(\Omega)$ be a base-two permutation group.

The Saxl graph of G, $\Sigma(G)$: vertices Ω , $\alpha \sim \beta \iff G_{\alpha,\beta} = 1$.

Examples

•
$$G = D_8$$
, $\Omega = \{1, 2, 3, 4\}$: $\Sigma(G) = C_4 =$

•
$$G = D_{10}, \ \Omega = \{1, 2, 3, 4, 5\}: \ \Sigma(G) = K_5 =$$

• $G = D_8 \times D_8$, $\Omega = \{1, 2, 3, 4\}^2$: $\Sigma(G) = K_{4,4} \oplus K_{4,4} =$

Some further examples

Let G = GL₂(q) and Ω = (F_q)² \ {0}. Here α ~ β iff {α, β} is linearly independent, so Σ(G) is the complete multipartite graph with q + 1 parts of size q − 1. For example, if q = 3:

• Let $G = PGL_2(q)$ and let Ω be the set of distinct pairs of 1-spaces in $V = (\mathbb{F}_q)^2$. Then $\{\alpha, \beta\}$ is a base for G, where

$$\alpha = \{ \langle \mathbf{e_1} \rangle, \langle \mathbf{e_2} \rangle \}, \ \beta = \{ \langle \mathbf{e_1} \rangle, \langle \mathbf{e_1} + \mathbf{e_2} \rangle \}$$

In fact, two vertices in $\Sigma(G)$ are adjacent iff they share a common 1-space, so $\Sigma(G)$ is the Johnson graph J(q+1,2).

Orbitals

Suppose b(G) = 2 and fix $\alpha \in \Omega$.

Let $\Omega_1, \ldots, \Omega_r$ be the regular orbits of \mathcal{G}_α on $\Omega \setminus \{\alpha\}$, where $\Omega_i = \beta_i^{\mathcal{G}_\alpha}$.

G acts naturally on $\Omega \times \Omega$: let Δ_i be the *G*-orbit of (α, β_i) .

Then Δ_i is an **orbital** of *G* and the associated **orbital graph** $\Gamma(\Delta_i)$ has vertex set Ω and $\gamma \sim \delta \iff (\gamma, \delta) \in \Delta_i$.

Observation. The Saxl graph

$$\Sigma(G) = \Gamma(\Delta_1) \cup \cdots \cup \Gamma(\Delta_r)$$

is the **generalised orbital graph** of *G* corresponding to the regular G_{α} -orbits.

First properties

Let $G \leq \text{Sym}(\Omega)$ be a transitive base-two group with point stabilizer H.

- $G \leq \operatorname{Aut}(\Sigma(G))$: $\{\alpha, \beta\}$ is a base $\iff \{\alpha^{g}, \beta^{g}\}$ is a base
- In particular, $\Sigma(G)$ is vertex-transitive with no isolated vertices
- G primitive $\implies \Sigma(G)$ is connected
- G 2-transitive $\implies \Sigma(G)$ is complete
- G Frobenius $\iff \Sigma(G)$ is complete
- $\Sigma(G)$ has valency r|H|, where r is the no. of regular orbits of H on Ω

Note. $\Sigma(G)$ connected \Rightarrow G primitive (e.g. $G = D_8$, $\Omega = \{1, 2, 3, 4\}$)

Valency

Theorem (B & Giudici, 2020)

Let G be a finite transitive base-two group of degree n.

Then $\Sigma(G)$ has prime valency p iff one of the following holds:

$$\blacksquare \ G = C_p \wr C_2, \ n = 2p, \ \Sigma(G) = K_{p,p}.$$

•
$$G = S_3$$
, $n = p + 1 = 3$, $\Sigma(G) = K_3$.

•
$$G = AGL_1(2^f), n = p + 1 = 2^f, \Sigma(G) = K_{p+1}.$$

Chen & Huang (2020) have determined all the almost simple primitive groups with **prime-power** valency SaxI graphs

e.g.
$$G = PGL_2(q)$$
, $q = 2^m + 1$ Fermat prime, $\Sigma(G) = J(q + 1, 2)$,
valency $= 2(q - 1) = 2^{m+1}$

Eulerian cycles

Recall. An Eulerian cycle is a cycle that uses each edge exactly once.

By a famous theorem of Euler, a connected graph has an Eulerian cycle iff the degree of every vertex is even.

Theorem (B & Giudici (2020); Chen & Huang (2020))

Let G be an almost simple primitive base-two group with socle G_0 and point stabilizer H. Then one of the following holds:

- $\Sigma(G)$ is Eulerian
- $G = M_{23}$, H = 23:11 and $\Sigma(G)$ is not Eulerian
- $G_0 = L_n^{\epsilon}(q)$, $n \ge 3$ is a prime and H is of type $GL_1^{\epsilon}(q^n)$.

Question. Is $(G, H) = (M_{23}, 23:11)$ the only non-Eulerian example?

Connectedness

Recall. G primitive $\implies \Sigma(G)$ is connected.

If $\Sigma(G)$ is connected, let diam(G) be the diameter of $\Sigma(G)$.

By explicit constructions, we proved the following result:

Theorem (B & Giudici, 2020)

There exist finite transitive base-two groups G such that

- $\Sigma(G)$ has arbitrarily many connected components; or
- $\Sigma(G)$ is connected and diam(G) is arbitrarily large.

Example. If $G = (D_8)^k$ and $\Omega = \{1, 2, 3, 4\}^k$, then $\Sigma(G)$ has 2^{k-1} connected components.

Probabilistic methods

Let $G \leq \text{Sym}(\Omega)$ be a base-two transitive permutation group of degree n and let v(G) be the valency of $\Sigma(G)$. Recall that

$$Q(G,2) = \frac{|\{(\alpha,\beta) \in \Omega^2 : G_{\alpha,\beta} \neq 1\}|}{n^2} = 1 - \frac{\nu(G)}{n}$$

and set $t := \max\{m \in \mathbb{N} : Q(G,2) < \frac{1}{m}\} \ge 1$.

Lemma

If $t \ge 2$, then $\Sigma(G)$ has all the following properties:

- Any t vertices in $\Sigma(G)$ have a common neighbour.
- $\Sigma(G)$ is connected with diameter at most 2.
- The clique number of $\Sigma(G)$ is at least t + 1.
- $\Sigma(G)$ is Hamiltonian.

Lemma

If $t \ge 2$, then $\Sigma(G)$ has all the following properties:

- Any t vertices in $\Sigma(G)$ have a common neighbour.
- $\Sigma(G)$ is connected with diameter at most 2.
- The clique number of $\Sigma(G)$ is at least t + 1.
- $\Sigma(G)$ is Hamiltonian.

Proof of the lemma. Since Q(G,2) < 1/t we have v(G) > n(1-1/t) and we deduce that the intersection of the neighbour sets of any t vertices is nonempty. This proves the first three parts.

For Hamiltonicity, we use a theorem of **Dirac** (1952), which states that a graph with *n* vertices is Hamiltonian if every vertex has degree at least n/2.

Conjecture (Lovász, 1969). There are only 5 connected vertex-transitive finite graphs that are not Hamiltonian.

Primitive groups

Let $G \leq \text{Sym}(\Omega)$ be a finite primitive group with b(G) = 2.

Recall. $Q(G,2) \leq \widehat{Q}(G,2) = \sum_i |x_i^G| \operatorname{fpr}(x_i)^2$ and in many cases we prove that b(G) = 2 by establishing the bound $\widehat{Q}(G,2) < 1$.

If we can force $\widehat{Q}(G,2) < 1/2$, then any two vertices in $\Sigma(G)$ have a common neighbour and thus diam(G) = 2.

Example

Suppose G is non-standard with socle A_m . Using Magma and fixed point ratio estimates, we calculate that either

■
$$Q(G,2) < 1/2$$
, or

•
$$G = S_7$$
, $H = AGL_1(7)$ and $Q(G, 2) = 13/20$.

In all cases, any two vertices in $\Sigma(G)$ have a common neighbour.

The main conjecture

Let G be a finite primitive base-two group.

Conjecture (B & Giudici, 2020)

- Either G is a Frobenius group and $\Sigma(G)$ is complete, or diam(G) = 2.
- Any two vertices in $\Sigma(G)$ have a common neighbour.

Example

Let $G = PGL_2(q)$ and let Ω be the set of pairs of 1-dimensional subspaces of $(\mathbb{F}_q)^2$. Here

$$Q({ extsf{G}},2)=1-rac{
u({ extsf{G}})}{|\Omega|}=1-rac{4(q-1)}{q(q+1)}
ightarrow 1$$
 as $q
ightarrow\infty$

but $\Sigma(G) = J(q+1,2)$ still has the common neighbour property!

Some evidence

- All primitive groups of degree $n \leq 4095$
- All non-standard groups with socle A_m
- "Most" almost simple sporadic groups
- All almost simple groups with socle $L_2(q)$ (Chen & Du, 2020)
- All almost simple groups with solvable point stabilizers (B & Huang, in progress)
- Asymptotic results for many diagonal and twisted wreath type groups (Fawcett, 2013/21)

Some open problems

Connectedness. Is there a characterization of the transitive groups with connected Saxl graph?

What happens when G is quasiprimitive?

■ Clique number. Let (G_n) be a sequence of base-two primitive groups with $|G_n| \to \infty$. Does $\omega(G_n) \to \infty$?

Note. This is true if $Q(G_n, 2) \rightarrow 0$ as $n \rightarrow \infty$. Also note that $\omega(J(q+1, 2)) = q$.

- Automorphisms. There are examples with $Aut(\Sigma(G)) = G$. Can they be classified?
- **Cycles.** Eulerian cycles? Hamiltonicity?
- Other invariants. Chromatic number? Independence number? etc.

Some references

- Burness, Giudici: On the Saxl graph of a permutation group, Math. Proc. Cam. Phil. Soc. 168 (2020), 219–248.
- Burness, Huang: On the Saxl graphs of primitive groups with soluble stabilisers, in preparation
- Chen, Du: On the Burness-Giudici Conjecture (arXiv:2008.04233)
- Chen, Huang: On valency problems of Saxl graphs (arXiv:2012.13747)
- Fawcett: *The base size of a primitive diagonal group*, J. Algebra **375** (2013), 302–321.
- Fawcett: *Bases of twisted wreath products* (arXiv:2102.02190)
- Fawcett, Müller, O'Brien, Wilson: Regular orbits of sporadic simple groups, J. Algebra 522 (2019), 61–79.
- Fawcett, O'Brien, Saxl: Regular orbits of symmetric and alternating groups, J. Algebra 458 (2016), 21–52.

- Goodwin: Regular orbits of linear groups with an application to the k(GV)-problem. I, II, J. Algebra **227** (2000), 395–432, 433–473.
- Hall, Liebeck, Seitz: *Generators for finite simple groups, with applications to linear groups*, Quart. J. Math. Oxford **43** (1992), 441–458.
- James: *Partition actions of symmetric groups and regular bipartite graphs*, Bull. London Math. Soc. **38** (2006), 224–232.
- Köhler, Pahlings: *Regular orbits and the k(GV)-problem*, in Groups and computation, III (Columbus, OH, 1999), 209–228, Ohio State Univ. Math. Res. Inst. Publ., 8, de Gruyter, Berlin, 2001.
- Lee: Regular orbits of quasisimple linear groups I (arXiv:1911.05785)
- Lee: Regular orbits of quasisimple linear groups II (arXiv:2006.14954)
- Lee: *Regular orbits of quasisimple linear groups III*, in preparation.