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First application
Minimal dimension and the intersection number



Minimal dimension
Let G be a finite group and let M be a set of maximal subgroups of G .

We say that M is irredundant if
\

H2M
H <

\

H2S
H

for every proper subset S of M.

Definition (Garonzi & Lucchini, 2019)

The minimal dimension of G , denoted Mindim(G ), is the minimal size of
a maximal irredundant set of maximal subgroups of G .

Note. Mindim(G ) = 1 () G is cyclic of prime power order

Example. If G = S3 then M = {h(1, 2)i, h(1, 3)i} is maximal irredundant
and Mindim(G ) = 2.



The base size connection

Let H < G be maximal and set HG =
T

g2G H
g P G .

We may view G/HG as a permutation group on ⌦ = G/H. Define

b(G ,H) = min{|S | : S ✓ G ,
\

g2S
H

g = HG}

If S = {g1, . . . , gb} ✓ G is such a set and b = b(G ,H), then

M = {Hg1/HG , . . . ,H
gb/HG}

is a maximal irredundant set of maximal subgroups of G/HG and thus

Mindim(G/HG ) 6 b(G ,H).

In particular, if HG = 1 then b(G ,H) is the base size of G on ⌦.



Alternating groups
Let G = An with n > 13 and let M = {maximal subgroups of G}.

If H 2 M acts primitively on {1, . . . , n}, then b(G ,H) = 2 [BGS, 2011].

If n = 2m then b(G ,H) = 3 for H = (S2 o Sm) \ G 2 M.

Theorem (Garonzi & Lucchini, 2019)

For n > 4,

Mindim(An) =

⇢
3 if n 2 {6, 7, 8, 11, 12} [A
2 otherwise

A = {2p : p 6= 11 prime, 2p � 1 not a prime power}
= {34, 46, 58, 86, 94, 106, 118, 134, 142, 146, . . .}

Note. If n = q + 1 for a prime power q, then L2(q) 2 M is primitive.



Two related invariants
Let M⇤ be the set of maximal subgroups H of G with HG = �(G ), the
Frattini subgroup of G . Define

↵(G ) = min{|T | : T ✓ M,
\

H2T
H = �(G )}

�(G ) =

(
min{b(G ,H) : H 2 M⇤} if M⇤ 6= ;
1 otherwise,

the intersection number and base number of G , respectively.

Note. Mindim(G ) 6 ↵(G ) 6 �(G ).

The proof of [GL, 2019] shows that

Mindim(An) = ↵(An) = �(An) 2 {2, 3}

for all n > 4.



Simple groups

Theorem (B, Garonzi & Lucchini, 2020)

Let G be a nonabelian finite simple group.

⌅ If G is an alternating, sporadic or exceptional group of Lie type, then

Mindim(G ) = ↵(G ) = �(G ) 6 3,

with equality if and only if

G 2 {M22,G2(2)0} [ {An : n 2 {6, 7, 8, 11, 12} [A}.

⌅ If G is a classical group, then either

Mindim(G ) 6 ↵(G ) 6 �(G ) 6 3,

or G = U4(2) and Mindim(G ) = ↵(G ) = 3, �(G ) = 4.



Corollary

Let G be a nonabelian finite simple group. Then the following hold:

⌅ ↵(G ) 6 3, with equality for infinitely many simple groups G .

⌅ �(G ) 6 4, with equality iff G = U4(2).

⌅ �(G )� ↵(G ) 6 1, with equality if G = U4(2) or Sp6(4).

⌅ ↵(G )� Mindim(G ) 6 1.

Question. Is there a simple group G with ↵(G )� Mindim(G ) = 1?

Note. There exist finite solvable groups G such that ↵(G )� Mindim(G )
is arbitrarily large.

Note. If there exists a maximal subgroup H of G with b(G ,H) = 2, then

Mindim(G ) = ↵(G ) = �(G ) = 2.



Comments on the proof

⌅ G sporadic: [B, O’Brien & Wilson, 2010] gives �(G ) 6 3, with
equality iff G = M22. Using Magma, we get Mindim(M22) = 3.

⌅ G alternating: Let G = An. For n > 13, [B, Guralnick & Saxl, 2011]
gives �(G ) = 2 if G has a maximal primitive subgroup.

Combining this with work of [James, 2006], we reduce to the case
where n = 2p with p a prime.

If n = q + 1 with q a prime power, then H = L2(q) 2 M, so we may
assume n 2 A.

We have |H|2 > |G | for all H 2 M, so ↵(G ) > 3. In addition,
b(G ) = 3 when H = (S2 o Sp) \ G , so ↵(G ) = �(G ) = 3.

Finally, [Garonzi & Lucchini, 2019] show that for all A,B 2 M, there
exists C 2 M such that {A,B ,C} is irredundant.



If G is a finite simple exceptional group of Lie type, then

Mindim(G ) = ↵(G ) = �(G ) =

⇢
3 if G = G2(2)0 ⇠= U3(3)
2 otherwise.

Example

Suppose G = E8(q). Then H = NG (T ) = Cm:C30 2 M, where

m = q
8 � q

7 + q
5 � q

4 + q
3 � q + 1.

Since |xG | > q
58 for all nontrivial x 2 G , we deduce that

Q(G , 2) 6 bQ(G , 2) =
kX

i=1

|xGi \ H|2

|xGi |
< |H|2q�58 < 1

for all q > 2, so b(G ) = 2 and thus �(G ) = 2.

B & Guralnick (2019): If G = G2(q), q even and H = L2(q)2 then we
constructed an x 2 G with H \ H

x = 1.



For classical groups, a key ingredient is the following:

Theorem (B & Guralnick)

Let G = Cl(V ) be a finite simple classical group with dimV > 6.

Let H 2 C3 is a maximal subgroup corresponding to a field extension of
prime degree k (e.g. G = Ln(q) and H is of type GLn/k(qk)).

Then b(G ) 6 3. In fact, for k > 3 we have

b(G ) =

⇢
3 if G = PSp6(q) and H is of type Sp2(q

3)
2 otherwise.

The orthogonal groups require special attention.

Example. Suppose G = ⌦n(q) with nq odd and set k = 2b(n + 1)/4c.

Then b(G ) = 2 when H 2 M is the stabilizer of a nondegenerate k-space
of plus-type, so �(G ) = 2.



Almost simple groups
We can extend these results to almost simple groups. Recall that

↵(G ) = min{|T | : T ✓ M,
\

H2T
H = 1}

�(G ) = min{b(G ,H) : H 2 M}

Theorem (B, Garonzi & Lucchini, 2020)

Let G be a finite almost simple group with socle G0.

⌅ ↵(G ) 6 4, with equality iff G = U4(2).2

⌅ �(G ) 6 4, with equality iff G = S6 or G0 = U4(2)

⌅ �(G )� ↵(G ) 6 1

⌅ ↵(G )� Mindim(G ) 6 1, with equality if G = U4(2).2



An example: symmetric groups

Claim. If G = Sn then �(G ) 6 4, with equality iff n = 6.

For n 6 14 we can use Magma, so assume n > 15.

Theorem (BGL, 2020). If n = ab > 8, a > b > 2 and H = Sb o Sa, then

b(G ) =

⇢
2 if b > 3 and a > max{b + 3, 8}
3 otherwise

⌅ n = 2m: H = S2 o Sm, b(G ) = 3

⌅ n = p prime: H = AGL1(p), b(G ) = 2

⌅ n odd, p smallest prime divisor: H = Sp o Sn/p, b(G ) 6 3



Second application
2-generation and the uniform domination number



Suppose G = hx , yi is finite and non-cyclic. Set G# = G \ {1}.

How are the generating pairs {x , y} distributed across the group?

More precisely:

⌅ Can we impose conditions on the orders of x and y , or their conjugacy
classes?

⌅ What is the probability that two random elements generate G?

⌅ Does G have the 3
2-generation property?

That is, does every nontrivial element belong to a generating pair?

Theorem (Steinberg, 1962). Every simple group is 2-generated.



Spread and uniform spread

We say that G has spread k if for any x1, . . . , xk 2 G
# there exists

y 2 G such that G = hxi , yi for all i .

Let s(G ) > 0 be the exact spread of G .

G has uniform spread k if there exists C = z
G such that for any

x1, . . . , xk 2 G
# there exists y 2 C with G = hxi , yi for all i .

Let u(G ) > 0 be the exact uniform spread of G .

Theorem (Breuer, Guralnick & Kantor, 2008)

G simple =) u(G ) > 2



The generating graph
The generating graph of G , denoted �(G ), has vertices G

#, with x , y
adjacent iff G = hx , yi. In this setting,

s(G ) > 1 () �(G ) has no isolated vertices
s(G ) > 2 =) �(G ) is connected with diameter at most 2

Note. If 1 6= N P G and G/N is non-cyclic, then no element in N belongs
to a generating pair, so s(G ) = 0.

Theorem (B, Guralnick & Harper, 2021)

If G is a finite group, then

s(G ) > 1 () s(G ) > 2
() G/N is cyclic for every non-trivial normal subgroup N

In particular, there is no finite group G with s(G ) = 1.



The domination numbers

Let G be a finite group with u(G ) > 1 and generating graph �(G ).

A total dominating set (TDS) of �(G ) is a set S of vertices such that
every vertex of �(G ) is adjacent to a vertex in S .

The total domination number of G is the minimal size of a TDS:

�t(G ) = min

⇢
|S | : S ✓ G

# such that for all x 2 G
#,

there exists y 2 S with G = hx , yi

�

Similarly, the uniform domination number �u(G ) is the minimal size of a
TDS for �(G ) consisting of conjugate elements.

Note that
2 6 �t(G ) 6 �u(G ) 6 |C |

for some conjugacy class C of G .



An example: G = A4

(1 2)(3 4)

(1 3)(2 4)

(1 4)(2 3)

(1 3 2)

(1 2 4)

(1 4 2) (1 3 4)

(1 4 3)

(2 3 4)

(1 2 3)(1 2 3) (2 4 3)(2 4 3)(1 2 3) (2 4 3)

Conclusion. {(1, 2, 3), (2, 4, 3)} is a TDS for G , hence �u(G ) = 2



Simple groups
Recall that u(G ) > 2 if G is simple, so we can study �u(G ) for simple
groups:

⌅ Can we determine “good" bounds on �u(G )?

⌅ Are there any examples with �u(G ) = 2? Can we classify them?

⌅ Suppose �u(G ) = 2 and y 2 G .

What is the probability, denoted P(G , y), that {y , yg} is a TDS for a
randomly chosen conjugate y

g?

⌅ What are the asymptotic properties of

P(G ) = max{P(G , y) : y 2 G}

for sequences of simple groups G with �u(G ) = 2?



The base size connection

Let M(y) be the set of maximal subgroups of G containing y 2 G .

Lemma. Suppose M(y) = {H}, H core-free. Then {yg1 , . . . , ygc}
is a TDS if and only if

Tc
i=1 H

gi = 1, so �u(G ) 6 b(G ,H),

Proof. Simply observe that G = hx , ygi i () x 62 H
gi . ⌅

Lemma. Suppose that for all y 2 G
# there exists H 2 M(y) with

H core-free and b(G ,H) > c . Then �u(G ) > c .

Proof. If y 2 G
# and g1, . . . , gc�1 2 G , then G 6= hx , ygi i for all

x 2
T

i H
gi 6= 1. ⌅



Lemma. Suppose M(y) = {H}, H core-free. Then {yg1 , . . . , ygc}
is a TDS if and only if

Tc
i=1 H

gi = 1, so �u(G ) 6 b(G ,H),

Example. Let G be an exceptional simple group of Lie type and assume

G 62 {F4(2f ),G2(3f ), 2F4(2)0}.

By Weigel (1992), there exists y 2 G with M(y) = {H}, so �u(G ) 6 6
by applying B, Liebeck & Shalev (2009).

Example. Take G = E8(q) and y 2 G with

|y | = q
8 + q

7 � q
5 � q

4 � q
3 + q + 1.

Then M(y) = {H}, with H = hyi:C30, and �u(G ) = b(G ,H) = 2.



Lemma. Suppose that for all y 2 G
# there exists H 2 M(y) with

H core-free and b(G ,H) > c . Then �u(G ) > c .

Example. Let G = An with n > 8 even, so each y 2 G
# is contained in a

maximal intransitive subgroup of G .

⌅ By Halasi (2012), �u(G ) > b(G ,H) > dlog2 ne � 1.

⌅ Set d = (2, n2 � 1), k = n
2 � d and y = (1, . . . , k)(k + 1, . . . , n) 2 G .

Then M(y) = {H} with H = (Sk ⇥ Sn�k) \ G and

�u(G ) 6 b(G ,H) 6
l
logd 2n

n�2d e n
m
·
⇠
n + 2d
n � 2d

⇡
6 2dlog2 ne.

We conclude that

dlog2 ne � 1 6 �u(G ) 6 2dlog2 ne



Probabilistic methods

For y 2 G , c 2 N we define

Q(G , y , c) = Probability c random conjugates of y do not form a TDS

Note. Q(G , y , c) < 1 =) �u(G ) 6 c

Lemma. Let x
G
1 , . . . , xGk be the conjugacy classes of elements of

prime order in G . Then

Q(G , y , c) 6
kX

i=1

|xGi | ·

0

@
X

H2M(y)

fpr(xi ,G/H)

1

A
c

Note. If M(y) = {H}, then this upper bound is bQ(G , c).



Some results for simple groups

Theorem (B & Harper, 2019)

Let G be a finite simple group.

⌅ G sporadic: �u(G ) 6 4 (e.g. �u(M11) = �u(M12) = 4)

⌅ G = An: �u(G ) 6 c log2 n (e.g. c = 77)

⌅ G exceptional: �u(G ) 6 5

⌅ G classical, rank r : �u(G ) 6 7r + 56

Example. If G = ⌦2r+1(q), then r 6 �u(G ) 6 7r

Example. If G = F4(q), then each y 2 G is contained in a maximal
parabolic subgroup, or a maximal subgroup of type B4(q) or 3

D4(q).

In particular, y 2 H with b(G ,H) > 3, so �u(G ) > 3.



Theorem (B & Harper, 2019/20)

If G is simple, then �u(G ) = 2 only if G is one of the following:

⌅ An, n > 13 prime

⌅ 2
B2(q), 2G2(q), 2F4(q), 3D4(q), 2E6(q),E6(q),E7(q),E8(q)

⌅ M23, J1, J4,Ru, Ly,O0N,Fi23,Fi024,Th,B,M, or J3,He,Co1,HN

⌅ L2(q), q > 11 odd

⌅ L✏n(q),n odd, (n, q, ✏) 6= (3, 2,+), (3, 4,+), (3, 3,�), (3, 5,�)

⌅ G = PSp4m+2(q), m > 2, q odd

⌅ G = P⌦�
4m(q), m > 2



Recall that P(G ) = max{P(G , y) : y 2 G}, where P(G , y) is the
probability that {y , yg} is a TDS for a randomly chosen conjugate y

g .

Note. If M(y) = {H}, then

P(G , y) =
|{yg 2 y

G : H \ H
g = 1}|

|yG | =
r |H|2

|G |

where r is the number of regular orbits of H on G/H.

Theorem (B & Harper, 2020)

Suppose G is simple and �u(G ) = 2. Also assume

G 62 {PSp4m+2(q) : m > 2, q odd} [ {P⌦�
4m(q) : m > 2}.

Then
P(G ) !

⇢ 1
2 if G = L2(q)
1 otherwise as |G | ! 1



Third application
Extremely primitive groups



Definition

Let G 6 Sym(⌦) be a primitive permutation group. Then G is extremely
primitive if G↵ acts primitively on each of its orbits in ⌦ \ {↵}.

Examples

⌅ G = Sn, ⌦ = {1, . . . , n} (2-primitive)

⌅ G = PGL2(q), ⌦ = Fq [ {1} (2-primitive)

⌅ G = J2, G↵ = U3(3): |⌦| = 100 = 1 + 36 + 63

⌅ G = Co2, G↵ = McL:

|⌦| = 47104 = 1 + 275 + 2025 + 7128 + 15400 + 22275

Problem. Determine all the finite extremely primitive groups.



Let G 6 Sym(⌦) be a finite primitive group with point stabilizer H = G↵.

Theorem (Manning, 1927)

G extremely primitive =) H acts faithfully on each orbit in ⌦ \ {↵}

So we can apply the O’Nan-Scott theorem to H:

Lemma. If G is extremely primitive, then either

⌅ F (H) = 1 and soc(H) = T
k for some nonabelian simple group T ; or

⌅ H = F (H)K is affine, where soc(H) = F (H) = (Cp)d acts regularly
on each H-orbit in ⌦ \ {↵} and K 6 GLd(p) is irreducible.

Theorem (Mann, Praeger & Seress, 2007)

G extremely primitive =) G is affine or almost simple



The base size connection
Suppose G is primitive with point stabilizer H. Then G is extremely
primitive iff H \ H

x < H is maximal for all x 2 G \ H.

Lemma. Let G be an almost simple primitive group. If b(G ) = 2 then G

is not extremely primitive.

Theorem

Let G be an almost simple primitive group with socle G0 and point
stabilizer H.

⌅ B, Praeger & Seress, 2012: The extremely primitive groups with
socle a sporadic, alternating or classical group are known.

⌅ B, Thomas, 2020: The extremely primitive groups with socle an
exceptional group of Lie type are known.

(The only examples are (G ,H) = (G2(4).c , J2.c) with c = 1, 2.)



Some almost simple extremely primitive groups

G0 H \ G0 Rank Conditions

An (Sn/2 o S2) \ G0
1
4(n + 2) n ⌘ 2 (mod 4)

An An�1 2 G = Sn or An

A6 L2(5) 2 G = S6 or A6

A5 D10 2

L2(q) P1 2

L2(q) D2(q+1)
1
2q G = G0, q + 1 Fermat

Spn(2) O±
n (2) 2 n > 6

U4(3) L3(4) 3 �
L3(4) A6 3 �
L2(11) A5 2 G = G0

G2(4) J2 3



Almost simple groups

⌅ The structural conditions on H (via O’Nan-Scott) are restrictive.

For example, if G is a group of Lie type and H = QL is a parabolic
subgroup, then the unipotent radical Q has to be elementary abelian.

⌅ If H is “small” then we aim to show that b(G ,H) = 2, typically by
estimating bQ(G , 2).

⌅ B & Thomas (2020):

If G0 is exceptional and H is a maximal subgroup of the form
H = NG (T ) for some maximal torus T , then b(G ,H) = 2.

⌅ In some cases we are forced to construct an explicit element x 2 G so
that H \ H

x < H is non-maximal.



Affine groups

Theorem (Mann, Praeger & Seress, 2007)

Let G = VH 6 AGL(V ) be extremely primitive with V = (Fp)d .

⌅ All the examples with H solvable are known.

⌅ If H is non-solvable, then p = 2 and H is almost simple.

Moreover, either G is 2-transitive (all known), or G is simply primitive
and the known cases (d ,H) are as follows (with k > 3):

(10,M12), (10,M22), (11,M23), (11,M24), (22,Co3), (24,Co1),

(8, L2(17)), (8, Sp6(2)), (2k ,A2k�1), (2k ,A2k+2), (2k ,⌦+
2k(2))

⌅ There are at most finitely many additional affine examples.

Conjecture (MPS). There are no additional affine EP groups!



Let G = VH be primitive with V = (F2)d and H almost simple.

Let M(H) be the set of maximal subgroups of H. For M 2 M(H) set

fix(M) = {v 2 V : v x = v for all x 2 M} =
\

x2M
CV (x).

Note. H irreducible =) dim fix(M) 6 bd/2c for all M 2 M(H).

Lemma.
X

M2M(H)

(|fix(M)|� 1) 6 2d � 1, with equality iff G is EP.

Corollary. |M(H)| < 2d/2 =) G is not EP

If Wall’s conjecture holds, then |M(H)| < |H| and this reduces the
problem to a short list of candidate cases.

Theorem (B & Thomas, 2021). All of these candidates have been
eliminated, completing the classification of all EP groups (modulo Wall).



Next week

⌅ Jan Saxl’s base-two project

⌅ Summary of the main results

⌅ The Saxl graph of a base-two permutation group

⌅ Saxl graphs: Main results and open problems
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