## Bases for permutation groups Lecture 4



## Today

## Applications:

- Minimal dimension and the intersection number
- 2-generation of finite groups
- Extreme primitivity
t.burness@bristol.ac.uk
https://seis.bristol.ac.uk/~tb13602/padova2021.html


## First application

Minimal dimension and the intersection number

## Minimal dimension

Let $G$ be a finite group and let $\mathcal{M}$ be a set of maximal subgroups of $G$.
We say that $\mathcal{M}$ is irredundant if

$$
\bigcap_{H \in \mathcal{M}} H<\bigcap_{H \in \mathcal{S}} H
$$

for every proper subset $\mathcal{S}$ of $\mathcal{M}$.

## Definition (Garonzi \& Lucchini, 2019)

The minimal dimension of $G$, denoted $\operatorname{Mindim}(G)$, is the minimal size of a maximal irredundant set of maximal subgroups of $G$.

Note. $\operatorname{Mindim}(G)=1 \Longleftrightarrow G$ is cyclic of prime power order Example. If $G=S_{3}$ then $\mathcal{M}=\{\langle(1,2)\rangle,\langle(1,3)\rangle\}$ is maximal irredundant and $\operatorname{Mindim}(G)=2$.

## The base size connection

Let $H<G$ be maximal and set $H_{G}=\bigcap_{g \in G} H^{g} \preccurlyeq G$.
We may view $G / H_{G}$ as a permutation group on $\Omega=G / H$. Define

$$
b(G, H)=\min \left\{|S|: S \subseteq G, \bigcap_{g \in S} H^{g}=H_{G}\right\}
$$

If $S=\left\{g_{1}, \ldots, g_{b}\right\} \subseteq G$ is such a set and $b=b(G, H)$, then

$$
\mathcal{M}=\left\{H^{g_{1}} / H_{G}, \ldots, H^{g_{b}} / H_{G}\right\}
$$

is a maximal irredundant set of maximal subgroups of $G / H_{G}$ and thus

$$
\operatorname{Mindim}\left(G / H_{G}\right) \leqslant b(G, H)
$$

In particular, if $H_{G}=1$ then $b(G, H)$ is the base size of $G$ on $\Omega$.

## Alternating groups

Let $G=A_{n}$ with $n \geqslant 13$ and let $\mathcal{M}=\{$ maximal subgroups of $G\}$.
If $H \in \mathcal{M}$ acts primitively on $\{1, \ldots, n\}$, then $b(G, H)=2$ [BGS, 2011].
If $n=2 m$ then $b(G, H)=3$ for $H=\left(S_{2} \backslash S_{m}\right) \cap G \in \mathcal{M}$.

## Theorem (Garonzi \& Lucchini, 2019)

For $n \geqslant 4$,

$$
\operatorname{Mindim}\left(A_{n}\right)= \begin{cases}3 & \text { if } n \in\{6,7,8,11,12\} \cup \mathcal{A} \\ 2 & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
\mathcal{A} & =\{2 p: p \neq 11 \text { prime, } 2 p-1 \text { not a prime power }\} \\
& =\{34,46,58,86,94,106,118,134,142,146, \ldots\}
\end{aligned}
$$

Note. If $n=q+1$ for a prime power $q$, then $L_{2}(q) \in \mathcal{M}$ is primitive.

## Two related invariants

Let $\mathcal{M}^{*}$ be the set of maximal subgroups $H$ of $G$ with $H_{G}=\Phi(G)$, the Frattini subgroup of $G$. Define

$$
\begin{aligned}
& \alpha(G)=\min \left\{|\mathcal{T}|: \mathcal{T} \subseteq \mathcal{M}, \bigcap_{H \in \mathcal{T}} H=\Phi(G)\right\} \\
& \beta(G)= \begin{cases}\min \left\{b(G, H): H \in \mathcal{M}^{*}\right\} & \text { if } \mathcal{M}^{*} \neq \emptyset \\
\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

the intersection number and base number of $G$, respectively.
Note. $\operatorname{Mindim}(G) \leqslant \alpha(G) \leqslant \beta(G)$.
The proof of [GL, 2019] shows that

$$
\operatorname{Mindim}\left(A_{n}\right)=\alpha\left(A_{n}\right)=\beta\left(A_{n}\right) \in\{2,3\}
$$

for all $n \geqslant 4$.

## Simple groups

## Theorem (B, Garonzi \& Lucchini, 2020)

Let $G$ be a nonabelian finite simple group.

- If $G$ is an alternating, sporadic or exceptional group of Lie type, then

$$
\operatorname{Mindim}(G)=\alpha(G)=\beta(G) \leqslant 3
$$

with equality if and only if

$$
G \in\left\{M_{22}, G_{2}(2)^{\prime}\right\} \cup\left\{A_{n}: n \in\{6,7,8,11,12\} \cup \mathcal{A}\right\}
$$

- If $G$ is a classical group, then either

$$
\operatorname{Mindim}(G) \leqslant \alpha(G) \leqslant \beta(G) \leqslant 3
$$

or $G=U_{4}(2)$ and $\operatorname{Mindim}(G)=\alpha(G)=3, \beta(G)=4$.

## Corollary

Let $G$ be a nonabelian finite simple group. Then the following hold:
■ $\alpha(G) \leqslant 3$, with equality for infinitely many simple groups $G$.

- $\beta(G) \leqslant 4$, with equality iff $G=U_{4}(2)$.

■ $\beta(G)-\alpha(G) \leqslant 1$, with equality if $G=U_{4}(2)$ or $\mathrm{Sp}_{6}(4)$.

- $\alpha(G)-\operatorname{Mindim}(G) \leqslant 1$.

Question. Is there a simple group $G$ with $\alpha(G)-\operatorname{Mindim}(G)=1$ ?
Note. There exist finite solvable groups $G$ such that $\alpha(G)-\operatorname{Mindim}(G)$ is arbitrarily large.

Note. If there exists a maximal subgroup $H$ of $G$ with $b(G, H)=2$, then

$$
\operatorname{Mindim}(G)=\alpha(G)=\beta(G)=2
$$

## Comments on the proof

- $G$ sporadic: [B, O'Brien \& Wilson, 2010] gives $\beta(G) \leqslant 3$, with equality iff $G=M_{22}$. Using Magma, we get $\operatorname{Mindim}\left(M_{22}\right)=3$.

■ $G$ alternating: Let $G=A_{n}$. For $n \geqslant 13,[B$, Guralnick \& Saxl, 2011] gives $\beta(G)=2$ if $G$ has a maximal primitive subgroup.
Combining this with work of [James, 2006], we reduce to the case where $n=2 p$ with $p$ a prime.

If $n=q+1$ with $q$ a prime power, then $H=L_{2}(q) \in \mathcal{M}$, so we may assume $n \in \mathcal{A}$.

We have $|H|^{2}>|G|$ for all $H \in \mathcal{M}$, so $\alpha(G) \geqslant 3$. In addition, $b(G)=3$ when $H=\left(S_{2} \backslash S_{p}\right) \cap G$, so $\alpha(G)=\beta(G)=3$.

Finally, [Garonzi \& Lucchini, 2019] show that for all $A, B \in \mathcal{M}$, there exists $C \in \mathcal{M}$ such that $\{A, B, C\}$ is irredundant.

If $G$ is a finite simple exceptional group of Lie type, then

$$
\operatorname{Mindim}(G)=\alpha(G)=\beta(G)= \begin{cases}3 & \text { if } G=G_{2}(2)^{\prime} \cong U_{3}(3) \\ 2 & \text { otherwise }\end{cases}
$$

## Example

Suppose $G=E_{8}(q)$. Then $H=N_{G}(T)=C_{m}: C_{30} \in \mathcal{M}$, where

$$
m=q^{8}-q^{7}+q^{5}-q^{4}+q^{3}-q+1 .
$$

Since $\left|x^{G}\right|>q^{58}$ for all nontrivial $x \in G$, we deduce that

$$
Q(G, 2) \leqslant \widehat{Q}(G, 2)=\sum_{i=1}^{k} \frac{\left|x_{i}^{G} \cap H\right|^{2}}{\left|x_{i}^{G}\right|}<|H|^{2} q^{-58}<1
$$

for all $q \geqslant 2$, so $b(G)=2$ and thus $\beta(G)=2$.

B \& Guralnick (2019): If $G=G_{2}(q), q$ even and $H=L_{2}(q)^{2}$ then we constructed an $x \in G$ with $H \cap H^{x}=1$.

For classical groups, a key ingredient is the following:

## Theorem (B \& Guralnick)

Let $G=\mathrm{Cl}(V)$ be a finite simple classical group with $\operatorname{dim} V \geqslant 6$.
Let $H \in \mathcal{C}_{3}$ is a maximal subgroup corresponding to a field extension of prime degree $k$ (e.g. $G=L_{n}(q)$ and $H$ is of type $G L_{n / k}\left(q^{k}\right)$ ).
Then $b(G) \leqslant 3$. In fact, for $k \geqslant 3$ we have

$$
b(G)= \begin{cases}3 & \text { if } G=\operatorname{PSp}_{6}(q) \text { and } H \text { is of type } \operatorname{Sp}_{2}\left(q^{3}\right) \\ 2 & \text { otherwise. }\end{cases}
$$

The orthogonal groups require special attention.
Example. Suppose $G=\Omega_{n}(q)$ with $n q$ odd and set $k=2\lfloor(n+1) / 4\rfloor$.
Then $b(G)=2$ when $H \in \mathcal{M}$ is the stabilizer of a nondegenerate $k$-space of plus-type, so $\beta(G)=2$.

## Almost simple groups

We can extend these results to almost simple groups. Recall that

$$
\begin{aligned}
& \alpha(G)=\min \left\{|\mathcal{T}|: \mathcal{T} \subseteq \mathcal{M}, \bigcap_{H \in \mathcal{T}} H=1\right\} \\
& \beta(G)=\min \{b(G, H): H \in \mathcal{M}\}
\end{aligned}
$$

## Theorem (B, Garonzi \& Lucchini, 2020)

Let $G$ be a finite almost simple group with socle $G_{0}$.
■ $\alpha(G) \leqslant 4$, with equality iff $G=U_{4}(2) .2$

- $\beta(G) \leqslant 4$, with equality iff $G=S_{6}$ or $G_{0}=U_{4}(2)$
- $\beta(G)-\alpha(G) \leqslant 1$

■ $\alpha(G)-\operatorname{Mindim}(G) \leqslant 1$, with equality if $G=U_{4}(2) .2$

## An example: symmetric groups

Claim. If $G=S_{n}$ then $\beta(G) \leqslant 4$, with equality iff $n=6$.

For $n \leqslant 14$ we can use Magma, so assume $n \geqslant 15$.

Theorem (BGL, 2020). If $n=a b \geqslant 8, a \geqslant b \geqslant 2$ and $H=S_{b}\left\langle S_{a}\right.$, then

$$
b(G)= \begin{cases}2 & \text { if } b \geqslant 3 \text { and } a \geqslant \max \{b+3,8\} \\ 3 & \text { otherwise }\end{cases}
$$

■ $n=2 m: H=S_{2} \backslash S_{m}, b(G)=3$
■ $n=p$ prime: $H=\mathrm{AGL}_{1}(p), b(G)=2$
■ $n$ odd, $p$ smallest prime divisor: $H=S_{p} \backslash S_{n / p}, b(G) \leqslant 3$

## Second application

2-generation and the uniform domination number

Suppose $G=\langle x, y\rangle$ is finite and non-cyclic. Set $G^{\#}=G \backslash\{1\}$.

How are the generating pairs $\{x, y\}$ distributed across the group?

More precisely:

- Can we impose conditions on the orders of $x$ and $y$, or their conjugacy classes?
- What is the probability that two random elements generate $G$ ?
- Does $G$ have the $\frac{3}{2}$-generation property?

That is, does every nontrivial element belong to a generating pair?

Theorem (Steinberg, 1962). Every simple group is 2-generated.

## Spread and uniform spread

We say that $G$ has spread $k$ if for any $x_{1}, \ldots, x_{k} \in G^{\#}$ there exists $y \in G$ such that $G=\left\langle x_{i}, y\right\rangle$ for all $i$.

Let $s(G) \geqslant 0$ be the exact spread of $G$.
$G$ has uniform spread $k$ if there exists $C=z^{G}$ such that for any $x_{1}, \ldots, x_{k} \in G^{\#}$ there exists $y \in C$ with $G=\left\langle x_{i}, y\right\rangle$ for all $i$.

Let $u(G) \geqslant 0$ be the exact uniform spread of $G$.

## Theorem (Breuer, Guralnick \& Kantor, 2008)

$G$ simple $\Longrightarrow u(G) \geqslant 2$

## The generating graph

The generating graph of $G$, denoted $\Gamma(G)$, has vertices $G^{\#}$, with $x, y$ adjacent iff $G=\langle x, y\rangle$. In this setting,

$$
\begin{aligned}
& s(G) \geqslant 1 \Longleftrightarrow \Gamma(G) \text { has no isolated vertices } \\
& s(G) \geqslant 2 \Longrightarrow \Gamma(G) \text { is connected with diameter at most } 2
\end{aligned}
$$

Note. If $1 \neq N \longleftarrow G$ and $G / N$ is non-cyclic, then no element in $N$ belongs to a generating pair, so $s(G)=0$.

## Theorem (B, Guralnick \& Harper, 2021)

If $G$ is a finite group, then

$$
\begin{aligned}
s(G) \geqslant 1 & \Longleftrightarrow s(G) \geqslant 2 \\
& \Longleftrightarrow G / N \text { is cyclic for every non-trivial normal subgroup } N
\end{aligned}
$$

In particular, there is no finite group $G$ with $s(G)=1$.

## The domination numbers

Let $G$ be a finite group with $u(G) \geqslant 1$ and generating graph $\Gamma(G)$.
A total dominating set (TDS) of $\Gamma(G)$ is a set $S$ of vertices such that every vertex of $\Gamma(G)$ is adjacent to a vertex in $S$.

The total domination number of $G$ is the minimal size of a TDS:

$$
\gamma_{t}(G)=\min \left\{|S|: \begin{array}{l}
S \subseteq G^{\#} \text { such that for all } x \in G^{\#}, \\
\text { there exists } y \in S \text { with } G=\langle x, y\rangle
\end{array}\right\}
$$

Similarly, the uniform domination number $\gamma_{u}(G)$ is the minimal size of a TDS for $\Gamma(G)$ consisting of conjugate elements.

Note that

$$
2 \leqslant \gamma_{t}(G) \leqslant \gamma_{u}(G) \leqslant|C|
$$

for some conjugacy class $C$ of $G$.

An example: $G=A_{4}$


Conclusion. $\{(1,2,3),(2,4,3)\}$ is a TDS for $G$, hence $\gamma_{u}(G)=2$

## Simple groups

Recall that $u(G) \geqslant 2$ if $G$ is simple, so we can study $\gamma_{u}(G)$ for simple groups:

- Can we determine "good" bounds on $\gamma_{u}(G)$ ?

■ Are there any examples with $\gamma_{u}(G)=2$ ? Can we classify them?
■ Suppose $\gamma_{u}(G)=2$ and $y \in G$.
What is the probability, denoted $P(G, y)$, that $\left\{y, y^{g}\right\}$ is a TDS for a randomly chosen conjugate $y^{g}$ ?

- What are the asymptotic properties of

$$
P(G)=\max \{P(G, y): y \in G\}
$$

for sequences of simple groups $G$ with $\gamma_{u}(G)=2$ ?

## The base size connection

Let $\mathcal{M}(y)$ be the set of maximal subgroups of $G$ containing $y \in G$.

Lemma. Suppose $\mathcal{M}(y)=\{H\}, H$ core-free. Then $\left\{y^{g_{1}}, \ldots, y^{g_{c}}\right\}$ is a TDS if and only if $\bigcap_{i=1}^{c} H^{g_{i}}=1$, so $\gamma_{u}(G) \leqslant b(G, H)$,

Proof. Simply observe that $G=\left\langle x, y^{g_{i}}\right\rangle \Longleftrightarrow x \notin H^{g_{i}}$.

Lemma. Suppose that for all $y \in G^{\#}$ there exists $H \in \mathcal{M}(y)$ with $H$ core-free and $b(G, H) \geqslant c$. Then $\gamma_{u}(G) \geqslant c$.

Proof. If $y \in G^{\#}$ and $g_{1}, \ldots, g_{c-1} \in G$, then $G \neq\left\langle x, y^{g_{i}}\right\rangle$ for all $x \in \bigcap_{i} H^{g_{i}} \neq 1$.

Lemma. Suppose $\mathcal{M}(y)=\{H\}, H$ core-free. Then $\left\{y^{g_{1}}, \ldots, y^{g_{c}}\right\}$ is a TDS if and only if $\bigcap_{i=1}^{c} H^{g_{i}}=1$, so $\gamma_{u}(G) \leqslant b(G, H)$,

Example. Let $G$ be an exceptional simple group of Lie type and assume

$$
G \notin\left\{F_{4}\left(2^{f}\right), G_{2}\left(3^{f}\right),{ }^{2} F_{4}(2)^{\prime}\right\}
$$

By Weigel (1992), there exists $y \in G$ with $\mathcal{M}(y)=\{H\}$, so $\gamma_{u}(G) \leqslant 6$ by applying B, Liebeck \& Shalev (2009).

Example. Take $G=E_{8}(q)$ and $y \in G$ with

$$
|y|=q^{8}+q^{7}-q^{5}-q^{4}-q^{3}+q+1 .
$$

Then $\mathcal{M}(y)=\{H\}$, with $H=\langle y\rangle: C_{30}$, and $\gamma_{u}(G)=b(G, H)=2$.

Lemma. Suppose that for all $y \in G^{\#}$ there exists $H \in \mathcal{M}(y)$ with $H$ core-free and $b(G, H) \geqslant c$. Then $\gamma_{u}(G) \geqslant c$.

Example. Let $G=A_{n}$ with $n \geqslant 8$ even, so each $y \in G^{\#}$ is contained in a maximal intransitive subgroup of $G$.

■ By Halasi (2012), $\gamma_{u}(G) \geqslant b(G, H) \geqslant\left\lceil\log _{2} n\right\rceil-1$.
■ Set $d=\left(2, \frac{n}{2}-1\right), k=\frac{n}{2}-d$ and $y=(1, \ldots, k)(k+1, \ldots, n) \in G$.
Then $\mathcal{M}(y)=\{H\}$ with $H=\left(S_{k} \times S_{n-k}\right) \cap G$ and

$$
\gamma_{u}(G) \leqslant b(G, H) \leqslant\left\lceil\log _{\left.\left\lceil\frac{2 n}{n-2 d}\right\rceil\right\rceil} n\right\rceil\left\lceil\frac{n+2 d}{n-2 d}\right\rceil \leqslant 2\left\lceil\log _{2} n\right\rceil
$$

We conclude that

$$
\left\lceil\log _{2} n\right\rceil-1 \leqslant \gamma_{u}(G) \leqslant 2\left\lceil\log _{2} n\right\rceil
$$

## Probabilistic methods

For $y \in G, c \in \mathbb{N}$ we define
$Q(G, y, c)=$ Probability $c$ random conjugates of $y$ do not form a TDS
Note. $Q(G, y, c)<1 \Longrightarrow \gamma_{u}(G) \leqslant c$

Lemma. Let $x_{1}^{G}, \ldots, x_{k}^{G}$ be the conjugacy classes of elements of prime order in $G$. Then

$$
Q(G, y, c) \leqslant \sum_{i=1}^{k}\left|x_{i}^{G}\right| \cdot\left(\sum_{H \in \mathcal{M}(y)} \operatorname{fpr}\left(x_{i}, G / H\right)\right)^{c}
$$

Note. If $\mathcal{M}(y)=\{H\}$, then this upper bound is $\widehat{Q}(G, c)$.

## Some results for simple groups

## Theorem (B \& Harper, 2019)

Let $G$ be a finite simple group.
■ $G$ sporadic: $\gamma_{u}(G) \leqslant 4$ (e.g. $\left.\gamma_{u}\left(M_{11}\right)=\gamma_{u}\left(M_{12}\right)=4\right)$
■ $G=A_{n}: \gamma_{u}(G) \leqslant c \log _{2} n($ e.g. $c=77)$
■ $G$ exceptional: $\gamma_{u}(G) \leqslant 5$
■ $G$ classical, rank $r: \gamma_{u}(G) \leqslant 7 r+56$

Example. If $G=\Omega_{2 r+1}(q)$, then $r \leqslant \gamma_{u}(G) \leqslant 7 r$
Example. If $G=F_{4}(q)$, then each $y \in G$ is contained in a maximal parabolic subgroup, or a maximal subgroup of type $B_{4}(q)$ or ${ }^{3} D_{4}(q)$. In particular, $y \in H$ with $b(G, H) \geqslant 3$, so $\gamma_{u}(G) \geqslant 3$.

## Theorem (B \& Harper, 2019/20)

If $G$ is simple, then $\gamma_{u}(G)=2$ only if $G$ is one of the following:

- $A_{n}, n \geqslant 13$ prime

■ ${ }^{2} B_{2}(q),{ }^{2} G_{2}(q),{ }^{2} F_{4}(q),{ }^{3} D_{4}(q),{ }^{2} E_{6}(q), E_{6}(q), E_{7}(q), E_{8}(q)$
■ $\mathrm{M}_{23}, \mathrm{~J}_{1}, \mathrm{~J}_{4}, \mathrm{Ru}, \mathrm{Ly}, \mathrm{O}^{\prime} \mathrm{N}, \mathrm{Fi}_{23}, \mathrm{Fi}_{24}^{\prime}, \mathrm{Th}, \mathrm{B}, \mathrm{M}$, or $\mathrm{J}_{3}, \mathrm{He}, \mathrm{Co}_{1}, \mathrm{HN}$

- $\mathrm{L}_{2}(q), q \geqslant 11$ odd

■ $\mathrm{L}_{n}^{\epsilon}(q), n$ odd, $(n, q, \epsilon) \neq(3,2,+),(3,4,+),(3,3,-),(3,5,-)$
■ $G=\operatorname{PSp}_{4 m+2}(q), m \geqslant 2, q$ odd
■ $G=P \Omega_{4 m}^{-}(q), m \geqslant 2$

Recall that $P(G)=\max \{P(G, y): y \in G\}$, where $P(G, y)$ is the probability that $\left\{y, y^{g}\right\}$ is a TDS for a randomly chosen conjugate $y^{g}$.

Note. If $\mathcal{M}(y)=\{H\}$, then

$$
P(G, y)=\frac{\left|\left\{y^{g} \in y^{G}: H \cap H^{g}=1\right\}\right|}{\left|y^{G}\right|}=\frac{r|H|^{2}}{|G|}
$$

where $r$ is the number of regular orbits of $H$ on $G / H$.

## Theorem (B \& Harper, 2020)

Suppose $G$ is simple and $\gamma_{u}(G)=2$. Also assume

$$
G \notin\left\{\mathrm{PSp}_{4 m+2}(q): m \geqslant 2, q \text { odd }\right\} \cup\left\{\mathrm{P} \Omega_{4 m}^{-}(q): m \geqslant 2\right\}
$$

Then

$$
P(G) \rightarrow\left\{\begin{array}{ll}
\frac{1}{2} & \text { if } G=\mathrm{L}_{2}(q) \\
1 & \text { otherwise }
\end{array} \quad \text { as }|G| \rightarrow \infty\right.
$$

## Third application

Extremely primitive groups

## Definition

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a primitive permutation group. Then $G$ is extremely primitive if $G_{\alpha}$ acts primitively on each of its orbits in $\Omega \backslash\{\alpha\}$.

## Examples

■ $G=S_{n}, \Omega=\{1, \ldots, n\}$ (2-primitive)
■ $G=\mathrm{PGL}_{2}(q), \Omega=\mathbb{F}_{q} \cup\{\infty\}$ (2-primitive)
■ $G=\mathrm{J}_{2}, G_{\alpha}=\mathrm{U}_{3}(3):|\Omega|=100=1+36+63$
■ $G=\mathrm{Co}_{2}, G_{\alpha}=\mathrm{McL}:$

$$
|\Omega|=47104=1+275+2025+7128+15400+22275
$$

Problem. Determine all the finite extremely primitive groups.

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a finite primitive group with point stabilizer $H=G_{\alpha}$.

## Theorem (Manning, 1927)

$G$ extremely primitive $\Longrightarrow H$ acts faithfully on each orbit in $\Omega \backslash\{\alpha\}$
So we can apply the O'Nan-Scott theorem to $H$ :
Lemma. If $G$ is extremely primitive, then either

- $F(H)=1$ and $\operatorname{soc}(H)=T^{k}$ for some nonabelian simple group $T$; or
- $H=F(H) K$ is affine, where $\operatorname{soc}(H)=F(H)=\left(C_{p}\right)^{d}$ acts regularly on each $H$-orbit in $\Omega \backslash\{\alpha\}$ and $K \leqslant G L_{d}(p)$ is irreducible.


## Theorem (Mann, Praeger \& Seress, 2007)

$G$ extremely primitive $\Longrightarrow G$ is affine or almost simple

## The base size connection

Suppose $G$ is primitive with point stabilizer $H$. Then $G$ is extremely primitive iff $H \cap H^{x}<H$ is maximal for all $x \in G \backslash H$.

Lemma. Let $G$ be an almost simple primitive group. If $b(G)=2$ then $G$ is not extremely primitive.

## Theorem

Let $G$ be an almost simple primitive group with socle $G_{0}$ and point stabilizer $H$.

■ B, Praeger \& Seress, 2012: The extremely primitive groups with socle a sporadic, alternating or classical group are known.

■ B, Thomas, 2020: The extremely primitive groups with socle an exceptional group of Lie type are known.
(The only examples are $(G, H)=\left(G_{2}(4) \cdot c, J_{2} \cdot c\right)$ with $c=1,2$.)

Some almost simple extremely primitive groups

| $G_{0}$ | $H \cap G_{0}$ | Rank | Conditions |
| :--- | :--- | :---: | :--- |
| $A_{n}$ | $\left(S_{n / 2} \backslash S_{2}\right) \cap G_{0}$ | $\frac{1}{4}(n+2)$ | $n \equiv 2(\bmod 4)$ |
| $A_{n}$ | $A_{n-1}$ | 2 | $G=S_{n}$ or $A_{n}$ |
| $A_{6}$ | $\mathrm{~L}_{2}(5)$ | 2 | $G=S_{6}$ or $A_{6}$ |
| $A_{5}$ | $D_{10}$ | 2 |  |
| $\mathrm{~L}_{2}(q)$ | $P_{1}$ | 2 |  |
| $\mathrm{~L}_{2}(q)$ | $D_{2(q+1)}$ | $\frac{1}{2} q$ | $G=G_{0}, q+1$ Fermat |
| $\mathrm{Sp}_{n}(2)$ | $\mathrm{O}_{n}^{ \pm}(2)$ | 2 | $n \geqslant 6$ |
| $\mathrm{U}_{4}(3)$ | $\mathrm{L}_{3}(4)$ | 3 | - |
| $\mathrm{L}_{3}(4)$ | $A_{6}$ | 3 | - |
| $\mathrm{L}_{2}(11)$ | $A_{5}$ | 2 | $G=G_{0}$ |
| $G_{2}(4)$ | $\mathrm{J}_{2}$ | 3 |  |

## Almost simple groups

- The structural conditions on $H$ (via O'Nan-Scott) are restrictive. For example, if $G$ is a group of Lie type and $H=Q L$ is a parabolic subgroup, then the unipotent radical $Q$ has to be elementary abelian.
- If $H$ is "small" then we aim to show that $b(G, H)=2$, typically by estimating $\widehat{Q}(G, 2)$.

■ B \& Thomas (2020):
If $G_{0}$ is exceptional and $H$ is a maximal subgroup of the form $H=N_{G}(T)$ for some maximal torus $T$, then $b(G, H)=2$.

- In some cases we are forced to construct an explicit element $x \in G$ so that $H \cap H^{x}<H$ is non-maximal.


## Affine groups

## Theorem (Mann, Praeger \& Seress, 2007)

Let $G=V H \leqslant \operatorname{AGL}(V)$ be extremely primitive with $V=\left(\mathbb{F}_{p}\right)^{d}$.
■ All the examples with $H$ solvable are known.
■ If $H$ is non-solvable, then $p=2$ and $H$ is almost simple.
Moreover, either $G$ is 2-transitive (all known), or $G$ is simply primitive and the known cases $(d, H)$ are as follows (with $k \geqslant 3$ ):

$$
\begin{aligned}
& \left(10, M_{12}\right),\left(10, M_{22}\right),\left(11, M_{23}\right),\left(11, M_{24}\right),\left(22, \mathrm{Co}_{3}\right),\left(24, \mathrm{Co}_{1}\right), \\
& \left(8, \mathrm{~L}_{2}(17)\right),\left(8, \mathrm{Sp}_{6}(2)\right),\left(2 k, A_{2 k-1}\right),\left(2 k, A_{2 k+2}\right),\left(2 k, \Omega_{2 k}^{+}(2)\right)
\end{aligned}
$$

- There are at most finitely many additional affine examples.

Conjecture (MPS). There are no additional affine EP groups!

Let $G=V H$ be primitive with $V=\left(\mathbb{F}_{2}\right)^{d}$ and $H$ almost simple.
Let $\mathcal{M}(H)$ be the set of maximal subgroups of $H$. For $M \in \mathcal{M}(H)$ set

$$
\operatorname{fix}(M)=\left\{v \in V: v^{x}=v \text { for all } x \in M\right\}=\bigcap_{x \in M} C_{V}(x) .
$$

Note. $H$ irreducible $\Longrightarrow \operatorname{dim} \operatorname{fix}(M) \leqslant\lfloor d / 2\rfloor$ for all $M \in \mathcal{M}(H)$.
Lemma. $\sum_{M \in \mathcal{M}(H)}(|f i x(M)|-1) \leqslant 2^{d}-1$, with equality iff $G$ is EP.
Corollary. $|\mathcal{M}(H)|<2^{d / 2} \Longrightarrow G$ is not EP
If Wall's conjecture holds, then $|\mathcal{M}(H)|<|H|$ and this reduces the problem to a short list of candidate cases.

Theorem (B \& Thomas, 2021). All of these candidates have been eliminated, completing the classification of all EP groups (modulo Wall).

## Next week

■ Jan Saxl's base-two project

- Summary of the main results
- The Saxl graph of a base-two permutation group

■ Saxl graphs: Main results and open problems

## Some references

■ Brenner, Wiegold: Two generator groups, I, Michigan Math. J. 22 (1975), 53-64.

■ Breuer, Guralnick, Kantor: Probabilistic generation of finite simple groups, II, J. Algebra 320 (2008), 443-494.

■ Burness, Garonzi, Lucchini: Finite groups, minimal bases and the intersection number, submitted (arXiv:2009.10137)

- Burness, Garonzi, Lucchini: On the minimal dimension of a finite simple group (with an appendix by T.C. Burness and R.M. Guralnick), J. Combin. Theory Ser. A 171 (2020), 105175, 32 pp.
- Burness, Giudici: On the Saxl graph of a permutation group, Math. Proc. Cambridge Philos. Soc. 168 (2020), 219-248.
- Burness, Guralnick, Harper: The spread of a finite group, Annals of Math. 193 (2021), 619-687.
- Burness, Guralnick: Base sizes for geometric actions of finite classical groups, in preparation

■ Burness, Harper: Finite groups, 2-generation and the uniform domination number, Israel J. Math. 239 (2020), 271-367.

■ Burness, Harper: On the uniform domination number of a finite simple group, Trans. Amer. Math. Soc. 372 (2019), 545-583.

■ Burness, Praeger, Seress: Extremely primitive classical groups, J. Pure Appl. Algebra 216 (2012), 1580-1610.

■ Burness, Praeger, Seress: Extremely primitive sporadic and alternating groups, Bull. London Math. Soc. 44 (2012), 1147-1154.

■ Burness, Thomas: The classification of extremely primitive groups, IMRN, to appear (arXiv:2005.11553)

■ Burness, Thomas: A note on extremely primitive affine groups, Arch. Math. 116 (2021), 141-152.

- Garonzi, Lucchini: Maximal irredundant families of minimal size in the alternating group, Arch. Math. 113 (2019), 119-126.

■ Mann, Praeger, Seress: Extremely primitive groups, Groups Geom. Dyn. 1 (2007), 623-660.

■ Manning: Simply transitive primitive groups, Trans. Amer. Math. Soc. 29 (1927), 815-825.

■ Steinberg: Generators for simple groups, Canad. J. of Math. 14 (1962), 277-283.

- Wall: Some applications of the Eulerian functions of a finite group, J. Aust. Math. Soc. 2 (1961), 35-59.
- Weigel: Generation of exceptional groups of Lie-type, Geom. Dedicata 41 (1992), 63-87.

