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First application

Minimal dimension and the intersection number



Minimal dimension
Let G be a finite group and let M be a set of maximal subgroups of G.
We say that M is irredundant if

N H<(H

HeM HeS

for every proper subset S of M.

Definition (Garonzi & Lucchini, 2019)

The minimal dimension of G, denoted Mindim(G), is the minimal size of
a maximal irredundant set of maximal subgroups of G.

Note. Mindim(G) =1 <= G is cyclic of prime power order

Example. If G = S3 then M = {((1,2)),((1,3))} is maximal irredundant
and Mindim(G) = 2.



The base size connection

Let H < G be maximal and set Hg = [, H® < G.

We may view G/Hg as a permutation group on Q = G/H. Define

b(G,H) =min{|S| : SC G, (] H& = Hs}
g€eSs

If S={g1,...,8p} C G is such a set and b = b(G, H), then
M ={H& /Hg,...,H® /Hs}
is a maximal irredundant set of maximal subgroups of G/H¢ and thus

Mindim(G/Hg) < b(G, H).

In particular, if Hg = 1 then b(G, H) is the base size of G on Q.



Alternating groups

Let G = A, with n > 13 and let M = {maximal subgroups of G}.

If H e M acts primitively on {1,...,n}, then b(G, H) = 2 [BGS, 2011].
If n=2m then b(G,H) =3 for H=(515,)NG e M.

Theorem (Garonzi & Lucchini, 2019)

For n > 4,

3 ifne{6,7,8,11,12} U A
2 otherwise

Mindim(A,) = {

A=1{2p : p+#11 prime, 2p — 1 not a prime power}
= {34, 46, 58, 86, 94, 106, 118, 134, 142, 146,...}

Note. If n = g+ 1 for a prime power g, then Ly(g) € M is primitive.



Two related invariants

Let M™ be the set of maximal subgroups H of G with Hg = ®(G), the
Frattini subgroup of G. Define

a(G) =min{|T| : TC M, (] H=9(G)}
HeT

00 otherwise,

the intersection number and base number of G, respectively.
Note. Mindim(G) < a(G) < 5(G).
The proof of [GL, 2019] shows that

Mindim(A,) = a(An) = B(An) € {2,3}

for all n > 4.



Simple groups

Theorem (B, Garonzi & Lucchini, 2020)

Let G be a nonabelian finite simple group.

m If G is an alternating, sporadic or exceptional group of Lie type, then
Mindim(G) = a(G) = B(G) < 3,
with equality if and only if

G e {M22, G2(2)/} U {An T ne {6,7,8, 11, 12} U A}

m If G is a classical group, then either
Mindim(G) < o(G) < B(G) < 3,

or G = Uy4(2) and Mindim(G) = o(G) = 3, B(G) = 4.



Corollary

Let G be a nonabelian finite simple group. Then the following hold:
m a(G) < 3, with equality for infinitely many simple groups G.
B 5(G) < 4, with equality iff G = U4(2).
B 5(G) — a(G) < 1, with equality if G = U4(2) or Spg(4).

® o(G) — Mindim(G) < 1.

Question. Is there a simple group G with a(G) — Mindim(G) = 17

Note. There exist finite solvable groups G such that a(G) — Mindim(G)
is arbitrarily large.

Note. If there exists a maximal subgroup H of G with b(G, H) = 2, then

Mindim(G) = a(G) = B(G) = 2.



Comments on the proof

m G sporadic: [B, O'Brien & Wilson, 2010] gives 5(G) < 3, with
equality iff G = May. Using Magma, we get Mindim(Ma2) = 3.

m G alternating: Let G = A,. For n > 13, [B, Guralnick & Saxl, 2011]
gives 3(G) = 2 if G has a maximal primitive subgroup.
Combining this with work of [James, 2006], we reduce to the case
where n = 2p with p a prime.
If n =g+ 1 with g a prime power, then H = L»(g) € M, so we may

assume n € A.

We have |H|? > |G| for all H e M, so o(G) > 3. In addition,
b(G) =3 when H=(515,) N G, so o(G) = B(G) = 3.

Finally, [Garonzi & Lucchini, 2019] show that for all A, B € M, there
exists C € M such that {A, B, C} is irredundant.



If G is a finite simple exceptional group of Lie type, then

3 ifG= G2(2)/ = U3(3)

2 otherwise.

Mindim(G) = o(G) = B(G) = {

Example
Suppose G = Eg(q). Then H = Ng(T) = Cpy:C30 € M, where

m=¢—-q +¢°—q"+¢>—q+1.

Since |x¢| > ¢ for all nontrivial x € G, we deduce that

x N H
Q(G,2) < Q(G,2) Z' |G|| < |HPqg%® <1
S

for all g > 2, so b(G) = 2 and thus 5(G) =

B & Guralnick (2019): If G = Gy(q), q even and H = L»(q)? then we
constructed an x € G with HN H* = 1.



For classical groups, a key ingredient is the following:

Theorem (B & Guralnick)
Let G = CI(V) be a finite simple classical group with dim V' > 6.

Let H € C3 is a maximal subgroup corresponding to a field extension of
prime degree k (e.g. G = Ln(q) and H is of type GL,/k(q")).

Then b(G) < 3. In fact, for k > 3 we have

3 if G =PSpg(q) and H is of type Sp,(q%)
2 otherwise.

b(G) = {

The orthogonal groups require special attention.

Example. Suppose G = Q,(q) with nq odd and set k =2|(n+ 1)/4].

Then b(G) =2 when H € M is the stabilizer of a nondegenerate k-space
of plus-type, so 5(G) = 2.



Almost simple groups
We can extend these results to almost simple groups. Recall that
a(G)=min{|T| : TCM, [ H=1}

HeT
B(G) = min{b(G,H) : He M}

Theorem (B, Garonzi & Lucchini, 2020)

Let G be a finite almost simple group with socle Gg.

B o(G) < 4, with equality iff G = U4(2).2
m 5(G) < 4, with equality iff G = Sg or Gy = Us(2)
m 3(G)—a(G) <1

B o(G) — Mindim(G) < 1, with equality if G = U4(2).2



An example: symmetric groups

Claim. If G = S, then 5(G) < 4, with equality iff n = 6.

For n < 14 we can use Magma, so assume n > 15.

Theorem (BGL, 2020). If n=ab>8,a>b>2and H= 5,15, then

2 if b>3and a > max{b+ 3,8}
3 otherwise

b(G) :{

mn=2m H=3515y, b(G)=3
m n=pprime: H=AGL;(p), b(G) =2

m n odd, p smallest prime divisor: H = 5,15,/,, b(G) <3



Second application

2-generation and the uniform domination number



Suppose G = (x, y) is finite and non-cyclic. Set G#* = G \ {1}.

[ How are the generating pairs {x, y} distributed across the group? ]

More precisely:

m Can we impose conditions on the orders of x and y, or their conjugacy
classes?

m What is the probability that two random elements generate G?

m Does G have the %-generation property?

That is, does every nontrivial element belong to a generating pair?

[ Theorem (Steinberg, 1962). Every simple group is 2-generated. ]




Spread and uniform spread

We say that G has spread k if for any xi,...,xc € G# there exists
y € G such that G = (x;, y) for all i.

Let s(G) > 0 be the exact spread of G.

G has uniform spread k if there exists C = zC such that for any
X1,...,Xx € G7 there exists y € C with G = (x;, y) for all /.

Let u(G) > 0 be the exact uniform spread of G.

Theorem (Breuer, Guralnick & Kantor, 2008)

G simple = u(G) > 2



The generating graph

The generating graph of G, denoted '(G), has vertices G, with x, y
adjacent iff G = (x,y). In this setting,

<= [(G) has no isolated vertices

(6)>1
> 2 = [(G) is connected with diameter at most 2

(6)

S
S

Note. If 1 # N < G and G/N is non-cyclic, then no element in N belongs
to a generating pair, so s(G) = 0.

Theorem (B, Guralnick & Harper, 2021)
If G is a finite group, then

s(G) 21 < s(G)>2
<= G/N is cyclic for every non-trivial normal subgroup N

In particular, there is no finite group G with s(G) = 1.



The domination numbers

Let G be a finite group with u(G) > 1 and generating graph '(G).

A total dominating set (TDS) of '(G) is a set S of vertices such that
every vertex of ['(G) is adjacent to a vertex in S.

The total domination number of G is the minimal size of a TDS:

S C G# such that for all x € G#, }

7¢(G) = min {|S| " there exists y € S with G = (x,y)

Similarly, the uniform domination number ~,(G) is the minimal size of a
TDS for I'(G) consisting of conjugate elements.

Note that
2 <7(G) < u(G) <|C|

for some conjugacy class C of G.



An example: G = Ay

2

Conclusion. {(1,2,3),(2,4,3)} is a TDS for G, hence 7,(G)



Simple groups

Recall that u(G) > 2 if G is simple, so we can study v,(G) for simple
groups:

m Can we determine “good" bounds on ~,(G)?
m Are there any examples with ,(G) = 27 Can we classify them?

m Suppose 7,(G) =2 and y € G.

What is the probability, denoted P(G, y), that {y,y&} is a TDS for a
randomly chosen conjugate y&7

m What are the asymptotic properties of
P(G) = max{P(G,y) : y € G}

for sequences of simple groups G with ~,(G) = 27



The base size connection

Let M(y) be the set of maximal subgroups of G containing y € G.

Lemma. Suppose M(y) = {H}, H core-free. Then {y&!, ... y&}
is a TDS if and only if N7_; H& =1, so 7,(G) < b(G, H),

Proof. Simply observe that G = (x,y8) <= x ¢ H&.

Lemma. Suppose that for all y € G# there exists H € M(y) with
H core-free and b(G,H) > c. Then ~,(G) > c.

Proof. If y € G* and g1,...,8..1 € G, then G # (x, y&) for all
x e, H8 # 1.



Lemma. Suppose M(y) = {H}, H core-free. Then {y#, ... y&}
is a TDS if and only if (7_; H8 =1, so 7,(G) < b(G, H),

Example. Let G be an exceptional simple group of Lie type and assume
G ¢ {F(2"), &(37),Fa(2)'}.

By Weigel (1992), there exists y € G with M(y) = {H}, so 7,(G) <6
by applying B, Liebeck & Shalev (2009).

Example. Take G = Eg(q) and y € G with
Vi=¢*+q" —¢°—q¢"'— ¢’ +qg+1

Then M(y) = {H}, with H = (y):C30, and v,(G) = b(G, H) = 2.



Lemma. Suppose that for all y € G¥ there exists H € M(y) with
H core-free and b(G,H) > c. Then ~,(G) > c.

Example. Let G = A, with n > 8 even, so each y € G¥ is contained in a
maximal intransitive subgroup of G.

m By Halasi (2012), v,(G) > b(G, H) > [log, n] — 1.
mSetd=(2,5-1), k=5—-dandy=(1,...,k)(k+1,...,n) € G.
Then M(y) = {H} with H = (5S¢ x Sp—x) N G and

1(6) < B(G,H) < [log 1] - | 725 | < 2fogz .

We conclude that

[logy n] —1 < 7u(G) < 2[logy n]



Probabilistic methods

For y € G, ¢ € N we define

Q(G,y, c) = Probability ¢ random conjugates of y do not form a TDS

Note. Q(G,y,c) <1 = ~,(G) <c

7

Lemma. Let xlc,...,x,f be the conjugacy classes of elements of
prime order in G. Then

k C
Q(G,y,c) Zyxﬂ ( > fpr(x,-,G/H))

HeM(y)

Note. If M(y) = {H}, then this upper bound is Q(G, c).




Some results for simple groups

Theorem (B & Harper, 2019)
Let G be a finite simple group.

m G sporadic: 7,(G) < 4 (e.g. 7u(M11) = 7u(M12) = 4)
B G=A; 7(G)<clog,n (eg. c=77)
m G exceptional: v,(G) <5

m G classical, rank r: v,(G) < 7r + 56

Example. If G = Q2,41(q), then r < ~,(G) < 7r

Example. If G = F4(q), then each y € G is contained in a maximal
parabolic subgroup, or a maximal subgroup of type Bs(q) or 3D4(q).

In particular, y € H with b(G, H) > 3, so 7,(G) > 3.



Theorem (B & Harper, 2019/20)
If G is simple, then ~,(G) = 2 only if G is one of the following:

m A, n> 13 prime

2Ba(q),2Ga(q), >Fa(q), * Da(q), * Es(q), Es(q), Ez(q), Es(q)

M23, J1, J4, Ru, Ly, O/N, Fi23, Fi/24, Th, B, M, or J3, He, COl, HN

L2(q), g > 11 odd

LS(g), n odd, (n, q,€) # (3,2,4),(3,4,4+),(3,3,-),(3,5,—)

G =PSpymi2(q), m>2, q odd

mG=PQ, (q) m=>2



Recall that P(G) = max{P(G,y) : y € G}, where P(G,y) is the
probability that {y, y&} is a TDS for a randomly chosen conjugate y5.

Note. If M(y) = {H}, then

{yf € y® : HNHE =1}  rH]?
P(C.y) = % =g

where r is the number of regular orbits of H on G/H.

Theorem (B & Harper, 2020)
Suppose G is simple and 7,(G) = 2. Also assume

G & {PSpymi2(q) : m>2, g odd} U {PQy,(q) : m>2}.
Then

if G =La(q)
otherwise

=N

as |G| — oo

P(G)—>{



Third application

Extremely primitive groups



Let G < Sym(€2) be a primitive permutation group. Then G is extremely
primitive if G, acts primitively on each of its orbits in Q \ {«a}.

mG=S5, Q={1,...,n} (2-primitive)

m G =PGLy(q), 2 =F4U {co} (2-primitive)
mG=1Jy G,=U3(3): [Q =100=1+ 36+ 63
m G= C02, Ga = McL:

Q| = 47104 = 1 + 275 + 2025 + 7128 -+ 15400 + 22275

Problem. Determine all the finite extremely primitive groups.



Let G < Sym(Q) be a finite primitive group with point stabilizer H = G,,.

Theorem (Manning, 1927)
G extremely primitive = H acts faithfully on each orbit in Q\ {a}

So we can apply the O’Nan-Scott theorem to H:

Lemma. If G is extremely primitive, then either

m F(H) =1 and soc(H) = T* for some nonabelian simple group T; or

m H = F(H)K is affine, where soc(H) = F(H) = (C,)? acts regularly
on each H-orbit in Q\ {a} and K < GL4(p) is irreducible.

Theorem (Mann, Praeger & Seress, 2007)

G extremely primitive = G is affine or almost simple



The base size connection

Suppose G is primitive with point stabilizer H. Then G is extremely
primitive ifft HN H* < H is maximal for all x € G\ H.

Lemma. Let G be an almost simple primitive group. If b(G) = 2 then G
is not extremely primitive.

Theorem

Let G be an almost simple primitive group with socle Gy and point
stabilizer H.

m B, Praeger & Seress, 2012: The extremely primitive groups with
socle a sporadic, alternating or classical group are known.

m B, Thomas, 2020: The extremely primitive groups with socle an
exceptional group of Lie type are known.

(The only examples are (G, H) = (G2(4).c, Ja.c) with ¢ =1,2.)



Some almost simple extremely primitive groups

Go HnN Gy Rank  Conditions

An (Sn2182) NGy 3(n+2) n=2(mod 4)

A, A1 2 G=S5,o0rA,

A6 L2(5) 2 G = Sg or Ag

As D1o 2

La(q) P1 2

L2(q)  Daig+1) %q G = Gp, g+ 1 Fermat

Spa(2) 05 (2) 2 nzo6
Us(3) Ls(4) 3 -
L3(4) As 3 —
L2(11) As 2 G=G
Gy(4) o 3




Almost simple groups

m The structural conditions on H (via O'Nan-Scott) are restrictive.
For example, if G is a group of Lie type and H = QL is a parabolic

subgroup, then the unipotent radical Q has to be elementary abelian.

m If His “small” then we aim to show that b(G, H) = 2, typically by
estimating Q(G, 2).
m B & Thomas (2020):

If Gp is exceptional and H is a maximal subgroup of the form
H = Ng(T) for some maximal torus T, then b(G,H) = 2.

m In some cases we are forced to construct an explicit element x € G so
that H N H* < H is non-maximal.



Affine groups

Theorem (Mann, Praeger & Seress, 2007)
Let G = VH < AGL(V) be extremely primitive with V = (F,).

m All the examples with H solvable are known.

m If H is non-solvable, then p =2 and H is almost simple.

Moreover, either G is 2-transitive (all known), or G is simply primitive
and the known cases (d, H) are as follows (with k > 3):

(10, M12), (10, M22), (].].7 M23), (11, M24), (22, CO3), (24, CO]_),
(8,L2(17)), (8,Sps(2)). (2k, Ask—1), (2k, Ask12), (2k,23,(2))

m There are at most finitely many additional affine examples.

Conjecture (MPS). There are no additional affine EP groups!



Let G = VH be primitive with V = (F2)9 and H almost simple.

Let M(H) be the set of maximal subgroups of H. For M € M(H) set
fix(M)={veV:vi=vforallxeM}= ()] Cy(x).

xeM

Note. H irreducible = dimfix(M) < [d/2] for all M € M(H).

Lemma. > ([fix(M)| — 1) <29 - 1, with equality iff G is EP.
MeM(H)

Corollary. |[M(H)| < 29/2 = G is not EP

If Wall’s conjecture holds, then |[M(H)| < |H| and this reduces the
problem to a short list of candidate cases.

Theorem (B & Thomas, 2021). All of these candidates have been
eliminated, completing the classification of all EP groups (modulo Wall).



Next week

m Jan Saxl's base-two project
®m Summary of the main results
m The Saxl graph of a base-two permutation group

m Saxl| graphs: Main results and open problems
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