Bases for permutation groups Lecture 3

Tim Burness, University of Bristol

Today

■ Cameron's base size conjecture:

- The probabilistic method
- Main results
- Key steps and techniques in the proof
- Fixed point ratio estimates

Extensions and related problems

t.burness@bristol.ac.uk

https://seis.bristol.ac.uk/~tb13602/padova2021.html

Cameron's conjecture

Let $G \leq \text{Sym}(\Omega)$ be a **non-standard** almost simple primitive permutation group with socle G_0 and point stabilizer H.

Recall. Roughly speaking, "non-standard" means that

- *H* acts primitively on $\{1, \ldots, m\}$ if $G_0 = A_m$; and
- $H \cap G_0$ acts irreducibly on V if $G_0 = Cl(V)$ is a classical group.

Conjecture (Cameron, 1999)

We have $b(G) \leq 7$, with equality iff $G = M_{24}$ in its natural action.

Theorem (B et al., 2007-11)

Cameron's conjecture is true.

Moreover, almost every 6-tuple of points in Ω form a base for G.

Probabilistic methods

Recall that b(G) is the minimal number of elements g_1, \ldots, g_b in G s.t.

 $H^{g_1} \cap H^{g_2} \cap \cdots \cap H^{g_b} = 1.$

For a non-standard group $G \leq \text{Sym}(\Omega)$, we may not be able to equip $\Omega = G/H$ with a natural geometric or combinatorial structure, which makes **constructive** methods difficult to apply.

In this setting, our main tool is a **probabilistic** method introduced by **Liebeck & Shalev (1999):**

For a positive integer c, let

$$P(G,c) = \frac{|\{(\alpha_1,\ldots,\alpha_c) \in \Omega^c : \bigcap_i G_{\alpha_i} = 1\}|}{|\Omega|^c}$$

be the probability that a random *c*-tuple of points in Ω is a base for *G*.

Set
$$Q(G, c) = 1 - P(G, c)$$
, so $b(G) \leq c$ iff $Q(G, c) < 1$.

Observation. A *c*-tuple in Ω fails to be a base iff it is fixed by some $x \in G$ of prime order.

The probability that a random *c*-tuple is fixed by $x \in G$ is $fpr(x)^c$, where

$$\operatorname{fpr}(x) = \frac{|C_{\Omega}(x)|}{|\Omega|} = \frac{|x^{G} \cap H|}{|x^{G}|}$$

is the **fixed point ratio** of x. Therefore,

$$Q(G,c) \leqslant \sum_{x \in \mathcal{P}} \operatorname{fpr}(x)^c = \sum_{i=1}^k |x_i^G| \cdot \operatorname{fpr}(x_i)^c =: \widehat{Q}(G,c),$$

where \mathcal{P} is the set of elements of prime order in G and the x_i are representatives of the distinct G-classes in \mathcal{P} .

In particular, $\widehat{Q}(G,c) < 1 \implies b(G) \leqslant c$.

Symmetric and alternating groups

Suppose
$$G_0 = A_m$$
, so $G = A_m$ or S_m (for $m \neq 6$).

Cameron & Kantor (1993): A sketch proof (with an undetermined constant), based on two properties of primitive $H \leq S_m$, $H \neq A_m$, S_m :

- \blacksquare |*H*| is "small".
- Nontrivial elements in H have "large" support on $\{1, \ldots, m\}$.

Therefore, if $x \in H$ has prime order, then $|x^G \cap H| \leq |H|$ is "small" and $|x^G|$ is "large", which implies that fpr(x) is also "small".

Using explicit estimates, this yields $\widehat{Q}(G,c) < 1$ for some constant c.

The main result

Theorem (B, Guralnick & Saxl, 2011)

Let $G \leq \text{Sym}(\Omega)$ be a non-standard group with socle $G_0 = A_m$ and point stabilizer H. Then the following hold:

- $b(G) \leq 5$, with equality iff $G = S_6$ and $H = PGL_2(5)$.
- b(G) is known in all cases. In particular, b(G) = 2 if $m \ge 13$.

•
$$P(G,2) \rightarrow 1$$
 as $m \rightarrow \infty$.

Main ingredients:

- Maróti (2002) on the order of *H*.
- Guralnick & Magaard (1998) on the minimal degree of H.
- Computational methods (using Magma) for small *m*.

Assume $m \ge 40$ and the action of H on $\{1, \ldots, m\}$ is **not** one of:

- (a) $H = (S_a \wr S_b) \cap G$ in its product action (with $m = a^b$);
- (b) $H = A_{\ell}$ or S_{ℓ} acting on k-sets in $\{1, \ldots, \ell\}$ (with $m = \binom{\ell}{k}$); or
- (c) *H* is an almost simple orthogonal group over \mathbb{F}_2 acting on a set of hyperplanes of the natural module for *H*.

Maróti: $|H| \leq m^{1+\lfloor \log_2 m \rfloor} =: f(m)$

Guralnick & Magaard: $\mu(H) := \min\{\operatorname{supp}(x) : 1 \neq x \in H\} \ge m/2$

The bound on $\mu(H)$ implies that

$$|C_G(x)| \leq 2^{m/4} \lceil m/4 \rceil! \lceil m/2 \rceil! =: g(m)$$

for all $1 \neq x \in H$. Therefore,

$$\widehat{Q}(G,2) = \sum_{i=1}^{k} \frac{|x_i^G \cap H|^2}{|x_i^G|} \leq \frac{f(m)^2 g(m)}{m!} < 1$$

Sporadic groups

Theorem (B, O'Brien & Wilson, 2010)

Let $G \leq \text{Sym}(\Omega)$ be an almost simple primitive group with sporadic socle G_0 and point stabilizer H. Then the following hold:

• $b(G) \leq 7$, with equality iff $G = M_{24}$ and $H = M_{23}$.

• The exact value of b(G) is known in all cases.

Note. For two cases with $G = \mathbb{B}$, we proved $b(G) \leq 3$ and the exact base size was determined in later work by **Neunhöffer et al. (2011)**.

Computational methods play an essential role in the proof:

- **WebAtlas:** Permutation reps and generators for maximal subgroups
- GAP Character Table Library: character tables; fusion maps
- Random search and double coset computations

Assume $G \neq M$. Then the maximal subgroups of G have been determined up to conjugacy and in most cases we can access the character tables of G and H in GAP.

Moreover, the corresponding fusion map from *H*-classes to *G*-classes is usually available, which allows us to compute $\widehat{Q}(G, c)$ precisely.

Set $c = \lceil \log_{|\Omega|} |G| \rceil$, so $b(G) \ge c$.

• If
$$\widehat{Q}(G,c) < 1$$
, then $b(G) = c$.

If not, we almost always have $\widehat{Q}(G, c+1) < 1$, so $b(G) \in \{c, c+1\}$.

- In these cases, we use the WebAtlas and Magma to construct $H < G < S_m$ for some *m*.
 - ▶ By random search, we seek $g_1, \ldots, g_{c-1} \in G$ such that $H \cap H^{g_1} \cap \cdots \cap H^{g_{c-1}} = 1$, which will yield b(G) = c.
 - If |G : H| < 10⁷, it may be feasible to construct the action of G on G/H and determine the order of every c-point stabilizer.

Double coset methods

There are some cases where $|\Omega|$ is large and $\log_{|\Omega|} |G| = c - \epsilon$ with $\epsilon > 0$ small; in this situation, the previous methods may be ineffective.

Here we expect b(G) = c + 1, but it is not feasible to compute the order of every *c*-point stabilizer.

Let's assume c = 2 (this is typical). To show b(G) = 3, we need to rule out the existence of a regular *H*-orbit on $\Omega = G/H$.

Each *H*-orbit on Ω is an (H, H) double coset. By random search, we seek a set $T \subseteq G$ representing **distinct** (H, H) double cosets s.t.

(a)
$$|HxH| < |H|^2$$
 for all $x \in T$; and

(b)
$$\sum_{x \in T} |HxH| > |G| - |H|^2$$
.

If T exists, then H does not have a regular orbit on Ω and thus $b(G) \ge 3$.

For $G \neq \mathbb{M}$, these methods are effective unless $G = \mathbb{B}$ and

$$H = 2^{2+10+20} . (M_{22} : 2 \times S_3)$$
 or $[2^{30}] . L_5(2) .$

In both cases, $\lceil \log_{|\Omega|} |G| \rceil = 2$, $\widehat{Q}(G,3) < 1$ and $|\Omega| > 10^{17}$.

Using further computational methods, including the **Orb** package due to **Müller et al. (2007)**, one can show that b(G) = 3, 2 respectively.

Finally, suppose $G = \mathbb{M}$ is the Monster.

There are 44 known classes of maximal subgroups of *G* and any additional candidate has socle $L_2(13)$ or $L_2(16)$ (**Wilson, 2017**).

The *p*-local maximal subgroups for p = 2, 3 require special attention, e.g. work is needed to bound fpr(x) when $x \in G$ is an involution.

Conclusion. If $G = \mathbb{M}$, then $b(G) \leq 3$, with equality iff $H = 2.\mathbb{B}$.

Groups of Lie type

Let $G \leq \text{Sym}(\Omega)$ be non-standard, with socle G_0 and point stabilizer H. Assume G_0 is a group of Lie type over \mathbb{F}_q $(q = p^f)$, so either

- G_0 is an exceptional group; or
- $G_0 = Cl(V)$ is a classical group and $H \cap G_0$ acts irreducibly on V.

Recall that $G_0 \leq G \leq \operatorname{Aut}(G_0)$ and $\operatorname{Out}(G_0) = \operatorname{Aut}(G_0)/G_0$ is solvable. Suppose $x \in G$ has prime order r.

- x is an inner or diagonal automorphism: semisimple $(r \neq p)$ or unipotent (r = p)
- x is a graph automorphism (r = 2, 3 only)
- x is a **field** automorphism $(q = q_0^r)$

• x is a graph-field automorphism ($q = q_0^r$, r = 2, 3 only)

Example

Suppose $G_0 = L_n(q) = SL_n(q)/Z$, where $q = p^f$ and $n \ge 3$. Then

$$\mathsf{Aut}(G_0) = \langle \mathsf{PGL}_n(q), \varphi, \gamma \rangle,$$

where

 $\varphi: Z(a_{ij}) \to Z(a_{ij}^p)$ is a **field** automorphism of order f $\gamma: Z(a_{ij}) \mapsto Z(a_{ij})^{-\mathsf{T}}$ is the inverse-transpose **graph** automorphism

Elements in $PGL_n(q) \setminus G_0$ are the **diagonal** automorphisms.

There is an extensive literature on conjugacy classes in almost simple groups of Lie type, e.g. representatives, centralizer structure, etc.

Fixed point ratios

To apply the probabilistic method for bounding b(G), we need upper bounds on fixed point ratios. The most general result is the following:

Theorem (Liebeck & Saxl, 1991)

Let $G \leq \text{Sym}(\Omega)$ be a transitive almost simple group of Lie type over \mathbb{F}_q with socle G_0 . Assume $G_0 \neq L_2(q)$. Then either

$$\max_{1 \neq x \in G} \operatorname{fpr}(x) \leqslant \frac{4}{3q}$$

or $G_0 \in \{L_4(2), \mathsf{PSp}_4(3), \mathsf{P}\Omega_4^-(3)\}.$

Example. Suppose $G = PGL_m(q)$, q odd and $\Omega = P(V)$ is the set of 1-dim subspaces of V. Let $x = Z\hat{x}$ with $\hat{x} = [-I_1, I_{m-1}]$.

Then $|C_{\Omega}(x)| \sim q^{m-2}$ and $|\Omega| \sim q^{m-1}$, so $\operatorname{fpr}(x) \sim q^{-1}$.

This is already sufficient to prove a version of Cameron's conjecture for groups of bounded rank (with a large constant).

e.g. if G_0 is exceptional then $|G| < q^{249}$ and thus $b(G) \leqslant 500$ since

$$\widehat{Q}(G,500) \leqslant \left(rac{4}{3q}
ight)^{500} \sum_{i=1}^{k} |x_i^G| < \left(rac{4}{3q}
ight)^{500} |G| < \left(rac{4}{3q}
ight)^{500} q^{249} < rac{1}{q}$$

Question. Can we improve the constant? Classical groups of large rank?

- The bound $fpr(x) < \frac{4}{3q}$ is independent of the rank of *G* and the element *x*: we need stronger bounds to attack Cameron's conjecture.
- For G classical we need to exploit the "non-standard" hypothesis, which means that |H| is "small" and this should force

$$\mathsf{fpr}(x) = \frac{|x^{\mathsf{G}} \cap H|}{|x^{\mathsf{G}}|}$$

to be small as well.

Classical groups

Let's assume G_0 is a classical group over \mathbb{F}_q , where $q = p^f$ and the natural module V is *m*-dimensional.

The key tool for proving Cameron's conjecture for classical groups (with an undetermined constant) is the following bound:

Theorem (Liebeck & Shalev, 1999)

There exists an absolute constant $\epsilon > 0$ such that

$$\operatorname{fpr}(x) < |x^G|^{-\epsilon}$$

for every element x of prime order in a non-standard classical group G.

Note. This is false for standard classical groups.

e.g. if $G = PGL_m(q)$, $\Omega = P(V)$ and $x = [-I_1, I_{m-1}]$ (mod scalars), then $fpr(x) \sim q^{-1}$ and $|x^G| \sim q^{2m-2}$.

Theorem (Liebeck & Shalev, 1999)

We have $b(G) \leq \lceil 11/\epsilon \rceil$ for every non-standard classical group G.

Proof. The proof combines the previous fpr(x) bound with two facts on conjugacy classes (where $m = \dim V$):

• G has at most q^{4m} conjugacy classes of elements of prime order.

• $|x^G| \ge q^{m/2}$ for all $x \in G$ of prime order.

Set $c = \lceil 11/\epsilon \rceil$. Then

$$\widehat{Q}(G,c) = \sum_{i=1}^{k} |x_i^G| \cdot \mathsf{fpr}(x_i)^c < \sum_{i=1}^{k} |x_i^G|^{-10} \leqslant k \cdot (q^{m/2})^{-10} \leqslant q^{-m}$$

so $b(G) \leqslant c$. Moreover, P(G,c)
ightarrow 1 as |G| tends to infinity.

Sharper bounds

The following is an explicit version of the Liebeck-Shalev bound on fpr(x).

Theorem (B, 2007)

Let G be a non-standard classical group with point stabilizer H and dim V = m. Then

$$\mathsf{fpr}(x) < |x^G|^{-rac{1}{2}+\eta}$$

for all $x \in G$ of prime order, where $\eta \to 0$ as $m \to \infty$.

- We can take $\eta = \frac{1}{m} + \delta$ in the exponent, where $\delta = 0$, or (G, H, δ) is one of a small number of known exceptions.
- The bound is essentially best possible. For small values of *m*, say $m \leq 5$, more accurate bounds can be obtained.

An example

Let $G = L_m(q)$, where m is even and q is odd, and let H be a maximal subgroup of type $O_m^+(q)$.

Let $x = [-I_k, I_{m-k}] \in G \pmod{\text{scalars}}$ with k < m/2 even. Then

$$|x^{G} \cap H| = \frac{|O_{m}^{+}(q)|}{|O_{k}^{+}(q)||O_{m-k}^{+}(q)|} + \frac{|O_{m}^{+}(q)|}{|O_{k}^{-}(q)||O_{m-k}^{-}(q)|} \sim q^{k(m-k)}$$

and

$$|x^{\mathsf{G}}| = \frac{|\mathsf{GL}_m(q)|}{|\mathsf{GL}_k(q)||\mathsf{GL}_{m-k}(q)|} \sim q^{2k(m-k)}$$

Conclusion. fpr(x) ~ $q^{-k(m-k)} \sim |x^G|^{-\frac{1}{2}}$.

Note. If $G = L_m(q)$, $q = q_0^2$ and H is a maximal subgroup of type $GL_m(q_0)$, then $fpr(x) \sim |x^G|^{-\frac{1}{2}}$ for all $x \in H$ of prime order.

Subgroup structure

Aschbacher's theorem (1984) provides a framework for the proof.

Let G be an almost simple classical group with socle $G_0 = Cl(V)$ and let H be a maximal subgroup with $G = HG_0$. Aschbacher proves that either

- *H* is **geometric**, contained in one of 8 subgroup collections C₁,...,C₈ that are defined in terms of the geometry of *V*; or
- $H \in S$ is **non-geometric**: almost simple with socle H_0 and some covering group of H_0 acts absolutely irreducibly on V.

For example, the subgroups in C_1 stabilize subspaces of V, while those in C_2 stabilize direct sum decompositions of V.

Kleidman & Liebeck (1990), Bray, Holt & Roney-Dougal (2013):

The structure, conjugacy and maximality of the geometric subgroups is known. BHR also handle the non-geometric subgroups for $m \leq 12$.

Geometric subgroups

Let $H \in C_i$ be geometric, $x \in H$ prime order. Since the embedding of H in G is transparent, it is usually straightforward to identify the G-class of x (e.g. by considering the action of x on V).

Moreover, we can study the decomposition of $x^G \cap H$ into *H*-classes and by combining an upper bound on $|x^G \cap H|$ with a lower bound on $|x^G|$, we obtain an upper bound on fpr(x).

Algebraic groups. Write $G_0 = (\bar{G}_{\sigma})'$, where \bar{G} is a simple algebraic group over $\bar{\mathbb{F}}_q$ and σ is a Steinberg endomorphism. In many cases, H is of the form $N_G(\bar{H}_{\sigma})$ for some σ -stable closed subgroup \bar{H} of \bar{G} . In this setting,

$$\mathsf{fpr}(x) = rac{|x^{G} \cap H|}{|x^{G}|} \sim q^{\mathsf{dim}(x^{ar{G}} \cap ar{H}) - \mathsf{dim}\,x^{ar{G}}}$$

and thus bounds at the algebraic group level can be applied.

Non-geometric subgroups

A different approach is required when H is non-geometric. Let $\rho: \widehat{H}_0 \to GL(V)$ be absolutely irreducible.

- Typically, the embedding of H in G is **not** transparent and it is difficult to identify the G-class of $x \in H$.
- The possibilities for H are only known in small dimensions.

To bound fpr(x), we apply two key tools (cf. proof for $G_0 = A_m$):

- **Liebeck (1985):** Either $|H| < q^{6m}$ or (G, H, ρ) is known.
- Guralnick & Saxl (2003):

Either $\nu(x) > \max\{2, \sqrt{m}/2\}$ for all $1 \neq x \in H \cap PGL(V)$, or (G, H, ρ) is known, where $\nu(x)$ is the codimension of the largest eigenspace of $\hat{x} \in GL(\bar{V})$ for $\bar{V} = V \otimes \bar{\mathbb{F}}_q$.

An example

Suppose $G = L_m(q)$, $H \in S$ and $x \in H$ has prime order.

Assume the L and G-S bounds apply, so $|x^G \cap H| < |H| < q^{6m}$ and $\nu(x) = s \ge \lceil \sqrt{m}/2 \rceil = \beta$.

The latter bound yields $|x^G| > \frac{1}{2}q^{2\beta(m-\beta)}$ and thus fpr $(x) < |x^G|^{-\frac{1}{2}}$ if

$$2q^{12m} < q^{2\beta(m-\beta)}.$$

This inequality holds if m > 144, so we may assume $m \leq 144$.

At the expense of some additional known cases, we can take $|H| < q^{2m+4}$, which reduces the problem to $m \leq 16$.

We can now apply work of Lübeck (2001) (defining characteristic) and Hiss & Malle (2001) (non-defining characteristic) to determine the possibilities for (G, H, ρ) .

Cameron's conjecture for classical groups

Theorem (B, 2007)

Let G be a non-standard classical group with point stabilizer H. Then $b(G) \leq 5$, with equality iff $G = U_6(2).2$ and $H = U_4(3).2^2$.

Let x_1, \ldots, x_k represent the *G*-classes of elements of prime order and set

$$\zeta_G(t) = \sum_{i=1}^k |x_i^G|^{-t}, \ t \in \mathbb{R}$$

Fact. If $m \ge 6$, then $\zeta_G(1/3) < 1$.

By combining this with the generic bound $fpr(x) < |x^G|^{-\frac{1}{2} + \frac{1}{m}}$, we get

$$\widehat{Q}(G,4) < \sum_{i=1}^{k} |x_i^G|^{1+4(-rac{1}{2}+rac{1}{m})} \leqslant \zeta_G(1/3) < 1$$

for $m \ge 6$, so $b(G) \le 4$. The remaining groups can be handled directly.

Exceptional groups

Theorem (B, Liebeck & Shalev, 2009)

Let G be an almost simple primitive group with socle G_0 , an exceptional group of Lie type. Then $b(G) \leq 6$. Moreover, $P(G, 6) \rightarrow 1$ as $|G| \rightarrow \infty$.

The goal is to show that $\widehat{Q}(G,6) < 1$ and $\widehat{Q}(G,6) \to 0$ as $q \to \infty$.

Subgroups. The maximal subgroups of *G* are known for $G_0 = {}^2B_2(q)$, ${}^2G_2(q)$, ${}^2F_4(q)$, ${}^3D_4(q)$, $G_2(q)$, $F_4(q)$, $E_6^{\epsilon}(q)$. In general, we apply an Aschbacher-type subgroup structure theorem due to **Liebeck & Seitz**.

FPRs. Lawther, Liebeck & Seitz (2002) obtain detailed fixed point ratio estimates. In some cases, we work with the minimal and adjoint modules to understand the fusion of H-classes in G.

For *H* parabolic, we can use tools from character theory to study the permutation character, noting that $1_H^G(x) = |C_{\Omega}(x)|$ for $\Omega = G/H$.

Suppose $G = E_8(q)$ and $H = \Omega_{16}^+(q)$ with q even. Set $\overline{G} = E_8$, $\overline{H} = D_8$ and let $\overline{V} = \text{Lie}(\overline{G})$ be the adjoint module for \overline{G} .

Since $|H| < q^{120}$, the contribution to $\widehat{Q}(G, 6)$ from elements $x \in G$ with $|x^G| > q^{145}$ is at most $q^{145}(q^{-25})^6 = q^{-5}$. Now assume $|x^G| \leq q^{145}$.

If x has odd order, then $C_{\bar{G}}(x) = E_7 T_1$ is the only possibility, which means that the 1-eigenspace of x on \bar{V} is 134-dimensional. Now

$$ar{V}\downarrowar{H}={\sf Lie}(ar{H})\oplusar{U},$$

where $Lie(\bar{H})$ is the adjoint module for \bar{H} and \bar{U} is a spin module.

Using this, we calculate that $x = (I_{12}, \lambda I_2, \lambda^{-1}I_2)$ on the natural module for \bar{H} , so $|x^G \cap H| \sim q^{50}$ and $|x^G| \sim q^{114}$.

For |x| = 2, we get $|x^{G} \cap H| \sim q^{26}$ and $|x^{G}| \sim q^{58}$ if x is a long root element, otherwise $|x^{G}| > q^{92}$ and we note that $i_{2}(H) \sim q^{64}$.

Further results

By applying similar methods, stronger results can be established.

Theorem (B, 2018)

Let G be a non-standard group with socle G_0 and point stabilizer H. Then b(G) = 6 iff (G, H) is one of the following:

 $(M_{23}, M_{22}), (Co_3, McL.2), (Co_2, U_6(2).2), (Fi_{22}.2, 2.U_6(2).2)$

or $G_0 = E_7(q)$ and $H = P_7$, or $G_0 = E_6(q)$ and $H = P_1$ or P_6 .

Theorem (B, Guralnick & Saxl, 2014)

Let G be a non-standard classical group with point stabilizer $H \in S$. Then the exact base size b(G) is known.

Ongoing work with Guralnick seeks to extend this to **all** non-standard classical groups.

Let $G \leq \text{Sym}(\Omega)$ be a finite primitive group with $H = G_{\alpha}$.

Seress (1996): G solvable $\implies b(G) \leq 4$

Theorem (B, 2020)

If *H* is solvable then $b(G) \leq 5$ is best possible. In addition, the exact value of b(G) is known when *G* is almost simple.

- If G = VH is affine, then G is solvable and thus $b(G) \leq 4$ by Seress.
- *G* almost simple: $b(G) \leq 5$, with equality iff $(G, H) = (S_8, S_4 \wr S_2)$ or $(G_0, H) = (L_4(3), P_2), (U_5(2), P_1).$

Conjecture (Vdovin, Kourovka Notebook 17.41)

Let G be a finite group and let H be a core-free solvable subgroup. Then $b(G) \leq 5$ with respect to the action of G on $\Omega = G/H$.

Comments on the proof

- **\blacksquare** By O'Nan-Scott, G is either affine, almost simple or product type.
- Suppose *G* is **almost simple** with socle *G*₀. The possibilities for (*G*, *H*) were determined by Li & Zhang (2011).
 - ► G₀ sporadic: Apply [B, O'Brien & Wilson, 2010].
 - $G_0 = A_m$: If $m \ge 17$ then m = p is prime, $H = AGL_1(p) \cap G$ and b(G) = 2.
 - $G_0 = L_2(q)$: Needs special attention (to determine exact b(G)).
 - ▶ G_0 Lie type, H parabolic: We estimate $\widehat{Q}(G, c)$, noting that the rank of G_0 and the underlying field \mathbb{F}_q are small.
 - ▶ G₀ Lie type, H non-parabolic:
 We estimate Q(G, c); for G₀ exceptional we apply recent base size results of [B & Thomas, 2020].

Comments on the proof

- Finally, suppose G ≤ Sym(Ω) is product type.
 Here T^k ≤ G ≤ L ≥ P where L ≤ Sym(Γ) is almost simple with socle T, P ≤ S_k is transitive and Ω = Γ^k.
- In addition, *P* and L_{γ} are solvable (for $\gamma \in \Gamma$).
- As in the proof of Pyber's conjecture: $b(G) \leq \log_{|\Gamma|} d(P) + b(L) + 1$.
- Seress (1996) gives $d(P) \leq 5$ and the result for almost simple groups gives $b(L) \leq 5$. Note that $|\Gamma| \geq 5$.
- We reduce to the cases with b(L) = 5, so $|\Gamma| \leq 130$.

By **Bailey & Cameron (2011)**, we have $b(L \wr P) \leq 5$ if *L* has at least 5 regular orbits on Γ^5 . This is easily checked using Magma.

Next week: Applications

- The minimal dimension of a finite group
- 2-generation and the uniform domination number
- Extremely primitive groups

Some references

- Aschbacher: On the maximal subgroups of the finite classical groups, Invent. Math. **76** (1984), 469–514.
- Bailey, Cameron: Base size, metric dimension and other invariants of groups and graphs, Bull. Lond. Math. Soc. 43 (2011), 209–242.
- Bray, Holt, Roney-Dougal: The Maximal Subgroups of the Low-dimensional Finite Classical Groups, London Math. Soc. Lecture Note Series, vol. 407, CUP, 2013.
- Burness: Base sizes for primitive groups with soluble stabilisers, Algebra Number Theory, to appear
- Burness: On base sizes for almost simple primitive groups, J. Algebra 516 (2018), 38–74.
- Burness: On base sizes for actions of finite classical groups, J. London Math. Soc. 75 (2007), 545–562.

- Burness, Guralnick, Saxl: On base sizes for symmetric groups, Bull. London Math. Soc. 43 (2011), 386–391.
- Burness, Guralnick, Saxl: Base sizes for S-actions of finite classical groups, Israel J. Math. 199 (2014), 711–756.
- Burness, Liebeck, Shalev: Base sizes for simple groups and a conjecture of Cameron, Proc. London Math. Soc. 98 (2009), 116–162.
- Burness, O'Brien, Wilson: Base sizes for sporadic simple groups, Israel J. Math. 177 (2010), 307–334.
- Burness, Thomas: The classification of extremely primitive groups, Int. Math. Res. Notices, to appear.
- Cameron, Kantor: Random permutations: some group-theoretic aspects, Combin. Probab. Comput. 2 (1993), 257–262.
- Guralnick, Magaard: On the minimal degree of a primitive permutation group, J. Algebra **207** (1998), 127–145.

- Guralnick, Saxl: Generation of finite almost simple groups by conjugates, J. Algebra **268** (2003), 519–571.
- Hiss, Malle: Low-dimensional representations of quasi-simple groups, LMS J. Comput. Math. 4 (2001), 22–63
- Kleidman, Liebeck: The Subgroup Structure of the Finite Classical Groups, London Math. Soc. Lecture Note Series, vol. 129, CUP, 1990.
- Lawther, Liebeck, Seitz: Fixed point ratios in actions of finite exceptional groups of Lie type, Pacific J. Math. 205 (2002), 393–464.
- Li, Zhang: The finite primitive groups with soluble stabilizers, and the edge-primitive s-arc transitive graphs, Proc. Lond. Math. Soc. 103 (2011), 441–472.
- Liebeck: On the orders of maximal subgroups of the finite classical groups, Proc. London Math. Soc. **50** (1985), 426–446.

- Liebeck, Saxl: Minimal degrees of primitive permutation groups, with an application to monodromy groups of coverings of Riemann surfaces, Proc. London Math. Soc. 63 (1991), 266–314.
- Liebeck, Shalev: Simple groups, permutation groups, and probability, J. Amer. Math. Soc. 12 (1999), 497–520.
- Lübeck: Smallest degrees of complex characters of exceptional groups of Lie type, Comm. Algebra **29** (2001), 2147–2169.
- Maróti: On the orders of primitive groups, J. Algebra 258 (2002), 631–640.
- Müller, Neunhöffer, Wilson: Enumerating big orbits and an application: B acting on the cosets of Fi₂₃, J. Algebra **314** (2007), 75–96.
- Neunhöffer, Noeske, O'Brien, Wilson: Orbit invariants and an application to the Baby Monster, J. Algebra 341 (2011), 297–305.

- Seress: The minimal base size of primitive solvable permutation groups, J. London Math. Soc. 53 (1996), 243–255.
- Wilson: Maximal subgroups of sporadic groups, in Finite simple groups: thirty years of the Atlas and beyond, 57–72, Contemp. Math., 694, Amer. Math. Soc., 2017.
- Wilson et al.: A World-Wide-Web Atlas of finite group representations, http://brauer.maths.qmul.ac.uk/Atlas/v3/