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Cameron’s conjecture

Let G 6 Sym(⌦) be a non-standard almost simple primitive permutation
group with socle G0 and point stabilizer H.

Recall. Roughly speaking, “non-standard” means that

⌅ H acts primitively on {1, . . . ,m} if G0 = Am; and

⌅ H \ G0 acts irreducibly on V if G0 = Cl(V ) is a classical group.

Conjecture (Cameron, 1999)

We have b(G ) 6 7, with equality i↵ G = M24 in its natural action.

Theorem (B et al., 2007-11)

Cameron’s conjecture is true.

Moreover, almost every 6-tuple of points in ⌦ form a base for G .



Probabilistic methods

Recall that b(G ) is the minimal number of elements g1, . . . , gb in G s.t.

Hg1 \ Hg2 \ · · · \ Hgb = 1.

For a non-standard group G 6 Sym(⌦), we may not be able to equip
⌦ = G/H with a natural geometric or combinatorial structure, which
makes constructive methods di�cult to apply.

In this setting, our main tool is a probabilistic method introduced by
Liebeck & Shalev (1999):

For a positive integer c , let

P(G , c) =
|{(↵1, . . . ,↵c) 2 ⌦c :

T
i
G↵i

= 1}|
|⌦|c

be the probability that a random c-tuple of points in ⌦ is a base for G .



Set Q(G , c) = 1� P(G , c), so b(G ) 6 c i↵ Q(G , c) < 1.

Observation. A c-tuple in ⌦ fails to be a base i↵ it is fixed by some
x 2 G of prime order.

The probability that a random c-tuple is fixed by x 2 G is fpr(x)c , where

fpr(x) =
|C⌦(x)|
|⌦| =

|xG \ H|
|xG |

is the fixed point ratio of x . Therefore,

Q(G , c) 6
X

x2P
fpr(x)c =

kX

i=1

|xGi | · fpr(xi )c =: bQ(G , c),

where P is the set of elements of prime order in G and the xi are
representatives of the distinct G -classes in P.

In particular, bQ(G , c) < 1 =) b(G ) 6 c .



Symmetric and alternating groups

Suppose G0 = Am, so G = Am or Sm (for m 6= 6).

Cameron & Kantor (1993): A sketch proof (with an undetermined
constant), based on two properties of primitive H 6 Sm, H 6= Am, Sm:

⌅ |H| is “small”.

⌅ Nontrivial elements in H have “large” support on {1, . . . ,m}.

Therefore, if x 2 H has prime order, then |xG \ H| 6 |H| is “small” and
|xG | is “large”, which implies that fpr(x) is also “small”.

Using explicit estimates, this yields bQ(G , c) < 1 for some constant c .



The main result

Theorem (B, Guralnick & Saxl, 2011)

Let G 6 Sym(⌦) be a non-standard group with socle G0 = Am and point
stabilizer H. Then the following hold:

⌅ b(G ) 6 5, with equality i↵ G = S6 and H = PGL2(5).

⌅ b(G ) is known in all cases. In particular, b(G ) = 2 if m > 13.

⌅ P(G , 2) ! 1 as m ! 1.

Main ingredients:

⌅ Maróti (2002) on the order of H.

⌅ Guralnick & Magaard (1998) on the minimal degree of H.

⌅ Computational methods (using Magma) for small m.



Assume m > 40 and the action of H on {1, . . . ,m} is not one of:

(a) H = (Sa o Sb) \ G in its product action (with m = ab);

(b) H = A` or S` acting on k-sets in {1, . . . , `} (with m =
�`
k

�
); or

(c) H is an almost simple orthogonal group over F2 acting on a set of
hyperplanes of the natural module for H.

Maróti: |H| 6 m1+blog2 mc =: f (m)

Guralnick & Magaard: µ(H) := min{supp(x) : 1 6= x 2 H} > m/2

The bound on µ(H) implies that

|CG (x)| 6 2m/4dm/4e!dm/2e! =: g(m)

for all 1 6= x 2 H. Therefore,

bQ(G , 2) =
kX

i=1

|xG
i
\ H|2

|xG
i
|

6 f (m)2g(m)

m!
< 1



Sporadic groups

Theorem (B, O’Brien & Wilson, 2010)

Let G 6 Sym(⌦) be an almost simple primitive group with sporadic socle
G0 and point stabilizer H. Then the following hold:

⌅ b(G ) 6 7, with equality i↵ G = M24 and H = M23.

⌅ The exact value of b(G ) is known in all cases.

Note. For two cases with G = B, we proved b(G ) 6 3 and the exact base
size was determined in later work by Neunhö↵er et al. (2011).

Computational methods play an essential role in the proof:

⌅ WebAtlas: Permutation reps and generators for maximal subgroups

⌅ GAP Character Table Library: character tables; fusion maps

⌅ Random search and double coset computations



Assume G 6= M. Then the maximal subgroups of G have been determined
up to conjugacy and in most cases we can access the character tables of G
and H in GAP.

Moreover, the corresponding fusion map from H-classes to G -classes is
usually available, which allows us to compute bQ(G , c) precisely.

Set c = dlog|⌦| |G |e, so b(G ) > c .

⌅ If bQ(G , c) < 1, then b(G ) = c .

⌅ If not, we almost always have bQ(G , c + 1) < 1, so b(G ) 2 {c , c + 1}.

⌅ In these cases, we use the WebAtlas and Magma to construct
H < G < Sm for some m.

I By random search, we seek g1, . . . , gc�1 2 G such that
H \ Hg1 \ · · · \ Hgc�1 = 1, which will yield b(G ) = c .

I If |G : H| < 107, it may be feasible to construct the action of G
on G/H and determine the order of every c-point stabilizer.



Double coset methods

There are some cases where |⌦| is large and log|⌦| |G | = c � ✏ with ✏ > 0
small; in this situation, the previous methods may be ine↵ective.

Here we expect b(G ) = c + 1, but it is not feasible to compute the order
of every c-point stabilizer.

Let’s assume c = 2 (this is typical). To show b(G ) = 3, we need to rule
out the existence of a regular H-orbit on ⌦ = G/H.

Each H-orbit on ⌦ is an (H,H) double coset. By random search, we
seek a set T ✓ G representing distinct (H,H) double cosets s.t.

(a) |HxH| < |H|2 for all x 2 T ; and

(b)
P

x2T |HxH| > |G |� |H|2.

If T exists, then H does not have a regular orbit on ⌦ and thus b(G ) > 3.



For G 6= M, these methods are e↵ective unless G = B and

H = 22+10+20.(M22:2⇥ S3) or [230].L5(2).

In both cases, dlog|⌦| |G |e = 2, bQ(G , 3) < 1 and |⌦| > 1017.

Using further computational methods, including the Orb package due to
Müller et al. (2007), one can show that b(G ) = 3, 2 respectively.

Finally, suppose G = M is the Monster.

There are 44 known classes of maximal subgroups of G and any
additional candidate has socle L2(13) or L2(16) (Wilson, 2017).

The p-local maximal subgroups for p = 2, 3 require special attention,
e.g. work is needed to bound fpr(x) when x 2 G is an involution.

Conclusion. If G = M, then b(G ) 6 3, with equality i↵ H = 2.B.



Groups of Lie type

Let G 6 Sym(⌦) be non-standard, with socle G0 and point stabilizer H.

Assume G0 is a group of Lie type over Fq (q = pf ), so either

⌅ G0 is an exceptional group; or

⌅ G0 = Cl(V ) is a classical group and H \ G0 acts irreducibly on V .

Recall that G0 6 G 6 Aut(G0) and Out(G0) = Aut(G0)/G0 is solvable.
Suppose x 2 G has prime order r .

⌅ x is an inner or diagonal automorphism: semisimple (r 6= p) or
unipotent (r = p)

⌅ x is a graph automorphism (r = 2, 3 only)

⌅ x is a field automorphism (q = qr0)

⌅ x is a graph-field automorphism (q = qr0, r = 2, 3 only)



Example

Suppose G0 = Ln(q) = SLn(q)/Z , where q = pf and n > 3. Then

Aut(G0) = hPGLn(q),', �i,

where

' : Z (aij) ! Z (ap
ij
) is a field automorphism of order f

� : Z (aij) 7! Z (aij)�T is the inverse-transpose graph automorphism

Elements in PGLn(q) \ G0 are the diagonal automorphisms.

There is an extensive literature on conjugacy classes in almost simple
groups of Lie type, e.g. representatives, centralizer structure, etc.



Fixed point ratios

To apply the probabilistic method for bounding b(G ), we need upper
bounds on fixed point ratios. The most general result is the following:

Theorem (Liebeck & Saxl, 1991)

Let G 6 Sym(⌦) be a transitive almost simple group of Lie type over Fq

with socle G0. Assume G0 6= L2(q). Then either

max
1 6=x2G

fpr(x) 6 4

3q

or G0 2 {L4(2),PSp4(3),P⌦�
4 (3)}.

Example. Suppose G = PGLm(q), q odd and ⌦ = P(V ) is the set of
1-dim subspaces of V . Let x = Zx̂ with x̂ = [�I1, Im�1].

Then |C⌦(x)| ⇠ qm�2 and |⌦| ⇠ qm�1, so fpr(x) ⇠ q�1.



This is already su�cient to prove a version of Cameron’s conjecture for
groups of bounded rank (with a large constant).

e.g. if G0 is exceptional then |G | < q249 and thus b(G ) 6 500 since

bQ(G , 500) 6
✓

4

3q

◆500 kX

i=1

|xGi | <
✓

4

3q

◆500

|G | <
✓

4

3q

◆500

q249 <
1

q

Question. Can we improve the constant? Classical groups of large rank?

⌅ The bound fpr(x) < 4
3q is independent of the rank of G and the

element x : we need stronger bounds to attack Cameron’s conjecture.

⌅ For G classical we need to exploit the “non-standard” hypothesis,
which means that |H| is “small” and this should force

fpr(x) =
|xG \ H|
|xG |

to be small as well.



Classical groups

Let’s assume G0 is a classical group over Fq, where q = pf and the natural
module V is m-dimensional.

The key tool for proving Cameron’s conjecture for classical groups (with
an undetermined constant) is the following bound:

Theorem (Liebeck & Shalev, 1999)

There exists an absolute constant ✏ > 0 such that

fpr(x) < |xG |�✏

for every element x of prime order in a non-standard classical group G .

Note. This is false for standard classical groups.

e.g. if G = PGLm(q), ⌦ = P(V ) and x = [�I1, Im�1] (mod scalars), then
fpr(x) ⇠ q�1 and |xG | ⇠ q2m�2.



Theorem (Liebeck & Shalev, 1999)

We have b(G ) 6 d11/✏e for every non-standard classical group G .

Proof. The proof combines the previous fpr(x) bound with two facts on
conjugacy classes (where m = dimV ):

⌅ G has at most q4m conjugacy classes of elements of prime order.

⌅ |xG | > qm/2 for all x 2 G of prime order.

Set c = d11/✏e. Then

bQ(G , c) =
kX

i=1

|xGi | · fpr(xi )c <
kX

i=1

|xGi |�10 6 k · (qm/2)�10 6 q�m

so b(G ) 6 c . Moreover, P(G , c) ! 1 as |G | tends to infinity. ⌅



Sharper bounds

The following is an explicit version of the Liebeck-Shalev bound on fpr(x).

Theorem (B, 2007)

Let G be a non-standard classical group with point stabilizer H and
dimV = m. Then

fpr(x) < |xG |�
1
2+⌘

for all x 2 G of prime order, where ⌘ ! 0 as m ! 1.

⌅ We can take ⌘ = 1
m
+ � in the exponent, where � = 0, or (G ,H, �) is

one of a small number of known exceptions.

⌅ The bound is essentially best possible. For small values of m, say
m 6 5, more accurate bounds can be obtained.



An example

Let G = Lm(q), where m is even and q is odd, and let H be a maximal
subgroup of type O+

m(q).

Let x = [�Ik , Im�k ] 2 G (mod scalars) with k < m/2 even. Then

|xG \ H| = |O+
m(q)|

|O+
k
(q)||O+

m�k
(q)|

+
|O+

m(q)|
|O�

k
(q)||O�

m�k
(q)|

⇠ qk(m�k)

and

|xG | = |GLm(q)|
|GLk(q)||GLm�k(q)|

⇠ q2k(m�k)

Conclusion. fpr(x) ⇠ q�k(m�k) ⇠ |xG |�
1
2 .

Note. If G = Lm(q), q = q20 and H is a maximal subgroup of type

GLm(q0), then fpr(x) ⇠ |xG |�
1
2 for all x 2 H of prime order.



Subgroup structure

Aschbacher’s theorem (1984) provides a framework for the proof.

Let G be an almost simple classical group with socle G0 = Cl(V ) and let
H be a maximal subgroup with G = HG0. Aschbacher proves that either

⌅ H is geometric, contained in one of 8 subgroup collections C1, . . . , C8
that are defined in terms of the geometry of V ; or

⌅ H 2 S is non-geometric: almost simple with socle H0 and some
covering group of H0 acts absolutely irreducibly on V .

For example, the subgroups in C1 stabilize subspaces of V , while those in
C2 stabilize direct sum decompositions of V .

Kleidman & Liebeck (1990), Bray, Holt & Roney-Dougal (2013):

The structure, conjugacy and maximality of the geometric subgroups is
known. BHR also handle the non-geometric subgroups for m 6 12.



Geometric subgroups

Let H 2 Ci be geometric, x 2 H prime order. Since the embedding of H in
G is transparent, it is usually straightforward to identify the G -class of x
(e.g. by considering the action of x on V ).

Moreover, we can study the decomposition of xG \ H into H-classes and
by combining an upper bound on |xG \H| with a lower bound on |xG |, we
obtain an upper bound on fpr(x).

Algebraic groups. Write G0 = (Ḡ�)0, where Ḡ is a simple algebraic group
over F̄q and � is a Steinberg endomorphism. In many cases, H is of the
form NG (H̄�) for some �-stable closed subgroup H̄ of Ḡ . In this setting,

fpr(x) =
|xG \ H|
|xG | ⇠ qdim(xḠ\H̄)�dim x

Ḡ

and thus bounds at the algebraic group level can be applied.



Non-geometric subgroups

A di↵erent approach is required when H is non-geometric.

Let ⇢ : bH0 ! GL(V ) be absolutely irreducible.

⌅ Typically, the embedding of H in G is not transparent and it is
di�cult to identify the G -class of x 2 H.

⌅ The possibilities for H are only known in small dimensions.

To bound fpr(x), we apply two key tools (cf. proof for G0 = Am):

⌅ Liebeck (1985): Either |H| < q6m or (G ,H, ⇢) is known.

⌅ Guralnick & Saxl (2003):

Either ⌫(x) > max{2,
p
m/2} for all 1 6= x 2 H \ PGL(V ), or

(G ,H, ⇢) is known, where ⌫(x) is the codimension of the largest
eigenspace of x̂ 2 GL(V̄ ) for V̄ = V ⌦ F̄q.



An example

Suppose G = Lm(q), H 2 S and x 2 H has prime order.

Assume the L and G-S bounds apply, so |xG \ H| < |H| < q6m and
⌫(x) = s > d

p
m/2e = �.

The latter bound yields |xG | > 1
2q

2�(m��) and thus fpr(x) < |xG |�
1
2 if

2q12m < q2�(m��).

This inequality holds if m > 144, so we may assume m 6 144.

At the expense of some additional known cases, we can take |H| < q2m+4,
which reduces the problem to m 6 16.

We can now apply work of Lübeck (2001) (defining characteristic) and
Hiss & Malle (2001) (non-defining characteristic) to determine the
possibilities for (G ,H, ⇢).



Cameron’s conjecture for classical groups

Theorem (B, 2007)

Let G be a non-standard classical group with point stabilizer H. Then
b(G ) 6 5, with equality i↵ G = U6(2).2 and H = U4(3).22.

Let x1, . . . , xk represent the G -classes of elements of prime order and set

⇣G (t) =
kX

i=1

|xGi |�t , t 2 R

Fact. If m > 6, then ⇣G (1/3) < 1.

By combining this with the generic bound fpr(x) < |xG |�
1
2+

1
m , we get

bQ(G , 4) <
kX

i=1

|xGi |1+4(� 1
2+

1
m
) 6 ⇣G (1/3) < 1

for m > 6, so b(G ) 6 4. The remaining groups can be handled directly.



Exceptional groups

Theorem (B, Liebeck & Shalev, 2009)

Let G be an almost simple primitive group with socle G0, an exceptional
group of Lie type. Then b(G ) 6 6. Moreover, P(G , 6) ! 1 as |G | ! 1.

The goal is to show that bQ(G , 6) < 1 and bQ(G , 6) ! 0 as q ! 1.

Subgroups. The maximal subgroups of G are known for G0 = 2B2(q),
2G2(q), 2F4(q), 3D4(q), G2(q), F4(q), E ✏

6(q). In general, we apply an
Aschbacher-type subgroup structure theorem due to Liebeck & Seitz.

FPRs. Lawther, Liebeck & Seitz (2002) obtain detailed fixed point
ratio estimates. In some cases, we work with the minimal and adjoint
modules to understand the fusion of H-classes in G .

For H parabolic, we can use tools from character theory to study the
permutation character, noting that 1G

H
(x) = |C⌦(x)| for ⌦ = G/H.



Suppose G = E8(q) and H = ⌦+
16(q) with q even. Set Ḡ = E8,

H̄ = D8 and let V̄ = Lie(Ḡ ) be the adjoint module for Ḡ .

Since |H| < q120, the contribution to bQ(G , 6) from elements x 2 G with
|xG | > q145 is at most q145(q�25)6 = q�5. Now assume |xG | 6 q145.

If x has odd order, then C
Ḡ
(x) = E7T1 is the only possibility, which means

that the 1-eigenspace of x on V̄ is 134-dimensional. Now

V̄ # H̄ = Lie(H̄)� Ū,

where Lie(H̄) is the adjoint module for H̄ and Ū is a spin module.

Using this, we calculate that x = (I12,�I2,��1I2) on the natural module
for H̄, so |xG \ H| ⇠ q50 and |xG | ⇠ q114.

For |x | = 2, we get |xG \ H| ⇠ q26 and |xG | ⇠ q58 if x is a long root
element, otherwise |xG | > q92 and we note that i2(H) ⇠ q64.



Further results

By applying similar methods, stronger results can be established.

Theorem (B, 2018)

Let G be a non-standard group with socle G0 and point stabilizer H. Then
b(G ) = 6 i↵ (G ,H) is one of the following:

(M23,M22), (Co3,McL.2), (Co2,U6(2).2), (Fi22.2, 2.U6(2).2)

or G0 = E7(q) and H = P7, or G0 = E6(q) and H = P1 or P6.

Theorem (B, Guralnick & Saxl, 2014)

Let G be a non-standard classical group with point stabilizer H 2 S. Then
the exact base size b(G ) is known.

Ongoing work with Guralnick seeks to extend this to all non-standard
classical groups.



Let G 6 Sym(⌦) be a finite primitive group with H = G↵.

Seress (1996): G solvable =) b(G ) 6 4

Theorem (B, 2020)

If H is solvable then b(G ) 6 5 is best possible. In addition, the exact value
of b(G ) is known when G is almost simple.

⌅ If G = VH is a�ne, then G is solvable and thus b(G ) 6 4 by Seress.

⌅ G almost simple: b(G ) 6 5, with equality i↵ (G ,H) = (S8, S4 o S2) or
(G0,H) = (L4(3),P2), (U5(2),P1).

Conjecture (Vdovin, Kourovka Notebook 17.41)

Let G be a finite group and let H be a core-free solvable subgroup. Then
b(G ) 6 5 with respect to the action of G on ⌦ = G/H.



Comments on the proof

⌅ By O’Nan-Scott, G is either a�ne, almost simple or product type.

⌅ Suppose G is almost simple with socle G0. The possibilities for
(G ,H) were determined by Li & Zhang (2011).

I G0 sporadic: Apply [B, O’Brien & Wilson, 2010].

I G0 = Am: If m > 17 then m = p is prime, H = AGL1(p)\G and
b(G ) = 2.

I G0 = L2(q): Needs special attention (to determine exact b(G )).

I G0 Lie type, H parabolic: We estimate bQ(G , c), noting that the
rank of G0 and the underlying field Fq are small.

I G0 Lie type, H non-parabolic:

We estimate bQ(G , c); for G0 exceptional we apply recent base
size results of [B & Thomas, 2020].



Comments on the proof

⌅ Finally, suppose G 6 Sym(⌦) is product type.

Here T k P G 6 L o P where L 6 Sym(�) is almost simple with socle
T , P 6 Sk is transitive and ⌦ = �k .

⌅ In addition, P and L� are solvable (for � 2 �).

⌅ As in the proof of Pyber’s conjecture: b(G ) 6 log|�| d(P) + b(L) + 1.

⌅ Seress (1996) gives d(P) 6 5 and the result for almost simple
groups gives b(L) 6 5. Note that |�| > 5.

⌅ We reduce to the cases with b(L) = 5, so |�| 6 130.

By Bailey & Cameron (2011), we have b(L o P) 6 5 if L has at
least 5 regular orbits on �5. This is easily checked using Magma.



Next week: Applications

⌅ The minimal dimension of a finite group

⌅ 2-generation and the uniform domination number

⌅ Extremely primitive groups
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⌅ Müller, Neunhö↵er, Wilson: Enumerating big orbits and an
application: B acting on the cosets of Fi23, J. Algebra 314 (2007),
75–96.
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