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Pyber’s conjecture

Recall that if G is a permutation group of degree n, then

log |G |
log n

6 b(G ) 6 log2 |G |

Pyber’s conjecture asserts that every finite primitive group has a small
base in the following sense:

Conjecture (Pyber, 1993)

There is an absolute constant c such that

b(G ) 6 c
log |G |
log n

for every primitive group G of degree n.



Main results

Various people worked on Pyber’s conjecture over a 25-year period; the
final step was completed by Duyan, Halasi and Maróti:

Theorem (Duyan, Halasi & Maróti, 2018)

There exists an absolute constant c > 0 such that

b(G ) 6 45
log |G |
log n

+ c

for every primitive group G of degree n.

Theorem (Halasi, Liebeck & Maróti, 2019)

If G is a finite primitive group of degree n, then

b(G ) 6 2
log |G |
log n

+ 24



The constants

The multiplicative constant in the HLM bound is best possible.

Example

Let G = VH 6 AGL(V ), where H = Spd(p) and V = (Fp)d .

Claim. b(G ) = d + 1, which equals b2 logn |G |c � 2 for p � 0.

The bound b(G ) 6 d + 1 is clear (any basis of V is a base for H).

It remains to show that if U ✓ V is any subspace with dimU = d � 1,
then there exists 1 6= h 2 H acting trivially on U.

Write V = U � hyi and U? = hxi (w.r.t. the symplectic form on V ).

Then
h : u + �y 7! u + �(x + y)

has the desired property.



Strategy for the proof

Recall that the O’Nan-Scott Theorem partitions the finite primitive
groups into five families.

The proof of Pyber’s conjecture proceeds by considering each family of
primitive groups in turn, none of which are straightforward.

Almost simple

Diagonal type

Product type Twisted wreath

A�ne type

The final step, handled by DHM, concerned the a�ne groups G = VH
with H 6 GL(V ) imprimitive.



Diagonal type

Let G 6 Sym(⌦) be a primitive diagonal type group of degree n, so

T k P G 6 T k .(Out(T )⇥ P)

where k > 2, T is a nonabelian simple group, P 6 Sk and n = |T |k�1.

We may identify ⌦ with T k/D, where D = {(t, . . . , t) : t 2 T} < T k .

Here P 6 Sk is the group induced by the conjugation action of G on the k
factors of soc(G ) = T k .

Fact. G primitive =) either P is primitive, or k = 2 and P = 1.

Theorem (Fawcett, 2013)

We have ⇠
log |G |
log n

⇡
6 b(G ) 6

⇠
log |G |
log n

⇡
+ 2.

In fact, b(G ) = 2 if P 6= Ak , Sk .



An example

Suppose G = T ⇥ T and ⌦ = G/D, where D = {(t, t) : t 2 T}.

Here log |G |/ log n = 2 and we claim that b(G ) = 3.

First observe that b(G ) > 3 since

{(t, t) : t 2 CT (b
�1a)} 6= 1

is the stabilizer in D of the coset D(a, b) 2 ⌦.

Recall that T = hx , yi is 2-generated (via CFSG) and note that

{(t, t) : t 2 CT (x) \ CT (y)} = 1

is the pointwise stabilizer of {D,D(x , 1),D(y , 1)}, so b(G ) 6 3.



Another example

Let G = T k .(Out(T )⇥ P) where k > 33 and P 6= Ak , Sk .

Seress (1997): There exists � ✓ {1, . . . , k} such that P� = 1.

(This is false for P = AGL5(2) with k = 25 = 32.)

Write T = hx , yi and {1, . . . , k} = �1 [�2 [ � (disjoint) with |�i | 6= |�|.

Define D(t1, . . . , tk) 2 ⌦, where ti = 1 if i 2 �1, ti = x if i 2 �2 and
ti = y if i 2 �.

Claim. {D,D(t1, . . . , tk)} is a base.

Suppose g = (', . . . ,')⇡ 2 G fixes D(t1, . . . , tk), where ' 2 Aut(T ).
Then there exists s 2 T such that (ti⇡�1 )' = sti for all i .

This implies that ⇡ 2 P� = 1 and x' = x , y' = y , so g = 1.



Product type

These groups arise as “blow-ups” of almost simple or diagonal type
primitive groups.

We have T k P G 6 L o P , where

⌅ L 6 Sym(�) is primitive with socle T (almost simple or diagonal);

⌅ P 6 Sk is induced by the conjugation action of G on the k > 2
factors of soc(G ) = T k ; and

⌅ G acts on ⌦ = �⇥ · · ·⇥ � = �k with its product action.

Fact. G primitive =) P is transitive.

Theorem (B & Seress, 2015)

Pyber’s conjecture holds for primitive groups of product type.



Key tool: The distinguishing number

Definition

Let P 6 Sym(�) be a transitive permutation group of degree k > 2.

The distinguishing number of P , denoted d(P), is the minimal number
of colours needed to colour the elements of � so that the stabilizer in P of
this colouring is trivial.

For example, d(Sk) = k and d(Ak) = k � 1. Note that |P | < d(P)k .

Theorem

⌅ Seress (1996): P solvable =) d(P) 6 5

⌅ Seress (1997), Dolfi (2000): If P 6= Ak , Sk is primitive then
d(P) 6 4, with d(P) = 2 if k > 33

⌅ Duyan, Halasi & Maróti (2018): k
p
|P | < d(P) 6 48 k

p
|P |



A special case

Recall that T k P G 6 L o P , L 6 Sym(�), ⌦ = �k and |�| = k .

Let {�1, . . . , �b} be a base for L, b = b(L), and set ↵i = (�i , . . . , �i ) 2 ⌦.

If g = (x1, . . . , xk)⇡ 2 G fixes each ↵i , then �
xj
i = �i for all i , j and thus

g = (1, . . . , 1)⇡. Set m = dlog|�| d(P)e.

Fact. There is a set of partitions X1, . . . ,Xm of �, each with at most |�|
parts, such that their pointwise stabilizer in P is trivial.



There is a set of partitions X1, . . . ,Xm of �, each with at most |�|
parts, such that their pointwise stabilizer in P is trivial.

Example. � = {0, . . . , 9}, P = S10, |�| = 5, m = dlog5 10e = 2

For ` 2 �, write ` = a1(`) + 5a2(`) with ai (`) 2 {0, 1, 2, 3, 4}.

For i 2 {1, 2} and j 2 {0, 1, 2, 3, 4}, set

Xi ,j = {` 2 {0, . . . , 9} : ai (`) = j}

and define

X1 = X1,0 [ X1,1 [ · · · [ X1,4 = {0, 5} [ {1, 6} [ {2, 7} [ {3, 8} [ {4, 9}
X2 = X2,0 [ X2,1 = {0, 1, 2, 3, 4} [ {5, 6, 7, 8, 9}

Then the pointwise stabilizer in P of X1 and X2 is trivial.



A special case

Let {�1, . . . , �b} be a base for L, b = b(L), and set ↵i = (�i , . . . , �i ) 2 ⌦.

If g = (x1, . . . , xk)⇡ 2 G fixes each ↵i , then �
xj
i = �i for all i , j and thus

g = (1, . . . , 1)⇡. Set m = dlog|�| d(P)e.

Fact. There is a set of partitions X1, . . . ,Xm of �, each with at most |�|
parts, such that their pointwise stabilizer in P is trivial.

This allows us to define a collection of points �1, . . . ,�m in ⌦ such that
(1, . . . , 1)⇡ 2

T
i G�i i↵ ⇡ = 1. Therefore

b(G ) 6 m + b(L) 6 log|�| d(P) + b(L) + 1 < logn |P |+ b(L) + 4

since d(P) 6 48 k
p
|P | and |�| > 5.

If L is almost simple and b(L) 6 c log |L|
log |�| , then b(G ) 6 c log |G |

log n + c + 4

since |L| 6 |T ||�| and |G | > |T |k |P |.



Twisted wreath type

Here G = T k :P 6 Sym(⌦), where soc(G ) = T k with T simple and
P 6 Sk is transitive. Since T k is regular, we have n = |⌦| = |T |k .

Then G 6 L 6 Sym(⌦), where L = T 2 o P = (T 2)k :P is primitive of
product type, so

b(G ) 6 b(L) 6 c
log |L|
log n

< 2c
log |G |
log n

by the result for product type groups.

Theorem (Fawcett, 2013/21)

We have ⇠
log |G |
log n

⇡
6 b(G ) 6

⇠
log |G |
log n

⇡
+ 2.

Moreover, b(G ) = 2 if P is (quasi)primitive.



A�ne groups

Here G = VH 6 AGL(V ), where V = (Fp)d with p prime and H 6 GL(V )
is the stabilizer of the zero vector.

Fact. G primitive =) H acts irreducibly on V

Recall that b(G ) = b(H) + 1.

Some special cases:

⌅ H solvable: b(G ) 6 4 by Seress (1996)

⌅ (p, |H|) = 1: b(G ) 6 95 by Gluck & Magaard (1998)

In fact, b(G ) 6 3 by Halasi & Podoski (2016)

So we may assume H is nonsolvable and p divides |H|.

Recall that H is primitive if it does not preserve a nontrivial direct sum
decomposition of V .



A�ne groups: primitive vs imprimitive

Theorem

Let G = VH 6 AGL(V ) be a primitive a�ne group of degree n with point
stabilizer H 6 GL(V ).

⌅ H primitive: b(H) 6 18 logn |H|+ c (Liebeck & Shalev, 2002/14)

⌅ H imprim: b(H) 6 45 logn |H|+ c (Duyan, Halasi & Maróti, 2018)

In fact, b(G ) 6 2 logn |G |+ 16 (Halasi, Liebeck & Maróti, 2019).

Note that if H preserves the decomposition V = V1 � · · ·� Vk , then H
acts transitively on the summands (by irreducibility).

So the induced group P 6 Sk is transitive and the bound d(P) 6 48 k
p
|P |

is a key tool for bounding b(H).



Almost simple groups

To complete our discussion of Pyber’s base size conjecture, let us assume
G 6 Sym(⌦) is almost simple.

Here G0 6 G 6 Aut(G0) for some nonabelian simple group G0 (the socle
of G ) and H = G↵ is a maximal subgroup of G with G = HG0.

By the Classification of Finite Simple Groups, one of the following
holds:

⌅ G0 = Am is an alternating group with m > 5

⌅ G0 is one of 26 sporadic simple groups: M11,M12, . . . ,B,M

⌅ G0 is a classical group: Lm(q), Um(q), PSpm(q), P⌦
✏
m(q)

⌅ G0 is an exceptional group: 2B2(q), 2G2(q), . . . ,E7(q),E8(q)



In studying bases for almost simple primitive groups, it is natural to make
a distinction between standard and non-standard groups.

Intuitively, if G is standard then |H| is “big” and typically b(G ) can be
arbitrarily large.

Example. If G = PGLm(q) and ⌦ is the set of 1-dimensional subspaces of
(Fq)m, then |G | ⇠ qm

2�1 and |⌦| ⇠ qm�1, so

b(G ) > log|⌦| |G | ⇠ m + 1

can be arbitrarily large (in fact, b(G ) = m + 1).

Definition

We say that G is standard if one of the following holds:

⌅ G0 = Am and ⌦ is an orbit of subsets or partitions of {1, . . . ,m};
⌅ G0 is classical and ⌦ is an orbit of subspaces (or pairs of subspaces)

of the natural module V .

Otherwise, G is non-standard.



Standard actions of alternating and symmetric groups

Suppose G 6 Sym(⌦) is a standard group with socle G0 = Am and point
stabilizer H. Then either

⌅ H is of type Sk ⇥ Sm�k with 1 6 k < m/2; or

⌅ H is of type Sb o Sa with m = ab and a, b > 2.

Here ⌦ is the set of k-element subsets of {1, . . . ,m} in the first case, and
the set of partitions of {1, . . . ,m} into a parts of size b in the second.

Typically, bounds on b(G ) in these cases are obtained by constructing
explicit bases.

Theorem (Benbenishty, 2005)

Pyber’s conjecture holds when G is standard and G0 = Am.



Action on k-sets

Suppose G0 = Am and ⌦ is the set of k-element subsets of {1, . . . ,m},
where 1 6 k < m/2.

The exact base size is not known in all cases. The best result is:

Theorem (Halasi, 2012)

Suppose G = Sm and ⌦ = {k-sets} with 1 6 k < m/2. Then

⇠
2m � 2

k + 1

⇡
6 b(G ) 6 dlogdm/keme · (dm/ke � 1)

and the lower bound is equality if k 6 p
m.

In particular, [HLM, 2019] show that b(G ) 6 2 log|⌦| |G |+ 16.



Action on partitions

Theorem (Benbenishty, Cohen & Niemeyer, 2007)

Suppose G = Sm and ⌦ is the set of partitions of {1, . . . ,m} into a parts
of size b, where a, b > 2.

⌅ If a > b > 2 then b(G ) 6 6.

⌅ If a < b then dloga be 6 b(G ) 6 dloga be+ 3.

Example. If G = S8 and H = S4 o S2, then b(G ) = 5 = dloga be+ 3.

In recent work, the exact base size has been computed in all cases.



Action on partitions

Theorem

Suppose G = Sm and ⌦ is the set of partitions of {1, . . . ,m} into a parts
of size b, where a, b > 2.

⌅ B, Garonzi & Lucchini (2020), James (2006):
If a > b and (a, b) 6= (2, 2), then

b(G ) =

8
<

:

4 if (a, b) = (3, 2)
2 if b > 3 and a > max{b + 3, 8}
3 otherwise

⌅ Morris & Spiga (2021): If a < b then

b(G ) =

8
>><

>>:

dloga(b + 3)e+ 1 if a = 2, b 6= 4
dloga(b + 2)e+ 1 if a > 3, (a, b) 6= (3, 7)
5 if (a, b) = (2, 4)
4 if (a, b) = (3, 7)



Standard actions of classical groups

Suppose G 6 Sym(⌦) is a standard group with classical socle G0 = Cl(V )
and point stabilizer H. Then either

⌅ H is the stabilizer in G of an appropriate subspace of V ;

⌅ G0 = Lm(q), G 66 P�Lm(q) and H is the stabilizer in G of an
appropriate pair of subspaces of V ; or

⌅ G0 = Spm(q), q is even and H \ G0 = O±
m(q).

Once again, bounds on b(G ) are usually obtained by explicit constructions.

Theorem

⌅ Benbenishty (2005): Pyber’s conjecture holds when G is a standard
classical group.

⌅ Halasi, Liebeck & Maróti (2019): b(G ) 6 2 log|⌦| |G |+ 16.



Non-standard groups

Now assume G 6 Sym(⌦) is a non-standard group with socle G0 and
point stabilizer H.

Roughly speaking, this means that one of the following holds:

⌅ G0 is a sporadic or an exceptional group.

⌅ G0 = Am and H \ G0 acts primitively on {1, . . . ,m}.

⌅ G0 = Cl(V ) is a classical group and H \ G0 acts irreducibly on V .

Remark. If G is classical then Aschbacher’s theorem implies that H is
contained in one of the subgroup collections labelled C1, . . . , C8,S.

Then “non-standard” means that H 62 C1 (and we also exclude one case in
C8: G0 = Spm(q), q even, H type O±

m(q)).



Recall the following result of Liebeck from last week:

Theorem (Liebeck, 1984)

If G is a non-standard group of degree n, then |G | < n9.

We remark that this can be strengthened as follows:

Theorem (Liebeck & Saxl, 1992)

Either |G | < n5 or (G , n) = (M23, 23), (M24, 24).

So for Pyber’s conjecture, we need to show there exists an absolute
constant c such that b(G ) 6 c for every non-standard group G .



Cameron’s conjecture

Let G 6 Sym(⌦) be non-standard of degree n.

Conjecture

⌅ Cameron & Kantor (1993): There exists an absolute constant c
such that almost every c-tuple of points in ⌦ is a base for G .

⌅ Cameron (1999): b(G ) 6 7, with equality i↵ (G , n) = (M24, 24).

Theorem

⌅ Liebeck & Shalev (1999): The C-K conjecture is true (with an
undetermined constant), hence Pyber holds for non-standard groups.

⌅ B et al. (2007-11): Cameron’s conjecture is true, and almost every
6-tuple is a base.



Next week

⌅ The proof of Cameron’s conjecture

⌅ Fixed point ratios for groups of Lie type

⌅ Extensions of Cameron’s conjecture

⌅ Bases for primitive groups with solvable stabilizers
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