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Let G 6 Sym(⌦) be a permutation group.

Definition
A subset B of ⌦ is a base for G if the pointwise stabilizer of B is trivial,
i.e.

T
↵2B G↵ = 1.

The base size of G , denoted by b(G ), is the minimal cardinality of a base.

⌅ If G is transitive and H = G↵, then b(G ) is the minimal cardinality of
a subset S ✓ G such that

\

g2S
Hg = 1.

⌅ Note that ⌦ itself is a base for G .

⌅ b(G ) = 1 () G has a regular orbit on ⌦.



Examples
(1) G = Sn, ⌦ = {1, . . . , n}: b(G ) = n � 1

(2) G = An, ⌦ = {1, . . . , n}: b(G ) = n � 2

(3) G = D2n, ⌦ = {1, . . . , n}: b(G ) = 2

(4) G = GL(V ), ⌦ = V :

A subset of V is a base iff it contains a basis for V , so b(G ) = dimV .

(5) Similarly, if G = PGL(V ), d = dimV > 1 and ⌦ = P(V ) (the set of
1-dimensional subspaces of V ), then b(G ) = d + 1:

If {v1, . . . , vd} is a basis for V , then {hv1i, . . . , hvdi, hv1 + · · ·+ vdi}
is a base of minimal size.



A historical perspective

Notice that each group element is uniquely determined by its action on a
base B : if x , y 2 G then

↵x = ↵y for all ↵ 2 B () xy�1 2
\

↵2B
G↵ () x = y .

In particular, if ⌦ is finite then |G | 6 |⌦|b(G).

The problem of bounding |G | in terms of |⌦| attracted significant
interest in the 19th century, and the above observation motivated
early investigations of bases.

This is related to the ambitious problem set by the Paris Academy
for the Grand Prix de Mathématiques of 1860, which asked for a
classification of the subgroups of Sn of index k .



A computational connection

The base and strong generating set (BSGS) concept was introduced by
Sims (1970) as a fundamental data structure for calculating with finite
permutation groups on a computer.

Let B = {↵1, . . . ,↵b} be a base for G and consider the chain of stabilizers

G = G (0) > G (1) > G (2) > · · · > G (b�1) > G (b) = 1,

where G (k) =
T

k

i=1 G↵i
. A subset S ✓ G is a strong generating set

relative to B if G (k) = hS \ G (k)i for all k .

Example
If G = Sn and ⌦ = {1, . . . , n}, then

S = {(1, 2), (2, 3), . . . , (n � 1, n)}

is a strong generating set relative to the base B = {1, . . . , n � 1}.



The Schreier–Sims algorithm provides an efficient way to construct a
BSGS from a given generating set.

A BSGS allows basic tasks such as computing |G | and testing membership
in G to be achieved in polynomial time. For example

|G (b�1)| = |↵G
(b�1)

b
|, |G (b�2)| = |G (b�1)||↵G

(b�2)

b�1 |, . . . , |G | =
bY

i=1

|↵G
(i�1)

i |

As a consequence, this concept plays a fundamental role in computer
algebra systems such as GAP and Magma.

The associated algorithms will be more efficient if |B | ⌧ |⌦|.

A small base B also provides an efficient way to store the elements
of G , using |B |-tuples, rather than |⌦|-tuples.



Further connections

Abstract group theory. Let G be a group and let H be a core-free
subgroup: view G as a permutation group on the set of cosets of H.

In this setting,

b(G ) = minimal cardinality of a subset S ✓ G with
\

g2S
Hg = 1

Graph theory. Let � be a graph with vertex set V and automorphism
group G , viewed as a permutation group on V . Then

b(G ) = the fixing number of �
= the determining number of �
= the rigidity index of �

is a well-studied graph invariant.



Some related concepts

Let G 6 Sym(⌦) be a permutation group with |⌦| finite.

Definition
A base B ✓ ⌦ is minimal if no proper subset of B is a base. Let B(G ) be
the maximal size of a minimal base.

Example
Let G = Sm and ⌦ = {2-element subsets of {1, . . . ,m}}. Assume m ⌘ 1
(mod 3) and observe that

B1 = {{1, 2}, {2, 3}, {4, 5}, {5, 6}, . . . , {m � 2,m � 1}}
B2 = {{1, 2}, {1, 3}, . . . , {1,m � 1}}

are both minimal bases, where |B1| = 2
3(m � 1) and |B2| = m � 2.

Fact. b(G ) = 2
3(m� 1) (Halasi, 2012), B(G ) = m� 2 (Gill & Loda, 2021)



Definition
A subset S ✓ ⌦ is independent if

\

↵2S
G↵ <

\

�2T
G�

for every proper subset T of S . The height of G , denoted H(G ), is the
maximum size of an independent set.

Definition
An ordered sequence [↵1, . . . ,↵t ] of points in ⌦ is an irredundant base if
{↵1, . . . ,↵t} is a base and every inclusion in the chain

G = G (0) > G (1) > G (2) > · · · > G (t�1) > G (t) = 1

is proper, where G (k) =
T

k

i=1 G↵i
.

The size of the longest irredundant base is denoted I (G ).



Further connections

Note. b(G ) 6 B(G ) 6 H(G ) 6 I (G ) 6 b(G ) log2 |⌦|.

The invariants B(G ),H(G ) and I (G ) have not been intensively studied,
but an interesting connection to relational complexity has recently
emerged via the bound

RC(G ) 6 H(G ) + 1.

This concept has origins in the model theory of relational structures.

For more details, see

⌅ Gill, Loda, Spiga: On the height and relational complexity of a finite

permutation group, arXiv:2005.03942

⌅ Gill, Loda: Statistics for Sn acting on k-sets, arXiv:2101.08644



Some further reading

⌅ Bailey, Cameron: Base size, metric dimension and other invariants of

groups and graphs, Bull. Lond. Math. Soc. 43 (2011), 209–242.

⌅ Burness: Chapter 5 in Simple groups, fixed point ratios and

applications, in Local representation theory and simple groups,
267–322, EMS Ser. Lect. Math., Eur. Math. Soc., 2018.

⌅ Cameron: Chapter 4 in Permutation groups, LMS Student Texts, 45,
CUP, 1999.

⌅ Liebeck, Shalev: Bases of primitive permutation groups, Groups,
combinatorics & geometry (Durham, 2001), 147–154, WSP, 2003.

⌅ Seress: Chapter 4 in Permutation group algorithms, Cambridge Tracts
in Mathematics, 152, CUP, 2003.



Calculating b(G )

In general, calculating the exact base size of a finite permutation group is
a difficult problem.

⌅ There is no known efficient algorithm for calculating b(G ), or for
constructing a base of minimal size.

⌅ Blaha (1992): Determining if b(G ) 6 c for a given constant c is an
NP-complete problem.

A small base can be constructed using a greedy algorithm – choose
↵k 2 ⌦ from an orbit of

T
k�1
i=1 G↵i

of largest possible size.

Blaha (1992) shows that this yields a base of size O(b(G ) log log |⌦|).

Typically, we are interested in obtaining “good" bounds on b(G ).



First bounds

Let G be a finite permutation group of degree n. If {↵1, . . . ,↵b} is a base
of minimal size then each inclusion in the stabilizer chain

G > G (1) > G (2) > · · · > G (b�1) > 1

is proper (where G (k) =
T

k

i=1 G↵i
) and we deduce that

2b 6 |G | 6
b�1Y

i=0

(n � i) 6 nb.

This gives the following elementary result:

Proposition
If G is a permutation group of degree n, then

log |G |
log n

6 b(G ) 6 log2 |G |.



log |G |
log n

6 b(G ) 6 log2 |G |

It is easy to find transitive groups at both ends of this range:

⌅ If G = Sn and ⌦ = {1, . . . , n}, then

b(G ) = n � 1 < 2
log |G |
log n

⌅ If G = C2 o Cn/2 and ⌦ = {1, . . . , n}, then

b(G ) = n/2 = log2 |G |� log2(n/2) >
1
2
log2 |G |

Note. The first example is primitive, while the latter is imprimitive.



Primitivity

Recall that a transitive group G 6 Sym(⌦) is primitive if ⌦ has no
nontrivial G -invariant partitions.

Equivalently: G↵ is a maximal subgroup of G .

The finite primitive groups are described by the O’Nan-Scott Theorem,
which partitions the groups into five families, according to the structure
and action of the socle:

(1) Diagonal type (2) Product type (3) Twisted wreath type

(4) Affine (5) Almost simple

Combined with CFSG, this gives a powerful approach for studying bases of
finite primitive groups.

But first let us recall some results obtained using “classical" methods.



Theorem (Bochert, 1889)
Let G 6= An, Sn be a primitive group of degree n. Then b(G ) 6 n/2.

Proof. Suppose B is a base with |B | = b(G ) > n/2. Then C = ⌦ \ B is
not a base, so there exists 1 6= x 2

T
↵2C G↵ and supp(x) ✓ B where

supp(x) = {↵ 2 ⌦ : ↵x 6= ↵}.

Fix ↵ 2 supp(x). By minimality, B \ {↵} is not a base, so there exists
1 6= y 2

T
�2B\{↵} G� . Note that

supp(y) ✓ ⌦ \ (B \ {↵}) = C [ {↵}.

Now supp(y) \ B 6= ; since B is a base, so ↵ is the only point in ⌦ moved
by both x and y .

This implies that [x , y ] 2 G is a 3-cycle and thus G contains An by a
theorem of Jordan. Contradiction. ⌅



Babai’s bound

Theorem (Babai, 1981/2)
Let G 6= An, Sn be a primitive group of degree n.

⌅ If G is not 2-transitive, then b(G ) < 4
p
n loge n.

⌅ If G is 2-transitive, then b(G ) < c
p
log n for some absolute constant c .

⌅ Babai’s ingenious proof does not use CFSG: in the simply primitive
case, there is a translation into a more general, purely combinatorial,
problem concerning coherent configurations.

⌅ Pyber (1993) improved the bound for 2-transitive groups (also
without CFSG): b(G ) < c(log n)2 for some absolute constant c .

⌅ There is a nice discussion of these results in Dixon & Mortimer (see
Sections 5.3 and 5.6).



The simply primitive case

For ↵,� 2 ⌦, let  ↵� = {� 2 ⌦ : ↵,� are in different G�-orbits}.

Easy check. S ✓ ⌦ is a base if S \ ↵� 6= ; for all distinct ↵,� 2 ⌦.

Set n = |⌦|, b(G ) = k + 1 and d = min{| ↵� | : ↵,� 2 ⌦, ↵ 6= �}.

Let � be the set of k-element subsets of ⌦.

For S 2 �, let �↵�(S) = 1 if S \ ↵� = ;, o.w. �↵�(S) = 0.

Define m =
P

�↵�(S), summing over all S 2 � and ↵,� 2 ⌦, ↵ 6= �.

Easy check. By estimating m in two different ways, we get

2
✓
n

k

◆
6 m 6 n(n � 1)

✓
n � d

k

◆

and thus k < n(2 loge n � loge 2)/d .

Final step. d >
p
n/2, which gives b(G ) < 4

p
n loge n. ⌅



Liebeck’s bound

Stronger bounds can be proved using CFSG:

Theorem (Liebeck, 1984)
Let G 6= An, Sn be a primitive group of degree n. Then either

⌅ b(G ) < 9 log2 n; or

⌅ (Am)r P G 6 Sm o Sr , where r > 1 and the action of Sm is on k-sets
and the wreath product has the product action of degree

�
m

k

�r .

In particular, b(G ) < c
p
n for some absolute constant c .

This is best possible (up to constants):

⌅ e.g. G = AGLd(2), ⌦ = (F2)d : b(G ) = d + 1 = log2 n + 1

⌅ e.g. G = Sm, ⌦ = {2-sets}: b(G ) = d2(m � 1)/3e and n =
�
m

2
�



Comments on the proof

Step 1. Use O’Nan-Scott to reduce to almost simple groups.

Step 2. Combine CFSG and results on the subgroup structure of simple
groups to show that either |G↵| < |G |8/9 (so |G | < n9), or G is a standard
group (e.g. G = Sm acting on k-sets).

Step 3. If |G | < n9 then b(G ) 6 log2 |G | < 9 log2 n. Otherwise G is
standard and appropriate bases can be constructed explicitly.

By applying more recent results on bases, the constant in Liebeck’s main
bound can be improved:

Theorem (Moscatiello & Roney-Dougal, 2020)
If G is primitive of degree n, and not “large base", then

b(G ) 6 max{dlog2 ne+ 1, 7}.



Pyber’s conjecture

Recall that if G is a permutation group of degree n, then

log |G |
log n

6 b(G ) 6 log2 |G |

A highly influential conjecture of Pyber asserts that every finite primitive
group has a small base in the following sense:

Conjecture (Pyber, 1993)
There is an absolute constant c such that

b(G ) 6 c
log |G |
log n

for every primitive group G of degree n.



Comments on the proof

The proof of Pyber’s conjecture was finally completed by Duyan, Halasi
and Maróti (2018), building on earlier work by Benbenishty, Fawcett,
Liebeck, Seress, Shalev and others.

The basic strategy: apply the O’Nan-Scott Theorem and handle each
family of primitive groups in turn.

None are straightforward and there is certainly no easy reduction to almost
simple groups. The final case involved a certain class of affine groups.

Almost simple

Diagonal type

Product type Twisted wreath

Affine type



Solvable groups

A special case of Pyber’s conjecture was settled by Seress in a much
stronger form:

Theorem (Seress, 1996)
If G is a finite solvable primitive group, then b(G ) 6 4.

⌅ If G is solvable and primitive, then soc(G ) is elementary abelian and it
is straightforward to show that G = VH 6 AGL(V ) is affine, where
V = (Fp)d and H 6 GL(V ) is irreducible.

⌅ If H is a finite solvable group and V is a faithful irreducible
FpH-module, then there exist v1, v2, v3 2 V such that

T
i
CH(vi ) = 1.

⌅ The bound is best possible: by work of Pálfy and Wolf, there are
infinitely many solvable primitive groups G of degree n with |G | > n3.



Comments on the proof

It suffices to show that b(H) 6 3 w.r.t the action of H on V . There are
two cases to consider: H is primitive or imprimitive as a linear group.

⌅ Notice that b(H) = 1 iff
[

1 6=x2H
CV (x) 6= V .

⌅ H primitive: Seress extends earlier work of Gluck & Manz (1987)
on |CV (x)| to show that b(H) = 1 in “most" cases.

⌅ H imprimitive: Here H 6 L o T 6 GL(V ), where L 6 GL(V1) is
primitive and T 6 Sk is transitive (both L and T are solvable).

Seress proves that d(T ) 6 5, where d(T ) is the distinguishing
number of T : there is a partition of {1, . . . , k} into at most 5 parts
such that no 1 6= x 2 T preserves each part of the partition.

By combining this with the fact that b(L) 6 3 (for the action of L on
V1), he shows that b(L o T ) 6 3 and thus b(H) 6 3.



An example

Suppose H preserves a decomposition V = V1 � · · ·� Vk , where
dimVi = ` and H 6 L o T 6 GL(V ) with L 6 GL(V1) primitive.

Let {1, . . . , k} = P1 [ · · · [ P5 be a distinguishing partition for T 6 Sk .

The case b(L) = 1. Let w1 2 V1 be in a regular L-orbit and let wi 2 Vi

be an image of w1 under T . Define v1, v2, v3 2 V as follows:

v1 =
X

i2P1[P2[P3

wi , v2 =
X

i2P1[P4

wi , v3 =
X

i2P2[P5

wi

Suppose g 2 L o T fixes v1, v2 and v3. Let i 2 P1 and write V g

i
= Vj .

Since g fixes v1 and v2, we have j 2 (P1 [ P2 [ P3) \ (P1 [ P4) = P1, so g
preserves P1.

Similarly, g preserves P2, . . . ,P5, which forces g 2 Lk and thus g = 1.



Almost simple groups

Let G 6 Sym(⌦) be an almost simple primitive group of degree n with
socle G0 and point stabilizer H.

Definition
We say that G is standard if one of the following holds:

⌅ G0 = Am and ⌦ is an orbit of subsets or partitions of {1, . . . ,m};
⌅ G0 = Cl(V ) is classical and ⌦ is an orbit of subspaces (or pairs of

subspaces) of V .

The proof of Liebeck’s b(G ) < 9 log2 n bound uses the fact that |G | < n9

if G is non-standard: Is b(G ) bounded by an absolute constant?

Conjecture (Cameron, 1990s)
There is an absolute constant c such that b(G ) 6 c for every non-standard
group G . Moreover, c = 7 is best possible.



Next week

⌅ Pyber’s conjecture:

I Main results

I Overview of the proof

I Bases for almost simple primitive groups: standard vs
non-standard

⌅ Cameron’s conjecture:

I Main results

I Probabilistic methods
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