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Part 1:

Spread and uniform spread
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Let G = 〈x , y〉 be a finite group.

How are the generating pairs {x , y} distributed across the group?

More precisely:

� Can we impose conditions on the orders of x and y , or their
conjugacy classes?

� What is the probability that two random elements generate G?

� Does G have the 3
2-generation property?

That is, does every nontrivial element belong to a generating pair?

Theorem (Steinberg, 1962). Every simple group is 2-generated.
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Let us assume G = 〈x , y〉 is non-cyclic. Set G# = G \ {1}.

We say that G has spread k if for any x1, . . . , xk ∈ G# there exists
y ∈ G such that G = 〈xi , y〉 for all i .

Let s(G ) > 0 be the exact spread of G .

� Piccard, 1939:

{
s(Sn) > 1 if n 6= 4
s(An) > 1

� Binder, 1970: s(Sn) =


0 if n = 4
2 if n even, n 6= 4
3 if n odd

� Brenner & Wiegold, 1975: s(An) =


2 if n = 6
4 if n even, n 6= 6
? if n odd

Example. 6 098 892 799 6 s(A19) 6 6 098 892 803
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G has uniform spread k if there exists C = yG such that for any
x1, . . . , xk ∈ G# there exists z ∈ C with G = 〈xi , z〉 for all i .

Let u(G ) > 0 be the exact uniform spread of G .

Let G be a (non-abelian) simple group.

� Guralnick & Kantor, 2000: u(G ) > 1

� Breuer, Guralnick & Kantor, 2008:

u(G ) > 2, with equality iff G = A5, A6, Ω+
8 (2) or Ω2r+1(2) with r > 3

� Guralnick & Shalev, 2003:

Let (Gn) be a sequence of simple groups with |Gn| → ∞. Then either
u(Gn)→∞, or there is an infinite subsequence consisting of

I odd-dimensional orthogonal groups over a field of fixed size; or

I alternating groups of degree all divisible by a fixed prime.
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Notation. For x , y ∈ G and H 6 G we define

Q(x , y) =
|{z ∈ yG : G 6= 〈x , z〉}|

|yG |

M(y) = {H : H < G is maximal and y ∈ H}

fpr(x ,G/H) =
|xG ∩ H|
|xG |

Key Lemma. Suppose there exists y ∈ G and k ∈ N such that∑
H∈M(y)

fpr(x ,G/H) <
1

k

for all x ∈ G#.

Then Q(x , y) < 1
k for all x ∈ G# and thus u(G ) > k .
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Example. Let G = E8(q) and choose y ∈ G of order

q8 + q7 − q5 − q4 − q3 + q + 1.

� M(y) = {H}, with H = NG (〈y〉) = 〈y〉:C30

� |xG | > q58 for all x ∈ G#

Hence ∑
H∈M(y)

fpr(x ,G/H) =
|xG ∩ H|
|xG |

<
|H|
q58

<
1

q44

for all x ∈ G#, so u(G ) > q44.

Example. G = A19, |y | = 19 =⇒ M(y) = {H}, H = C19:C9. Then∑
H∈M(y)

fpr(x ,G/H) 6
1

6098892800
=⇒ u(G ) > 6098892799
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The generating graph Γ(G ) has vertices G#, with x , y adjacent if and
only if G = 〈x , y〉. In this setting,

s(G ) > 1 ⇐⇒ Γ(G ) has no isolated vertices

s(G ) > 2 =⇒ Γ(G ) is connected with diameter at most 2

Note. Suppose 1 6= N P G and G/N is non-cyclic. Then no element in N
belongs to a generating pair, so s(G ) = 0 (e.g. s(S4) = 0).

Conjecture.

The following are equivalent, for any finite non-cyclic group G :

(a) s(G ) > 1.

(b) s(G ) > 2.

(c) Γ(G ) contains a Hamiltonian cycle.

(d) G/N is cyclic for every non-trivial normal subgroup N.
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Part 2:

The uniform domination number
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A total dominating set (TDS) of a graph Γ is a set S of vertices such
that every vertex of Γ is adjacent to a vertex in S .

The total domination number γt(Γ) of Γ is the minimal size of a TDS.

Let G be a finite group with s(G ) > 1 and generating graph Γ(G ).

Then γt(Γ(G )) is the total domination number of G , denoted γt(G ), i.e.

γt(G ) = min

{
|S | :

S ⊆ G# such that for all x ∈ G#,
there exists y ∈ S with G = 〈x , y〉

}

Similarly, if u(G ) > 1 then the uniform domination number γu(G ) is the
minimal size of a TDS for Γ(G ) consisting of conjugate elements.

Note that
2 6 γt(G ) 6 γu(G ) 6 |C |

for some conjugacy class C of G .

11



An example: G = A4

(1 2)(3 4)

(1 3)(2 4)

(1 4)(2 3)

(1 3 2)

(1 2 4)

(1 4 2) (1 3 4)

(1 4 3)

(2 3 4)

(1 2 3)(1 2 3) (2 4 3)(2 4 3)(1 2 3) (2 4 3)

Conclusion. {(1, 2, 3), (2, 4, 3)} is a TDS for G , hence γu(G ) = 2
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Uniform domination for simple groups

Recall: G simple =⇒ u(G ) > 1 [Guralnick & Kantor, 2000]

Therefore, we can study γu(G ) for simple groups:

� Can we determine “good” bounds on γu(G )?

� Are there any examples with γu(G ) = 2? Can we classify them?

� Suppose γu(G ) = 2 and y ∈ G .

What is the probability, denoted P(G , y), that {y , yg} is a TDS for a
randomly chosen conjugate yg?

� What are the asymptotic properties of

P(G ) = max{P(G , y) : y ∈ G}

for sequences of simple groups G with γu(G ) = 2?
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Part 3:

Main tools
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The base size connection

Let G 6 Sym(Ω) be a permutation group on a finite set Ω.

A subset B of Ω is a base for G if
⋂
b∈B

Gb = 1.

The base size of G , denoted b(G ,Ω), is the minimal size of a base for G .

Note that if G is transitive, say Ω = G/H, then

b(G ,Ω) = min{|S | : S ⊆ G and
⋂
g∈S

Hg = 1}

Lemma. Suppose y ∈ G and M(y) = {H} with H core-free.

Then {yg1 , . . . , ygc} is a TDS if and only if
⋂c

i=1H
gi = 1, so

γu(G ) 6 b(G ,G/H)
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Theorem (B. et al., 2011). Let G 6 Sym(Ω) be primitive and
simple of “non-standard” type. Then b(G ,Ω) 6 7, with equality if
and only if G = M24 and |Ω| = 24.

Example. Let G be an exceptional simple group of Lie type and assume

G 6∈ {F4(2f ),G2(3f ), 2F4(2)′}.

By [Weigel, 1992], there exists y ∈ G with M(y) = {H}, so

γu(G ) 6 b(G ,G/H) 6 6.

Example. Take G = E8(q) and y ∈ G with

|y | = q8 + q7 − q5 − q4 − q3 + q + 1.

Then M(y) = {H}, with H = 〈y〉:C30, and

γu(G ) = b(G ,G/H) = 2.
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Lemma. Suppose that for all y ∈ G# there exists H ∈ M(y) with
H core-free and b(G ,G/H) > c . Then γu(G ) > c .

Example. Let G = An with n > 8 even, so each y ∈ G# is contained in a
maximal intransitive subgroup H of G .

� By [Halasi, 2012],

b(G ,G/H) > dlog2 ne − 1

and thus γu(G ) > dlog2 ne − 1 by the lemma.

� Set d = (2, n2 − 1), k = n
2 − d and y = (1, . . . , k)(k + 1, . . . , n) ∈ G .

Then M(y) = {H} with H = (Sk × Sn−k) ∩ G and

γu(G ) 6 b(G ,G/H) 6
⌈

logd 2n
n−2d e n

⌉
·
⌈
n + 2d

n − 2d

⌉
6 2dlog2 ne.
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Probabilistic methods

For y ∈ G , c ∈ N we define

Q(G , y , c) = Probability c random conjugates of y do not form a TDS

Note. Q(G , y , c) < 1 =⇒ γu(G ) 6 c

Lemma. Let xG1 , . . . , x
G
k be the conjugacy classes of elements of

prime order in G . Then

Q(G , y , c) 6
k∑

i=1

|xGi | ·

 ∑
H∈M(y)

fpr(xi ,G/H)

c

Note. If M(y) = {H}, this is equivalent to a key lemma of Liebeck &
Shalev (1999) for studying b(G ,G/H).
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An example

Let G = PSLr+1(q), where r > 8 is even, and set

y =

(
y1

y2

)
∈ G , with y1 ∈ GL r

2
(q), y2 ∈ GL r

2
+1(q) irreducible.

� M(y) = {H1,H2} by [Guralnick, Penttila, Praeger & Saxl, 1999]

� fpr(x ,G/Hi ) < 2q−
r
2 for all x ∈ G# by [Guralnick & Kantor, 2000]

Let c = 2r + 26. Then

Q(G , y , c) 6
k∑

i=1

|xGi | ·

 2∑
j=1

fpr(xi ,G/Hj)

c

< qr
2+2r

(
4q−

r
2

)c
< q−4

Conclusion. γu(G ) 6 2r + 26
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Part 4:

Main results
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Theorem (B. & Harper, 2018). Let G be a finite simple group.

� G sporadic: γu(G ) 6 4 (e.g. γu(M11) = γu(M12) = 4)

� G alternating, degree n: γu(G ) 6 c log2 n (e.g. c = 77)

� G exceptional: γu(G ) 6 5

� G classical, rank r : γu(G ) 6 7r + 56

Stronger bounds hold in special cases, e.g.

� G = An, n even: dlog2 ne − 1 6 γu(G ) 6 2dlog2 ne

� G = Ω2r+1(q), r > 3: r 6 γu(G ) 6 7r
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Theorem (B. & Harper, 2018). Let G be a finite simple group.

Then γu(G ) = 2 only if G is one of the following:

� M23, J1, J4,Ru, Ly,O′N,Fi23,Fi′24,Th,B,M, or J3,He,Co1,HN

� An, n > 13 prime

� 2B2(q), 2G2(q), 2F4(q), 3D4(q), 2E6(q),E6(q),E7(q),E8(q)

� PSL2(q), q > 11 odd

� PSLεn(q),n odd, (n, q, ε) 6= (3, 2,+), (3, 4,+), (3, 3,−), (3, 5,−)

� G = PSpn(q), n ≡ 2 (mod 4), n > 10, q odd

� G = PΩ−n (q), n ≡ 0 (mod 4), n > 8

22



Suppose G is simple, γu(G ) = 2 and y ∈ G .

P(G , y) = Probability that {y , yg} is a TDS for a random conjugate yg

P(G ) = max{P(G , y) : y ∈ G}

Theorem (B. & Harper, 2018).

If G 6∈ {PSp4m+2(q) : m > 2, q odd} ∪ {PΩ−4m(q) : m > 2} then

P(G )→
{

1
2 if G = PSL2(q)
1 otherwise

as |G | → ∞

Moreover, P(G ) 6 1
2 only if G is one of the following:

� PSL2(q) with q ≡ 3 (mod 4), q > 11

� A13,U5(2),Fi23, J3,He,Co1,HN
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Example. Suppose G = PSL2(q) and q > 11 is odd.

Choose y ∈ G of order 1
2(q + 1), so M(y) = {H} with H = Dq+1, and

P(G , y) =
|{yg ∈ yG : {y , yg} is a TDS}|

|yG |

=
|{yg ∈ yG : H ∩ Hg = 1}|

|yG |
=

r |H|2

|G |

where r is the number of regular orbits of H on G/H. We compute

r =
1

4
(q − ε)

where q ≡ ε (mod 4), ε ∈ {1, 3}, and thus

P(G , y) =


1
2

(
1 + 1

q

)
if q ≡ 1 (mod 4)

1
2

(
1− q+1

q(q−1)

)
if q ≡ 3 (mod 4)
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Example. Suppose G = F4(q) and define

A = {maximal parabolic subgroups of G}
B = {maximal rank subgroups of type B4(q)}
C = {maximal rank subgroups of type 3D4(q)}

By considering the structure of the maximal tori of G , one can show that
each y ∈ G is contained in a maximal subgroup H ∈ A ∪ B ∪ C.

Since |H|2 > |G |, we have b(G ,G/H) > 3.

Conclusion. γu(G ) > 3
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Example. Suppose G = PΩ−n (q), n ≡ 0 (mod 4), n > 8. Let y ∈ G .

� y reducible: Here y is contained in a maximal reducible subgroup H
and b(G ,G/H) > 3.

� y irreducible: We can assume y is a Singer cycle. By [Bereczky, 2000],

M(y) = {Hk : k is a prime divisor of n}

with Hk a field extension subgroup of type O−n/k(qk).

In particular, γu(G ) > b(G ,G/H2), which is not known.

We have |H2|2 < |G | and b(G ,G/H2) ∈ {2, 3, 4} by [B., 2007].

For n = 8, γu(G ) = b(G ,G/H2) = 2 + δ2,q for q ∈ {2, 3, 5}.

Is {P(G ) : G simple, γu(G ) = 2} bounded away from zero?
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