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Part 1:

Spread and uniform spread



Let G = (x,y) be a finite group.

How are the generating pairs {x, y} distributed across the group?

More precisely:

m Can we impose conditions on the orders of x and y, or their
conjugacy classes?

m What is the probability that two random elements generate G?

m Does G have the %—generation property?

That is, does every nontrivial element belong to a generating pair?

Theorem (Steinberg, 1962). Every simple group is 2-generated.




Let us assume G = (x, y) is non-cyclic. Set G# = G\ {1}.

We say that G has spread k if for any xi,...,xx € G# there exists
y € G such that G = (x;, y) for all /.

Let s(G) > 0 be the exact spread of G.

m Piccard, 1930: { s(Sn) il ifn 4

s(Ap) =21
0 ifn=4
m Binder, 1970: s(5,) =< 2 if neven, n # 4
3 if n odd
2 ifn=6
m Brenner & Wiegold, 1975: s(A,) =< 4 ifneven, n#6
? if n odd

Example. 6098892799 < s(A19) < 6098892803



G has uniform spread k if there exists C = y© such that for any
X1,...,Xx € G7 there exists z € C with G = (x;, z) for all i.

Let u(G) > 0 be the exact uniform spread of G.

Let G be a (non-abelian) simple group.

m Guralnick & Kantor, 2000: u(G) > 1

m Breuer, Guralnick & Kantor, 2008:
u(G) > 2, with equality iff G = As, Ag, Qg (2) or Qp,41(2) with r >3

m Guralnick & Shalev, 2003:

Let (G,,) be a sequence of simple groups with |G,| — co. Then either
u(Gp) — o0, or there is an infinite subsequence consisting of

» odd-dimensional orthogonal groups over a field of fixed size; or

» alternating groups of degree all divisible by a fixed prime.



Notation. For x,y € G and H < G we define
{zey® : G#(x,2)}|
ly€]
M(y)={H : H< G is maximal and y € H}

Qlx,y) =

|xGﬂH]

fpr(x, G/H): ‘XG’

Key Lemma. Suppose there exists y € G and k € N such that

Z fpr(x, G/H) < %

HeM(y)
for all x € G#.

Then Q(x,y) < # for all x € G# and thus u(G) > k.




Example. Let G = Eg(q) and choose y € G of order

Pt+q -¢-q" - +q+1

m M(y) = {H}, with H = Ng({y)) = (y):Cso
m [xC| > ¢ for all x € G#
Hence | c H H
x° N 1
HeM(y)

for all x € G#, so u(G) > q**.
Example. G = Ajg, |y| =19 = M(y) = {H}, H = Ci9:Gy. Then

1

< > 27
> fpr(x, G/H) “o0sa00800 — U(G) > 6098892799
HeM(y)



The generating graph '(G) has vertices G7, with x, y adjacent if and
only if G = (x,y). In this setting,

s(G) =21 <= T(G) has no isolated vertices

s(G) 22 = T(G) is connected with diameter at most 2

Note. Suppose 1 # N < G and G/N is non-cyclic. Then no element in N
belongs to a generating pair, so s(G) =0 (e.g. s(S4) = 0).

Conjecture.

The following are equivalent, for any finite non-cyclic group G:
(a) s(G) } 1.

(b) s(G) =
(c) T(G) contains a Hamiltonian cycle.
(d) G/N is cyclic for every non-trivial normal subgroup N.




Part 2:

The uniform domination number

10



A total dominating set (TDS) of a graph I is a set S of vertices such
that every vertex of I' is adjacent to a vertex in S.

The total domination number ~¢(I") of I is the minimal size of a TDS.

Let G be a finite group with s(G) > 1 and generating graph '(G).
Then v¢(I'(G)) is the total domination number of G, denoted ~:(G), i.e.

C G# 4
%(G)zmin{|5|: S C G# such that for all x € G7, }

there exists y € S with G = (x, y)

Similarly, if u(G) > 1 then the uniform domination number ~,(G) is the
minimal size of a TDS for ['(G) consisting of conjugate elements.

Note that
2 <1(G) <7u(G) < [C]

for some conjugacy class C of G.
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G=A

An example

Conclusion. {(1,2,3),(2,4,3)} is a TDS for G, hence v,(G) =2
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Uniform domination for simple groups
Recall: G simple = u(G) > 1 [Guralnick & Kantor, 2000]

Therefore, we can study 7,(G) for simple groups:
m Can we determine “good” bounds on v,(G)?
m Are there any examples with ,(G) = 2?7 Can we classify them?

m Suppose 7,(G) =2 and y € G.

What is the probability, denoted P(G,y), that {y,y&} isa TDS for a
randomly chosen conjugate y87?

m What are the asymptotic properties of
P(G) = max{P(G,y) : y € G}

for sequences of simple groups G with 7,(G) = 27

13



Part 3:

Main tools
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The base size connection

Let G < Sym(Q) be a permutation group on a finite set Q.

A subset B of Q2 is a base for G if ﬂ Gp = 1.
beB

The base size of G, denoted b(G, ), is the minimal size of a base for G.

Note that if G is transitive, say Q2 = G/H, then

b(G,Q) =min{|S| : SC Gand [ | HE =1}
ges

Lemma. Suppose y € G and M(y) = {H} with H core-free.
Then {y&!,...,y&} is a TDS if and only if (7_; H¥ =1, so

7u(G) < b(G, G/H)

1K



Theorem (B. et al., 2011). Let G < Sym(f2) be primitive and
simple of “non-standard” type. Then b(G,Q) < 7, with equality if
and only if G = M4 and Q] = 24.

Example. Let G be an exceptional simple group of Lie type and assume

G € {Fs(2"), G2(37),%Fa(2)'}.

By [Weigel, 1992], there exists y € G with M(y) = {H}, so
74(G) < b(G,G/H) < 6.

Example. Take G = Eg(q) and y € G with
M=a+q - —q¢" - +qg+1
Then M(y) = {H}, with H = (y): Gz, and
vu(G) = b(G,G/H) = 2.
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Lemma. Suppose that for all y € G# there exists H € M(y) with
H core-free and b(G, G/H) > c. Then v,(G) > c.

Example. Let G = A, with n > 8 even, so each y € G* is contained in a
maximal intransitive subgroup H of G.

m By [Halasi, 2012],
b(G,G/H) > [logyn] — 1
and thus 7,(G) > [log, n] — 1 by the lemma.
mSetd=(2,5-1), k=5—-dandy=(1,...,k)(k+1,...,n) €G.
Then M(y) = {H} with H = (Sk X Sp—x) N G and

n+2d
n—2d

70(G) < b(G. G/H) < [log 2y 1 n] - [ } < 2flog, .
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Probabilistic methods
For y € G, c € N we define

Q(G,y, c) = Probability ¢ random conjugates of y do not form a TDS

Note. Q(G,y,c) <1 = ~v,(G)<c

7

Lemma. Let x1G, e ,ka be the conjugacy classes of elements of
prime order in G. Then

Q6.y )<Y Il | D forlxi 6/H)

k
i=1 HeM(y)

Note. If M(y) = {H}, this is equivalent to a key lemma of Liebeck &
Shalev (1999) for studying b(G, G/H).
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An example

Let G = PSL,+1(q), where r > 8 is even, and set

y = (L‘T) € G, with y1 € GL1(q), y2 € GL;41(q) irreducible.
2

m M(y) = {Hi, H2} by [Guralnick, Penttila, Praeger & Saxl, 1999]

m fpr(x, G/H;) < 2g2 for all x € G# by [Guralnick & Kantor, 2000]

Let ¢ = 2r 4+ 26. Then

C
C

k 2
QG.y, ) <D Il | D for(xi, G/H) | < g+ (4q‘5> <q*
i=1 j=1

Conclusion. v,(G) < 2r + 26

10



Part 4:

Main results

M



G sporadic: v7,(G) <4 (e.g. vu(M11) =7 (M12) = 4)

m G alternating, degree n: 7,(G) < clogy n (e.g. ¢ =77)

G exceptional: v,(G) <5

m G classical, rank r: v,(G) < 7r + 56

\.

Theorem (B. & Harper, 2018). Let G be a finite simple group.

Stronger bounds hold in special cases, e.g.
m G=A, neven: [log,n| —1<7,(G) < 2log, n]

B G=0141(q9), r =3 r<v,(G)<7r
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Theorem (B. & Harper, 2018). Let G be a finite simple group.
Then ~,(G) =2 only if G is one of the following:

] M23, Jl, J4, Ru, Ly, O/N, Fi23, Fil24, Th,B, M, or J3, He, COl, HN
m A, n>13 prime
m 2B>(q),2G2(q),2Fa(q),>Da(q),?Es(q), Es(q). E7(q), Es(q)

PSL2(q), g > 11 odd

PSL;(q)’ n OddV (n’ q7 6) # (37 27 +)’ (37 47 +)7 (3? 37 _)7 (37 5’
m G=PSp,(g), n=2(mod 4), n > 10, g odd

m G=PQ,(q), n=0(mod 4), n>38

-)
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Suppose G is simple, 7,(G) =2 and y € G.

P(G,y) = Probability that {y, y&} is a TDS for a random conjugate y&
P(G) =max{P(G,y) : y € G}

Theorem (B. & Harper, 2018).
If G & {PSpyms2(q) : m=>2, qodd} U{PQ, (q) : m>2} then

1 0=
P(G)—>{ 2 16 =PSlala) o516 5 oo
1 otherwise

Moreover, P(G) < 3 only if G is one of the following:

m PSLy(g) with ¢ =3 (mod 4), g > 11
| A13, U5(2), Fi23, J37 He, COl, HN
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Example. Suppose G = PSLy(q) and g > 11 is odd.
Choose y € G of order (g +1), so M(y) = {H} with H = Dg1, and

)= Iy €y® : {y,y¥} is a TDS}|

P(G,y
ly©]
_ {yEey® : HNHE =1} r|H|?
ly¢] 19

where r is the number of regular orbits of H on G/H. We compute

1
fzz(q—ﬁ)

where g = € (mod 4), € € {1, 3}, and thus

P(G.y) = : 1+%> if g=1(mod 4)
’ 1 PR
3 1—%) if g =3 (mod 4)
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Example. Suppose G = F4(q) and define

A = {maximal parabolic subgroups of G}
B = {maximal rank subgroups of type B4(q)}
C = {maximal rank subgroups of type 3D4(q)}

By considering the structure of the maximal tori of G, one can show that
each y € G is contained in a maximal subgroup H € AUBUC.

Since |H|?> > |G|, we have b(G,G/H) > 3.

Conclusion. 7v,(G) > 3

25



Example. Suppose G = PQ,(g), n=0(mod 4), n > 8. Let y € G.

m y reducible: Here y is contained in a maximal reducible subgroup H
and b(G,G/H) > 3.

m y irreducible: We can assume y is a Singer cycle. By [Bereczky, 2000],
M(y) = {Hk : k is a prime divisor of n}
with Hy a field extension subgroup of type On_/k(qk).
In particular, v,(G) > b(G, G/H>), which is not known.
We have |[Ha|? < |G| and b(G, G/H>) € {2,3,4} by [B., 2007].
For n =8, 7(G) = b(G, G/Hp) = 2 + 62,4 for q € {2,3,5}.

Is {P(G) : G simple, v,(G) =2} bounded away from zero?

2%



