Simple groups, generation and probabilistic methods

Tim Burness

Groups, Geometry and Representations
Segal-Shalev Birthday Conference
University of Oxford
September 4th 2018

Overview

1. Spread and uniform spread
2. The uniform domination number
3. Main tools: Base sizes and probabilistic methods
4. Main results

This is joint work with Scott Harper

Part 1:
 Spread and uniform spread

Let $G=\langle x, y\rangle$ be a finite group.

How are the generating pairs $\{x, y\}$ distributed across the group?

More precisely:

- Can we impose conditions on the orders of x and y, or their conjugacy classes?
- What is the probability that two random elements generate G ?
- Does G have the $\frac{3}{2}$-generation property?

That is, does every nontrivial element belong to a generating pair?

Theorem (Steinberg, 1962). Every simple group is 2-generated.

Let us assume $G=\langle x, y\rangle$ is non-cyclic. Set $G^{\#}=G \backslash\{1\}$.

We say that G has spread k if for any $x_{1}, \ldots, x_{k} \in G^{\#}$ there exists $y \in G$ such that $G=\left\langle x_{i}, y\right\rangle$ for all i.

Let $s(G) \geqslant 0$ be the exact spread of G.

■ Piccard, 1939: $\left\{\begin{array}{l}s\left(S_{n}\right) \geqslant 1 \text { if } n \neq 4 \\ s\left(A_{n}\right) \geqslant 1\end{array}\right.$
■ Binder, 1970: $s\left(S_{n}\right)= \begin{cases}0 & \text { if } n=4 \\ 2 & \text { if } n \text { even, } n \neq 4 \\ 3 & \text { if } n \text { odd }\end{cases}$

- Brenner \& Wiegold, 1975: $s\left(A_{n}\right)= \begin{cases}2 & \text { if } n=6 \\ 4 & \text { if } n \text { even, } n \neq 6 \\ ? & \text { if } n \text { odd }\end{cases}$

Example. $6098892799 \leqslant s\left(A_{19}\right) \leqslant 6098892803$
G has uniform spread k if there exists $C=y^{G}$ such that for any $x_{1}, \ldots, x_{k} \in G^{\#}$ there exists $z \in C$ with $G=\left\langle x_{i}, z\right\rangle$ for all i.

Let $u(G) \geqslant 0$ be the exact uniform spread of G.

Let G be a (non-abelian) simple group.
■ Guralnick \& Kantor, 2000: $u(G) \geqslant 1$
■ Breuer, Guralnick \& Kantor, 2008:
$u(G) \geqslant 2$, with equality iff $G=A_{5}, A_{6}, \Omega_{8}^{+}(2)$ or $\Omega_{2 r+1}(2)$ with $r \geqslant 3$
■ Guralnick \& Shalev, 2003:
Let $\left(G_{n}\right)$ be a sequence of simple groups with $\left|G_{n}\right| \rightarrow \infty$. Then either $u\left(G_{n}\right) \rightarrow \infty$, or there is an infinite subsequence consisting of

- odd-dimensional orthogonal groups over a field of fixed size; or
- alternating groups of degree all divisible by a fixed prime.

Notation. For $x, y \in G$ and $H \leqslant G$ we define

$$
\begin{aligned}
Q(x, y) & =\frac{\left|\left\{z \in y^{G}: G \neq\langle x, z\rangle\right\}\right|}{\left|y^{G}\right|} \\
\mathcal{M}(y) & =\{H: H<G \text { is maximal and } y \in H\} \\
\operatorname{fpr}(x, G / H) & =\frac{\left|x^{G} \cap H\right|}{\left|x^{G}\right|}
\end{aligned}
$$

Key Lemma. Suppose there exists $y \in G$ and $k \in \mathbb{N}$ such that

$$
\sum_{H \in \mathcal{M}(y)} \operatorname{fpr}(x, G / H)<\frac{1}{k}
$$

for all $x \in G^{\#}$.
Then $Q(x, y)<\frac{1}{k}$ for all $x \in G^{\#}$ and thus $u(G) \geqslant k$.

Example. Let $G=E_{8}(q)$ and choose $y \in G$ of order

$$
q^{8}+q^{7}-q^{5}-q^{4}-q^{3}+q+1
$$

- $\mathcal{M}(y)=\{H\}$, with $H=N_{G}(\langle y\rangle)=\langle y\rangle: C_{30}$

■ $\left|x^{G}\right|>q^{58}$ for all $x \in G \#$
Hence

$$
\sum_{H \in \mathcal{M}(y)} \operatorname{fpr}(x, G / H)=\frac{\left|x^{G} \cap H\right|}{\left|x^{G}\right|}<\frac{|H|}{q^{58}}<\frac{1}{q^{44}}
$$

for all $x \in G^{\#}$, so $u(G) \geqslant q^{44}$.

Example. $G=A_{19},|y|=19 \Longrightarrow \mathcal{M}(y)=\{H\}, H=C_{19}: C_{9}$. Then

$$
\sum_{H \in \mathcal{M}(y)} \operatorname{fpr}(x, G / H) \leqslant \frac{1}{6098892800} \Longrightarrow u(G) \geqslant 6098892799
$$

The generating graph $\Gamma(G)$ has vertices $G^{\#}$, with x, y adjacent if and only if $G=\langle x, y\rangle$. In this setting,

```
s(G)\geqslant1\Longleftrightarrow\Gamma(G) has no isolated vertices
s(G)\geqslant2\Longrightarrow\Gamma(G) is connected with diameter at most 2
```

Note. Suppose $1 \neq N \geqq G$ and G / N is non-cyclic. Then no element in N belongs to a generating pair, so $s(G)=0$ (e.g. $s\left(S_{4}\right)=0$).

Conjecture.

The following are equivalent, for any finite non-cyclic group G :
(a) $s(G) \geqslant 1$.
(b) $s(G) \geqslant 2$.
(c) $\Gamma(G)$ contains a Hamiltonian cycle.
(d) G / N is cyclic for every non-trivial normal subgroup N.

Part 2:
 The uniform domination number

A total dominating set (TDS) of a graph Γ is a set S of vertices such that every vertex of Γ is adjacent to a vertex in S.

The total domination number $\gamma_{t}(\Gamma)$ of Γ is the minimal size of a TDS.
Let G be a finite group with $s(G) \geqslant 1$ and generating graph $\Gamma(G)$.
Then $\gamma_{t}(\Gamma(G))$ is the total domination number of G, denoted $\gamma_{t}(G)$, i.e.

$$
\gamma_{t}(G)=\min \left\{|S|: \begin{array}{l}
S \subseteq G^{\#} \text { such that for all } x \in G^{\#}, \\
\text { there exists } y \in S \text { with } G=\langle x, y\rangle
\end{array}\right\}
$$

Similarly, if $u(G) \geqslant 1$ then the uniform domination number $\gamma_{u}(G)$ is the minimal size of a TDS for $\Gamma(G)$ consisting of conjugate elements.

Note that

$$
2 \leqslant \gamma_{t}(G) \leqslant \gamma_{u}(G) \leqslant|C|
$$

for some conjugacy class C of G.

An example: $G=A_{4}$

Conclusion. $\{(1,2,3),(2,4,3)\}$ is a TDS for G, hence $\gamma_{u}(G)=2$

Uniform domination for simple groups

Recall: G simple $\Longrightarrow u(G) \geqslant 1 \quad$ [Guralnick \& Kantor, 2000]
Therefore, we can study $\gamma_{u}(G)$ for simple groups:
■ Can we determine "good" bounds on $\gamma_{u}(G)$?

- Are there any examples with $\gamma_{u}(G)=2$? Can we classify them?
- Suppose $\gamma_{u}(G)=2$ and $y \in G$.

What is the probability, denoted $P(G, y)$, that $\left\{y, y^{g}\right\}$ is a TDS for a randomly chosen conjugate y^{g} ?

- What are the asymptotic properties of

$$
P(G)=\max \{P(G, y): y \in G\}
$$

for sequences of simple groups G with $\gamma_{u}(G)=2$?

Part 3:
 Main tools

The base size connection

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a permutation group on a finite set Ω.
A subset B of Ω is a base for G if $\bigcap_{b \in B} G_{b}=1$.
The base size of G, denoted $b(G, \Omega)$, is the minimal size of a base for G.
Note that if G is transitive, say $\Omega=G / H$, then

$$
b(G, \Omega)=\min \left\{|S|: S \subseteq G \text { and } \bigcap_{g \in S} H^{g}=1\right\}
$$

Lemma. Suppose $y \in G$ and $\mathcal{M}(y)=\{H\}$ with H core-free.
Then $\left\{y^{g_{1}}, \ldots, y^{g_{c}}\right\}$ is a TDS if and only if $\bigcap_{i=1}^{c} H^{g_{i}}=1$, so

$$
\gamma_{u}(G) \leqslant b(G, G / H)
$$

Theorem (B. et al., 2011). Let $G \leqslant \operatorname{Sym}(\Omega)$ be primitive and simple of "non-standard" type. Then $b(G, \Omega) \leqslant 7$, with equality if and only if $G=\mathrm{M}_{24}$ and $|\Omega|=24$.

Example. Let G be an exceptional simple group of Lie type and assume

$$
G \notin\left\{F_{4}\left(2^{f}\right), G_{2}\left(3^{f}\right),{ }^{2} F_{4}(2)^{\prime}\right\}
$$

By [Weigel, 1992], there exists $y \in G$ with $\mathcal{M}(y)=\{H\}$, so

$$
\gamma_{u}(G) \leqslant b(G, G / H) \leqslant 6
$$

Example. Take $G=E_{8}(q)$ and $y \in G$ with

$$
|y|=q^{8}+q^{7}-q^{5}-q^{4}-q^{3}+q+1 .
$$

Then $\mathcal{M}(y)=\{H\}$, with $H=\langle y\rangle: C_{30}$, and

$$
\gamma_{u}(G)=b(G, G / H)=2
$$

Lemma. Suppose that for all $y \in G^{\#}$ there exists $H \in \mathcal{M}(y)$ with H core-free and $b(G, G / H) \geqslant c$. Then $\gamma_{u}(G) \geqslant c$.

Example. Let $G=A_{n}$ with $n \geqslant 8$ even, so each $y \in G^{\#}$ is contained in a maximal intransitive subgroup H of G.

■ By [Halasi, 2012],

$$
b(G, G / H) \geqslant\left\lceil\log _{2} n\right\rceil-1
$$

and thus $\gamma_{u}(G) \geqslant\left\lceil\log _{2} n\right\rceil-1$ by the lemma.
■ Set $d=\left(2, \frac{n}{2}-1\right), k=\frac{n}{2}-d$ and $y=(1, \ldots, k)(k+1, \ldots, n) \in G$.
Then $\mathcal{M}(y)=\{H\}$ with $H=\left(S_{k} \times S_{n-k}\right) \cap G$ and

$$
\left.\gamma_{u}(G) \leqslant b(G, G / H) \leqslant\left\lceil\log _{\left.\left\lceil\frac{2 n}{n-2 d}\right\rceil\right\rceil} n\right\rceil \frac{n+2 d}{n-2 d}\right\rceil \leqslant 2\left\lceil\log _{2} n\right\rceil
$$

Probabilistic methods

For $y \in G, c \in \mathbb{N}$ we define
$Q(G, y, c)=$ Probability c random conjugates of y do not form a TDS
Note. $Q(G, y, c)<1 \Longrightarrow \gamma_{u}(G) \leqslant c$

Lemma. Let $x_{1}^{G}, \ldots, x_{k}^{G}$ be the conjugacy classes of elements of prime order in G. Then

$$
Q(G, y, c) \leqslant \sum_{i=1}^{k}\left|x_{i}^{G}\right| \cdot\left(\sum_{H \in \mathcal{M}(y)} \operatorname{fpr}\left(x_{i}, G / H\right)\right)^{c}
$$

Note. If $\mathcal{M}(y)=\{H\}$, this is equivalent to a key lemma of Liebeck \& Shalev (1999) for studying $b(G, G / H)$.

An example

Let $G=\mathrm{PSL}_{r+1}(q)$, where $r \geqslant 8$ is even, and set

$$
y=\left(\begin{array}{l|l}
y_{1} & \\
\hline & y_{2}
\end{array}\right) \in G, \text { with } y_{1} \in G L_{\frac{r}{2}}(q), y_{2} \in G L_{\frac{r}{2}+1}(q) \text { irreducible. }
$$

■ $\mathcal{M}(y)=\left\{H_{1}, H_{2}\right\}$ by [Guralnick, Penttila, Praeger \& Saxl, 1999]

- $\operatorname{fpr}\left(x, G / H_{i}\right)<2 q^{-\frac{r}{2}}$ for all $x \in G^{\#}$ by [Guralnick \& Kantor, 2000]

Let $c=2 r+26$. Then

$$
Q(G, y, c) \leqslant \sum_{i=1}^{k}\left|x_{i}^{G}\right| \cdot\left(\sum_{j=1}^{2} \mathrm{fpr}\left(x_{i}, G / H_{j}\right)\right)^{c}<q^{r^{2}+2 r}\left(4 q^{-\frac{r}{2}}\right)^{c}<q^{-4}
$$

Conclusion. $\gamma_{u}(G) \leqslant 2 r+26$

Part 4:
 Main results

Theorem (B. \& Harper, 2018). Let G be a finite simple group.
■ G sporadic: $\gamma_{u}(G) \leqslant 4$ (e.g. $\gamma_{u}\left(M_{11}\right)=\gamma_{u}\left(\mathrm{M}_{12}\right)=4$)
■ G alternating, degree $n: \gamma_{u}(G) \leqslant c \log _{2} n$ (e.g. $c=77$)

- G exceptional: $\gamma_{u}(G) \leqslant 5$
- G classical, rank $r: \gamma_{u}(G) \leqslant 7 r+56$

Stronger bounds hold in special cases, e.g.

■ $G=A_{n}, n$ even: $\left\lceil\log _{2} n\right\rceil-1 \leqslant \gamma_{u}(G) \leqslant 2\left\lceil\log _{2} n\right\rceil$
■ $G=\Omega_{2 r+1}(q), r \geqslant 3: r \leqslant \gamma_{u}(G) \leqslant 7 r$

Theorem (B. \& Harper, 2018). Let G be a finite simple group.
Then $\gamma_{u}(G)=2$ only if G is one of the following:
■ $\mathrm{M}_{23}, \mathrm{~J}_{1}, \mathrm{~J}_{4}, \mathrm{Ru}, \mathrm{Ly}, \mathrm{O}^{\prime} \mathrm{N}, \mathrm{Fi}_{23}, \mathrm{Fi}_{24}^{\prime}, \mathrm{Th}, \mathbb{B}, \mathrm{M}$, or $\mathrm{J}_{3}, \mathrm{He}, \mathrm{Co}_{1}, \mathrm{HN}$

- $A_{n}, n \geqslant 13$ prime

■ ${ }^{2} B_{2}(q),{ }^{2} G_{2}(q),{ }^{2} F_{4}(q),{ }^{3} D_{4}(q),{ }^{2} E_{6}(q), E_{6}(q), E_{7}(q), E_{8}(q)$

- $\operatorname{PSL}_{2}(q), q \geqslant 11$ odd

■ $\operatorname{PSL}_{n}^{\epsilon}(q), n$ odd, $(n, q, \epsilon) \neq(3,2,+),(3,4,+),(3,3,-),(3,5,-)$
■ $G=\operatorname{PSp}_{n}(q), n \equiv 2(\bmod 4), n \geqslant 10, q$ odd
■ $G=P \Omega_{n}^{-}(q), n \equiv 0(\bmod 4), n \geqslant 8$

Suppose G is simple, $\gamma_{u}(G)=2$ and $y \in G$.
$P(G, y)=$ Probability that $\left\{y, y^{g}\right\}$ is a TDS for a random conjugate y^{g} $P(G)=\max \{P(G, y): y \in G\}$

Theorem (B. \& Harper, 2018).

If $G \notin\left\{P P_{4 m+2}(q): m \geqslant 2, q\right.$ odd $\} \cup\left\{P \Omega_{4 m}^{-}(q): m \geqslant 2\right\}$ then

$$
P(G) \rightarrow\left\{\begin{array}{lll}
\frac{1}{2} & \text { if } G=\mathrm{PSL}_{2}(q) & \text { as }|G| \rightarrow \infty \\
1 & \text { otherwise } & \text { as }
\end{array}\right.
$$

Moreover, $P(G) \leqslant \frac{1}{2}$ only if G is one of the following:

- $\operatorname{PSL}_{2}(q)$ with $q \equiv 3(\bmod 4), q \geqslant 11$
- $A_{13}, \mathrm{U}_{5}(2), \mathrm{Fi}_{23}, \mathrm{~J}_{3}, \mathrm{He}, \mathrm{Co}_{1}, \mathrm{HN}$

Example. Suppose $G=\operatorname{PSL}_{2}(q)$ and $q \geqslant 11$ is odd.
Choose $y \in G$ of order $\frac{1}{2}(q+1)$, so $\mathcal{M}(y)=\{H\}$ with $H=D_{q+1}$, and

$$
\begin{aligned}
P(G, y) & =\frac{\mid\left\{y^{g} \in y^{G}:\left\{y, y^{g}\right\} \text { is a TDS }\right\} \mid}{\left|y^{G}\right|} \\
& =\frac{\left|\left\{y^{g} \in y^{G}: H \cap H^{g}=1\right\}\right|}{\left|y^{G}\right|}=\frac{r|H|^{2}}{|G|}
\end{aligned}
$$

where r is the number of regular orbits of H on G / H. We compute

$$
r=\frac{1}{4}(q-\epsilon)
$$

where $q \equiv \epsilon(\bmod 4), \epsilon \in\{1,3\}$, and thus

$$
P(G, y)= \begin{cases}\frac{1}{2}\left(1+\frac{1}{q}\right) & \text { if } q \equiv 1(\bmod 4) \\ \frac{1}{2}\left(1-\frac{q+1}{q(q-1)}\right) & \text { if } q \equiv 3(\bmod 4)\end{cases}
$$

Example. Suppose $G=F_{4}(q)$ and define

$$
\begin{aligned}
\mathcal{A} & =\{\text { maximal parabolic subgroups of } G\} \\
\mathcal{B} & =\left\{\text { maximal rank subgroups of type } B_{4}(q)\right\} \\
\mathcal{C} & =\left\{\text { maximal rank subgroups of type }{ }^{3} D_{4}(q)\right\}
\end{aligned}
$$

By considering the structure of the maximal tori of G, one can show that each $y \in G$ is contained in a maximal subgroup $H \in \mathcal{A} \cup \mathcal{B} \cup \mathcal{C}$.

Since $|H|^{2}>|G|$, we have $b(G, G / H) \geqslant 3$.

Conclusion. $\gamma_{u}(G) \geqslant 3$

Example. Suppose $G=P \Omega_{n}^{-}(q), n \equiv 0(\bmod 4), n \geqslant 8$. Let $y \in G$.
■ y reducible: Here y is contained in a maximal reducible subgroup H and $b(G, G / H) \geqslant 3$.

■ y irreducible: We can assume y is a Singer cycle. By [Bereczky, 2000],

$$
\mathcal{M}(y)=\left\{H_{k}: k \text { is a prime divisor of } n\right\}
$$

with H_{k} a field extension subgroup of type $O_{n / k}^{-}\left(q^{k}\right)$.
In particular, $\gamma_{u}(G) \geqslant b\left(G, G / H_{2}\right)$, which is not known.
We have $\left|H_{2}\right|^{2}<|G|$ and $b\left(G, G / H_{2}\right) \in\{2,3,4\}$ by [B., 2007].
For $n=8, \gamma_{u}(G)=b\left(G, G / H_{2}\right)=2+\delta_{2, q}$ for $q \in\{2,3,5\}$.

Is $\left\{P(G): G\right.$ simple, $\left.\gamma_{u}(G)=2\right\}$ bounded away from zero?

