Simple groups, generation and probabilistic methods

Tim Burness

Groups, Geometry and Representations Segal-Shalev Birthday Conference

University of Oxford

September 4th 2018

Overview

- 1. Spread and uniform spread
- 2. The uniform domination number
- 3. Main tools: Base sizes and probabilistic methods
- 4. Main results

This is joint work with Scott Harper

Part 1: Spread and uniform spread

Let $G = \langle x, y \rangle$ be a finite group.

How are the generating pairs $\{x, y\}$ distributed across the group?

More precisely:

- Can we impose conditions on the orders of x and y, or their conjugacy classes?
- What is the probability that two random elements generate *G*?
- **Does** G have the $\frac{3}{2}$ -generation property?

That is, does every nontrivial element belong to a generating pair?

Theorem (Steinberg, 1962). Every simple group is 2-generated.

Let us assume $G = \langle x, y \rangle$ is non-cyclic. Set $G^{\#} = G \setminus \{1\}$.

We say that G has **spread** k if for any $x_1, \ldots, x_k \in G^{\#}$ there exists $y \in G$ such that $G = \langle x_i, y \rangle$ for all i.

Let $s(G) \ge 0$ be the **exact spread** of *G*.

Piccard, 1939:
$$\begin{cases} s(S_n) \ge 1 \text{ if } n \ne 4\\ s(A_n) \ge 1 \end{cases}$$

Binder, 1970:
$$s(S_n) = \begin{cases} 0 & \text{if } n = 4 \\ 2 & \text{if } n \text{ even, } n \neq 4 \\ 3 & \text{if } n \text{ odd} \end{cases}$$

Brenner & Wiegold, 1975:
$$s(A_n) = \begin{cases} 2 & \text{if } n = 6 \\ 4 & \text{if } n \text{ even, } n \neq 6 \\ ? & \text{if } n \text{ odd} \end{cases}$$

Example. $6\,098\,892\,799 \leqslant s(A_{19}) \leqslant 6\,098\,892\,803$

G has **uniform spread** *k* if there exists $C = y^G$ such that for any $x_1, \ldots, x_k \in G^{\#}$ there exists $z \in C$ with $G = \langle x_i, z \rangle$ for all *i*.

Let $u(G) \ge 0$ be the **exact uniform spread** of G.

Let G be a (non-abelian) simple group.

- **Guralnick & Kantor, 2000:** $u(G) \ge 1$
- **Breuer, Guralnick & Kantor, 2008:** $u(G) \ge 2$, with equality iff $G = A_5$, A_6 , $\Omega_8^+(2)$ or $\Omega_{2r+1}(2)$ with $r \ge 3$

Guralnick & Shalev, 2003:

Let (G_n) be a sequence of simple groups with $|G_n| \to \infty$. Then either $u(G_n) \to \infty$, or there is an infinite subsequence consisting of

- odd-dimensional orthogonal groups over a field of fixed size; or
- alternating groups of degree all divisible by a fixed prime.

Notation. For $x, y \in G$ and $H \leq G$ we define

$$Q(x, y) = \frac{|\{z \in y^G : G \neq \langle x, z \rangle\}|}{|y^G|}$$
$$\mathcal{M}(y) = \{H : H < G \text{ is maximal and } y \in H\}$$
$$\operatorname{Fpr}(x, G/H) = \frac{|x^G \cap H|}{|x^G|}$$

Key Lemma. Suppose there exists $y \in G$ and $k \in \mathbb{N}$ such that

$$\sum_{H\in\mathcal{M}(y)}\mathsf{fpr}(x,G/H)<\frac{1}{k}$$

for all $x \in G^{\#}$. Then $Q(x, y) < \frac{1}{k}$ for all $x \in G^{\#}$ and thus $u(G) \ge k$. **Example.** Let $G = E_8(q)$ and choose $y \in G$ of order

$$q^8 + q^7 - q^5 - q^4 - q^3 + q + 1.$$

•
$$\mathcal{M}(y) = \{H\}$$
, with $H = N_G(\langle y \rangle) = \langle y \rangle : C_{30}$
• $|x^G| > q^{58}$ for all $x \in G^{\#}$

Hence

$$\sum_{H \in \mathcal{M}(y)} \mathsf{fpr}(x, G/H) = \frac{|x^G \cap H|}{|x^G|} < \frac{|H|}{q^{58}} < \frac{1}{q^{44}}$$

for all $x \in G^{\#}$, so $u(G) \geqslant q^{44}$.

Example. $G = A_{19}, |y| = 19 \implies \mathcal{M}(y) = \{H\}, H = C_{19}:C_9$. Then

$$\sum_{H \in \mathcal{M}(y)} \mathsf{fpr}(x, G/H) \leqslant \frac{1}{6098892800} \implies u(G) \geqslant 6098892799$$

The generating graph $\Gamma(G)$ has vertices $G^{\#}$, with x, y adjacent if and only if $G = \langle x, y \rangle$. In this setting,

 $s(G) \ge 1 \iff \Gamma(G)$ has no isolated vertices $s(G) \ge 2 \implies \Gamma(G)$ is connected with diameter at most 2

Note. Suppose $1 \neq N \leq G$ and G/N is non-cyclic. Then no element in N belongs to a generating pair, so s(G) = 0 (e.g. $s(S_4) = 0$).

Conjecture.

The following are equivalent, for any finite non-cyclic group G:

- (a) $s(G) \ge 1$.
- (b) $s(G) \ge 2$.
- (c) $\Gamma(G)$ contains a Hamiltonian cycle.
- (d) G/N is cyclic for every non-trivial normal subgroup N.

Part 2:

The uniform domination number

A **total dominating set** (TDS) of a graph Γ is a set S of vertices such that every vertex of Γ is adjacent to a vertex in S.

The total domination number $\gamma_t(\Gamma)$ of Γ is the minimal size of a TDS.

Let G be a finite group with $s(G) \ge 1$ and generating graph $\Gamma(G)$. Then $\gamma_t(\Gamma(G))$ is the total domination number of G, denoted $\gamma_t(G)$, i.e.

$$\gamma_t(G) = \min \left\{ |S| : \begin{array}{ll} S \subseteq G^\# ext{ such that for all } x \in G^\#, \ ext{ there exists } y \in S ext{ with } G = \langle x, y
angle
ight\}$$

Similarly, if $u(G) \ge 1$ then the **uniform domination number** $\gamma_u(G)$ is the minimal size of a TDS for $\Gamma(G)$ consisting of **conjugate** elements.

Note that

$$2 \leqslant \gamma_t(G) \leqslant \gamma_u(G) \leqslant |C|$$

for some conjugacy class C of G.

An example: $G = A_4$

Conclusion. $\{(1,2,3), (2,4,3)\}$ is a TDS for *G*, hence $\gamma_u(G) = 2$

Uniform domination for simple groups

Recall: G simple $\implies u(G) \ge 1$ [Guralnick & Kantor, 2000]

Therefore, we can study $\gamma_u(G)$ for simple groups:

- Can we determine "good" bounds on $\gamma_u(G)$?
- Are there any examples with $\gamma_u(G) = 2$? Can we classify them?

• Suppose
$$\gamma_u(G) = 2$$
 and $y \in G$.

What is the probability, denoted P(G, y), that $\{y, y^g\}$ is a TDS for a randomly chosen conjugate y^g ?

What are the asymptotic properties of

$$P(G) = \max\{P(G, y) : y \in G\}$$

for sequences of simple groups G with $\gamma_u(G) = 2$?

Part 3: Main tools

The base size connection

Let $G \leq \text{Sym}(\Omega)$ be a permutation group on a finite set Ω .

A subset B of Ω is a **base** for G if $\bigcap_{b \in B} G_b = 1$.

The **base size** of G, denoted $b(G, \Omega)$, is the minimal size of a base for G. Note that if G is transitive, say $\Omega = G/H$, then

$$b(G,\Omega) = \min\{|S| : S \subseteq G \text{ and } \bigcap_{g \in S} H^g = 1\}$$

Lemma. Suppose $y \in G$ and $\mathcal{M}(y) = \{H\}$ with H core-free. Then $\{y^{g_1}, \ldots, y^{g_c}\}$ is a TDS if and only if $\bigcap_{i=1}^{c} H^{g_i} = 1$, so $\gamma_u(G) \leq b(G, G/H)$ **Theorem (B. et al., 2011).** Let $G \leq \text{Sym}(\Omega)$ be primitive and simple of "non-standard" type. Then $b(G, \Omega) \leq 7$, with equality if and only if $G = M_{24}$ and $|\Omega| = 24$.

Example. Let G be an exceptional simple group of Lie type and assume $G \notin \{F_4(2^f), G_2(3^f), {}^2F_4(2)'\}.$

By [Weigel, 1992], there exists $y \in G$ with $\mathcal{M}(y) = \{H\}$, so $\gamma_u(G) \leq b(G, G/H) \leq 6.$

Example. Take $G = E_8(q)$ and $y \in G$ with

$$|y| = q^8 + q^7 - q^5 - q^4 - q^3 + q + 1.$$

Then $\mathcal{M}(y) = \{H\}$, with $H = \langle y \rangle$: C_{30} , and

$$\gamma_u(G)=b(G,G/H)=2$$

Lemma. Suppose that for all $y \in G^{\#}$ there exists $H \in \mathcal{M}(y)$ with H core-free and $b(G, G/H) \ge c$. Then $\gamma_u(G) \ge c$.

Example. Let $G = A_n$ with $n \ge 8$ even, so each $y \in G^{\#}$ is contained in a maximal intransitive subgroup H of G.

■ By [Halasi, 2012],

$$b(G, G/H) \ge \lceil \log_2 n \rceil - 1$$

and thus $\gamma_u(G) \ge \lceil \log_2 n \rceil - 1$ by the lemma.

• Set $d = (2, \frac{n}{2} - 1)$, $k = \frac{n}{2} - d$ and $y = (1, \dots, k)(k + 1, \dots, n) \in G$. Then $\mathcal{M}(y) = \{H\}$ with $H = (S_k \times S_{n-k}) \cap G$ and

$$\gamma_u(G) \leq b(G, G/H) \leq \left\lceil \log_{\left\lceil \frac{2n}{n-2d} \right\rceil} n \right\rceil \cdot \left\lceil \frac{n+2d}{n-2d} \right\rceil \leq 2 \lceil \log_2 n \rceil.$$

Probabilistic methods

For $y \in G$, $c \in \mathbb{N}$ we define

Q(G, y, c) = Probability c random conjugates of y do **not** form a TDS

Note. $Q(G, y, c) < 1 \implies \gamma_u(G) \leq c$

Lemma. Let x_1^G, \ldots, x_k^G be the conjugacy classes of elements of prime order in G. Then

$$Q(G, y, c) \leq \sum_{i=1}^{k} |x_i^G| \cdot \left(\sum_{H \in \mathcal{M}(y)} \operatorname{fpr}(x_i, G/H)\right)^c$$

Note. If $\mathcal{M}(y) = \{H\}$, this is equivalent to a key lemma of Liebeck & Shalev (1999) for studying b(G, G/H).

An example

Let $G = \mathsf{PSL}_{r+1}(q)$, where $r \ge 8$ is even, and set

$$y = \left(\begin{array}{c|c} y_1 \\ \hline y_2 \end{array}
ight) \in G, \text{ with } y_1 \in \operatorname{GL}_{rac{r}{2}}(q), y_2 \in \operatorname{GL}_{rac{r}{2}+1}(q) \text{ irreducible.}$$

■ $\mathcal{M}(y) = \{H_1, H_2\}$ by [Guralnick, Penttila, Praeger & Saxl, 1999] ■ $\operatorname{fpr}(x, G/H_i) < 2q^{-\frac{r}{2}}$ for all $x \in G^{\#}$ by [Guralnick & Kantor, 2000]

Let c = 2r + 26. Then

$$Q(G, y, c) \leqslant \sum_{i=1}^{k} |x_i^G| \cdot \left(\sum_{j=1}^{2} \operatorname{fpr}(x_i, G/H_j)\right)^c < q^{r^2+2r} \left(4q^{-\frac{r}{2}}\right)^c < q^{-4}$$

Conclusion. $\gamma_u(G) \leq 2r + 26$

Part 4: Main results

Theorem (B. & Harper, 2018). Let G be a finite simple group.

- G sporadic: $\gamma_u(G) \leqslant 4$ (e.g. $\gamma_u(M_{11}) = \gamma_u(M_{12}) = 4$)
- G alternating, degree n: $\gamma_u(G) \leq c \log_2 n$ (e.g. c = 77)
- G exceptional: $\gamma_u(G) \leq 5$
- G classical, rank r: $\gamma_u(G) \leq 7r + 56$

Stronger bounds hold in special cases, e.g.

•
$$G = A_n$$
, *n* even: $\lceil \log_2 n \rceil - 1 \leqslant \gamma_u(G) \leqslant 2 \lceil \log_2 n \rceil$

•
$$G = \Omega_{2r+1}(q), r \ge 3$$
: $r \le \gamma_u(G) \le 7r$

Theorem (B. & Harper, 2018). Let G be a finite simple group. Then $\gamma_u(G) = 2$ only if G is one of the following:

- $\blacksquare M_{23}, J_1, J_4, \mathsf{Ru}, \mathsf{Ly}, \mathsf{O'N}, \mathsf{Fi}_{23}, \mathsf{Fi}_{24}', \mathsf{Th}, \mathbb{B}, \mathbb{M}, \text{ or } J_3, \mathsf{He}, \mathsf{Co}_1, \mathsf{HN}$
- A_n , $n \ge 13$ prime
- $\blacksquare {}^{2}B_{2}(q), {}^{2}G_{2}(q), {}^{2}F_{4}(q), {}^{3}D_{4}(q), {}^{2}E_{6}(q), E_{6}(q), E_{7}(q), E_{8}(q)$
- $\mathsf{PSL}_2(q)$, $q \ge 11$ odd
- $\mathsf{PSL}_n^{\epsilon}(q)$, *n* odd, $(n, q, \epsilon) \neq (3, 2, +), (3, 4, +), (3, 3, -), (3, 5, -)$

• $G = \mathsf{PSp}_n(q), n \equiv 2 \pmod{4}, n \ge 10, q \text{ odd}$

•
$$G = P\Omega_n^-(q), n \equiv 0 \pmod{4}, n \ge 8$$

Suppose G is simple, $\gamma_u(G) = 2$ and $y \in G$.

 $P(G, y) = Probability that \{y, y^g\}$ is a TDS for a random conjugate y^g $P(G) = \max\{P(G, y) : y \in G\}$

Theorem (B. & Harper, 2018). If $G \notin \{ \mathsf{PSp}_{4m+2}(q) : m \ge 2, q \text{ odd} \} \cup \{ \mathsf{P}\Omega_{4m}^-(q) : m \ge 2 \}$ then $P(G) \rightarrow \begin{cases} \frac{1}{2} & \text{if } G = \mathsf{PSL}_2(q) \\ 1 & \text{otherwise}} & \text{as } |G| \rightarrow \infty \end{cases}$ Moreover, $P(G) \leqslant \frac{1}{2}$ only if G is one of the following: $\blacksquare \mathsf{PSL}_2(q)$ with $q \equiv 3 \pmod{4}, q \ge 11$ $\blacksquare A_{13}, \mathsf{U}_5(2), \mathsf{Fi}_{23}, \mathsf{J}_3, \mathsf{He}, \mathsf{Co}_1, \mathsf{HN}$ **Example.** Suppose $G = PSL_2(q)$ and $q \ge 11$ is odd. Choose $y \in G$ of order $\frac{1}{2}(q+1)$, so $\mathcal{M}(y) = \{H\}$ with $H = D_{q+1}$, and

$$P(G, y) = \frac{|\{y^g \in y^G : \{y, y^g\} \text{ is a TDS}\}|}{|y^G|}$$
$$= \frac{|\{y^g \in y^G : H \cap H^g = 1\}|}{|y^G|} = \frac{r|H|^2}{|G|}$$

where r is the number of regular orbits of H on G/H. We compute

$$r=rac{1}{4}(q-\epsilon)$$

where $q \equiv \epsilon \pmod{4}$, $\epsilon \in \{1,3\}$, and thus

$$P(G, y) = \begin{cases} \frac{1}{2} \left(1 + \frac{1}{q} \right) & \text{if } q \equiv 1 \pmod{4} \\ \frac{1}{2} \left(1 - \frac{q+1}{q(q-1)} \right) & \text{if } q \equiv 3 \pmod{4} \end{cases}$$

Example. Suppose $G = F_4(q)$ and define

- $\mathcal{A} = \{ \text{maximal parabolic subgroups of } G \}$
- $\mathcal{B} = \{ \text{maximal rank subgroups of type } B_4(q) \}$
- $C = \{$ maximal rank subgroups of type ${}^{3}D_{4}(q)\}$

By considering the structure of the maximal tori of G, one can show that each $y \in G$ is contained in a maximal subgroup $H \in A \cup B \cup C$.

Since $|H|^2 > |G|$, we have $b(G, G/H) \ge 3$.

Conclusion. $\gamma_u(G) \ge 3$

Example. Suppose $G = P\Omega_n^-(q)$, $n \equiv 0 \pmod{4}$, $n \ge 8$. Let $y \in G$.

- *y* reducible: Here *y* is contained in a maximal reducible subgroup *H* and $b(G, G/H) \ge 3$.
- *y* irreducible: We can assume *y* is a Singer cycle. By [Bereczky, 2000],

 $\mathcal{M}(y) = \{H_k : k \text{ is a prime divisor of } n\}$

with H_k a field extension subgroup of type $O_{n/k}^-(q^k)$.

In particular, $\gamma_u(G) \ge b(G, G/H_2)$, which is **not known**.

We have $|H_2|^2 < |G|$ and $b(G, G/H_2) \in \{2, 3, 4\}$ by [B., 2007]. For n = 8, $\gamma_u(G) = b(G, G/H_2) = 2 + \delta_{2,q}$ for $q \in \{2, 3, 5\}$.

Is $\{P(G) : G \text{ simple, } \gamma_u(G) = 2\}$ bounded away from zero?