The length and depth of a group

Tim Burness

Interactions between group theory, number theory, combinatorics and geometry

Isaac Newton Institute, Cambridge
March 17th 2020

Length

Let G be a finite group. An unrefinable chain is a sequence of subgroups

$$
G=G_{0}>G_{1}>\cdots>G_{t-1}>G_{t}=1
$$

such that each G_{i} is maximal in G_{i-1}.

The length $\ell(G)$ is the maximal length of an unrefinable chain.
Let $\Omega(n)$ be the number of prime divisors of $n \in \mathbb{N}$ (incl. multiplicities).

- $\ell(G) \leqslant \Omega(|G|) \leqslant \log _{2}|G|$

■ G soluble $\Longrightarrow \ell(G)=\Omega(|G|)$: a composition series is unrefinable
■ Length is monotonic and additive: if $H \leqslant G$ and $N \leqslant G$, then

$$
\ell(H) \leqslant \ell(G) \text { and } \ell(G)=\ell(N)+\ell(G / N)
$$

Connections

Minimal generation (Babai, 1980s).

Let $G \leqslant S_{n}$ be a permutation group and let $\left\{x_{1}, \ldots, x_{d}\right\}$ be a generating set for G of minimal size. Then

$$
G=\left\langle x_{1}, \ldots, x_{d}\right\rangle>\left\langle x_{1}, \ldots, x_{d-1}\right\rangle>\cdots>\left\langle x_{1}\right\rangle>1
$$

is strictly descending, so $d \leqslant \ell(G) \leqslant \ell\left(S_{n}\right)$.
Automorphisms of soluble groups (Solomon \& Turull, 1980s).
Suppose $H=G: A$ with $|G|,|A|$ coprime and $C_{G}(A)=1$.
■ Thompson, 1959. If A has prime order, then G is nilpotent.
■ CFSG $\Longrightarrow G$ is soluble, so let $h(G)$ be the Fitting height of G.
■ Conjecture. $h(G) \leqslant \ell(A)$

Depth

The length $\ell(G)$ is the maximal length of an unrefinable chain.
The depth $\lambda(G)$ is the minimal length of an unrefinable chain.

- $\lambda(G) \leqslant \ell(G)$

■ Iwasawa, 1941: $\ell(G)=\lambda(G) \Longleftrightarrow G$ is supersoluble
■ Depth is not monotonic nor additive: if $N \leqslant G$, then

$$
\lambda(G / N) \leqslant \lambda(G) \leqslant \lambda(N)+\lambda(G / N)
$$

Example. Suppose $G=\mathrm{AGL}_{1}(8)=\left(C_{2}\right)^{3}: C_{7}$ and $N=\left(C_{2}\right)^{3}$.
Then $\lambda(G)=2, \lambda(N)=3$ and $\lambda(G / N)=1$.

The length of S_{n}

Theorem (Cameron, Solomon \& Turull, 1989).

$$
\ell\left(S_{n}\right)=\lfloor(3 n-1) / 2\rfloor-b(n)
$$

where $b(n)$ is the number of 1 s in the base 2 expansion of n.

Example. $\ell\left(S_{6}\right)=\lfloor 17 / 2\rfloor-2=6$

$$
S_{6}>S_{4} \times S_{2}>\left(S_{2} \backslash S_{2}\right) \times S_{2}>\left(S_{2}\right)^{3}>\left(S_{2}\right)^{2}>S_{2}>1
$$

Need to show: $G<S_{n}$ maximal $\Longrightarrow \ell(G) \leqslant\lfloor(3 n-1) / 2\rfloor-b(n)-1$
■ By induction on n, we may assume G acts primitively on $\{1, \ldots, n\}$

- Recall that $\ell(G) \leqslant \log _{2}|G|$

■ O'Nan-Scott Theorem $\rightsquigarrow G$ is almost simple. Now apply CFSG...

The depth of S_{n}

Theorem (B, Liebeck \& Shalev, 2018). $\lambda\left(S_{n}\right) \leqslant 24$ for all n.

Sketch. Suppose $G=S_{n}$ and $n \geqslant 12$ is even. There are primes p, q, r s.t.

$$
n=p+q+r+3
$$

by [Helfgott, 2013]. Set $H=S_{p+1} \times S_{q+1} \times S_{r+1}<G$.
If $t \geqslant 5$ is a prime and $t \notin\{7,11,23\}$ then there is an unrefinable chain

$$
S_{t+1}>A_{t+1}>\mathrm{L}_{2}(t)>K
$$

with $K \in\left\{A_{4}, S_{4}, A_{5}\right\}$. Here $\lambda(K) \leqslant 3$, so $\lambda\left(S_{t+1}\right) \leqslant 6$ and $\lambda(H) \leqslant 18$.
Typically, $G>S_{p+q+2} \times S_{r+1}>H$ is unrefinable, so $\lambda(G) \leqslant 20$.

Length for groups of Lie type

Theorem (Solomon \& Turull, 1991).

Let G be a simple group of Lie type over \mathbb{F}_{q} with twisted Lie rank r (e.g. $G=\mathrm{L}_{r+1}(q)$ or $\mathrm{U}_{2 r+1}(q)$).

- If q is even (and $G \neq U_{2 r+1}(2)$), then

$$
\ell(G)=\ell(B)+r=\Omega(|B|)+r
$$

where B is a Borel subgroup of G.

- Same conclusion holds if $q=p^{k}$ is odd and $k=k(p) \gg 0$.

Example. If $G=\mathrm{L}_{2}(7)$ then $B=C_{7}: C_{3}$ and $\ell(B)+r=3$, but

$$
G>S_{4}>S_{2} \backslash S_{2}>S_{2} \times S_{2}>S_{2}>1
$$

and thus $\ell(G)=\Omega(|G|)=\Omega(168)=5$.

Depth for groups of Lie type

Lemma. Let $G=L_{2}\left(p^{k}\right)$, with p an odd prime and k odd. Then

$$
\lambda(G)=\Omega(k)+\lambda\left(\mathrm{L}_{2}(p)\right)=\Omega(k)+c \text { with } c \in\{2,3,4\}
$$

Corollary. Given $n \in \mathbb{N}$, there is a simple group G with $\lambda(G)>n$.

Theorem (BLS, 2018). If G is a simple group of Lie type over $\mathbb{F}_{p^{k}}$ with p odd, then

$$
\lambda(G) \leqslant 3 \Omega(k)+36
$$

The same bound holds for $p=2$ if we exclude the groups

$$
\mathrm{L}_{2}\left(2^{k}\right),{ }^{2} B_{2}\left(2^{k}\right) \text { and } \mathrm{U}_{2 r+1}\left(2^{k}\right)
$$

Example. Let $G=\operatorname{Sp}_{2 r}\left(2^{k}\right)$, where $r \geqslant 4$ is even and $k \geqslant 1$. Then

$$
\lambda(G) \leqslant \Omega(k)+25 .
$$

■ Suppose $k>1$ and write $k=k_{1} \cdots k_{t}$ as a product of primes. Then

$$
G>S p_{2 r}\left(2^{k / k_{1}}\right)>S p_{2 r}\left(2^{k / k_{1} k_{2}}\right)>\cdots>\operatorname{Sp}_{2 r}(2)
$$

is unrefinable, so $\lambda(G) \leqslant \Omega(k)+\lambda\left(S p_{2 r}(2)\right)$ for all k.

- Finally, we observe that $S_{2 r+2}<\operatorname{Sp}_{2 r}(2)$ is maximal (embedded via the fully deleted permutation module over \mathbb{F}_{2}), so

$$
\lambda(G) \leqslant \Omega(k)+1+\lambda\left(S_{2 r+2}\right) \leqslant \Omega(k)+25 .
$$

A very similar argument gives $\lambda(G) \leqslant \Omega(k)+28$ if $r \geqslant 5$ is odd.

Example. Let $G=L_{2}\left(2^{k}\right)$ with $k \geqslant 3$ prime. Then

$$
\lambda(G)=2+\min \left\{\Omega\left(2^{k}-1\right), \Omega\left(2^{k}+1\right)\right\}
$$

Let H be a maximal subgroup of G. Then either
■ $H=\left(C_{2}\right)^{k}: C_{2^{k}-1}$ and $\lambda(H)=1+\Omega\left(2^{k}-1\right)$, or

- $H=D_{2\left(2^{k} \pm 1\right)}$ and $\lambda(H)=1+\Omega\left(2^{k} \pm 1\right)$.

Therefore

$$
\begin{aligned}
\lambda(G) & =1+\min \{\lambda(H): H<G \text { maximal }\} \\
& =2+\min \left\{\Omega\left(2^{k}-1\right), \Omega\left(2^{k}+1\right)\right\}
\end{aligned}
$$

whereas $3 \Omega(k)+36=39$.

Length and depth for sporadic simple groups

G	$\ell(G)$	$\lambda(G)$						
M_{11}	7	4	HS	12	5	Co_{3}	14	4
M_{12}	8	4	Suz	17	4	Fi_{22}	21	5
M_{22}	10	4	McL	12	5	Fi_{23}	25	4
M_{23}	11	3	Ru	17	5	$\mathrm{Fi}_{24}^{\prime}$	28	4
M_{24}	14	4	He	13	6	HN	19	5
$\mathrm{~J}_{1}$	6	4	Ly	15	4	Th	20	4
$\mathrm{~J}_{2}$	10	4	$\mathrm{O}^{\prime} \mathrm{N}$	13	5	\mathbb{B}	46	3
$\mathrm{~J}_{3}$	10	5	Co_{1}	26	5	\mathbb{M}	52	4
$\mathrm{~J}_{4}$	26	4	Co_{2}	22	4			

Example. $\mathbb{B}>C_{47}: C_{23}>C_{47}>1$ is an unrefinable chain of length 3

Small length

Lemma. If G is (non-abelian) simple, then $\lambda(G) \geqslant 3$ and $\ell(G) \geqslant 4$.

Proof. Suppose $G>H>1$ is unrefinable.
Then $H=C_{p}$ for a prime p and $N_{G}(H)=G$ or H, so either

- H is normal, or

■ $H \cap H^{g}=1$ for all $g \in G \backslash H$ and G is a Frobenius group on G / H.
In both cases, G has a proper nontrivial normal subgroup.

Question. Are there any simple groups G with $\ell(G)=4$?

A theorem of Heath-Brown

Question. Are there any simple groups G with $\ell(G)=4$?

Theorem (Janko, 1963). For G simple, $\ell(G)=4$ iff $G=A_{5}$, or
$G=\mathrm{L}_{2}(p), p$ prime, $\Omega(p \pm 1) \leqslant 3$ and $p \equiv \pm 3, \pm 13(\bmod 40)$:

$$
p \in\{13,43,67,173,283,317,653,787,907,1867, \ldots\}
$$

Question. Are there infinitely many?

Theorem (Heath-Brown, 2019)

There are infinitely many prime numbers p with $\Omega(p \pm 1) \leqslant 8$.

Corollary. There are infinitely many simple groups G with $\ell(G) \leqslant 9$

Small depth

Theorem (BLS, 2018). The simple G with $\lambda(G)=3$ are known.

Examples.

- $A_{2 p+1}$, where p is a Sophie Germain prime, $p \neq 3,5,11$
- ${ }^{2} B_{2}\left(2^{k}\right)$, where $2^{k}-1$ is a Mersenne prime
- $\mathrm{L}_{2}\left(3^{k}\right)$ with $k \geqslant 3$ prime: $\mathrm{L}_{2}\left(3^{k}\right)>A_{4}>C_{3}>1$ is unrefinable

Corollary. There are infinitely many simple G with $\lambda(G)=3$.

To determine the simple groups G with $\lambda(G)=4$, we need to know the simple groups with a simple maximal subgroup of depth $3 \ldots$

Length vs depth

Chain difference and ratio: $\operatorname{cd}(G)=\ell(G)-\lambda(G), \operatorname{cr}(G)=\ell(G) / \lambda(G)$
■ Iwasawa, 1941. $\operatorname{cd}(G)=0 \Longleftrightarrow \operatorname{cr}(G)=1 \Longleftrightarrow G$ supersoluble
■ Brewster, Ward \& Zimmermann, 1993. The simple G with $\operatorname{cd}(G)=1$ are known (A_{6} and $\mathrm{L}_{2}(p)$ for certain primes p)

■ BLS, 2019. For G simple, $\operatorname{cr}(G) \geqslant 5 / 4$ is best possible
Question. Do we have $\lambda(G)=O\left(\log _{2} \ell(G)\right)$ for all simple G ?
Example. $G=\mathrm{L}_{2}\left(2^{k}\right), k \geqslant 3$ prime

$$
\begin{aligned}
& \ell(G)=1+\ell(B)=k+1+\Omega\left(2^{k}-1\right) \\
& \lambda(G)=2+\min \left\{\Omega\left(2^{k} \pm 1\right)\right\}
\end{aligned}
$$

Very hard question. Do we have $\Omega\left(2^{k}-1\right) \leqslant \log _{2} k$ for primes $k \gg 0$?

Infinite groups

Let G be a connected algebraic group over an algebraically closed field K of characteristic $p \geqslant 0$. Here an unrefinable chain is a sequence

$$
G=G_{0}>G_{1}>\cdots>G_{t-1}>G_{t}=1
$$

where each G_{i} is a maximal closed connected subgroup of G_{i-1}.
Length $\ell(G)$: maximal length of an unrefinable chain.
Depth $\lambda(G)$: minimal length of an unrefinable chain.

Let N be a closed connected normal subgroup of G.

- $\lambda(G) \leqslant \ell(G) \leqslant \operatorname{dim} G$
- $\ell(G)=\ell(N)+\ell(G / N)$

■ $\lambda(G / N) \leqslant \lambda(G) \leqslant \lambda(N)+\lambda(G / N)$

Example. Let $G=\operatorname{SL}_{2}(K), B=\left\{\left({ }^{*}{ }_{*}^{*}\right)\right\}$ and $T=\left\{\left({ }^{*}{ }_{*}\right)\right\}$. Then

$$
G>B>T>1
$$

is unrefinable and $\lambda(G)=\ell(G)=\operatorname{dim} G=3$.

Theorem (BLS, 2019). Let G be connected, with radical $R(G)$ and unipotent radical $R_{u}(G)$. Let B be a Borel subgroup of $G / R_{u}(G)$.

■ G soluble $\Longrightarrow \ell(G)=\lambda(G)=\operatorname{dim} G$
■ $\ell(G)=\lambda(G) \Longrightarrow G$ soluble or $G / R(G)=A_{1}$
■ $\ell(G)=\operatorname{dim} R_{u}(G)+\operatorname{dim} B+\operatorname{rank}\left(G / R_{u}(G)\right)^{\prime}$

- G simple $\Longrightarrow \ell(G)=\operatorname{dim} B+\operatorname{rank} G$

$$
\ell(G)=\operatorname{dim} R_{u}(G)+\operatorname{dim} B+r, \text { where } r=\operatorname{rank}\left(G / R_{u}(G)\right)^{\prime}
$$

Sketch. Induction on $\operatorname{dim} G$.
■ $\operatorname{dim} G=1: G=U_{1}$ or $T_{1} \checkmark$

- Easy reduction to G simple.
- Let M be a maximal connected subgroup of G.

By [Borel-Tits, 1971], M is either parabolic or reductive.

- If $M=Q L$ is parabolic, then by additivity and induction

$$
\ell(M)=\operatorname{dim} Q+\operatorname{dim} B_{L}+\operatorname{rank} L^{\prime}=\operatorname{dim} B+r-1
$$

■ Similarly, if M is reductive, then induction gives

$$
\ell(M)=\operatorname{dim} B_{M}+\operatorname{rank} M^{\prime}<\operatorname{dim} B-1+\operatorname{rank} M^{\prime} \leqslant \operatorname{dim} B+r-1
$$

In contrast, $\lambda(G)$ depends on the characteristic $p \geqslant 0$ of the field K.
Example. If $G=E_{8}$ then

$$
\lambda(G)= \begin{cases}4 & \text { if } p=0 \text { or } p \geqslant 23 \\ 5 & \text { if } 5 \leqslant p \leqslant 19 \\ 7 & \text { if } p=3 \\ 9 & \text { if } p=2\end{cases}
$$

For instance, if $p=0$ or $p \geqslant 23$, then G has a maximal A_{1} subgroup, so

$$
G>A_{1}>U_{1} T_{1}>T_{1}>1
$$

is unrefinable. On the other hand, if $p=2$ then

$$
G>D_{8}>B_{4}>B_{2} B_{2}>B_{2}>A_{1} A_{1}>A_{1}>U_{1} T_{1}>T_{1}>1
$$

turns out to be an unrefinable chain of minimal length.

Theorem (BLS, 2019). Let G be a simple algebraic group.
■ If $p=0$, then $\lambda(G) \leqslant 6$, with equality if and only if $G=A_{6}$.
■ If $p>0$ and G is exceptional, then $\lambda(G) \leqslant 9$, with equality if and only if $G=E_{8}$ and $p=2$.

- If $p>0$ and G is classical of rank r, then

$$
\lambda(G) \leqslant 2\left(\log _{2} r\right)^{2}+12
$$

and $\lambda(G) \rightarrow \infty$ as $r \rightarrow \infty$.

The proofs rely heavily on work of Dynkin, Liebeck, Seitz, Testerman and others on the subgroup structure of simple algebraic groups.

Further directions: Lie groups

Let G be a compact connected Lie group and define $\ell(G)$ and $\lambda(G)$ as for algebraic groups.

Theorem (BLS, 2020). If G is simple, then

$$
\begin{aligned}
& \begin{array}{r|cccccccc}
G & \mathrm{SU}_{n} & \mathrm{Sp}_{n} & \mathrm{SO}_{n} & G_{2} & F_{4} & E_{6} & E_{7} & E_{8} \\
\hline \ell(G) & 2 n-2 & \frac{3}{2} n-1 & n+\left\lfloor\frac{n}{4}\right\rfloor-1 & 5 & 11 & 13 & 15 & 20
\end{array} \\
& \lambda(G)= \begin{cases}2 & G=\mathrm{SU}_{2} \\
4 & G=\mathrm{SU}_{n}(n \geqslant 4, n \neq 7), \mathrm{SO}_{7}, \mathrm{SO}_{2 r}(r \geqslant 4), E_{6} \\
5 & G=\mathrm{SU}_{7} \\
3 & \text { otherwise }\end{cases}
\end{aligned}
$$

In general, $\ell(G)=\lambda(G) \Longleftrightarrow G$ is a torus or $G^{\prime}=\mathrm{SU}_{2}$

Further directions: Algebras

Let A be a finite dimensional associative algebra over a field k. Define $\ell(A)$ and $\lambda(A)$ with respect to chains

$$
A=A_{0}>A_{1}>\cdots>A_{t-1}>A_{t}=0
$$

where each A_{i} is a maximal k-subalgebra of A_{i-1}.
Some results. (Sercombe \& Shalev, 2020)
■ Length is additive with respect to ideals

- $\ell\left(\mathrm{M}_{n}(k)\right)=n-1+\ell\left(\mathrm{D}_{n}(k)\right)+\ell\left(\mathrm{U}_{n}(k)\right)=2 n-1+\frac{1}{2} n(n-1)$

■ If D is a division algebra over k, then

$$
\ell\left(\mathrm{M}_{n}(D)\right)=n-1+n \cdot \ell(D)+\frac{1}{2} n(n-1) \cdot|D: k|
$$

- If A is nilpotent, then $\ell(A)=\lambda(A)=\operatorname{dim} A$

Algebras

Theorem (Sercombe \& Shalev, 2020).

- If $J(A)$ is the Jacobson radical and $A / J(A)=\prod_{i} \mathrm{M}_{n_{i}}\left(D_{i}\right)$, then

$$
\ell(A)=\operatorname{dim} J(A)+\sum_{i}\left(n_{i}-1+n_{i} \ell\left(D_{i}\right)+\frac{1}{2} n_{i}\left(n_{i}-1\right)\left|D_{i}: k\right|\right)
$$

- For a division algebra D over $k: \quad \lambda\left(M_{n}(D)\right) \leqslant 6 \log _{2} n+\lambda(D)$
- For $k=\bar{k}: \quad 3 \log _{2} n+1 \leqslant \lambda\left(\mathrm{M}_{n}(k)\right) \leqslant 6 \log _{2} n+1$

■ For $k=\bar{k}: \quad \ell(A)=\lambda(A) \Longleftrightarrow A / J(A)=\prod_{i} \mathrm{M}_{n_{i}}(k), n_{i} \leqslant 2$

