The length and depth of a group

Tim Burness

Interactions between group theory, number theory, combinatorics and geometry

Isaac Newton Institute, Cambridge March 17th 2020

Length

Let G be a finite group. An **unrefinable chain** is a sequence of subgroups

$$G = G_0 > G_1 > \cdots > G_{t-1} > G_t = 1$$

such that each G_i is maximal in G_{i-1} .

The **length** $\ell(G)$ is the **maximal** length of an unrefinable chain.

Let $\Omega(n)$ be the number of prime divisors of $n \in \mathbb{N}$ (incl. multiplicities).

$$\blacksquare \ \ell(G) \leqslant \Omega(|G|) \leqslant \log_2 |G|$$

- G soluble $\implies \ell(G) = \Omega(|G|)$: a composition series is unrefinable
- Length is **monotonic** and **additive**: if $H \leq G$ and $N \leq G$, then

$$\ell(H) \leqslant \ell(G)$$
 and $\ell(G) = \ell(N) + \ell(G/N)$

Connections

Minimal generation (Babai, 1980s).

Let $G \leq S_n$ be a permutation group and let $\{x_1, \ldots, x_d\}$ be a generating set for G of minimal size. Then

$$G = \langle x_1, \ldots, x_d \rangle > \langle x_1, \ldots, x_{d-1} \rangle > \cdots > \langle x_1 \rangle > 1$$

is strictly descending, so $d \leq \ell(G) \leq \ell(S_n)$.

Automorphisms of soluble groups (Solomon & Turull, 1980s).

Suppose H = G:A with |G|, |A| coprime and $C_G(A) = 1$.

- **Thompson, 1959.** If A has prime order, then G is nilpotent.
- CFSG \implies G is soluble, so let h(G) be the Fitting height of G.
- **Conjecture.** $h(G) \leq \ell(A)$

Depth

The **length** $\ell(G)$ is the **maximal** length of an unrefinable chain. The **depth** $\lambda(G)$ is the **minimal** length of an unrefinable chain.

- $\lambda(G) \leq \ell(G)$
- **I I**wasawa, 1941: $\ell(G) = \lambda(G) \iff G$ is supersoluble

\blacksquare Depth is **not** monotonic **nor** additive: if $N \leq G$, then

$$\lambda(G/N) \leqslant \lambda(G) \leqslant \lambda(N) + \lambda(G/N)$$

Example. Suppose $G = AGL_1(8) = (C_2)^3$: C_7 and $N = (C_2)^3$. Then $\lambda(G) = 2$, $\lambda(N) = 3$ and $\lambda(G/N) = 1$.

The length of S_n

Theorem (Cameron, Solomon & Turull, 1989).

$$\ell(S_n) = \lfloor (3n-1)/2 \rfloor - b(n)$$

where b(n) is the number of 1s in the base 2 expansion of n.

Example. $\ell(S_6) = \lfloor 17/2 \rfloor - 2 = 6$

$$S_6 > S_4 imes S_2 > (S_2 \wr S_2) imes S_2 > (S_2)^3 > (S_2)^2 > S_2 > 1$$

Need to show: $G < S_n$ maximal $\implies \ell(G) \leq \lfloor (3n-1)/2 \rfloor - b(n) - 1$

■ By induction on *n*, we may assume *G* acts primitively on $\{1, ..., n\}$

• Recall that
$$\ell(G) \leq \log_2 |G|$$

• O'Nan-Scott Theorem \rightsquigarrow G is almost simple. Now apply CFSG...

The depth of S_n

Theorem (B, Liebeck & Shalev, 2018). $\lambda(S_n) \leq 24$ for all *n*.

Sketch. Suppose $G = S_n$ and $n \ge 12$ is even. There are primes p, q, r s.t.

$$n = p + q + r + 3$$

by [Helfgott, 2013]. Set $H = S_{p+1} \times S_{q+1} \times S_{r+1} < G$.

If $t \ge 5$ is a prime and $t \notin \{7, 11, 23\}$ then there is an unrefinable chain

$$S_{t+1} > A_{t+1} > \mathsf{L}_2(t) > K$$

with $K \in \{A_4, S_4, A_5\}$. Here $\lambda(K) \leq 3$, so $\lambda(S_{t+1}) \leq 6$ and $\lambda(H) \leq 18$. Typically, $G > S_{p+q+2} \times S_{r+1} > H$ is unrefinable, so $\lambda(G) \leq 20$.

Length for groups of Lie type

Example. If $G = L_2(7)$ then $B = C_7:C_3$ and $\ell(B) + r = 3$, but

$$G > S_4 > S_2 \wr S_2 > S_2 \times S_2 > S_2 > 1$$

and thus $\ell(G) = \Omega(|G|) = \Omega(168) = 5$.

Depth for groups of Lie type

Lemma. Let $G = L_2(p^k)$, with p an odd prime and k odd. Then $\lambda(G) = \Omega(k) + \lambda(L_2(p)) = \Omega(k) + c$ with $c \in \{2, 3, 4\}$

Corollary. Given $n \in \mathbb{N}$, there is a simple group G with $\lambda(G) > n$.

Theorem (BLS, 2018). If G is a simple group of Lie type over \mathbb{F}_{p^k} with p odd, then

 $\lambda(G) \leqslant 3\Omega(k) + 36$

The same bound holds for p = 2 if we exclude the groups

 $L_2(2^k)$, ${}^2B_2(2^k)$ and $U_{2r+1}(2^k)$

Example. Let $G = \text{Sp}_{2r}(2^k)$, where $r \ge 4$ is even and $k \ge 1$. Then $\lambda(G) \le \Omega(k) + 25$.

• Suppose k > 1 and write $k = k_1 \cdots k_t$ as a product of primes. Then

$$G > \operatorname{Sp}_{2r}(2^{k/k_1}) > \operatorname{Sp}_{2r}(2^{k/k_1k_2}) > \cdots > \operatorname{Sp}_{2r}(2)$$

is unrefinable, so $\lambda(G) \leq \Omega(k) + \lambda(\operatorname{Sp}_{2r}(2))$ for all k.

■ Finally, we observe that S_{2r+2} < Sp_{2r}(2) is maximal (embedded via the fully deleted permutation module over F₂), so

$$\lambda(G) \leq \Omega(k) + 1 + \lambda(S_{2r+2}) \leq \Omega(k) + 25.$$

A very similar argument gives $\lambda(G) \leq \Omega(k) + 28$ if $r \geq 5$ is odd.

Example. Let $G = L_2(2^k)$ with $k \ge 3$ prime. Then $\lambda(G) = 2 + \min\{\Omega(2^k - 1), \Omega(2^k + 1)\}$

Let H be a maximal subgroup of G. Then either

•
$$H = (C_2)^k : C_{2^k - 1}$$
 and $\lambda(H) = 1 + \Omega(2^k - 1)$, or
• $H = D_{2(2^k \pm 1)}$ and $\lambda(H) = 1 + \Omega(2^k \pm 1)$.

Therefore

$$\lambda(G) = 1 + \min\{\lambda(H) : H < G \text{ maximal}\}$$
$$= 2 + \min\{\Omega(2^k - 1), \Omega(2^k + 1)\}$$

whereas $3\Omega(k) + 36 = 39$.

Length and depth for sporadic simple groups

G	$\ell(G)$	$\lambda(G)$						
M_{11}	7	4	HS	12	5	Co ₃	14	4
M_{12}	8	4	Suz	17	4	Fi ₂₂	21	5
M_{22}	10	4	McL	12	5	Fi ₂₃	25	4
M_{23}	11	3	Ru	17	5	Fi'_{24}	28	4
M_{24}	14	4	He	13	6	ΗN	19	5
J_1	6	4	Ly	15	4	Th	20	4
J_2	10	4	O'N	13	5	$\mathbb B$	46	3
J_3	10	5	Co_1	26	5	\mathbb{M}	52	4
J_4	26	4	Co ₂	22	4			

Example. $\mathbb{B} > C_{47}$: $C_{23} > C_{47} > 1$ is an unrefinable chain of length 3

Small length

Lemma. If G is (non-abelian) simple, then $\lambda(G) \ge 3$ and $\ell(G) \ge 4$.

Proof. Suppose G > H > 1 is unrefinable.

Then $H = C_p$ for a prime p and $N_G(H) = G$ or H, so either

- \blacksquare *H* is normal, or
- $H \cap H^g = 1$ for all $g \in G \setminus H$ and G is a Frobenius group on G/H.

In both cases, G has a proper nontrivial normal subgroup.

Question. Are there any simple groups G with $\ell(G) = 4$?

A theorem of Heath-Brown

Question. Are there any simple groups G with $\ell(G) = 4$?

Theorem (Janko, 1963). For G simple, $\ell(G) = 4$ iff $G = A_5$, or $G = L_2(p)$, p prime, $\Omega(p \pm 1) \leq 3$ and $p \equiv \pm 3, \pm 13 \pmod{40}$:

 $p \in \{13, 43, 67, 173, 283, 317, 653, 787, 907, 1867, \ldots\}$

Question. Are there infinitely many?

Theorem (Heath-Brown, 2019)

There are infinitely many prime numbers p with $\Omega(p \pm 1) \leq 8$.

Corollary. There are infinitely many simple groups *G* with $\ell(G) \leq 9$

Small depth

Theorem (BLS, 2018). The simple G with $\lambda(G) = 3$ are known.

Examples.

- A_{2p+1} , where p is a Sophie Germain prime, $p \neq 3, 5, 11$
- ${}^{2}B_{2}(2^{k})$, where $2^{k} 1$ is a Mersenne prime
- $L_2(3^k)$ with $k \ge 3$ prime: $L_2(3^k) > A_4 > C_3 > 1$ is unrefinable

Corollary. There are infinitely many simple G with $\lambda(G) = 3$.

To determine the simple groups G with $\lambda(G) = 4$, we need to know the simple groups with a simple maximal subgroup of depth 3...

Length vs depth

Chain difference and ratio: $cd(G) = \ell(G) - \lambda(G)$, $cr(G) = \ell(G)/\lambda(G)$

- **I I**wasawa, 1941. $cd(G) = 0 \iff cr(G) = 1 \iff G$ supersoluble
- **Brewster, Ward & Zimmermann, 1993.** The simple G with cd(G) = 1 are known (A_6 and $L_2(p)$ for certain primes p)
- **BLS, 2019.** For G simple, $cr(G) \ge 5/4$ is best possible

Question. Do we have $\lambda(G) = O(\log_2 \ell(G))$ for all simple G?

Example. $G = L_2(2^k)$, $k \ge 3$ prime

$$\ell(G) = 1 + \ell(B) = k + 1 + \Omega(2^{k} - 1)$$
$$\lambda(G) = 2 + \min\{\Omega(2^{k} \pm 1)\}$$

Very hard question. Do we have $\Omega(2^k - 1) \leq \log_2 k$ for primes $k \gg 0$?

Infinite groups

Let G be a connected algebraic group over an algebraically closed field K of characteristic $p \ge 0$. Here an **unrefinable chain** is a sequence

$$G = G_0 > G_1 > \cdots > G_{t-1} > G_t = 1$$

where each G_i is a **maximal closed connected** subgroup of G_{i-1} .

Length $\ell(G)$: maximal length of an unrefinable chain.

Depth $\lambda(G)$: **minimal** length of an unrefinable chain.

Let N be a closed connected normal subgroup of G.

$$\lambda(G) \leqslant \ell(G) \leqslant \dim G$$

$$\bullet \ \ell(G) = \ell(N) + \ell(G/N)$$

•
$$\lambda(G/N) \leq \lambda(G) \leq \lambda(N) + \lambda(G/N)$$

Example. Let $G = SL_2(K)$, $B = \{(*, *)\}$ and $T = \{(*, *)\}$. Then

is unrefinable and $\lambda(G) = \ell(G) = \dim G = 3$.

Theorem (BLS, 2019). Let G be connected, with radical R(G) and unipotent radical $R_u(G)$. Let B be a Borel subgroup of $G/R_u(G)$.

• G soluble
$$\implies \ell(G) = \lambda(G) = \dim G$$

•
$$\ell(G) = \lambda(G) \implies G$$
 soluble or $G/R(G) = A_1$

$$\ell(G) = \dim R_u(G) + \dim B + \operatorname{rank} (G/R_u(G))'$$

• G simple
$$\implies \ell(G) = \dim B + \operatorname{rank} G$$

$$\ell(G) = \dim R_u(G) + \dim B + r$$
, where $r = \operatorname{rank} (G/R_u(G))'$

Sketch. Induction on dim *G*.

- dim G = 1: $G = U_1$ or $T_1 \checkmark$
- Easy reduction to *G* simple.
- Let *M* be a maximal connected subgroup of *G*.
 By [Borel-Tits, 1971], *M* is either parabolic or reductive.
- If M = QL is parabolic, then by additivity and induction

$$\ell(M) = \dim Q + \dim B_L + \operatorname{rank} L' = \dim B + r - 1$$

■ Similarly, if *M* is reductive, then induction gives

 $\ell(M) = \dim B_M + \operatorname{rank} M' < \dim B - 1 + \operatorname{rank} M' \leqslant \dim B + r - 1$

In contrast, $\lambda(G)$ depends on the characteristic $p \ge 0$ of the field K. Example. If $G = E_8$ then

$$\lambda(G) = \begin{cases} 4 & \text{if } p = 0 \text{ or } p \ge 23\\ 5 & \text{if } 5 \le p \le 19\\ 7 & \text{if } p = 3\\ 9 & \text{if } p = 2 \end{cases}$$

For instance, if p = 0 or $p \ge 23$, then G has a maximal A_1 subgroup, so

$$G > A_1 > U_1 T_1 > T_1 > 1$$

is unrefinable. On the other hand, if p = 2 then

$$G > D_8 > B_4 > B_2 B_2 > B_2 > A_1 A_1 > A_1 > U_1 T_1 > T_1 > 1$$

turns out to be an unrefinable chain of minimal length.

Theorem (BLS, 2019). Let G be a simple algebraic group.

- If p = 0, then $\lambda(G) \leq 6$, with equality if and only if $G = A_6$.
- If p > 0 and G is exceptional, then $\lambda(G) \leq 9$, with equality if and only if $G = E_8$ and p = 2.

If p > 0 and G is classical of rank r, then

 $\lambda(G) \leqslant 2(\log_2 r)^2 + 12$

and $\lambda(G) \to \infty$ as $r \to \infty$.

The proofs rely heavily on work of **Dynkin**, **Liebeck**, **Seitz**, **Testerman** and others on the subgroup structure of simple algebraic groups.

Further directions: Lie groups

Let G be a **compact connected** Lie group and define $\ell(G)$ and $\lambda(G)$ as for algebraic groups.

Theorem (BLS, 2020). If G is simple, then

$$\frac{G \mid SU_n \quad Sp_n \quad SO_n \quad G_2 \quad F_4 \quad E_6 \quad E_7 \quad E_8}{\ell(G) \mid 2n-2 \quad \frac{3}{2}n-1 \quad n+\lfloor\frac{n}{4}\rfloor-1 \quad 5 \quad 11 \quad 13 \quad 15 \quad 20}$$

$$\lambda(G) = \begin{cases} 2 \quad G = SU_2 \\ 4 \quad G = SU_n \ (n \ge 4, \ n \ne 7), \ SO_7, \ SO_{2r} \ (r \ge 4), \ E_6 \\ 5 \quad G = SU_7 \\ 3 \quad \text{otherwise} \end{cases}$$

In general, $\ell(G) = \lambda(G) \iff G$ is a torus or $G' = \mathsf{SU}_2$

Further directions: Algebras

Let A be a finite dimensional associative algebra over a field k. Define $\ell(A)$ and $\lambda(A)$ with respect to chains

$$A = A_0 > A_1 > \cdots > A_{t-1} > A_t = 0$$

where each A_i is a **maximal** k-subalgebra of A_{i-1} .

Some results. (Sercombe & Shalev, 2020)

Length is additive with respect to ideals

•
$$\ell(\mathsf{M}_n(k)) = n - 1 + \ell(\mathsf{D}_n(k)) + \ell(\mathsf{U}_n(k)) = 2n - 1 + \frac{1}{2}n(n-1)$$

If D is a division algebra over k, then

$$\ell(M_n(D)) = n - 1 + n \cdot \ell(D) + \frac{1}{2}n(n-1) \cdot |D:k|$$

• If A is nilpotent, then $\ell(A) = \lambda(A) = \dim A$

Algebras

Theorem (Sercombe & Shalev, 2020).

• If J(A) is the Jacobson radical and $A/J(A) = \prod_i M_{n_i}(D_i)$, then

$$\ell(A) = \dim J(A) + \sum_{i} \left(n_i - 1 + n_i \ell(D_i) + \frac{1}{2} n_i (n_i - 1) |D_i : k| \right)$$

• For a division algebra D over k: $\lambda(M_n(D)) \leq 6 \log_2 n + \lambda(D)$

For $k = \overline{k}$: $3 \log_2 n + 1 \leq \lambda(M_n(k)) \leq 6 \log_2 n + 1$

• For $k = \overline{k}$: $\ell(A) = \lambda(A) \iff A/J(A) = \prod_i M_{n_i}(k), n_i \leqslant 2$