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Length

Let G be a finite group. An unrefinable chain is a sequence of subgroups
CG=Gy >G> ->G_1>G =1

such that each G; is maximal in G;_1.

The length ¢(G) is the maximal length of an unrefinable chain.

Let (n) be the number of prime divisors of n € N (incl. multiplicities).
m ((G) < Q/G]) < log, |G
m G soluble = ¢(G) = Q(|G|): a composition series is unrefinable
m Length is monotonic and additive: if H < G and N < G, then

U(H) < 0(G) and £(G) = £(N) + £(G/N)



Connections
Minimal generation (Babai, 1980s).

Let G < S, be a permutation group and let {x1,...,x4} be a generating
set for G of minimal size. Then

G=(Xt,....Xd) > (X1,..., Xd—1) > -+ > (x1) > 1
is strictly descending, so d < 4(G) < 4(Sp).
Automorphisms of soluble groups (Solomon & Turull, 1980s).
Suppose H = G:A with |G|, |A| coprime and Cg(A) = 1.
m Thompson, 1959. If A has prime order, then G is nilpotent.

m CFSG = G is soluble, so let h(G) be the Fitting height of G.
m Conjecture. h(G) < ¢(A)



Depth

The length ¢(G) is the maximal length of an unrefinable chain.

The depth \(G) is the minimal length of an unrefinable chain.

m \(G) <{G)
m lwasawa, 1941: /(G) = \(G) <= G is supersoluble

m Depth is not monotonic nor additive: if N < G, then

A(G/N) < MG) < A(N) + A(G/N)

Example. Suppose G = AGL1(8) = (()3:C7 and N = (G)3.
Then A(G) =2, A(N) =3 and A\(G/N) = 1.



The length of S,

Theorem (Cameron, Solomon & Turull, 1989).
(Sn) = [(3n = 1)/2] — b(n)

where b(n) is the number of 1s in the base 2 expansion of n.

Example. ¢(S¢) = |17/2] —2=6

56>54><52>(52252)X52>(52)3>(52)2>52>1

Need to show: G < S, maximal = ¢(G) < [(3n—1)/2| — b(n) — 1
m By induction on n, we may assume G acts primitively on {1,...,n}
m Recall that 4(G) < log, |G|

m O’Nan-Scott Theorem ~~ G is almost simple. Now apply CFSG...



The depth of S,

[ Theorem (B, Liebeck & Shalev, 2018). \(S,) < 24 for all n.

Sketch. Suppose G = S, and n > 12 is even. There are primes p, g, r s.t.
n=p+q+r+3
by [Helfgott, 2013]. Set H = Sp41 X Sg41 X Sr41 < G.
If t >5is a prime and t ¢ {7,11,23} then there is an unrefinable chain
St41 > Arp1 > La(t) > K
with K € {Ag4, S4,As}. Here A(K) < 3, so A(St+1) < 6 and A\(H) < 18.

Typically, G > Spig+2 X Sr41 > H is unrefinable, so A\(G) < 20.



Length for groups of Lie type
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Theorem (Solomon & Turull, 1991).
Let G be a simple group of Lie type over Fg with twisted Lie rank r
(e.g. G =Lr11(q) or Uzr1a(q)).

m If g is even (and G # Uz,11(2)), then

UG)=4B)+r=Q(B|) +r
where B is a Borel subgroup of G.

m Same conclusion holds if g = p* is odd and k = k(p) > 0.

Example. If G = Ly(7) then B = (G7:C3 and 4(B) + r = 3, but

G>5,>515>5%x5>5>1

and thus ¢(G) = Q(|G|) = ©(168) = 5.




Depth for groups of Lie type

Lemma. Let G = Ly(p*), with p an odd prime and k odd. Then

AG) = Q(k) + A(L2(p)) = Q(k) + ¢ with c € {2,3,4}

Corollary. Given n € N, there is a simple group G with A(G) > n.

Theorem (BLS, 2018). If G is a simple group of Lie type over I
with p odd, then

A(G) < 3Q(k) + 36

The same bound holds for p = 2 if we exclude the groups

L2(25), 2B>(2%) and Uz,11(2%)



Example. Let G = Sp2r(2k), where r > 4 is even and kK > 1. Then

A(G) < Q(k) + 25.

B Suppose k > 1 and write k = ky - - - k; as a product of primes. Then
G > Sp2r(2k/k1) > Sp2r(2k/k1k2) > > Sp2r(2)
is unrefinable, so A\(G) < Q(k) + A(Sp,,(2)) for all k.

m Finally, we observe that Sy, 12 < Sp,,(2) is maximal (embedded via
the fully deleted permutation module over F3), so

AMG) < Q(k) + 14 M(Sar+2) < Q(k) + 25.

A very similar argument gives A\(G) < Q(k) +28 if r > 5 is odd.



Example. Let G = L»(2*) with k > 3 prime. Then

AMG) =2+ min{Q(2X — 1), Q(2k + 1)}

Let H be a maximal subgroup of G. Then either
mH=(G)Cu_;and A(H)=1+Q(2% -1), or
mH= D2(2ki1) and )\(H) =1 + Q(2k + 1)

Therefore

AG) =14 min{\(H) : H < G maximal}
=2+ min{Q(2 —1),Q(2* + 1)}

whereas 3Q(k) + 36 = 39.



Length and depth for sporadic simple groups

G (G) MN6)
M11 7 4 HS 12 5 CO3 14 4
M12 8 4 Suz 17 4 Fi22 21 5
M22 10 4 McL 12 5 Fi23 25 4
My; 11 3 Ru 17 5 Fib, 28 4
Moy 14 4 He 13 6 HN 19 5
T 6 4 Ly 15 4 Th 20 4
Jo 10 4 O'N 13 5 B 46 3
J3 10 5 Co; 26 5 M 52 4
J4 26 4 C02 22 4

Example. B > (C47: (o3 > C47 > 1 is an unrefinable chain of length 3



Small length

Lemma. If G is (non-abelian) simple, then A\(G) > 3 and ¢(G) > 4.

Proof. Suppose G > H > 1 is unrefinable.

Then H = C, for a prime p and Ng(H) = G or H, so either

m H is normal, or

m HNH& =1forall g€ G\ Hand G is a Frobenius group on G/H.

In both cases, G has a proper nontrivial normal subgroup.

Question. Are there any simple groups G with ¢(G) = 47




A theorem of Heath-Brown

Question. Are there any simple groups G with ¢(G) = 47

Theorem (Janko, 1963). For G simple, {(G) = 4 iff G = As, or
G = La(p), p prime, Q(p+1) < 3 and p = £3,+13 (mod 40):

p € {13,43,67,173,283,317, 653, 787,907, 1867, ...}

Question. Are there infinitely many?

Theorem (Heath-Brown, 2019)
There are infinitely many prime numbers p with Q(p £1) < 8.

Corollary. There are infinitely many simple groups G with ¢(G) < 9



Small depth

[ Theorem (BLS, 2018). The simple G with A\(G) = 3 are known. ]

Examples.
m Ao, i1, where pis a Sophie Germain prime, p # 3,5,11
m 2B,(2K), where 2K — 1 is a Mersenne prime

m L>(3K) with k > 3 prime: L»(3%) > Ay > G3 > 1 is unrefinable

Corollary. There are infinitely many simple G with A(G) = 3.

To determine the simple groups G with A\(G) = 4, we need to know
the simple groups with a simple maximal subgroup of depth 3...




Length vs depth
Chain difference and ratio: cd(G) = 4(G) — A(G), cr(G) = ¢(G)/\(G)
m lwasawa, 1941. cd(G) =0 <= cr(G) =1 <= G supersoluble

m Brewster, Ward & Zimmermann, 1993. The simple G with
cd(G) =1 are known (Ag and La(p) for certain primes p)

m BLS, 2019. For G simple, cr(G) > 5/4 is best possible
Question. Do we have A\(G) = O(log, ¢(G)) for all simple G?
Example. G = L(2%), k > 3 prime

U(G)=1+4B)=k+1+Q(2"-1)
AMG) =24 min{Q(2~ + 1)}

Very hard question. Do we have Q(2% — 1) < log, k for primes k > 0?



Infinite groups

Let G be a connected algebraic group over an algebraically closed field K
of characteristic p > 0. Here an unrefinable chain is a sequence

G=Gy >G> ->G_1>G =1
where each G; is a maximal closed connected subgroup of G;_j.

Length ¢(G): maximal length of an unrefinable chain.

Depth A(G): minimal length of an unrefinable chain.
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Let N be a closed connected normal subgroup of G.
m AG) </{G) <dmG
m/(G)={¢N)+L(G/N)

B A(G/N) < A(G) < AN) + A(G/N)




Example. Let G =SLy(K), B={(*%)}and T ={(*,)}. Then

G>B>T>1

is unrefinable and A\(G) = ¢(G) = dim G = 3.

Theorem (BLS, 2019). Let G be connected, with radical R(G) and
unipotent radical R,(G). Let B be a Borel subgroup of G/R,(G).

m G soluble = /(G) = A(G) =dimG
m /(G) = \(G) = G soluble or G/R(G) = A;
m ((G) =dimR,(G) +dim B + rank (G/R,(G))

m G simple = /(G) =dimB +rank G




¢(G) =dim R,(G) + dim B + r, where r = rank (G/R,(G))’

Sketch. Induction on dim G.
mdmG=1: G=U10I’T1\/

m Easy reduction to G simple.

m Let M be a maximal connected subgroup of G.

By [Borel-Tits, 1971], M is either parabolic or reductive.
m If M = QL is parabolic, then by additivity and induction
/(M) =dim Q +dim B, +rank ' =dimB +r —1
m Similarly, if M is reductive, then induction gives

(M) =dim By +rank M <dimB —1+rank M <dimB +r —1



In contrast, A(G) depends on the characteristic p > 0 of the field K.

Example. If G = Eg then

4 ifp=0orp=>23
) 5 if5<p<19
MG) = 7 ifp=3
9 ifp=2

For instance, if p =0 or p > 23, then G has a maximal A; subgroup, so
G>A>UTi>T1>1
is unrefinable. On the other hand, if p = 2 then
G>Dg>By>BBy>B,>A1A1 >A1 > U171 >T1 > 1

turns out to be an unrefinable chain of minimal length.



Theorem (BLS, 2019). Let G be a simple algebraic group.
m If p=0, then A\(G) < 6, with equality if and only if G = As.

m If p >0 and G is exceptional, then A\(G) < 9, with equality if
and only if G = Eg and p = 2.

m If p > 0 and G is classical of rank r, then
MG) < 2(log, r)? + 12

and A\(G) — oo as r — oo.

The proofs rely heavily on work of Dynkin, Liebeck, Seitz, Testerman
and others on the subgroup structure of simple algebraic groups.



Further directions: Lie groups

Let G be a compact connected Lie group and define ¢(G) and A\(G) as
for algebraic groups.

Theorem (BLS, 2020). If G is simple, then

G ‘ SUn Sp,, SO,, G2 F4 E(, E7 Eg
(G)|2n-2 3n—1 n+[2]-1 5 11 13 15 20
2 G =5SU,
/\(G) _ 4 G = SUn (n 2 4, n ?é 7), SO77 SOzr (r 2 4), E6
5 G =5SUy
3  otherwise

In general, ¢{(G) = \(G) <= G is a torus or G’ = SU,




Further directions: Algebras

Let A be a finite dimensional associative algebra over a field k. Define
¢(A) and A(A) with respect to chains

A=Ay >A1 > - >A_1>A=0
where each A; is a maximal k-subalgebra of A;_;.

Some results. (Sercombe & Shalev, 2020)

m Length is additive with respect to ideals
m ((Mp(k)) =n—14£4(Dn(k)) 4+ €(Up(k)) =2n—1+ %n(n -1)

m If D is a division algebra over k, then

(M(D)) = n—14n-UD) + Sn(n—1)-|D: K

m If Ais nilpotent, then /(A) = A\(A) =dimA



Algebras

7

Theorem (Sercombe & Shalev, 2020).

m If J(A) is the Jacobson radical and A/J(A) = [[; Mp,(D;), then

((A) = dim J(A +Z<n,—1+n£D)+ ni(nj — 1)|D,-:k\>

m For a division algebra D over k:  A(M,(D)) < 6log, n+ A(D)
m For k=k: 3logyn+1< AN My(k)) <6logyn+1

mFork=k ((A)=\A) < A/JA) =[], Mp (k). ni <2




