Fixed point ratios in actions of finite classical groups, III

Timothy C. Burness St John's College Oxford OX1 3JP England

May 7, 2006

Abstract

This is the third in a series of four papers on fixed point ratios in non-subspace actions of finite classical groups. Our main result states that if G is a finite almost simple classical group and Ω is a non-subspace G-set then either $\operatorname{fpr}(x) \lesssim |x^G|^{-\frac{1}{2}}$ for all elements $x \in G$ of prime order, or (G,Ω) is one of a small number of known exceptions. In this paper we consider the case where G_{ω} is contained in one of the Aschbacher families \mathscr{C}_2 or \mathscr{C}_3 .

1 Introduction

Let G be a finite almost simple classical group over \mathbb{F}_q , with socle G_0 and natural module V. Recall from [3] that a subgroup H of G is said to be a non-subspace subgroup if $H \cap G_0$ is contained in a maximal subgroup of G_0 which acts irreducibly on V. A transitive action of G on a set Ω is a non-subspace action if the point stabilizer G_{ω} is a non-subspace subgroup of G. Our main result, which we shall refer to as Theorem 1, states that if Ω is a faithful, transitive, non-subspace G-set then

$$fpr(x) < |x^G|^{-\frac{1}{2} + \frac{1}{n} + \iota}$$

for all elements $x \in G$ of prime order, where either $\iota = 0$ or (G_0, Ω, ι) belongs to a short list of known exceptions (see [3, Table 1]). Here fpr(x) denotes the fixed point ratio of x, i.e. the proportion of points in Ω which are fixed by x. In almost all cases $n = \dim V$ (see Remark 1.2).

In order to prove this theorem, we may assume G acts primitively on Ω and therefore apply Aschbacher's well-known result on the subgroup structure of finite classical groups. In [1], eight collections of subgroups of G are defined, labelled \mathscr{C}_i for $1 \leq i \leq 8$, and it is shown that if H is a maximal subgroup of G not containing G_0 then either H is contained in one of the \mathscr{C}_i collections, or it belongs to a family \mathscr{S} of almost simple groups which act irreducibly on V (a small additional collection \mathscr{N} arises when G_0 is $\operatorname{Sp}_4(q)'$ (q even) or $\operatorname{P}\Omega_8^+(q)$). A detailed description of these subgroup collections is given in [9] (also see [4, §3.1]).

This is the third in a series of four papers. In the introductory note [3] we provided some background and motivation, stated our main results and described two further applications of Theorem 1 to the study of primitive permutation groups. In [4] we established Theorem 1 when the stabilizer G_{ω} is a non-subspace subgroup contained in a member of one of the collections \mathscr{C}_i , where $4 \leq i \leq 8$. In this paper we assume G_{ω} belongs to \mathscr{C}_2 or \mathscr{C}_3 . Roughly speaking, the subgroups in \mathscr{C}_2 are the stabilizers of decompositions $V = \bigoplus_i V_i$, where dim $V_i = m$, while the stabilizers of extension fields of \mathbb{F}_q of prime index comprise \mathscr{C}_3 . Again, we refer the reader to [9, §§4.2-3] for further details. We complete the proof of Theorem 1 in [5] when we consider the subgroups in the remaining collections \mathscr{S} and \mathscr{N} .

E-mail address: burness@maths.ox.ac.uk

G_0	type of H	ι
$\operatorname{PSp}_n(q)$	$\operatorname{Sp}_{n/2}(q) \wr S_2$	1/n
$PSp_n(q)$	$\operatorname{Sp}_{n/2}(q^2)$	1/(n+2)
$P\Omega_n^{\epsilon}(q)$	$\operatorname{GL}_{n/2}^{\epsilon'}(q)$	1/(n-2)
$SU_4(2)$	$\operatorname{GU}_1(2) \wr S_4$.010
$\Omega_{8}^{+}(2)$	$O_4^-(2) \wr S_2$.001
$SL_4(2)$	$GL_2(4)$.020

Table 1.1: The exceptional cases with $\iota > 0$

Theorem 1.1. Let G be a finite almost simple classical group acting transitively and faithfully on a set Ω with point stabilizer $G_{\omega} \leq H$, where H is a maximal non-subspace subgroup of G in one of the Aschbacher collections \mathscr{C}_2 or \mathscr{C}_3 . Then

$$fpr(x) < |x^G|^{-\frac{1}{2} + \frac{1}{n} + \iota}$$

for all elements $x \in G$ of prime order, where $\iota = 0$ or (G_0, H, ι) is listed in Table 1.1, where G_0 denotes the socle of G.

Remark 1.2. The integer n = n(G) in the statement of Theorem 1.1 is defined as follows: if $G_0 \in \{\operatorname{Sp}_4(2)', \operatorname{SL}_3(2)\}$ then n = 2, otherwise n is defined to be the minimal degree of a non-trivial irreducible $K\widehat{G}_0$ -module, where \widehat{G}_0 is a covering group of G_0 and K is the algebraic closure of \mathbb{F}_q . The type of H referred to in Table 1.1 provides an approximate group-theoretic structure for $H \cap \operatorname{PGL}(V)$.

Notation. We follow [9] in our notation for classical groups. In particular, we write $\mathrm{PSL}_n^{\epsilon}(q)$ for $\mathrm{PSL}_n(q)$ and $\mathrm{PSU}_n(q)$ if $\epsilon = +$ and - respectively. Other notation and terminology is consistent with the earlier papers [3] and [4]. In particular, if $H \leq G$ and $x \in G$ then we define

$$f(x,H) := \frac{\log|x^G \cap H|}{\log|x^G|}$$

and thus Theorem 1 states that $f(x, H) < 1/2 + 1/n + \iota$ when H is a non-subspace subgroup and x has prime order (see [4, (1)]). We label representatives for conjugacy classes of unipotent involutions in symplectic and orthogonal groups as in [2] and our terminology for graph automorphisms is explained in [4, 3.47]. The associated partition of an arbitrary unipotent element $x \in \operatorname{PGL}(V)$ is the partition of the integer dim V which corresponds to the Jordan normal form of x on V (see [4, §3.3]). Its semisimple analogue, the associated σ -tuple, is defined in [4, 3.27]. In addition, for $x \in \operatorname{PGL}(V)$ we define $\nu(x)$ to be the codimension of the largest eigenspace of x on V (see [4, 3.16]). For any $r \in \mathbb{N}$ and subset $S \subseteq X$ of a finite group X we write $i_r(S)$ for the number of elements of order r in S.

2 Proof of Theorem 1.1: $H \in \mathcal{C}_2$

The subgroups in \mathscr{C}_2 are the stabilizers of m-decompositions $V = V_1 \oplus \cdots \oplus V_t$ of the natural G_0 -module, where $t \geq 2$ and $\dim V_i = m$. The particular cases we shall consider in this section are listed in Table 2.1; in the last column we record some necessary conditions for the existence and maximality of H in G (see [9, p.100 and Tables 3.5.A-H]). For convenience, we postpone the analysis of totally singular n/2-decompositions to the next section (see cases (ii) and (vii)-(ix) in Table 3.1).

	G_0	type of H	conditions
(i)	$\operatorname{PSL}_n^{\epsilon}(q)$	$\operatorname{GL}_{n/t}^{\epsilon}(q) \wr S_t$	$(n,q) \neq (2t,2), q > 3 \text{ if } (n,\epsilon) = (t,+)$
(ii)	$PSp_n(q)$	$\operatorname{Sp}_{n/t}(q) \wr S_t$	q > 2 if $n = 2t$
(iii)	$P\Omega_n^{\epsilon}(q)$	$O_1(q) \wr S_n$	$q = p \geqslant 3$, $\epsilon = -$ if and only if $n \equiv 2 (4)$ and $q \equiv 3 (4)$
(iv)	$P\Omega_n^{\epsilon}(q)$	$\mathrm{O}_{n/t}^{\epsilon'}(q) \wr S_t$	$n \geqslant 2t$, q odd if n/t odd, $(n/t, q) \neq (3, 3)$;
		,	if $\epsilon = +$: $q > 4$ if $(\epsilon', n/t) = (+, 2)$, $(\epsilon', n/t, q) \neq (+, 4, 2)$,
			$(\epsilon')^t = + \text{ if } n/t \text{ even};$
			if $\epsilon = -$: $\epsilon' \in \{\circ, -\}$, t is odd if n/t even
(v)	$P\Omega_n^{\epsilon}(q)$	$O_{n/2}(q) \wr S_2$	$n/2$ odd, $q \equiv 2 + \epsilon (4)$

Table 2.1: The collection \mathscr{C}_2

2.1 Preliminary results

Let \bar{G} be a simple classical algebraic group over an algebraically closed field K of characteristic $p \geqslant 0$, with natural module \bar{V} of dimension n. Let $\bar{H} \in \mathscr{C}_2$ be a maximal closed subgroup of \bar{G} , say \bar{H} is the stabilizer in \bar{G} of a decomposition $\bar{V} = V_1 \oplus \cdots \oplus V_t$ and assume that each V_i is non-degenerate if \bar{G} is a symplectic or orthogonal group. If $x \in \bar{G}$ has prime order then [6, Theorem 1] states that

$$\dim(x^{\bar{G}} \cap \bar{H}) \leqslant \left(\frac{1}{2} + \delta\right) \dim x^{\bar{G}},$$

where $\delta = 1/n$ if $\bar{G} = \mathrm{Sp}_n(K)$ and t = 2, otherwise $\delta = 0$ (note that the entry '1/(2n+2)' appearing in the final column of [6, Table 1] should be '1/2n'). In fact, as the next proposition demonstrates, much better bounds hold when t > 2.

Proposition 2.1. Let $\bar{H} \in \mathcal{C}_2$ be the stabilizer in \bar{G} of a decomposition $\bar{V} = V_1 \oplus \cdots \oplus V_t$ and assume that each V_i is non-degenerate if \bar{G} is a symplectic or orthogonal group. Then

$$\dim(x^{\bar{G}} \cap \bar{H}) \leqslant \left(\frac{1}{t} + \zeta\right) \dim x^{\bar{G}}$$

for all elements $x \in \bar{G}$ of prime order, where $\zeta = 0$ unless \bar{G} is symplectic, when $\zeta = (1 + \alpha)/(n + 2\alpha)$ and $\alpha = 1 - \delta_{2,t}$.

Proof. Let us start by assuming $\bar{G} = \mathrm{PSp}_n(K)$, so $\bar{H} = (\mathrm{Sp}_m(K) \wr S_t) \cap \bar{G}$, where m = n/t. Let $x \in \bar{G}$ be an element of prime order r and note that $x^{\bar{G}} \cap \bar{H}$ is a finite union of \bar{B} -classes, where $\bar{B} = (\mathrm{Sp}_m(K)^t) \cap \bar{G} = \bar{H}^0$. In particular, replacing x by a suitable \bar{G} -conjugate, we may assume that $\dim(x^{\bar{G}} \cap \bar{H}) = \dim x^{\bar{B}}$.

First suppose x is semisimple and r is odd, in which case x is the image (modulo scalars) of an element $\hat{x} = (x_1, \dots, x_t)\pi \in \operatorname{Sp}_m(K)^t\pi$, where $\pi \in S_t$ has cycle-shape $(r^h, 1^{t-hr})$ for some $h \geq 0$. We claim that

$$\dim(x^{\bar{G}} \cap \bar{H}) \leqslant \left(\frac{1}{t} + \frac{1+\alpha}{n+2}\right) \dim x^{\bar{G}}.\tag{1}$$

Now, if π induces the permutation $\prod_{i=1}^h ((i-1)r+1\dots ir)$ on coordinates then the proof of [10, 4.5] implies that \hat{x} is $\operatorname{Sp}_m(K)^t$ -conjugate to $(I_m, \dots, I_m, x_{hr+1}, \dots, x_t)\pi$, where $x_i^r = 1$ for all i > hr, and thus

$$\dim(x^{\bar{G}} \cap \bar{H}) = \dim x^{\bar{B}} = h(r-1)\dim \operatorname{Sp}_m + \sum_{i=hr+1}^t \dim x_i^{\operatorname{Sp}_m}.$$

Let $\omega \in K$ be a primitive r^{th} root of unity and suppose \hat{x} admits the eigenvalue ω^i with multiplicity l_i on the natural $\operatorname{Sp}_n(K)$ -module, where $0 \leq i \leq r-1$. We claim that there exist

tr rational numbers $\{l_{ij}: 0 \leq i \leq r-1, 1 \leq j \leq t\}$ such that $\sum_{j} l_{ij} = l_i$ and

$$\dim(x^{\bar{G}} \cap \bar{H}) = \frac{1}{2}nm + \frac{1}{2}n - \frac{1}{2}l_0 - \frac{1}{2}\sum_{i=0}^{r-1} \left(\sum_{j=1}^t l_{ij}^2\right). \tag{2}$$

If t = hr then $l_i = mh$ for each i, whence

$$\dim(x^{\bar{G}} \cap \bar{H}) = \dim x^{\bar{B}} = h(r-1)\dim \operatorname{Sp}_m = \frac{1}{2}n(m+1)\left(1 - \frac{1}{r}\right)$$

and (2) holds if we set $l_{ij} = m/r$ for all i, j. If t - hr = f > 0 we may assume that x fixes each subspace in the set $\{V_j : 1 \leq j \leq f\}$. For $1 \leq j \leq f$, let y_{ij} be the multiplicity of ω^i as an eigenvalue of x in its action on V_j , so

$$\dim(x^{\bar{G}} \cap \bar{H}) = \frac{1}{2}(t-h)(m^2+m) - \frac{1}{2}\sum_{j=1}^{f} \left(y_{0j} + \sum_{i=0}^{r-1} y_{ij}^2\right)$$

and (2) follows if we define $l_{ij} = y_{ij}$ for $1 \le j \le f$ and set $l_{ij} = m/r$ for j > f. Applying (2) we deduce that

$$\dim(x^{\bar{G}} \cap \bar{H}) \leqslant \frac{1}{2}nm + \frac{1}{2}n - \frac{1}{2}l_0 - \frac{1}{2t}\sum_{i=0}^{r-1}l_i^2 = \frac{1}{t}\dim x^{\bar{G}} + \frac{1}{2}(n-l_0)\left(1 - \frac{1}{t}\right)$$

and (1) follows since

$$\dim x^{\bar{G}} \geqslant \frac{1}{4}(n+2)(n-l_0) \geqslant \frac{(n+2)(n-l_0)}{2(1+\alpha)} \left(1 - \frac{1}{t}\right).$$

Next assume x is a semisimple involution and suppose $C_{\bar{G}}(x)^0 = \operatorname{GL}_{n/2}$, in which case $\dim x^{\bar{G}} = \frac{1}{4}n(n+2)$. If $x \in \bar{B}\pi$ and π induces the permutation $(12) \dots (2h-12h)$ on the coordinates then x lifts to an element $\hat{x} = (x_1, \dots, x_t)\pi \in \operatorname{Sp}_m(K) \wr S_t$ of order 4 and the proof of [10, 4.5] implies that \hat{x} is $\operatorname{Sp}_m(K)^t$ -conjugate to $(-I_m, I_m, \dots, -I_m, I_m, x_{2h+1}, \dots, x_t)\pi$, where $x_j = z = [-iI_{m/2}, iI_{m/2}]$ for all j > 2h (here $i \in K$ satisfies $i^2 = -1$). In particular, the hypothesis $\dim(x^{\bar{G}} \cap \bar{H}) = \dim x^{\bar{B}}$ implies that $x \in \bar{B}$ since $2 \dim z^{\operatorname{Sp}_m} > \dim \operatorname{Sp}_m$. Therefore

$$\dim(x^{\bar{G}} \cap \bar{H}) = \frac{1}{4}nm + \frac{1}{2}n = \left(\frac{1}{t} + \frac{1+\alpha}{n+2}\right)\dim x^{\bar{G}} - n\left(\frac{\alpha}{4} + \frac{1}{2t} - \frac{1}{4}\right)$$

and (1) follows. Next suppose x is \bar{G} -conjugate to $[-I_l, I_{n-\underline{l}}]$, where $2 \leqslant l \leqslant n/2$ is even. Then $\dim x^{\bar{G}} = l(n-l)$ and the hypothesis $\dim(x^{\bar{G}} \cap \bar{H}) = \dim x^{\bar{B}}$ implies that $x \in \bar{B}\pi$, where $\pi \in S_t$ has cycle-shape $(2^a, 1^f)$ for $a = \lfloor l/m \rfloor$. If f = 0 then x is \bar{G} -conjugate to $[-I_{n/2}, I_{n/2}]$ and thus

$$\dim(x^{\bar{G}}\cap \bar{H}) = \frac{t}{2}\dim \operatorname{Sp}_m = \left(\frac{1}{t} + \frac{1}{n}\right)\dim x^{\bar{G}}.$$

On the other hand, if f > 0 then we may assume that x fixes the subspaces $\{V_1, \ldots, V_f\}$ and that the restriction of x to such a subspace V_j is Sp_m -conjugate to $[-I_{l_j}, I_{n-l_j}]$ for some even integer $l_j \geq 0$. Then

$$\dim(x^{\bar{G}} \cap \bar{H}) = a \dim \operatorname{Sp}_m + \sum_{j=1}^f l_j(m - l_j) \leqslant \frac{1}{2} am(m+1) + m(l - ma) - \frac{1}{f} (l - ma)^2$$

and we conclude that

$$\dim(x^{\bar{G}}\cap \bar{H})\leqslant ml-\frac{l^2}{t}+\frac{1}{2}ma\leqslant ml-\frac{l^2}{t}+\frac{1}{2}l\leqslant \left(\frac{1}{t}+\frac{1}{n}\right)\dim x^{\bar{G}}.$$

Now assume x has order r=p>2 and associated partition $(r^{a_r},\ldots,1^{a_1})\vdash n$. (Recall that λ is the partition of $\dim V$ corresponding to the Jordan normal form of x on V - see [4, §3.3]). In analogy with the semisimple case, we can find tr rational numbers $\{a_{ij}\}$ such that $\sum_j a_{ij} = a_i$ for each $1 \leq i \leq r$ and

$$\dim(x^{\bar{G}} \cap \bar{H}) = \frac{1}{2}nm + \frac{1}{2}n - \frac{1}{2}\sum_{j=1}^{t} \left(\sum_{k=1}^{r} \left(\sum_{k=i}^{r} a_{kj}\right)^{2}\right) - \frac{1}{2}\sum_{i \text{ odd}} a_{i}$$

(see [6, 2.3]). This implies that

$$\dim(x^{\bar{G}} \cap \bar{H}) \leqslant \frac{1}{2}nm + \frac{1}{2}n - \frac{1}{2t} \sum_{i=1}^{m} \left(\sum_{k=i}^{r} a_k\right)^2 - \frac{1}{2} \sum_{i \text{ odd}} a_i$$
$$= \frac{1}{t} \dim x^{\bar{G}} + \frac{1}{2} \left(1 - \frac{1}{t}\right) \left(n - \sum_{i \text{ odd}} a_i\right)$$

and (1) follows since $n = \sum_{i=1}^{r} ia_i$ and thus

$$\dim x^{\bar{G}} \geqslant \frac{n+2}{2(1+\alpha)} \left(n - \sum_{i \text{ odd}} a_i \right) \left(1 - \frac{1}{t} \right).$$

Finally, let us assume r=p=2 (we adopt the standard Aschbacher-Seitz [2] notation for representatives of the classes of unipotent involutions in \bar{G}). If x is \bar{G} -conjugate to b_l or c_l (according to the parity of l) then [6, 2.3(iv)] gives dim $x^{\bar{G}}=l(n-l+1)$ and the hypothesis dim $(x^{\bar{G}}\cap \bar{H})=\dim x^{\bar{B}}$ implies that $x\in \bar{B}$. In particular, if x acts on V_j with associated partition $(2^{l_j},1^{m-2l_j})$ then

$$\dim(x^{\bar{G}} \cap \bar{H}) \leqslant \sum_{j=1}^{t} ((m+1)l_j - l_j^2) \leqslant (m+1)l - \frac{l^2}{t} = \frac{1}{t} \dim x^{\bar{G}} + l\left(1 - \frac{1}{t}\right)$$

and (1) quickly follows. On the other hand, if x is \bar{G} -conjugate to a_l then $\dim x^{\bar{G}} = l(n-l)$ and from the definition of an a-type involution (see [2]) it is clear that the restriction of each $y \in x^{\bar{G}} \cap \bar{H}$ to a fixed subspace V_j is Sp_m -conjugate to a_{l_j} for some even integer $l_j \geq 0$ (where we set $a_0 = I_m$). Therefore, if $y \in x^{\bar{G}} \cap \bar{B}$ then

$$\dim y^{\bar{B}} = \sum_{j} l_j \left(\frac{n}{t} - l_j \right) = \frac{nl}{t} - \sum_{j} l_j^2 \leqslant \frac{1}{t} \dim x^{\bar{G}}.$$

Now, if $x \in \operatorname{Sp}_m \times \operatorname{Sp}_m = \overline{J}$ is Sp_{2m} -conjugate to a_m then

$$\dim x^{\bar{J}} = 2\dim a_{m/2}^{\operatorname{Sp}_m} = \frac{1}{2}m^2 < \dim \operatorname{Sp}_m$$

and so the hypothesis $\dim(x^{\bar{G}} \cap \bar{H}) = \dim x^{\bar{B}}$ implies that $x \in \bar{B}\pi$, where $\pi \in S_t$ has cycle-shape $(2^a, 1^f)$ and $a = \lfloor l/m \rfloor$. In the usual manner we conclude that

$$\dim(x^{\bar{G}} \cap \bar{H}) \leqslant \left(\frac{1}{t} + \frac{1}{n}\right) \dim x^{\bar{G}}.$$

The argument for linear and orthogonal groups is very similar and left to the reader. \Box

Remark 2.2. The conclusion to Proposition 2.1 holds for arbitrary unipotent elements if p=0.

Following [4, §3.2], if X is a subset of a finite group and $r \in \mathbb{N}$ then we write $i_r(X)$ for the number of elements of order r in X. The following result is an easy exercise.

Lemma 2.3. Let r be a prime and let $i_{r,k}(S_t)$ be the number of permutations in S_t with cycle shape $(r^k, 1^{t-rk})$, where S_t is the symmetric group on t letters. Then

$$i_{r,k}(S_t) = \frac{t!}{k!(t-kr)!r^k}$$
 and $i_r(S_t) = \sum_{k=1}^{\lfloor t/r \rfloor} i_{r,k}(S_t)$.

In §2.4 we will need the following technical result on orthogonal groups.

Lemma 2.4. If q is odd and $l \ge 1$ then the following hold for all m.

- $(i) \ |\mathcal{O}_{2l}^+(q):\mathcal{O}_{2m}^+(q)\mathcal{O}_{2l-2m}^+(q)| + |\mathcal{O}_{2l}^+(q):\mathcal{O}_{2m}^-(q)\mathcal{O}_{2l-2m}^-(q)| < 2q^{2m(2l-2m)};$
- (ii) $|\mathcal{O}_{2l}^{-}(q):\mathcal{O}_{2m}^{+}(q)\mathcal{O}_{2l-2m}^{-}(q)| + |\mathcal{O}_{2l}^{+}(q):\mathcal{O}_{2m}^{-}(q)\mathcal{O}_{2l-2m}^{+}(q)| < 2q^{2m(2l-2m)};$
- (iii) $|\mathcal{O}_{2l+1}(q):\mathcal{O}_{2m}^+(q)\mathcal{O}_{2l+1-2m}(q)| + |\mathcal{O}_{2l+1}(q):\mathcal{O}_{2m}^-(q)\mathcal{O}_{2l+1-2m}(q)| < 2q^{2m(2l+1-2m)};$
- (iv) $|\mathcal{O}_{2l+1}(q) : \mathcal{O}_{2l}^+(q)\mathcal{O}_1(q)| + |\mathcal{O}_{2l+1}(q) : \mathcal{O}_{2l}^-(q)\mathcal{O}_1(q)| = q^{2l};$
- $(v) |\mathcal{O}_{2l}^+(q): \mathcal{O}_{2m+1}(q)\mathcal{O}_{2l-2m-1}(q)| < |\mathcal{O}_{2l}^-(q): \mathcal{O}_{2m+1}(q)\mathcal{O}_{2l-2m-1}(q)| < q^{(2m+1)(2l-2m-1)}.$

Proof. First consider (i). Without loss we may assume $m \ge l/2$ and thus

$$|\mathcal{O}_{2l}^{+}(q):\mathcal{O}_{2m}^{+}(q)\mathcal{O}_{2l-2m}^{+}(q)| + |\mathcal{O}_{2l}^{+}(q):\mathcal{O}_{2m}^{-}(q)\mathcal{O}_{2l-2m}^{-}(q)| = \frac{q^{2m(l-m)}\prod_{i=1}^{l-m}(q^{2m+2i}-1)}{\prod_{i=1}^{l-m}(q^{2i}-1)}.$$

The result now follows from [4, 3.8] and the other statements are derived in a similar fashion. \Box

Recall that in order to prove Theorem 1.1 it suffices to show that

$$f(x, H) := \frac{\log |x^G \cap H|}{\log |x^G|} < \frac{1}{2} + \frac{1}{n} + \iota$$

for all elements $x \in G$ of prime order, where ι is defined as in the statement of Theorem 1.1. We start with the case $G_0 = \mathrm{PSL}_n^{\epsilon}(q)$.

2.2 Proof of Theorem 1.1: Case (i) of Table 2.1

Let σ be a Frobenius morphism of $\bar{G} = \mathrm{PSL}_n(K)$ such that \bar{G}_{σ} has socle $G_0 = \mathrm{PSL}_n^{\epsilon}(q)$ and natural module V, where K is the algebraic closure of \mathbb{F}_q and $q = p^f$ for a prime p. Let \bar{B} denote the image of $\mathrm{GL}_{n/t}(K)^t$ in $\mathrm{PSL}_n(K)$ and observe that

$$H \cap \mathrm{PGL}(V) \leqslant \left([(q - \epsilon)^{t-1}] \cdot \mathrm{PGL}_{\frac{n}{2}}^{\epsilon}(q)^{t} \right) \cdot S_{t} = B \cdot S_{t} = \widetilde{H},$$

where B is the image of $\mathrm{GL}_{n/t}^{\epsilon}(q)^t$ in $\mathrm{PGL}_n^{\epsilon}(q)$ and $[(q-\epsilon)^{t-1}]$ is a group of order $(q-\epsilon)^{t-1}$. For the reader's convenience we partition the proof into three parts: in Proposition 2.5 we assume $x \in H \cap \mathrm{PGL}(V)$ is semisimple, in Proposition 2.6 we consider unipotent elements in $H \cap \mathrm{PGL}(V)$ and then in Proposition 2.7 we deal with the outer automorphisms in $H - \mathrm{PGL}(V)$.

Proposition 2.5. The conclusion to Theorem 1.1 holds in case (i) of Table 2.1 for semisimple elements of prime order in $H \cap PGL(V)$.

Proof. Let $x \in H \cap PGL(V)$ be a semisimple element of prime order r. We partition the proof into several cases, where Case i.j.k is a subcase of Case i.j which itself is a subcase of Case i.

Case 1.
$$x^G \cap H \subseteq B$$

Let $E = C_{\bar{G}}(x)$ and let $H^1(\sigma, E/E^0)$ denote the set of σ -equivalence classes with respect to the induced action of σ on the finite group E/E^0 (see [4, 3.5]).

Case 1.1. r > 2, $|H^1(\sigma, E/E^0)| = 1$

Let $i \ge 1$ be minimal such that r divides $q^i - 1$ and define the integer $c = c(i, \epsilon)$ as in the statement of [4, 3.33] (so c = i if $\epsilon = +$). According to [4, 3.35], the hypothesis $|H^1(\sigma, E/E^0)| = 1$ is equivalent to assuming that E is connected if c = 1. Furthermore, [4, 3.11] implies that each $y \in x^G \cap H$ lifts to an element $\hat{y} = (\hat{y}_1, \dots, \hat{y}_t) \in \hat{B}$ of order r, where $\hat{B} = \operatorname{GL}_{n/t}^{\epsilon}(q)^t$ and

$$|y^B| = |\hat{y}^{\widehat{B}}| = \prod_j |\hat{y}_j^{GL_{n/t}^{\epsilon}(q)}|.$$

Define the integers l and d as in [4, 3.32] and note that the hypothesis $x^G \cap H \subseteq B$ implies that $n \ge \max(tc, l + dc)$. Since $|x^{\bar{G}_{\sigma}}| = |x^{G_0}|$ (see [8, 4.2.2(j)]) we deduce that

$$|x^{G}| \geqslant |x^{\bar{G}_{\sigma}}| > \frac{1}{2} \left(\frac{q}{q+1}\right)^{d\alpha} q^{\dim x^{\bar{G}}} \tag{3}$$

(see [4, 3.30]) where

$$\alpha = \begin{cases} 1 & \text{if } \epsilon = - \text{ and } i \equiv 2 (4) \\ 0 & \text{otherwise} \end{cases}$$
 (4)

and [4, 3.33] gives

$$\dim x^{\bar{G}} \geqslant n^2 - l^2 - \frac{1}{c}(n - l - c(d - 1))^2 - c(d - 1). \tag{5}$$

Case 1.1.1. c > 1

Let $\mu = (l, a_1, \dots, a_k)$ denote the associated σ -tuple of x (see [4, 3.27]) and note that d is the number of terms a_j in μ which are non-zero. Write \mathcal{E}_x for the multiset of eigenvalues of $\hat{x} \in \mathrm{GL}_n^{\epsilon}(q)$, where \hat{x} is the unique lift of x of order r. We claim that

$$|x^{G} \cap H| < 2\log_{2} q \cdot 2^{td(1-\alpha)} \left(\frac{q+1}{q}\right)^{\frac{t}{2}(1-\epsilon)} (d+1)^{\frac{n}{c}} q^{\frac{1}{t}\dim x^{\bar{G}}}.$$
 (6)

To see this, first observe that Proposition 2.1 and [4, 3.30] imply that

$$|y^B| = |\hat{y}^{\hat{B}}| < 2^{td(1-\alpha)} \left(\frac{q+1}{q}\right)^{\frac{t}{2}(1-\epsilon)} q^{\frac{1}{t}\dim x^{\hat{G}}}$$

for all $y \in x^G \cap H$ and so it remains to show that the number of B-classes in $x^G \cap H$ is at most $2 \log_2 q \cdot (d+1)^{n/c}$. The term $2 \log_2 q$ accounts for the effect of field and graph automorphisms of G_0 on \mathcal{E}_x and so we need to show that $M \leq (d+1)^{n/c}$, where M is the number of distinct ways the non-trivial σ -orbits in \mathcal{E}_x can be distributed among the t direct factors in \widehat{B} . Now, if $\widehat{x} = (\widehat{x}_1, \dots, \widehat{x}_t) \in \widehat{B}$ and $n/t \equiv j(c)$ then it follows that $l_u \equiv j(c)$ for each $1 \leq u \leq t$, where l_u denotes the multiplicity of 1 in the eigenvalue set $\mathcal{E}_{\widehat{x}_u}$. Therefore

$$M \leqslant \binom{\frac{n-tj}{c}}{\frac{l-tj}{c}} a_{k_1} \dots a_{k_d},$$

where $a_{k_v} > 0$ for all $1 \leq v \leq d$, and the multinomial theorem implies that

$$M \leqslant (d+1)^{\frac{n-tj}{c}} \leqslant (d+1)^{\frac{n}{c}} \tag{7}$$

as required.

If we assume $t \ge 3$ then one can check that the bounds (3), (5) and (6) are sufficient to imply that f(x, H) < 1/2 + 1/n unless $\epsilon = +$ and (t, i, q) = (3, 2, 2). Here (r, d) = (3, 1) and it remains to deal with the cases $(n, l) \in \{(12, 10), (9, 7), (6, 4), (6, 0)\}$. If (n, l) = (6, 4) then x is

 \bar{G} -conjugate to $[I_4, \omega, \omega^2]$, where $\omega \in K$ is a primitive cube root of unity, and we calculate that f(x, H) < .141 since

$$|x^G \cap H| \le 3|\operatorname{GL}_2(2) : \operatorname{GL}_1(4)| = 6, |x^G| \ge |\operatorname{GL}_6(2) : \operatorname{GL}_4(2)\operatorname{GL}_1(4)| = 333312.$$

The other cases are similar. For t=2 we require greater accuracy. We claim that

$$|x^{G} \cap H| < 2\log_{2} q \cdot \left(\frac{n-l}{cd} + 1\right)^{d(t-1)} 2^{td(1-\alpha)} \left(\frac{q+1}{q}\right)^{\frac{t}{2}(1-\epsilon)} q^{\frac{1}{t}\dim x^{\bar{G}}}$$
(8)

for all $t \ge 2$, where α is defined as in (4). Arguing as before, it suffices to show that

$$M \leqslant \left(\frac{n-l}{cd} + 1\right)^{d(t-1)},\,$$

where M is defined as above. If we assume a_{k_1},\ldots,a_{k_d} are non-zero then it is clear that $\mathcal{E}_{\hat{x}_1}$ is determined by a choice of d-tuple (b_1,\ldots,b_d) , where $0\leqslant b_j\leqslant a_{k_j}$ for each $1\leqslant j\leqslant d$. If N denotes the number of such d-tuples then $M\leqslant N^{t-1}$ since $\mathcal{E}_{\hat{x}_t}$ is uniquely determined once $\mathcal{E}_{\hat{x}_1},\ldots,\mathcal{E}_{\hat{x}_{t-1}}$ have been chosen. Now

$$N = \prod_{j=1}^{d} (a_{k_j} + 1) \leqslant \left(\frac{\sum_{j} a_{k_j}}{d} + 1\right)^d = \left(\frac{n-l}{cd} + 1\right)^d$$
 (9)

and (8) follows. If we assume t=2 then the bounds (3), (5) and (8) are always sufficient if $d \ge 3$; if d=2 then we are left to deal with a handful of cases with $\epsilon=+$ and the desired result quickly follows through direct calculation. For example, if (n,l,i,q)=(8,2,3,2) then r=7, $\nu(x)=6$ (i.e. 6 is the codimension of the largest eigenspace of x on the natural \bar{G} -module; see [4, 3.16] for the formal definition of $\nu(x)$ and we conclude that f(x,H)<.445 since

$$|x^G \cap H| \le 2|\mathrm{GL}_4(2): \mathrm{GL}_1(2)\mathrm{GL}_1(2^3)|^2, |x^G| \ge |\mathrm{GL}_8(2): \mathrm{GL}_2(2)\mathrm{GL}_1(2^3)^2|.$$

Now assume $(t, d, \epsilon) = (2, 1, +)$. We claim that

$$|x^G \cap H| < 2\log_2 q \cdot 2^2 \left(\frac{q^2 + 1}{q^2 - 1}\right) q^{\frac{1}{2}\dim x^{\bar{G}}}.$$
 (10)

Without loss of generality, suppose $a_1 > 0$. If l = 0 then $a_1 = n/i$ and [4, 3.30] implies that

$$|x^G \cap H| \leq 2\log_2 q \cdot |\operatorname{GL}_{n/2}(q) : \operatorname{GL}_{n/2i}(q^i)|^2 < 2\log_2 q \cdot q^{\frac{1}{2}\dim x^{\bar{G}}}$$

so let us assume l > 0. For all possible integers j in the range $0 \le j \le a_1$, choose $z_j = (y_1, y_2) \in x^G \cap H$ so that \mathcal{E}_{y_1} contains precisely j copies of the non-trivial σ -orbit Ω_1 (recall that a_1 is defined to be the multiplicity of Ω_1 in \mathcal{E}_x ; see [4, §3.4] for the definition of a σ -orbit). Then $|x^G \cap H| \le 2 \log_2 q \cdot \sum_j |z_j^B|$, where

$$|z_j^B| = \frac{|\mathrm{GL}_{n/2}(q)|}{|\mathrm{GL}_{n/2-ji}(q)||\mathrm{GL}_j(q^i)|} \cdot \frac{|\mathrm{GL}_{n/2}(q)|}{|\mathrm{GL}_{l+ji-n/2}(q)||\mathrm{GL}_{a_1-j}(q^i)|}$$

and thus

$$|x^G\cap H|<2\log_2q.2^2\sum_jq^{\dim z_j^{\bar{B}}},$$

where

$$\dim z_j^{\bar{B}} = -2i(i+1)j^2 + 2(n-l)(i+1)j + nl - l^2 - \frac{1}{i}(n-l)^2.$$

If (n-l)/i is even then $\dim z_j^{\bar{B}} \leqslant \dim z_{(n-l)/2i}^{\bar{B}} = \frac{1}{2} \dim x^{\bar{G}}$ and (10) follows since

$$\sum_{j} q^{\dim z_{j}^{\bar{B}}} \leqslant 2 \left(1 + q^{2} + \dots + q^{\frac{1}{2} \dim x^{\bar{G}} - 2} \right) + q^{\frac{1}{2} \dim x^{\bar{G}}} \leqslant \left(\frac{q^{2} + 1}{q^{2} - 1} \right) q^{\frac{1}{2} \dim x^{\bar{G}}}.$$

Similarly, if (n-l)/i is odd then

$$\sum_{j} q^{\dim z_{j}^{\bar{B}}} \leq 2 \left(1 + q^{2} + \dots + q^{\frac{1}{2} \dim x^{\bar{G}} - \frac{1}{2} i(i+1)} \right)$$

and again the claim follows. With minor adjustments, the same argument applies when $(t, d, \epsilon) = (2, 1, -)$ and it is easy to see that (10) holds. Furthermore, if $\epsilon = -$ then the bounds (3), (5) and (10) are sufficient unless (n, l, i, q) = (4, 0, 1, 4), where direct calculation yields f(x, H) < .529. If $(\epsilon, l) = (+, 0)$ then the same bounds are almost always sufficient and the few cases which remain are easily dealt with. Finally, if $\epsilon = +$ and l > 0 then we quickly reduce to the case (n, i, q) = (l + 2, 2, 2), where x is \bar{G} -conjugate to $[I_{n-2}, \omega, \omega^2]$ and $\omega \in K$ is a primitive cube root of unity. Here the reader can check that the bounds

$$|x^G \cap H| \le 2\left(\frac{|\mathrm{GL}_{n/2}(2)|}{|\mathrm{GL}_{n/2-2}(2)||\mathrm{GL}_1(2^2)|}\right) = \frac{1}{3}2^{n-2}(2^{\frac{n}{2}-1}-1)(2^{\frac{n}{2}}-1)$$

and

$$|x^G| \ge \frac{|\mathrm{GL}_n(2)|}{|\mathrm{GL}_{n-2}(2)||\mathrm{GL}_1(2^2)|} = \frac{1}{3}2^{2n-3}(2^{n-1}-1)(2^n-1)$$

are always sufficient.

Case 1.1.2. c = 1

Here l > 0 and $d + l \le n \le (d+1)l$ (see [4, 3.32(i)]). If $n = t \ge 3$ then $|x^B| = 1$ and arguing as before (see (6)) we deduce that $|x^G \cap H| \le 2\log_2 q.(d+1)^n$. Then (3) and (5) are sufficient unless $(\epsilon, q) = (-, 2)$. Here r = 3, $d \in \{1, 2\}$ and the desired result quickly follows through direct calculation. For the remainder we will assume $n \ge 2t$.

First consider the case n = l + d. If d = 1 then one can check that the bounds

$$|x^G \cap H| \leqslant 2\log_2 q.t \left(\frac{|\mathrm{GL}_{n/t}^{\epsilon}(q)|}{|\mathrm{GL}_{n/t-1}^{\epsilon}(q)||\mathrm{GL}_{1}^{\epsilon}(q)|} \right) = 2t\log_2 q. \left(\frac{q^{n/t-1}(q^{n/t} - \epsilon^{n/t})}{q - \epsilon} \right),$$

$$|x^G| \geqslant \frac{|\mathrm{GL}_{n}^{\epsilon}(q)|}{|\mathrm{GL}_{n-1}^{\epsilon}(q)||\mathrm{GL}_{1}^{\epsilon}(q)|} = \frac{q^{n-1}(q^n - \epsilon^n)}{q - \epsilon}$$

are always sufficient (note that $\epsilon = -$ if q = 2 since $r|(q - \epsilon)$). For $d \ge 2$ we claim that

$$|x^{G} \cap H| < 2\log_{2} q \cdot 2^{\frac{d}{2}(1+\epsilon)} t^{d} q^{\frac{1}{t} \dim x^{\bar{G}} - d\left(1 - \frac{1}{t}\right)}. \tag{11}$$

To see this, let $\hat{y} = (\hat{y}_1, \dots, \hat{y}_t) \in \widehat{B}$ be a lift of $y \in x^G \cap H$ of order r so that the 1-eigenspace of \hat{y} has dimension l. Let l_k denote the multiplicity of 1 in $\mathcal{E}_{\hat{y}_k}$, so $\sum_k l_k = l$ and $|y^B| < 2^{\frac{d}{2}(1+\epsilon)}q^{\dim y^B}$, where

$$\dim y^{\bar{B}} = \frac{n^2}{t} - \sum_{k=1}^t l_k^2 - n + l \leqslant \frac{n^2}{t} - \frac{l^2}{t} - n + l = \frac{1}{t} \dim x^{\bar{G}} - d\left(1 - \frac{1}{t}\right).$$

Then (11) follows since there at most t^d distinct ways to distribute the d distinct eigenvalues $\lambda_i \neq 1$ among the t direct factors. Now, $\dim x^{\bar{G}} = 2ld + d^2 - d$ and applying (3) we find that (11) is sufficient unless $(\epsilon, t, d, q) = (-, 2, 2, 2)$. Here $n \geq 6$ (see Table 2.1) and x is \bar{G} -conjugate to $[I_{n-2}, \omega, \omega^2]$, where $\omega \in K$ is a primitive cube root of unity. Moreover,

$$|x^G \cap H| \le 2 \frac{|\mathrm{GU}_{n/2}(2)|}{|\mathrm{GU}_{n/2-2}(2)||\mathrm{GU}_1(2)|^2} + 2 \left(\frac{|\mathrm{GU}_{n/2}(2)|}{|\mathrm{GU}_{n/2-1}(2)||\mathrm{GU}_1(2)|}\right)^2 < 10.2^{2n-6}$$

and the desired result follows since $|x^G| > \frac{1}{6}2^{4n-5}$.

Now suppose n > l + d and $t \ge 3$. Then (6) gives

$$|x^G \cap H| < 2\log_2 q \cdot 2^{\frac{1}{2}td(1+\epsilon)} (d+1)^n q^{\frac{1}{t}\dim x^{\bar{G}}}$$

and we find that (3) and (5) are sufficient if $\epsilon = +$ unless (n, l, d) is one of a handful of cases with (t, q) = (3, 4). These are all easily dealt with. Similarly, if $\epsilon = -$, $t \ge 3$ and $q \ge 4$ then the same bounds are always sufficient. Now assume $(\epsilon, q) = (-, 2)$ and $t \ge 3$. If d = 1 then $x = [I_l, \lambda I_{n-l}]$ for some λ and we observe that

$$|x^G\cap H|<2\binom{t+n-l-1}{n-l}2^{\frac{1}{t}\dim x^{\bar{G}}},$$

where $\dim x^{\bar{G}} = 2l(n-l)$ (the binomial coefficient can be interpreted combinatorially as the number of ways the n-l eigenvalues λ can be distributed among the t direct factors). Since $l+1 < n \le 2l$, it is easy to check that this bound with (3) is always sufficient whenever $t \ge 3$. Finally, if d=2 then (8) gives

$$|x^G \cap H| < 2\left(\frac{n-l}{2} + 1\right)^{2(t-1)} 2^{\frac{1}{t}\dim x^{\bar{G}}}$$

and (3) and (5) are sufficient unless (n,t,l)=(6,3,3), where more accurate bounds yield f(x,H)<.312.

Next assume n > l + d and t = 2. Here we require a greater degree of accuracy. If d = 1 then dim $x^{\bar{G}} = 2l(n-l)$ and an earlier argument (see (10)) implies that

$$|x^G \cap H| < 2\log_2 q \cdot 2^{1+\epsilon} \left(\frac{q^2+1}{q^2-1}\right) q^{l(n-l)}.$$

If $\epsilon = +$ then this bound with (3) is sufficient unless (n, l, q) = (4, 2, 4); if $\epsilon = -$ then we are left to deal with the case (n, l, q) = (6, 4, 2). In both cases, the desired result is easily obtained through direct calculation. Next assume d = 2, so x is \bar{G} -conjugate to $[I_l, \alpha I_a, \beta I_{n-l-a}]$ for distinct $\alpha, \beta \in K$. We claim that

$$|x^G \cap H| < 2\log_2 q \cdot \left(\frac{q^2 + 1}{q^2 - 1}\right)^2 2^{2(1 + \epsilon)} q^{\frac{1}{2}\dim x^{\bar{G}}}.$$
 (12)

To see this, first observe that $|x^G \cap H| \leq 2\log_2 q$. $\sum_{j,k} |\hat{x}_{jk}^{\widehat{B}}|$, where $\hat{x}_{jk} = (\hat{y}_1, \hat{y}_2) \in \widehat{B}$ and $\hat{y}_1 = [I_j, \alpha I_k, \beta I_{n/2-j-k}]$ up to $\mathrm{GL}_{n/2}(K)$ -conjugacy. Next fix j and note that

$$|\hat{x}_{jk}^{\widehat{B}}| = \frac{|\mathrm{GL}_{n/2}^{\epsilon}(q)|}{|\mathrm{GL}_{j}^{\epsilon}(q)||\mathrm{GL}_{k}^{\epsilon}(q)||\mathrm{GL}_{n/2-j-k}^{\epsilon}(q)|} \cdot \frac{|\mathrm{GL}_{n/2}^{\epsilon}(q)|}{|\mathrm{GL}_{l-j}^{\epsilon}(q)||\mathrm{GL}_{a-k}^{\epsilon}(q)||\mathrm{GL}_{n/2-l+j-a+k}^{\epsilon}(q)|}.$$

Then $\sum_k |\hat{x}_{jk}^{\widehat{B}}| < 2^{2(1+\epsilon)} \sum_k q^{f(j,k)}$, where $f(j,k) := \dim x_{jk}^{\overline{B}}$, and (12) quickly follows. If $\epsilon = +$ then the bounds (3), (5) and (12) are sufficient unless (n,l,q) = (6,3,4), where direct calculation yields f(x,H) < .499. If $\epsilon = -$ then the same bounds are sufficient unless q = 2 and n = l + 3; here dim $x^{\widehat{G}} = 6n - 14$ and the desired result follows via (3) since $|x^G \cap H| < 2\log_2 q.2q^{3n-14}(1+q^4+q^6)$. Finally, let us assume n > l+d, t = 2 and $d \geqslant 3$, in which case $q \geqslant 8$ if $\epsilon = +$ and $q \geqslant 4$ if $\epsilon = -$. Arguing as before (see (8)) we deduce that

$$|x^G \cap H| < 2\log_2 q \cdot \left(\frac{n-l}{d} + 1\right)^d 2^{d(1+\epsilon)} q^{\frac{1}{2}\dim x^{\bar{G}}}$$

and the desired conclusion follows via (3) and (5).

Case 1.2. r > 2, $|H^1(\sigma, E/E^0)| = r$

According to [4, 3.34, 3.35], the hypotheses imply that c=1, r divides n and $E=C_{\bar{G}}(x)$ is non-connected. Furthermore, dim $x^{\bar{G}}=n^2(1-1/r)$ and the hypothesis $x^G\cap H\subseteq B$ implies that r does not divide t!, whence $r\geqslant 5$ if $t\geqslant 3$. In addition, the proof of [4, 3.35] implies that x lifts to an element $\hat{x}\in \mathrm{GL}_n^{\epsilon}(q)$ which is $\mathrm{GL}_n^{\epsilon}(q)$ -conjugate to

$$\begin{pmatrix} \lambda^{j} I_{n/r} \\ I_{n-n/r} \end{pmatrix} \tag{13}$$

for some unique integer $0 \le j \le r-1$, where $Z(GL_n^{\epsilon}(q)) = \langle \lambda I_n \rangle$. If j=0 then \hat{x} is $GL_n^{\epsilon}(q)$ conjugate to the diagonal matrix $[I_{\frac{n}{r}}, \omega I_{\frac{n}{r}}, \ldots, \omega^{r-1} I_{\frac{n}{r}}] \in GL_n^{\epsilon}(q)$, where ω is a primitive r^{th} root of unity. Further, [4, 3.35] gives

$$|x^G| \geqslant \frac{1}{r} |\operatorname{GL}_n^{\epsilon}(q) : \operatorname{GL}_{n/r}^{\epsilon}(q)^r| > \frac{1}{2r} \left(\frac{q}{q+1}\right)^{\frac{1}{2}(r-1)(1-\epsilon)} q^{n^2(1-\frac{1}{r})}$$
 (14)

and we claim that

$$|x^G \cap H| < \left(\frac{n}{r} + 1\right)^{(r-1)(t-1)} 2^{\frac{t}{2}(r-1)(1+\epsilon)} q^{\frac{1}{t}n^2\left(1-\frac{1}{r}\right)}.$$

To see this, first observe that each $y \in x^G \cap H$ lifts to an element $\hat{y} \in \widehat{B}$ of order r. Then appealing to Proposition 2.1 we deduce that

$$|y^B| \le |\hat{y}^{\widehat{B}}| < 2^{\frac{t}{2}(r-1)(1+\epsilon)} q^{\frac{1}{t}n^2\left(1-\frac{1}{r}\right)}$$

and the claim follows since there are at most $(n/r+1)^{(r-1)(t-1)}$ distinct ways to partition the eigenvalue set $\mathcal{E}_{\hat{x}}$ into t subsets (see (9) for example). These bounds are sufficient unless (n,t,r)=(6,2,3) and $q=3+\epsilon$, where direct calculation yields f(x,H)<.537.

Finally, if $1 \le j \le r - 1$ then [4, 3.35] implies that

$$|x^G| \geqslant \frac{|\operatorname{GL}_n^{\epsilon}(q)|}{|\operatorname{GL}_{n/r}^{\epsilon}(q^r)|r} > \frac{1}{2r} q^{n^2(1-\frac{1}{r})}$$
(15)

and applying [4, 3.51] we deduce that

$$|x^G \cap H| \leqslant \sum_{j=1}^{r-1} |\hat{z}_j^{\mathrm{GL}_{\frac{n}{t}}^{\epsilon}(q)}|^t = (r-1) \left(\frac{|\mathrm{GL}_{n/t}^{\epsilon}(q)|}{|\mathrm{GL}_{n/tr}^{\epsilon}(q^r)|} \right)^t < (r-1) \cdot 2^{\frac{t}{2}(1+\epsilon)} \left(\frac{q+1}{q} \right)^{\frac{t}{2}(1-\epsilon)} q^{\frac{1}{t}n^2\left(1-\frac{1}{r}\right)},$$

where

$$\hat{z}_j = \begin{pmatrix} \lambda^j I_{n/tr} \\ I_{n/t-n/tr} \end{pmatrix} \in GL_{n/tr}^{\epsilon}(q).$$
 (16)

These bounds are always sufficient.

Case 1.3. r = 2

Write $s = \nu(x)$ for the codimension of the largest eigenspace of x on the natural \bar{G} -module (see [4, 3.16]) and note that the hypothesis $x^G \cap H \subseteq B$ implies that s < n/t. In particular, $C_{\bar{G}}(x)$ is connected and each $y \in x^G \cap H$ lifts to an involution $\hat{y} \in \hat{B}$. Now, dim $x^{\bar{G}} = 2s(n-s)$ and applying Proposition 2.1 we deduce that

$$|x^G \cap H| < {t+s-1 \choose s} 2^t q^{\frac{2s}{t}(n-s)}, |x^G| > \frac{1}{2} \left(\frac{q}{q+1}\right)^{\frac{1}{2}(1-\epsilon)} q^{2s(n-s)}.$$

If t = 2 then one can check that these bounds are sufficient unless (s, q) = (1, 3) or $(n, s, q) \in \{(6, 2, 3), (4, 1, 5)\}$. If (s, q) = (1, 3) then the bounds

$$|x^{G} \cap H| \leqslant 2 \left(\frac{|\mathrm{GL}_{n/2}^{\epsilon}(3)|}{|\mathrm{GL}_{n/2-1}^{\epsilon}(3)||\mathrm{GL}_{1}^{\epsilon}(3)|} \right) = 2 \left(\frac{3^{n/2-1}(3^{n/2} - \epsilon^{n/2})}{3 - \epsilon} \right),$$
$$|x^{G}| \geqslant \frac{|\mathrm{GL}_{n}^{\epsilon}(3)|}{|\mathrm{GL}_{n-1}^{\epsilon}(3)||\mathrm{GL}_{1}^{\epsilon}(3)|} = \frac{3^{n-1}(3^{n} - \epsilon^{n})}{3 - \epsilon}$$

are always sufficient; the remaining two cases are easily dealt with through direct calculation. If $t \ge 3$ and $n \ge 2t$ then it remains to deal with the case (n, t, s, q) = (6, 3, 1, 3) where more accurate bounds yield f(x, H) < .315.

Case 2. $x^G \cap (H-B) \neq \emptyset$

Here $x^G \cap B\pi \neq \emptyset$ for a non-trivial permutation $\pi \in S_t$, where π has order r and cycle-shape $(r^{h(\pi)}, 1^{t-h(\pi)r})$. Define

$$h = \max\{h(\pi) : \pi \in S_t \text{ and } x^G \cap B\pi \neq \emptyset\}$$
 (17)

and fix $\pi \in S_t$ such that $h(\pi) = h$. Without loss, we may assume that π fixes V_j for all $j \ge hr+1$ in the decomposition $V = V_1 \oplus \cdots \oplus V_t$. If $|H^1(\sigma, E/E^0)| = 1$, where $E = C_{\bar{G}}(x)$, and $y \in B\rho$ is G-conjugate to x, where $\rho \in S_t$ has cycle-shape $(r^k, 1^{t-kr})$, then [4, 3.11] implies that y lifts to an element $\hat{y} = (\hat{y}_1, \dots, \hat{y}_t)\rho$ in $\mathrm{GL}_n^{\epsilon}(q)$ of order r and the proof of [10, 4.5] reveals that \hat{y} is \hat{B} -conjugate to $(I_{n/t}, \dots, I_{n/t}, \hat{y}_{kr+1}, \dots, \hat{y}_t)\rho$. Therefore

$$|y^B| \leqslant |\hat{y}^{\widehat{B}}| = |\operatorname{GL}_{n/t}^{\epsilon}(q)|^{k(r-1)} \prod_{j>kr} |\hat{y}_j^{\operatorname{GL}_{n/t}^{\epsilon}(q)}|$$
(18)

and we deduce that

$$\dim x^{\bar{G}} \geqslant \dim \pi^{\bar{G}} = n^2 h(r-1) \frac{1}{t} \left(2 - \frac{hr}{t} \right). \tag{19}$$

Case 2.1. r > 2, $|H^1(\sigma, E/E^0)| = 1$, c > 1

Define the integers i, c and α as in Case 1 and observe that

$$|x^{G}| > \frac{1}{2} \left(\frac{q}{q+1}\right)^{\alpha(r-1)} q^{\dim x^{\bar{G}}}.$$
 (20)

If n = t then the hypothesis c > 1 implies that $x^G \cap B\rho \neq \emptyset$ if and only if $\rho \in S_t$ has cycle-shape $(r^h, 1^{t-hr})$, whence dim $x^{\bar{G}} = nh(r-1)(2 - hr/n)$ and applying (18) and Lemma 2.3 we deduce that

$$|x^G \cap H| = |x^G \cap (H - B)| < 2\log_2 q \cdot \left(\frac{n!}{h!(n - hr)!r^h}\right) (q - \epsilon)^{h(r-1)}.$$
 (21)

This bound with (20) is sufficient unless $(n, h, r, q, \epsilon) = (5, 1, 5, 2, -)$, where direct calculation yields f(x, H) < .552.

Now assume $n \ge 2t$. We claim that

$$|x^{G} \cap H| < 2\log_{2} q.2 \left(\frac{t^{r}}{r}\right)^{h} \left(\frac{r-1}{c} + 1\right)^{\frac{n}{c}} \left(\frac{q+1}{q}\right)^{\frac{t}{2}(1-\epsilon)} 2^{\frac{t}{c}(r-1)(1-\alpha)} q^{\frac{1}{t}\dim x^{\bar{G}}}. \tag{22}$$

To see this, first observe that $|x^G \cap H| \leq \sum_{k=0}^h |\rho_k^{S_t}| M_k N_k$, where $\rho_k \in S_t$ has cycle-shape $(r^k, 1^{t-rk})$, M_k is the size of the largest *B*-class in $x^G \cap B\rho_k$ and N_k is the number of distinct *B*-classes in $x^G \cap B\rho_k$. Applying Proposition 2.1 and [4, 3.9] we deduce that

$$M_k < M_k' = \left(\frac{q+1}{q}\right)^{\frac{1}{2}(t-rk)(1-\epsilon)} 2^{\frac{1}{c}(t-rk)(r-1)(1-\alpha)} q^{\frac{1}{t}\dim x^{\tilde{G}}}$$

and arguing as before (see (7)) we have

$$N_k \leqslant N_k' = 2\log_2 q \cdot \left(\frac{r-1}{c} + 1\right)^{\frac{1}{c}\left(n - \frac{nrk}{t}\right)}.$$

Therefore

$$|x^G \cap H| < \sum_{k=0}^h \frac{t!}{k!(t-rk)!r^k} M_0' N_0' < \sum_{k=0}^h \left(\frac{t^r}{r}\right)^k M_0' N_0' < 2\left(\frac{t^r}{r}\right)^h M_0' N_0'$$

and (22) follows. It is easy to check that the bounds (19), (20) and (22) are always sufficient (note that we may assume $n \ge 3t$ if $(\epsilon, q) = (+, 2)$ - see Table 2.1).

Case 2.2. r > 2, $|H^1(\sigma, E/E^0)| = 1$, c = 1

Here d = r - 1 and $r \leqslant n \leqslant rl$ since the σ -orbit of each r^{th} root of unity in K is a singleton set. Also note that t > hr (if t = hr then $C_{\bar{G}}(x)$ is non-connected and [4, 3.35] implies that $|H^1(\sigma, E/E^0)| = r$). First suppose n = t. Then (19) and (20) hold and appealing to (21) and (22) we deduce that

$$|x^G \cap H| < 2\log_2 q \cdot 2\left(\frac{t^r}{r}\right)^h (q - \epsilon)^{h(r-1)} r^t.$$

If $(\epsilon, q) \neq (-, 2)$ then these bounds are almost always sufficient; the remaining cases are easily dealt with through direct calculation. If $(\epsilon, q) = (-, 2)$ then r = 3,

$$|x^G \cap H| \le 2 \sum_{k=0}^h \left[\left(\frac{n!}{k!(n-3k)!3^k} \right) 3^{2k} \cdot 3^{n-3k} \right] < 4 \cdot 3^{n-2h} n^{3h}$$

and we deduce that (19) and (20) are sufficient for all $h \ge 3$. If h = 2 then we are left to deal with the cases $n \in \{7,8,9\}$ with which we can calculate directly. Finally, if h = 1 then the maximality of h implies that x is \bar{G} -conjugate to $[I_l, \omega I_{n-l-1}, \omega^2]$ and thus

$$|x^G \cap H| \le 2\left(\frac{n!}{l!(n-l-1)!} + \frac{n!}{(n-3)!3}3^2\binom{n-3}{l-1}\right), |x^G| > \frac{2}{9}2^{2nl+4n-2l^2-6l-6}.$$

These bounds are always sufficient if $n \ge 6$; if n = 5 then direct calculation gives f(x, H) < .599; we get f(x, H) < .718 if n = 4.

Finally, if $n \ge 2t$ then (19) and (20) hold, and (22) is valid with c = 1. The reader can check that these bounds are sufficient.

Case 2.3. r > 2, $|H^1(\sigma, E/E^0)| = r$

First assume x lifts to an element $\hat{x} \in \mathrm{GL}_n^{\epsilon}(q)$ of order r. Then (14) holds and appealing to Proposition 2.1 and the proof of [10, 4.5] we deduce that

$$\begin{split} |x^G \cap H| < \sum_{k=0}^{\lfloor t/r \rfloor} \left[\frac{t!}{k!(t-rk)!r^k} \left(\frac{q+1}{q} \right)^{\frac{1}{2}k(r-1)(1-\epsilon)} r^{n\left(1-\frac{rk}{t}\right)} 2^{\frac{1}{2}(r-1)(t-rk)(1+\epsilon)} \right] q^{\frac{1}{t}n^2\left(1-\frac{1}{r}\right)} \\ < 2 \left(\frac{t^r}{r} \right)^{\frac{t}{r}} \left(\frac{q+1}{q} \right)^{\frac{t}{2r}(r-1)(1-\epsilon)} r^n 2^{\frac{t}{2}(r-1)(1+\epsilon)} q^{\frac{1}{t}n^2\left(1-\frac{1}{r}\right)}. \end{split}$$

If $\epsilon = +$ and n > t then these bounds are sufficient unless (n, t, r, q) = (6, 3, 3, 4), where direct calculation yields f(x, H) < .356. Similarly, if $\epsilon = -$ and n > t then we are left to deal with the case (t, r, q) = (3, 3, 2) for $n \leq 12$. Here the more accurate bounds

$$|x^G \cap H| \le \frac{n!}{(n/3)!^3} 2^{\frac{2}{9}n^2} + 2|\mathrm{GU}_{n/3}(2)|^2, |x^G| \ge \frac{|\mathrm{GU}_n(2)|}{|\mathrm{GU}_{n/3}(2)|^33}$$

are always sufficient. If n = t then it remains to deal with a handful of cases (n, r). In these cases the desired result is easily obtained by evaluating the bounds

$$|x^G \cap H| \leqslant \sum_{k=0}^{\lfloor t/r \rfloor} \left[\frac{t!}{k!(t-rk)!r^k} (q-\epsilon)^{k(r-1)} \frac{(n-rk)!}{(n/r-k)!^r} \right], \quad |x^G| \geqslant \frac{1}{r} |\operatorname{GL}_n^{\epsilon}(q) : \operatorname{GL}_{\frac{n}{r}}^{\epsilon}(q)^r|.$$

Now assume x lifts to an element $\hat{x} \in GL_n^{\epsilon}(q)$ as in (13), with $j \ge 1$. Write $\hat{x} = (\hat{x}_1, \dots, \hat{x}_t)\rho$, where $\hat{x}_i \in GL_{n/t}^{\epsilon}(q)$ and $\rho \in S_t$ has cycle-shape $(r^k, 1^{t-rk})$. Assume for now that tr divides n, so if ρ induces the permutation $\prod_{i=1}^k ((i-1)r+1\dots ir)$ on the coordinates and i > kr then \hat{x}_i is $GL_{n/t}^{\epsilon}(q)$ -conjugate to \hat{z}_j , where \hat{z}_j is given in (16). Since $\hat{x}^r = \lambda^j I_n$ it follows that

$$\hat{x}_1 \dots \hat{x}_r = \hat{x}_{r+1} \dots \hat{x}_{2r} = \dots = \hat{x}_{(k-1)r+1} \dots \hat{x}_{kr} = \lambda^j I_{n/t}$$

and using the proof of [10, 4.5] we deduce that \hat{x} is \hat{B} -conjugate to $b\rho$, where

$$b = (I_{n/t}, \dots, I_{n/t}, \lambda^j I_{n/t}, \dots, I_{n/t}, \dots, I_{n/t}, \lambda^j I_{n/t}, \hat{x}_{kr+1}, \dots, \hat{x}_t) \in \widehat{B}.$$

Therefore

$$|x^{G} \cap H| \leq (r-1) \sum_{k=0}^{\lfloor t/r \rfloor} \left[\frac{t!}{k!(t-kr)!r^{k}} |\operatorname{GL}_{n/t}^{\epsilon}(q)|^{k(r-1)} \left(\frac{|\operatorname{GL}_{n/t}^{\epsilon}(q)|}{|\operatorname{GL}_{n/tr}^{\epsilon}(q^{r})|} \right)^{t-kr} \right]$$

$$< (r-1).2 \left(\frac{t^{r}}{r} \right)^{\frac{t}{r}} \left(\frac{q+1}{q} \right)^{\frac{t}{2}(1-\epsilon)} 2^{\frac{t}{2}(1+\epsilon)} q^{\frac{1}{t}n^{2}\left(1-\frac{1}{r}\right)}$$
(23)

and one can check that (15) is always sufficient. Finally, let us assume n is not divisible by tr. Then r divides t and $x^G \cap B\rho$ is non-empty if and only if ρ has cycle-shape $(r^{t/r})$. Therefore

$$|x^{G} \cap H| \leq (r-1) \frac{t!}{(t/r)!r^{t/r}} |\operatorname{GL}_{n/t}^{\epsilon}(q)|^{\frac{t}{r}(r-1)}$$

$$< (r-1) \frac{t!}{(t/r)!r^{t/r}} \left(\frac{q+1}{q}\right)^{\frac{t}{2r}(r-1)(1-\epsilon)} q^{\frac{n^{2}}{tr}(r-1)}$$
(24)

and the result now follows by applying (15).

Case 2.4. r = 2

Write $s = \nu(x)$ and observe that s = nh/t + j for some integer $0 \le j < n/t$. Let us first assume s < n/2. Then $C_{\bar{G}}(x)$ is connected, t > 2h and

$$|x^{G}| > \frac{1}{2} \left(\frac{q}{q+1}\right)^{\frac{1}{2}(1-\epsilon)} q^{\dim x^{\bar{G}}},$$
 (25)

where dim $x^{\bar{G}} = 2s(n-s)$ (see [4, Table 3.8]). Arguing as before we deduce that

$$|x^{G} \cap H| < 2\left(\frac{t^{2}}{2}\right)^{h} 2^{\frac{t}{2}(1+\epsilon)} 2^{n} q^{\frac{1}{t}\dim x^{\bar{G}}}$$
(26)

and if we assume $n \ge 2t$ and $h \ge 2$ then the bounds (19), (25) and (26) are always sufficient. If h = 1 and s = n/t + j then

$$|x^G \cap H| < \left(2^{\frac{1}{2}(1+\epsilon)} \binom{t}{2} \binom{t-3+j}{j} + \binom{n/t+j+t-1}{n/t+j}\right) 2^{\frac{1}{2}(t-2)(1+\epsilon)} q^{\frac{2s}{t}(n-s)}$$

and (25) is sufficient if $n \ge 2t$. If n = t then the maximality of h implies that s = h, whence

$$|x^{G} \cap H| \leq \sum_{k=0}^{h} \left[\frac{n!}{k!(n-2k)!2^{k}} \binom{n-2k}{h-k} (q-\epsilon)^{k} \right] < \binom{n}{h} + \frac{n!}{(n-2h)!} (q-\epsilon)^{h}$$
 (27)

and the desired result follows via (25).

For the remainder, let us assume s = n/2. Here $C_{\bar{G}}(x)$ is non-connected and

$$|x^G| > \frac{1}{4} \left(\frac{q}{q+1}\right)^{\frac{1}{2}(1-\epsilon)} q^{\frac{1}{2}n^2}.$$
 (28)

Let us first assume $C_G(x)$ is of type $\mathrm{GL}_{n/2}^{\epsilon}(q)^2$, so x lifts to an involution $\hat{x} \in \mathrm{GL}_n^{\epsilon}(q)$. If n=t then (27) holds (with h=n/2) and this bound with (28) is always sufficient. If $n \geq 2t$ then (26) holds (with $h=\lfloor t/2 \rfloor$) and if we assume $t \geq 3$ then it remains to deal with four cases with which we can calculate directly. If t=2 then

$$|x^G \cap (H-B)| \le |\operatorname{GL}_{n/2}^{\epsilon}(q)| \le (q+1)q^{\frac{1}{4}n^2-1},$$

$$|x^G \cap B| \leqslant \sum_{l=0}^{n/2} \left[\left(\frac{|\mathrm{GL}_{n/2}^{\epsilon}(q)|}{|\mathrm{GL}_{l}^{\epsilon}(q)||\mathrm{GL}_{n/2-l}^{\epsilon}(q)|} \right)^2 \right] < 4 \sum_{l=0}^{n/2} q^{2l(n-2l)} < 4 \left(\frac{q^2+1}{q^2-1} \right) q^{\frac{1}{4}n^2}$$

and (28) is sufficient unless (n,q)=(4,3), where direct calculation yields f(x,H)<.617. Finally, let us assume $C_G(x)$ is of type $\mathrm{GL}_{n/2}(q^2)$. If n/t is even then arguing as before (see (23)) we deduce that

$$|x^{G} \cap H| \leqslant \sum_{k=0}^{\lfloor t/2 \rfloor} \left[\frac{t!}{k!(t-2k)!2^{k}} |\operatorname{GL}_{n/t}^{\epsilon}(q)|^{k} \left(\frac{|\operatorname{GL}_{n/t}^{\epsilon}(q)|}{|\operatorname{GL}_{n/2t}(q^{2})|} \right)^{t-2k} \right]$$

$$< 2 \left(\frac{t^{2}}{2} \right)^{\frac{t}{2}} \left(\frac{q+1}{q} \right)^{\frac{t}{2}(1-\epsilon)} 2^{t} q^{\frac{n^{2}}{2t}}$$

and (28) is sufficient unless (n,t)=(4,2) or $(\epsilon,n,t)=(-,6,3)$. If (n,t)=(4,2) then

$$|x^{G} \cap H| \leq |\operatorname{GL}_{2}^{\epsilon}(q) : \operatorname{GL}_{1}(q^{2})|^{2} + |\operatorname{GL}_{2}^{\epsilon}(q)| = q^{2}(q - \epsilon)^{2} + q(q - \epsilon)(q^{2} - 1),$$
$$|x^{G}| \geq \frac{1}{2}|\operatorname{GL}_{4}^{\epsilon}(q) : \operatorname{GL}_{2}(q^{2})| = \frac{1}{2}q^{4}(q - \epsilon)(q^{3} - \epsilon)$$

and we conclude that f(x, H) < .651 for all $q \ge 3$. In the same way we calculate that f(x, H) < .550 if $(\epsilon, n, t) = (-, 6, 3)$. Finally, if n/t is odd then t is even, (24) holds (setting r = 2) and one can check that (28) is always sufficient.

Proposition 2.6. The conclusion to Theorem 1.1 holds in case (i) of Table 2.1 for unipotent elements of prime order in $H \cap PGL(V)$.

Proof. Let $x \in H \cap \operatorname{PGL}(V)$ be an element of order p, with associated partition $\lambda \vdash n$ (see [4, §3.3]). Write $\widehat{B} = \operatorname{GL}_{n/t}^{\epsilon}(q)^t$ and define h as in (17) (setting r = p), so h = 0 if and only if $x^G \cap H \subseteq B$. Fix $\pi \in S_t$ with cycle-shape $(r^h, 1^{t-hr})$ and assume π induces the permutation $\prod_{i=1}^h ((i-1)p+1, \ldots, ip)$ on coordinates. If $y \in B\pi$ is G-conjugate to x then [4, 3.11] implies that y lifts to a unique element $\hat{y} = (\hat{y}_1, \ldots, \hat{y}_t)\pi \in \widehat{B}\pi$ of order p which is \widehat{B} -conjugate to $(I_{n/t}, \ldots, I_{n/t}, \hat{y}_{hp+1}, \ldots, \hat{y}_t)\pi$. Furthermore, (18) holds and

$$\lambda = (p^{\frac{nh}{t} + b_p}, (p-1)^{b_{p-1}}, \dots, 1^{b_1}), \tag{29}$$

where the restriction of y to $V_{hp+1} \oplus \cdots \oplus V_t$ has associated partition $\lambda' = (p^{b_p}, \dots, 1^{b_1}) \vdash n(t-hp)/t$. We follow the approach of Proposition 2.5, partitioning the proof into a number of cases, where Case i.j is a subcase of Case i.

Case 1. $x^G \cap H \subseteq B$

We begin by considering two special cases; the general case is handled in Case 1.3.

Case 1.1. $\lambda = (k^{n/k})$

Here $2 \le k \le p$ and k divides n/t since $x^G \cap H \subseteq B$. Furthermore, the hypotheses imply that p does not divide t if k = p. Applying Proposition 2.1 and [4, 3.18, 3.20(i)] we deduce that

$$|x^G \cap H| < \left(\frac{q+1}{q}\right)^{\frac{t}{2}(1-\epsilon)} q^{\frac{1}{t}\dim x^{\bar{G}}}, \quad |x^G| > \frac{1}{2} \left(\frac{q}{q+1}\right)^{\frac{1}{2}(1-\epsilon)} q^{\dim x^{\bar{G}}-1}$$

and [6, 2.4] implies that dim $x^{\bar{G}} \geqslant \frac{1}{2}n^2$ (minimal if k=2). The result follows.

Case 1.2. $\lambda = (2^j, 1^{n-2j})$

We may assume that j < n/2 and thus [4, 3.20(i)] implies that

$$|x^G| > \frac{1}{2} \left(\frac{q}{q+1}\right)^{\frac{1}{2}(1-\epsilon)} q^{\dim x^{\bar{G}}},$$
 (30)

where dim $x^{\bar{G}} = 2j(n-j)$. We also note that the prime order hypothesis on x implies that λ must have this form if p = 2, in which case j < n/t since $x^G \cap H \subseteq B$. If j = 1 then

$$|x^G \cap H| < t \cdot 2^{\frac{1}{2}(1+\delta_{2,q})(1+\epsilon)} q^{2(\frac{n}{t}-1)}$$

and (30) is always sufficient if $t \ge 3$. If (t, j) = (2, 1) then the bounds

$$|x^G \cap H| \le 2(q - \epsilon)^{-1}(q^{n/2 - 1} - \epsilon)(q^{n/2} - 1), |x^G| \ge (q - \epsilon)^{-1}(q^{n-1} - 1)(q^n - \epsilon)$$

are sufficient. Now assume $j \ge 2$. Applying (18), Proposition 2.1 and [4, 3.18] we deduce that

$$|x^G \cap H| < {t+j-1 \choose j} 2^{\frac{t}{2}(1+\delta_{2,q})(1+\epsilon)} \left(\frac{q+1}{q}\right)^{\frac{t}{2}(1-\epsilon)} q^{\frac{2j}{t}(n-j)}$$

since each B-class in $x^G \cap B$ is determined by a distribution of the j J_2 -blocks among the t direct factors in B. For $t \ge 3$, this bound with (30) is sufficient unless (n, t, j, q) = (9, 3, 2, 2), where direct calculation yields f(x, H) < .354. Now assume t = 2. Arguing as in the proof of Proposition 2.5 (see (10)) we deduce that

$$|x^G \cap H| < 2^{(1+\delta_{2,q})(1+\epsilon)} \left(\frac{q+1}{q}\right)^{1-\epsilon} \left(\frac{q^2+1}{q^2-1}\right) q^{j(n-j)}.$$
 (31)

First assume $(q, \epsilon) = (2, +)$. Then $|x^G| > 2^{2j(n-j)-1}$ and if we assume $j \ge 4$ then (31) is sufficient unless (n, j) = (10, 4), where direct calculation yields f(x, H) < .514. If j = 3 then there are at most two essentially distinct ways to write $(2^3, 1^{n-6})$ as a sum of two partitions of n/2 and we deduce that $|x^G \cap H| < 16.2^{3n-10} + 8a.2^{3n-18}$, where a = 1 if $n \ge 12$, otherwise a = 0. The result now follows since $|x^G| > 2^{6n-19}$; the case j = 2 is very similar. Finally, if t = 2 and $(q, \epsilon) \ne (2, +)$ then the bounds (30) and (31) are sufficient unless $(\epsilon, n, j, q) = (-, 6, 2, 2)$. Here direct calculation yields f(x, H) < .399.

Case 1.3. General λ

Write $\lambda = (m^{a_m}, \dots, 2^{a_2}, 1^l) \vdash n$, where m = n/t. In view of Case 1.2, we may assume p > 2. Let $d \ge 1$ be the number of non-zero terms a_j in λ and observe that

$$|x^G| > \frac{1}{2} \left(\frac{q}{q+1}\right)^{\frac{1}{2}(1-\epsilon)(d+1)} q^{\dim x^{\bar{G}}-1}.$$
 (32)

If d = 1 and $a_k > 0$ then we may assume k > 2 and l > 0. Then Proposition 2.1 implies that

$$|x^G \cap H| < {t - 1 + (n - l)/k \choose (n - l)/k} 2^t q^{\frac{1}{t} \dim x^{\bar{G}}},$$

where $n \ge \max(l+k,tk)$ and $\dim x^{\bar{G}} = (n^2 - l^2)(1 - 1/k)$, and we find that (32) is sufficient unless (n,t,l,k,q) = (6,2,3,3,3), where direct calculation yields f(x,H) < .370. Now assume $d \ge 2$. We claim that

$$n \geqslant \max(t(d+1), \frac{1}{2}d^2 + \frac{3}{2}d + l)$$
 (33)

and

$$\dim x^{\bar{G}} \geqslant \frac{1}{2}n^2 + \frac{1}{2}(d^2 - d)n - \frac{1}{8}d^4 - \frac{1}{12}d^3 + \frac{3}{8}d^2 - \frac{1}{6}d - \frac{1}{2}l^2. \tag{34}$$

To see this, suppose $\{r_1, \ldots, r_d\}$ is the set of indices with $a_{r_k} > 0$, where $r_i > r_{i+1}$ for each i. Since $x^G \cap H \subseteq B$ we have $n/t \ge r_1 \ge d+1$ and (33) follows since

$$n = l + \sum_{j=1}^{d} r_j a_{r_j} \ge l + \sum_{j=2}^{d+1} j = l + \frac{1}{2} (d+1)(d+2) - 1.$$

The lower bound on dim $x^{\bar{G}}$ follows from [6, 2.3, 2.4]. For example, if $\alpha = \frac{1}{2}(2n-2l-d^2-3d+4)$ is even and l and d are fixed then $(d+1,d,\ldots,3,2^{\alpha/2},1^l) \vdash n$ is the least possible partition of n with respect to the familiar dominance ordering on partitions and the result follows via [6, 2.3, 2.4]. Next we claim that

$$|x^{G} \cap H| < 2^{\frac{1}{2}td(1+\epsilon)} \left(\frac{q+1}{q}\right)^{\frac{t}{2}(1-\epsilon)} \left(\frac{n/2 - d^{2}/4 + d/4 - l/2 - 1}{d} + 1\right)^{d(t-1)} q^{\frac{1}{t}\dim x^{\bar{G}}}.$$
(35)

In view of (18), Proposition 2.1 and [4, 3.18] it is sufficient to show that the number N of B-classes in $x^G \cap B$ satisfies $N \leq Y^{d(t-1)}$, where

$$Y = \frac{n/2 - d^2/4 + d/4 - l/2 - 1}{d} + 1.$$

Such a *B*-class is determined by a choice of t partitions $\lambda_i \vdash n/t$ with $\lambda = \lambda_1 \oplus \cdots \oplus \lambda_t$ and clearly λ_t is uniquely determined once $\lambda_1, \ldots, \lambda_{t-1}$ have been chosen, whence $N \leqslant M^{t-1}$, where M is the number of choices for λ_1 . If $r_1 > \ldots > r_d \geqslant 2$ are the indices with $a_{r_k} > 0$ then λ_1 is uniquely determined by a choice of d-tuple (x_1, \ldots, x_d) , where $0 \leqslant x_j \leqslant a_{r_j}$ for each j. Of course, if M' denotes the number of all such d-tuples then

$$M \leqslant M' = \prod_{j=1}^{d} (a_{r_j} + 1) \leqslant \left(\frac{\sum_{j} a_j}{d} + 1\right)^d$$

and thus $M \leq Y^d$ since $\sum_i a_i$ is maximal when a_2 is as large as possible.

Calculating, we find that the bounds (32), (34) and (35) are sufficient unless $(\epsilon, t, d, q) = (+, 2, 2, 3)$ and $(n, l) \in \{(8, 3), (8, 1), (6, 1)\}$. These cases are easily settled via direct calculation.

Case 2. $x^G \cap (H-B) \neq \emptyset$

Define h > 0 as in (17). Referring to (29), we observe that $\dim x^{\bar{G}}$ is minimal if $b_j = 0$ for all j > 0 and thus (19) holds (with r = p). Also note that [4, 3.20(i)] implies that $|x^{\bar{G}_{\bar{\sigma}}}| = |x^{G_0}|$.

Case 2.1. n = t

Here $\lambda = (p^h, 1^{n-hp})$ and we deduce that

$$|x^G \cap H| = |x^G \cap (H - B)| \le \frac{n!}{h!(n - hp)!p^h} (q - \epsilon)^{h(p-1)}$$

and (30) holds since x^G meets $B\pi$ if and only if π has cycle-shape $(p^h, 1^{n-hp})$. If $\epsilon = +$ then we may assume $q \ge 4$ (see Table 2.1) and the above bounds with (19) are always sufficient, also if $\epsilon = -$ and q > 2. Finally, if $(\epsilon, q) = (-, 2)$ then we are left to deal with the following cases:

(n,h)	$ x^G \cap H $	$ x^G $	f(x,H) <
(5,1)	30	165	.667
(4,1)	18	45	.760*

These results are obtained through direct calculation. The asterisk appearing in the last row indicates that the case (n, t, h, q) = (4, 4, 1, 2) is an exception to the main statement of Theorem 1.1 and is therefore recorded in Table 1.1.

Case 2.2. $n \ge 2t, p = 2$

Let us begin by assuming h=1. Here $\lambda=(2^{n/t+j},1^{n-2n/t-2j})$ for some $0 \le j \le n(1/2-1/t)$ and arguing as before we deduce that

$$|x^G \cap B| < \binom{n/t + j + t - 1}{n/t + j} 2^{\frac{t}{2}(1 + \delta_{2,q})(1 + \epsilon)} \left(\frac{q + 1}{q}\right)^{\frac{t}{2}(1 - \epsilon)} q^{\frac{1}{t}\dim x^{\bar{G}}}$$

and

$$|x^{G} \cap (H-B)| < {t \choose 2} {t-3+j \choose j} 2^{\frac{1}{2}(t-2)(1+\delta_{2,q})(1+\epsilon)} \left(\frac{q+1}{q}\right)^{\frac{1}{2}(t-1)(1-\epsilon)} q^{\frac{1}{t}\dim x^{\bar{G}}},$$

where dim $x^{\bar{G}} = 2(n/t+j)(n-n/t-j)$. If $t \ge 3$ then the result follows via (30); if t = 2 then

$$|x^G \cap (H-B)| \le |\mathrm{GL}_{n/2}^{\epsilon}(q)| < \left(\frac{q+1}{q}\right)^{\frac{1}{2}(1-\epsilon)} q^{\frac{1}{4}n^2}, \ |x^G| > \frac{1}{2} \left(\frac{q}{q+1}\right)^{\frac{1}{2}(1-\epsilon)} q^{\frac{1}{2}n^2}$$

and either $x^G \cap B$ is empty or $n \equiv 0$ (4) and

$$|x^G \cap B| < \left(\frac{|\mathrm{GL}_{n/2}^{\epsilon}(q)|}{|\mathrm{GL}_{n/4}^{\epsilon}(q)|q^{n^2/16}}\right)^2 < \left(\frac{q+1}{q}\right)^{1-\epsilon}q^{\frac{1}{4}n^2}.$$

These bounds are always sufficient. Now assume h > 1. Arguing as in the proof of Proposition 2.5 (see (22)) we deduce that

$$|x^G \cap H| < 2\left(\frac{t^2}{2}\right)^h 2^{\frac{n}{2}} 2^{\frac{t}{2}(1+\delta_{2,q})(1+\epsilon)} \left(\frac{q+1}{q}\right)^{\frac{t}{2}(1-\epsilon)} q^{\frac{1}{t}\dim x^{\bar{G}}}.$$

(Note that if $\rho \in S_t$ has cycle-shape $(2^{nk/t}, 1^{n-2nk/t})$ then the number of B-classes in $x^G \cap B\rho$ is at most N, where N is the number of distinct distributions of n(h-k)/t J_2 -blocks among t-2k direct factors. This accounts for the $2^{n/2}$ factor since $N \leq 2^{n/2-nk/t}$.) The reader can check that this bound with (30) and (19) is sufficient unless (n,q)=(2t,2) and (n,h,ϵ) is one of a handful of possibilities, each of which is easily dealt with.

Case 2.3. $n \ge 2t, p > 2$

Here

$$|x^G| > \frac{1}{2} \left(\frac{q}{q+1}\right)^{\frac{1}{2}(p-1)(1-\epsilon)} q^{\dim x^{\bar{G}}}$$

and in the usual manner we deduce that

$$|x^{G} \cap H| < 2\left(\frac{t^{p}}{p}\right)^{h} p^{n + \frac{n}{t}h(1-p)} 2^{\frac{t}{2}(p-1)(1+\epsilon)} \left(\frac{q+1}{q}\right)^{\frac{t}{2}(1-\epsilon)} q^{\frac{1}{t}\dim x^{\bar{G}}}.$$
 (36)

Applying the lower bound on dim $x^{\bar{G}}$ given in (19) we find that these bounds are sufficient unless $(n, t, h, q, \epsilon) = (6, 3, 1, 3, +)$. In this case direct calculation yields f(x, H) < .321.

Proposition 2.7. The conclusion to Theorem 1.1 holds in case (i) of Table 2.1 for elements of prime order in H - PGL(V).

Proof. Let us start by assuming $x \in G$ is a field automorphism of prime order r, in which case r is odd if $\epsilon = -$ (see [4, 3.42]). Then $q = q_0^r$ and

$$|x^G| \ge \frac{|\operatorname{PSL}_n^{\epsilon}(q)|}{|\operatorname{PGL}_n^{\epsilon}(q^{1/r})|} > \frac{1}{2}(q+1)^{-1}q^{(n^2-1)\left(1-\frac{1}{r}\right)}.$$
 (37)

Also, [4, 3.50] implies that $x^G \cap H \subseteq \widetilde{H}x$, where $\widetilde{H} = B.S_t$, and applying [4, 3.43] we deduce that

$$|x^{G} \cap H| \leqslant (q - \epsilon)^{-1} \sum_{j=0}^{\lfloor t/r \rfloor} \left[|\rho_{j}^{S_{t}}| |\operatorname{GL}_{n/t}^{\epsilon}(q)|^{j(r-1)} \left(\frac{|\operatorname{GL}_{n/t}^{\epsilon}(q)|}{|\operatorname{PGL}_{n/t}^{\epsilon}(q^{1/r})|} \right)^{t-jr} \right], \tag{38}$$

where $\rho_i \in S_t$ has cycle-shape $(r^j, 1^{t-jr})$. In particular, if n = t then

$$|x^G \cap H| \leqslant (q - \epsilon)^{t-1} (i_r(S_t) + 1) \leqslant (q - \epsilon)^{t-1} t!$$

(where $i_r(S_t)$ denotes the number of elements of order r in S_t) and one can check that (37) is sufficient unless $(r, \epsilon) = (2, +)$ and $t \leq 4$. If (r, t) = (2, 4) then $|x^G \cap H| \leq 10(q - 1)^3$ since $i_2(S_4) = 9$ and the result follows via (37); if (r, t) = (2, 3) then (38) gives $|x^G \cap H| \leq q^2 + q - 2$ and the bound $|x^G| > \frac{1}{6}q^4$ is always sufficient. Now assume $n \geq 2t$. Then (38) implies that

$$|x^G \cap H| < (q - \epsilon)^{t-1} t! 2^t q^{\left(\frac{n^2}{t} - t\right)\left(1 - \frac{1}{r}\right)}$$

and we are left to deal with the case $(n, t, r, \epsilon) = (4, 2, 2, +)$ for $q \in \{4, 9, 16\}$. Here the result is easily derived through direct calculation. For example, if q = 4 then f(x, H) < .546 since

$$|x^G \cap H| \le \frac{1}{3} \left(\frac{|\mathrm{GL}_2(4)|}{|\mathrm{PGL}_2(2)|} \right)^2 + |\mathrm{PGL}_2(4)| = 360, \ |x^G| \ge \frac{|\mathrm{SL}_4(4)|}{|\mathrm{PGL}_4(2)|} = 48960.$$

The argument for involutory graph-field automorphisms is very similar.

Finally, let us assume x is an involutory graph automorphism and assume for now that $n \ge 3t$. Then x permutes the t direct factors in B, inducing an involutory graph automorphism on any factor which is fixed. Recall from [4] that x is said to be a *symplectic type* graph automorphism if $C_{G_0}(x)$ has socle $PSp_n(q)$, otherwise x is *non-symplectic* (see [4, 3.47]). Note that

$$|x^G| > \frac{1}{2}(q+1)^{-1}q^{\frac{1}{2}(n^2+\alpha n-2)},$$
 (39)

where $\alpha = 1$ if x is non-symplectic, otherwise $\alpha = -1$ (see [4, 3.48]). We claim that the following two conditions hold:

- (I) If $C_{G_0}(x)$ is symplectic then x induces a symplectic-type graph automorphism on each factor in B which is fixed;
- (II) If $C_{G_0}(x)$ is non-symplectic and $p \neq 2$ then x induces a non-symplectic graph automorphism on each fixed factor in B; if p = 2 then at least one factor must be fixed and acted on as a non-symplectic graph automorphism.

An easy way to see this is to view the algebraic group $\operatorname{GL}_n(K)$ (where K is the algebraic closure of \mathbb{F}_q) as the stabilizer in $\operatorname{Sp}_{2n}(K)$ of a maximal totally singular subspace of the natural $\operatorname{Sp}_{2n}(K)$ -module \bar{V} and calculate the action of x on \bar{V} . Then $\nu(x)=n$ (with respect to \bar{V}) and it is easy to see that $C_{G_0}(x)$ is symplectic if and only if n is even and x is $\operatorname{Sp}_{2n}(K)$ -conjugate to $[-I_n,I_n]$ or a_n according to the parity of p. Set $\delta=+$ if x is non-symplectic, otherwise $\delta=-$. Suppose x permutes the t factors in B with cycle-shape $(2^j,1^{t-2j})$ and induces a non-symplectic graph automorphism on precisely $0\leqslant k\leqslant t-2j$ of the fixed factors. Then x is $\operatorname{Sp}_{2n}(K)$ -conjugate to the block-diagonal matrix $[X^j_\delta,Y^k,Z^{t-2j-k}]\in\operatorname{Sp}_{2n}(K)$, where the elements $X_\delta\in\operatorname{Sp}_{4n/t}(K)$ and $Y,Z\in\operatorname{Sp}_{2n/t}(K)$ are given as follows up to conjugacy (here $i\in K$ satisfies $i^2=-1$ and we adopt the notation of [2] for unipotent involutions in symplectic groups):

	$p \neq 2$	p=2
X_{+}	$[-iI_{2n/t}, iI_{2n/t}]$	$a_{2n/t}$
X_{-}	$[-I_{2n/t},I_{2n/t}]$	$a_{2n/t}$
Y	$[-iI_{n/t}, iI_{n/t}]$	$b_{n/t}$ or $c_{n/t}$
Z	$[-I_{n/t},I_{n/t}]$	$a_{n/t}$

The conditions (I) and (II) follow immediately.

If n = 2t then x induces a non-trivial automorphism on each fixed direct factor $GL_2^{\epsilon}(q)$ in $\widehat{B} = GL_2^{\epsilon}(q)^t$ which restricts to an inner automorphism i_x of $SL_2(q)$. In analogy with the case $n \ge 3t$, we say that x induces a *symplectic-type* automorphism on a fixed factor if and only if

 i_x centralizes $SL_2(q)$, otherwise the action of x on the fixed factor is said to be non-symplectic. With this terminology, it is easy to see that conditions (I) and (II) are valid if we delete each occurrence of the term 'graph'. Finally, if n = t then x acts by inversion on each fixed factor and it is easy to see that x does not fix any factors if $C_{G_0}(x)$ is symplectic, while at least one factor is fixed if $C_{G_0}(x)$ is non-symplectic and p = 2.

Let us begin by assuming $C_{G_0}(x)$ is symplectic, so n is even. Now, if n/t is odd then t is even and our above comments imply that x permutes the t factors with cycle-shape $(2^{t/2})$. Therefore

$$|x^G \cap H| \leqslant (q - \epsilon)^{-1} \frac{t!}{(t/2)!2^{t/2}} |\mathrm{GL}_{n/t}^{\epsilon}(q)|^{\frac{t}{2}} \leqslant \frac{t!}{(t/2)!2^{t/2}} (q - \epsilon)^{\frac{t}{2} - 1} q^{\frac{n^2}{2t} - \frac{t}{2}}$$

and (39) is sufficient unless q=2 and $(n,t) \in \{(6,2),(4,4)\}$. These cases are easily settled through direct calculation. Next assume $C_{G_0}(x)$ is symplectic and n/t is even. In view of condition (I) we deduce that

$$|x^{G} \cap H| \leqslant (q - \epsilon)^{-1} \sum_{j=0}^{\lfloor t/2 \rfloor} \left[|\rho_{j}^{S_{t}}| |\operatorname{GL}_{n/t}^{\epsilon}(q)|^{j} \left(\frac{|\operatorname{GL}_{n/t}^{\epsilon}(q)|}{|\operatorname{Sp}_{n/t}(q)|} \right)^{t-2j} \right] < (q - \epsilon)^{t-1} t! 2^{t} q^{\frac{n^{2}}{2t} - \frac{t}{2}}$$

and thus (39) is sufficient if $t \ge 3$. If t = 2 then

$$|x^G \cap H| \le (q - \epsilon) \left(\frac{|\operatorname{PGL}_{n/2}^{\epsilon}(q)|}{|\operatorname{Sp}_{n/2}(q)|} \right)^2 + |\operatorname{PGL}_{n/2}^{\epsilon}(q)| < q^{\frac{1}{4}n^2 - \frac{1}{2}n - 2} \left(4(q - \epsilon) + q^{\frac{1}{2}n + 1} \right)$$

and if we assume $n \ge 8$ then (39) is sufficient unless $(n,q,\epsilon)=(8,2,-)$, where a direct calculation yields f(x,H)<.439. Finally, if (n,t)=(4,2) then q>2 (see Table 2.1) and the bounds $|x^G\cap H| \le (q-\epsilon)+|\mathrm{PGL}_2(q)|$ and $|x^G| \ge (2,q-\epsilon)^{-1}q^2(q^3-\epsilon)$ (see [9, 4.5.6, 4.8.2]) are always sufficient.

Now assume $C_{G_0}(x)$ is non-symplectic. If n=t then

$$|x^G \cap H| \le (q - \epsilon)^{-1} \sum_{j=0}^{\alpha} \left[|\rho_j^{S_t}| (q - \epsilon)^{t-j} \right] \le (q - \epsilon)^{t-1} (i_2(S_t) + 1) \le t! (q - \epsilon)^{t-1},$$

where $\alpha = t/2 - 1$ if (t, p) = 2, otherwise $\alpha = \lfloor t/2 \rfloor$. Now if $\epsilon = +$ then (39) is sufficient unless t = 3 and q < 5; if $\epsilon = -$ then the same bounds are sufficient if $t \ge 14$ or if $q \ge 8$. For the cases which remain, the desired result can be obtained by applying (39) with the more accurate upper bound $|x^G \cap H| \le (q - \epsilon)^{t-1}(i_2(S_t) + 1)$. Now assume $n \ge 2t$. If p = 2 and n/t is even then (II) implies that

$$|x^G \cap H| \leq (q - \epsilon)^{-1} \sum_{j=0}^{\alpha} \left[|\rho_j^{S_t}| |\operatorname{GL}_{n/t}^{\epsilon}(q)|^j g(j) \right],$$

where

$$g(j) = \sum_{k=1}^{t-2j} \left[\binom{t-2j}{k} \left(\frac{|\operatorname{GL}_{n/t}^{\epsilon}(q)|}{|\operatorname{Sp}_{n/t-2}(q)|q^{n/t-1}} \right)^k \left(\frac{|\operatorname{GL}_{n/t}^{\epsilon}(q)|}{|\operatorname{Sp}_{n/t}(q)|} \right)^{t-2j-k} \right]$$

and α is defined as before. Therefore

$$|x^G \cap H| < (q - \epsilon)^{t-1} t! 2^t q^{\frac{n^2}{2t} + \frac{n}{2} - t}$$

and it is easy to see that this bound also holds if hcf(n/t, p, 2) = 1. If we assume $t \ge 3$ then the desired result follows via (39). Next assume t = 2 and $n \ge 6$. If p is odd then

$$|x^G \cap H| \le (q - \epsilon) \left(\frac{|\operatorname{PGL}_{n/2}^{\epsilon}(q)|}{|\operatorname{SO}_{n/2}^{\epsilon'}(q)|} \right)^2 + |\operatorname{PGL}_{n/2}^{\epsilon}(q)| < q^{\frac{1}{4}n^2 - 1} \left(4(q - \epsilon)q^{\frac{1}{2}n - 1} + 1 \right)$$

and (39) is sufficient unless $(n, q, \epsilon) = (6, 3, -)$, where direct calculation yields f(x, H) < .586. Similarly, if p = 2 then

$$|x^G \cap H| < 4(q - \epsilon)q^{\frac{1}{4}n^2 - 2}(q^{\frac{1}{2}n} + 2\beta),$$

where $\beta = 1$ if n/2 is even, otherwise $\beta = 0$. Applying (39), we see that we are left to deal with a handful of cases which are easily dealt with by deriving more accurate bounds. Finally, let us assume (n, t) = (4, 2). If $p \neq 2$ then

$$|x^G \cap H| \le (q - \epsilon) \left(\frac{|\operatorname{PGL}_2(q)|}{|\operatorname{PGO}_2^+(q)|} + \frac{|\operatorname{PGL}_2(q)|}{|\operatorname{PGO}_2^-(q)|} \right)^2 + |\operatorname{PGL}_2(q)| = q^4(q - \epsilon) + q(q^2 - 1)$$

and the desired result follows since

$$|x^G| \geqslant \frac{|\operatorname{PSL}_4^{\epsilon}(q)|}{|\operatorname{SO}_4^{\epsilon}(q)|} = (4, q - \epsilon)^{-1} q^4 (q^2 - 1)(q^3 - \epsilon).$$

Similarly, if p=2 then $|x^G\cap H|\leqslant (q^4-1)(q-\epsilon),\ |x^G|\geqslant q^2(q^3-\epsilon)(q^4-1)$ and again the result follows.

2.3 Proof of Theorem 1.1: Case (ii) of Table 2.1

Let σ be a Frobenius morphism of $\bar{G} = \mathrm{PSp}_n(K)$ such that \bar{G}_{σ} has socle $G_0 = \mathrm{PSp}_n(q)$. Here $\iota = 1/n$ when t = 2 and so we may assume $n \ge 8$ if t = 2. Observe that

$$H \cap \operatorname{PGL}(V) \leqslant \left(\left((2, q-1)^{t-1}.\operatorname{PSp}_{\frac{n}{t}}(q)^{t}\right).(2, q-1)\right).S_{t} = B.S_{t},$$

where B is the image of $\operatorname{GSp}_{n/t}(q)^t$ in $\operatorname{PGSp}_n(q) = \overline{G}_{\sigma}$. If q is odd then $B = \widetilde{B}.\langle \delta \rangle$, where \widetilde{B} is the image of $\operatorname{Sp}_{n/t}(q)^t$ in $\operatorname{PSp}_n(q)$ and δ is an involutory diagonal automorphism of $\operatorname{PSp}_n(q)$.

Let $x \in H \cap \operatorname{PGL}(V)$ be an element of prime order r and suppose $y \in B\rho$ is G-conjugate to x, where $\rho \in S_t$ has cycle-shape $(r^k, 1^{t-kr})$ for some $k \geqslant 0$. Assume y fixes each subspace V_j with j > kr in the decomposition $V = V_1 \oplus \cdots \oplus V_t$. If r is odd then [4, 3.11] implies that y lifts to a unique element $\hat{y} = (\hat{y}_1, \ldots, \hat{y}_t)\pi \in \operatorname{Sp}_n(q)$ of order r. Furthermore, the proof of [10, 4.5] implies that \hat{y} is \hat{B} -conjugate to $(I_{n/t}, \ldots, I_{n/t}, \hat{y}_{kr+1}, \ldots, \hat{y}_t)\pi$, where $\hat{B} = \operatorname{Sp}_{n/t}(q)^t$ and $\hat{y}_j \in \operatorname{Sp}_{n/t}(q)$ satisfies $\hat{y}_j^r = I_{n/t}$ for all j > kr. Therefore

$$|y^B| \le |\hat{y}^{\widehat{B}}| = |\operatorname{Sp}_{n/t}(q)|^{k(r-1)} \prod_{j>kr} |\hat{y}_j^{\operatorname{Sp}_{n/t}(q)}|$$
 (40)

and it is easy to see that the same bound holds if r=2 and $C_{\bar{G}}(x)$ is connected. We also note that if p=2 then each involution $\rho \in S_t$ with cycle-shape $(2^k, 1^{t-2k})$ is G-conjugate to $a_{nk/t}$, where we label representatives of G-classes of involutions as in [2]. Throughout, we define the integer h as in (17).

The case $x \in H - \operatorname{PGL}(V)$ is straightforward. Here $x \in G$ is a field automorphism of prime order r, so $q = q_0^r$ and [4, 3.48] states that $|x^G| > \frac{1}{4}q^{(n^2+n)(1-1/r)/2}$. Furthermore, we have

$$|x^G \cap H| \leqslant \sum_{j=0}^{\lfloor t/r \rfloor} \left[|\rho_j^{S_t}| |\operatorname{Sp}_{n/t}(q)|^{j(r-1)} \left(\frac{|\operatorname{Sp}_{n/t}(q)|}{|\operatorname{Sp}_{n/t}(q^{1/r})|} \right)^{t-jr} \right] < 2^t t! q^{\frac{1}{2} \left(\frac{n^2}{t} + n \right) \left(1 - \frac{1}{r} \right)},$$

where $\rho_j \in S_t$ has cycle-shape $(r^j, 1^{t-jr})$, and these bounds are sufficient unless (n, t, r, q) = (6, 3, 2, 4), where direct calculation yields f(x, H) < .535.

Proposition 2.8. The conclusion to Theorem 1.1 holds in case (ii) of Table 2.1 for semisimple elements of prime order in $H \cap PGL(V)$.

Proof. Let $x \in H \cap \operatorname{PGL}(V)$ be a semisimple element of prime order $r \neq p$. We prove the proposition in two parts, starting with the case $x^G \cap H \subseteq B$.

Case 1.
$$x^G \cap H \subseteq B$$

Let us start by assuming r > 2. Let $i \ge 1$ be minimal such that $r|(q^i - 1)$ and let $\mu = (l, a_1, \ldots, a_k)$ denote the associated σ -tuple of x, where k = (r - 1)/i (see [4, 3.27]). Let d denote the number of non-zero terms a_j in μ and note that d is even if i is odd. From the proof of Proposition 2.1 we have

$$\dim x^{\bar{B}} \leqslant \frac{1}{t} \dim x^{\bar{G}} + \frac{1}{2}(n-l)\left(1 - \frac{1}{t}\right)$$

and [4, 3.30] implies that

$$|x^G| > \frac{1}{2} \left(\frac{q}{q+1}\right)^{d(2-e)} q^{\dim x^{\bar{G}}},$$
 (41)

where e = 2 if i is odd, otherwise e = 1. Appealing to (40) and arguing as in the proof of Proposition 2.5 (see (8)) we deduce that

$$|x^G \cap H| < \log_2 q \cdot \left(\frac{n-l}{di} + 1\right)^{\frac{d}{e}(t-1)} 2^{\frac{1}{2}(e-1)dt} q^{\frac{1}{t}\dim x^{\bar{G}} + \frac{1}{2}(n-l)\left(1 - \frac{1}{t}\right)}.$$

Now $n \ge \max(l + di, eti)$ and [4, 3.33] gives a lower bound for $\dim x^{\bar{G}}$. If $i \ge 3$ then one can check that these bounds are always sufficient; if i < 3 then we are left to deal with a handful of cases and the desired result is easily obtained by computing more accurate bounds.

Now assume r=2. Write $s=\nu(x)$ and observe that the hypothesis $x^G\cap H\subseteq B$ implies that s< n/t. In particular, s is even and x lifts to an involution $\hat{x}=(\hat{x}_1,\ldots,\hat{x}_t)\in \hat{B}$. If $\nu(\hat{x}_i)=s_i$ (with respect to the natural $\operatorname{Sp}_{n/t}(q)$ -module) then

$$\dim x^{\bar{B}} = \sum_{i=1}^{t} s_i \left(\frac{n}{t} - s_i \right) = \frac{ns}{t} - \sum_{i=1}^{t} s_i^2 \leqslant \frac{1}{t} s(n-s) = \frac{1}{t} \dim x^{\bar{G}}$$

and thus

$$|x^G \cap H| < {t + s/2 - 1 \choose s/2} 2^t q^{\frac{1}{t}s(n-s)}, |x^G| > \frac{1}{2} q^{s(n-s)}.$$

It is easy to check that these bounds are sufficient for all $t \ge 3$. Finally, if t = 2 then

$$|x^{G} \cap H| \leq \sum_{j=0}^{s/2} \left[\frac{|\operatorname{Sp}_{n/2}(q)|}{|\operatorname{Sp}_{2j}(q)||\operatorname{Sp}_{n/2-2j}(q)|} \cdot \frac{|\operatorname{Sp}_{n/2}(q)|}{|\operatorname{Sp}_{s-2j}(q)||\operatorname{Sp}_{n/2-s+2j}(q)|} \right]$$

$$< 4 \sum_{j=0}^{s/2} q^{\frac{1}{2}(ns+8sj-2s^{2}-16j^{2})} < 4 \left(\frac{q^{2}+1}{q^{2}-1} \right) q^{\frac{1}{2}s(n-s)}$$

and the bound $|x^G| > \frac{1}{2}q^{s(n-s)}$ is always sufficient.

Case 2. $x^G \cap (H-B) \neq \emptyset$

Write $x = b\pi$, where $b \in B$ and $h(\pi) = h > 0$. If $C_{\bar{G}}(x)$ is connected then x lifts to an element $\hat{x} = (\hat{x}_1, \dots, \hat{x}_t)\pi \in \operatorname{Sp}_n(q)$ of order r which is \widehat{B} -conjugate to $(I_{n/t}, \dots, I_{n/t}, \hat{x}_{hr+1}, \dots, \hat{x}_t)\pi$ and it is easy to see that $\dim x^{\bar{G}}$ is minimal if $\hat{x}_j = I_{n/t}$ for each j, i.e.

$$\dim x^{\bar{G}} \geqslant \dim \pi^{\bar{G}} = \begin{cases} \frac{nh}{t} \left(n - \frac{nh}{t} \right) & \text{if } r = 2\\ \frac{nh}{2t} (r - 1)(2n + 1 - nhr/t) & \text{otherwise.} \end{cases}$$
 (42)

Case 2.1. r > 2

Let $i \ge 1$ be minimal such that $r|(q^i - 1)$ and define e as in Case 1. Then [4, 3.30] gives

$$|x^G| > \frac{1}{2} \left(\frac{q}{q+1}\right)^{\frac{1}{2}(2-e)(r-1)} q^{\dim x^{\bar{G}}}$$
 (43)

and we claim that

$$|x^{G} \cap H| < \log_{2} q.2 \left(\frac{t^{r}}{r}\right)^{h} 2^{\frac{1}{2}(e-1)(r-1)t} \left(\frac{1}{2}(r+1)\right)^{\frac{n}{2}} q^{\left(\frac{1}{t} + \frac{2}{n+2}\right)\dim x^{\bar{G}}}.$$
 (44)

If $y \in x^G \cap H$ then using (40) and the proof of Proposition 2.1 we deduce that

$$|y^B| < 2^{\frac{1}{2}(e-1)(r-1)t}q^{\left(\frac{1}{t} + \frac{2}{n+2}\right)\dim x^{\bar{G}}}.$$

The claim now follows because the number of distinct B-classes in $x^G \cap H$ is at most

$$\log_2 q. \sum_{k=0}^h \left[\frac{t!}{k!(t-kr)!r^k} \left(\frac{r-1}{ei} + 1 \right)^{\frac{1}{ei} \left(n - \frac{nrk}{t} \right)} \right] < \log_2 q. 2 \left(\frac{t^r}{r} \right)^h \left(\frac{1}{2} (r+1) \right)^{\frac{n}{2}}$$

(see (7) and (22) for example). The reader can check that the bounds (42), (43) and (44) are sufficient with the exception of a small number of cases when h = 1 and $r \in \{3, 5\}$. Here the desired result quickly follows through direct calculation.

Case 2.2. r = 2

We begin by assuming $C_{\bar{G}}(x)$ is connected, so t > 2h since $\nu(x) < n/2$. Appealing to the proof of Proposition 2.1 we deduce that

$$|x^G \cap H| < 2\left(\frac{t^2}{2}\right)^h 2^{\frac{n}{2} + t} q^{\left(\frac{1}{t} + \frac{1}{n}\right) \dim x^{\bar{G}}}$$

(see (44)) where $\dim x^{\bar{G}} \geqslant (nh/t)(n-nh/t)$. Now $|x^G| > \frac{1}{2}q^{\dim x^{\bar{G}}}$ and the reader can check that these bounds are always sufficient if n>2t and $h\geqslant 2$; if h=1 and n>2t then we are left to deal with the case (n,t)=(12,3) for $q\in\{3,5\}$, where direct calculation yields f(x,H)<.343. If n=2t then the maximality of h implies that $\nu(x)=2h$ and the result follows since $|x^G|>\frac{1}{2}q^{4h(t-h)}$ and

$$|x^G \cap H| \le \sum_{k=0}^h \left[\frac{t!}{k!(t-2k)!2^k} {t-2k \choose h-k} |\operatorname{Sp}_2(q)|^k \right] < t^{2h} q^h (q^2-1)^h.$$

Now assume $C_{\bar{G}}(x)$ is non-connected. There are four cases to consider. If $C_G(x)$ is of type $\operatorname{Sp}_{n/2}(q)^2$ then $|x^G| > \frac{1}{4}q^{n^2/4}$ and our earlier arguments apply since each $y \in x^G \cap B$ lifts to an involution in \widehat{B} . We leave the details to the reader. Next assume $C_G(x)$ is of type $\operatorname{Sp}_{n/2}(q^2)$. If n/2t is odd then t is even and the intersection $x^G \cap B\rho$ is non-empty if and only if $\rho \in S_t$ has cycle-shape $(2^{t/2})$. Therefore

$$|x^G \cap H| \le \frac{t!}{(t/2)!2^{t/2}} \frac{1}{2} |\operatorname{Sp}_{n/t}(q)|^{\frac{t}{2}} < \frac{t!}{(t/2)!2^{t/2+1}} q^{\frac{n^2}{4t} + \frac{n}{4}}$$

and the desired result follows since $|x^G| > \frac{1}{4}q^{n^2/4}$. Alternatively, if n/2t is even then

$$|x^G \cap H| \leqslant \sum_{k=0}^{\lfloor t/2 \rfloor} \left[\frac{t!}{k!(t-2k)!2^k} |\operatorname{Sp}_{n/t}(q)|^k \left(\frac{|\operatorname{Sp}_{n/t}(q)|}{|\operatorname{Sp}_{n/2t}(q^2)|} \right)^{t-2k} \right] < 2 \left(\frac{t^2}{2} \right)^{\lfloor \frac{t}{2} \rfloor} q^{\frac{n^2}{4t} + \frac{n}{4}}$$

and one can check that the bound $|x^G| > \frac{1}{4}q^{n^2/4}$ is sufficient unless (n, t, q) = (8, 2, 3), where direct calculation yields f(x, H) < .618. Finally, if $C_G(x)$ is of type $\mathrm{GL}_{n/2}^{\epsilon}(q)$ then

$$|x^{G} \cap H| \leqslant \sum_{k=0}^{\lfloor t/2 \rfloor} \left[\frac{t!}{k!(t-2k)!2^{k}} |\operatorname{Sp}_{n/t}(q)|^{k} \left(\frac{|\operatorname{Sp}_{n/t}(q)|}{|\operatorname{GL}_{n/2t}^{\epsilon}(q)|} \right)^{t-2k} \right] < 2 \left(\frac{t^{2}}{2} \right)^{\lfloor \frac{t}{2} \rfloor} 2^{t} q^{\frac{n^{2}}{4t} + \frac{n}{2}},$$

$$|x^{G}| = \frac{|\operatorname{Sp}_{n}(q)|}{|\operatorname{GL}_{n/2}^{\epsilon}(q)|^{2}} > \frac{1}{4} \left(\frac{q}{q+1} \right) q^{\frac{1}{4}n(n+2)}$$

and we are left to deal with a handful of cases which are easily settled. For example, if t=3then the above bounds are sufficient unless n=6, where we calculate that f(x,H) < .609 since

$$|x^G \cap H| \leqslant \left(\frac{|\mathrm{Sp}_2(q)|}{|\mathrm{GL}_1^\epsilon(q)|}\right)^3 + 3|\mathrm{Sp}_2(q)| \frac{|\mathrm{Sp}_2(q)|}{|\mathrm{GL}_1^\epsilon(q)|}, \ |x^G| = \frac{|\mathrm{Sp}_6(q)|}{|\mathrm{GL}_3^\epsilon(q)|2}.$$

Proposition 2.9. The conclusion to Theorem 1.1 holds in case (ii) of Table 2.1 for unipotent elements of prime order in $H \cap PGL(V)$.

Proof. Let $x \in H \cap PGL(V)$ be a unipotent element of order p, with associated partition $\lambda \vdash n$. Note that any odd parts in λ must occur with an even multiplicity (see [4, §3.3]).

Case 1. $x^G \cap H \subseteq B, p > 2$

According to the proof of Proposition 2.1 we have

$$\dim x^{\bar{B}} \leqslant \frac{1}{t} \dim x^{\bar{G}} + \frac{1}{2}(n-e) \left(1 - \frac{1}{t}\right),\tag{45}$$

where e is the number of odd parts in λ . If $\lambda = (k^{n/k})$, for some $k \ge 2$, then the hypothesis $x^G \cap H \subseteq B$ implies that $k \leq n/t$ and applying (40) and (45) we deduce that

$$|x^G\cap H|<2^tq^{\frac{1}{t}\dim x^{\bar{G}}+\frac{1}{2}\left(1-\frac{1}{t}\right)n},\ |x^G|>\frac{1}{4}(q+1)^{-1}q^{\dim x^{\bar{G}}+1},$$

where dim $x^{\bar{G}} \geqslant \frac{1}{4}n(n+2)$. These bounds are sufficient unless (n,t)=(6,3), where direct calculation yields f(x,H) < .501. Next assume $\lambda = (2^j, 1^{n-2j})$ for some $1 \le j < n/2$, so dim $x^G = j(n-j+1)$. If j=1 then the desired result follows from the bounds $|x^G \cap H| < t.q^{n/t}$ and $|x^G| > \frac{1}{4}q^n$. Now assume $j \ge 2$. If n=2t then $t \ge 3$ and the bounds $|x^G \cap H| < {t \choose j}q^{2j}$ and $|x^G| > \frac{1}{4}(q+1)^{-1}q^{j(2t-j+1)+1}$ are always sufficient so assume for the remainder that $n \ge 4t$. If j=2 then $|x^G \cap H| < {t \choose 2}q^{2n/t} + 2tq^{2n/t-2}$, $|x^G| > \frac{1}{4}(q+1)^{-1}q^{2n-1}$ and the result follows. If $j \geqslant 3$ then the bounds

$$|x^G \cap H| < {t+j-1 \choose j} 2^t q^{\frac{1}{t} \dim x^{\bar{G}} + j\left(1 - \frac{1}{t}\right)}, \ |x^G| > \frac{1}{4} q^{\dim x^{\bar{G}}}$$

are sufficient unless (n, t, j, q) = (8, 2, 3, 3), where more accurate bounds yield f(x, H) < .423.

Now assume $\lambda = (m^{a_m}, \dots, 2^{a_2}, 1^l) \vdash n$, where $m = n/t \ge 2$, and let $d \ge 1$ denote the number of non-zero terms a_i . (Note that the prime order hypothesis implies that $m \leq p$.) The case d=1 is straightforward so let us assume $d \ge 2$. Then arguing as in the proof of Proposition 2.6 (see (34)) we deduce that

$$\dim x^{\bar{G}} \geqslant \frac{1}{4}n^2 + \frac{1}{4}(d^2 - d + 2)n - \frac{1}{16}d^4 - \frac{1}{24}d^3 + \frac{3}{16}d^2 - \frac{1}{3}d - \frac{1}{4}l^2 - \frac{1}{2}l$$

and $n \ge \max(t(4d+2)/3, l+2d+2d^2/3-2/3)$ since odd parts in λ must occur with an even multiplicity. Furthermore, using (45) we deduce that

$$|x^G \cap H| < 2^{td} \left(\frac{n/2 - d^2/4 + d/4 - l/2 - 1}{d} + 1 \right)^{d(t-1)} q^{\frac{1}{t} \dim x^{\bar{G}} + \frac{1}{2}(n-l)\left(1 - \frac{1}{t}\right)}$$

(see (35)). Now [4, 3.18] implies that

$$|x^G| > \left(\frac{1}{2}\right)^{d+1} \left(\frac{q}{q+1}\right)^d q^{\dim x^{\tilde{G}}}$$

and one can check that these bounds are sufficient with the exception of a small number of cases when (t,q)=(2,3). These remaining cases are easily dealt with by computing more accurate bounds. For instance, if (n,l)=(12,0) then $\lambda=(3^2,2^3)$ and we deduce that f(x,H)<.547 since $|x^G\cap H|<2.3^{26}$ and $|x^G|>\frac{1}{4}3^{50}$.

Case 2. $x^G \cap H \subseteq B, p = 2$

Let us begin by assuming x is G-conjugate to a_l for some even integer l. Then the hypothesis $x^G \cap H \subseteq B$ implies that l < n/t since every element of order two in S_t is an a-type involution. If (,) is a non-degenerate G-invariant symmetric bilinear form on V then (vx, v) = 0 for all $v \in V$ and thus if $y = (y_1, \ldots, y_t) \in x^G \cap B$ then each non-trivial y_i must be an a-type involution, hence $n \geqslant 4t$. Now, if l = 2 then the bounds $|x^G \cap H| < 2tq^{2n/t-4}$ and $|x^G| > \frac{1}{2}q^{2n-4}$ are always sufficient. If $l \geqslant 4$ then using Proposition 2.1 we deduce that

$$|x^G \cap H| < {t + l/2 - 1 \choose l/2} 2^t q^{\frac{1}{t}l(n-l)}, |x^G| > \frac{1}{2} q^{l(n-l)}$$

and the reader can check that these bounds are always sufficient.

Assume for the remainder that x is G-conjugate to either b_l or c_l , the precise type depending on the parity of l. Then the hypothesis $x^G \cap H \subseteq B$ implies that $l \le n/t$ and we note that if $y = (y_1, \ldots, y_t) \in x^G \cap B$ then at least one y_j is a b- or c-type involution. Now, if n = 2t then each non-trivial y_i must be $\operatorname{Sp}_2(q)$ -conjugate to b_1 and the subsequent bounds $|x^G \cap H| < {t \choose l} q^{2l}$ and $|x^G| > \frac{1}{2} q^{l(2t-l+1)}$ are always sufficient. Assume for the remainder that $n \geqslant 4t$. If l = 1 then $|x^G \cap H| < tq^{n/t}$, $|x^G| > \frac{1}{2} q^n$ and the result follows. Similarly, if l = 2 then the bounds $|x^G \cap H| < {t \choose 2} q^{2n/t} + 2tq^{2n/t-2}$ and $|x^G| > \frac{1}{2} q^{2n-2}$ are always sufficient. Now assume $l \geqslant 3$. Using the proof of Proposition 2.1 we deduce that

$$|x^G \cap H| < {t+l-1 \choose l} 2^{2t} q^{\frac{1}{t} \dim x^{\bar{G}} + (1-\frac{1}{t})l}, \ |x^G| > \frac{1}{2} q^{\dim x^{\bar{G}}},$$

where dim $x^{\bar{G}} = l(n-l+1)$. (Note that the number of *B*-classes in $x^G \cap B$ is determined by the number of ways l J_2 -blocks can be distributed among the t direct factors, together with one of two choices (either a- or c-type) for each factor which is assigned an even number of J_2 -blocks. This number is at most $\binom{t+l-1}{l}2^t$.) If we assume $t \geq 3$ then these bounds are sufficient with the exception of a handful of cases with which we can calculate directly. For t=2 we require more accurate bounds. Let N_1 (resp. N_2) denote the number of elements $(y_1, y_2) \in x^G \cap B$ such that one (resp. neither) of the y_i is an a-type involution. Then $|x^G \cap H| = N_1 + N_2$ and we claim that

$$N_1 < 2^3 \left(\frac{q^2 + 1}{q^2 - 1}\right) q^{\frac{1}{2}\dim x^{\bar{G}}}, \quad N_2 < 2^2 \left(\frac{q^2 + 1}{q^2 - 1}\right) q^{\frac{1}{2}(\dim x^{\bar{G}} + l)}. \tag{46}$$

First consider N_1 . For all possible even integers $j \ge 0$, choose $x_j = (y_1, y_2) \in x^G \cap B$ such that y_1 is $\operatorname{Sp}_{n/2}(q)$ -conjugate to a_j (set $a_0 = I_{n/2}$). Then using [4, 3.22] we calculate that

$$N_1 = 2\sum_{j} |x_j^B| < 2^3 \sum_{j} q^{j(n/2-j) + (l-j)(n/2-l+j+1)} = 2^3 \sum_{j} q^{f(j)}.$$

Evidently $\max_{j\in\mathbb{Z}} f(j) \leqslant f(l/2) = \frac{1}{2} \dim x^{\bar{G}}$ and the claim for N_1 now follows since f(j) is even and $|f(j+1) - f(j)| \geqslant 2$ for all j. Similar reasoning justifies the upper bound for N_2 . Now $|x^G| > \frac{1}{2}q^{\dim x^{\bar{G}}}$ and if we assume $l \geqslant 3$ then the reader can check that the upper bound on $|x^G \cap H|$ derived from (46) is always sufficient if $q \geqslant 4$. Similarly, if q = 2 and $l \geqslant 4$ then it remains to deal with the case (n,l) = (8,4), where direct calculation gives f(x,H) < .590. Finally, if (l,q) = (3,2) then using the proof of [4,3.22] we calculate that

$$|x^{G} \cap H| \leqslant 2|b_{1}^{\operatorname{Sp}_{n/2}(2)}| \left(|a_{2}^{\operatorname{Sp}_{n/2}(2)}| + |c_{2}^{\operatorname{Sp}_{n/2}(2)}|\right) = \frac{8}{3}(2^{\frac{n}{2}-2} - 1)(2^{\frac{n}{2}} - 1)^{2},$$

$$|x^{G}| \geqslant \frac{4}{3}(2^{n-4} - 1)(2^{n-2} - 1)(2^{n} - 1)$$

and the reader can check that these bounds are always sufficient.

Case 3. $x^G \cap (H-B) \neq \emptyset$

Define h > 0 as in (17) and fix $\pi \in S_t$ such that $h(\pi) = h$. It is easy to see that (42) holds (on substituting r = p). First assume p > 2. Here $|x^G|$ is minimal if $\lambda = (p^{nh/t}, 1^{n-nhp/t}) \vdash n$ and thus

$$|x^G| > \frac{1}{2} q^{\frac{nh}{2t}(p-1)(2n+1-nhp/t)}.$$
 (47)

If n = 2t then the maximality of h implies that $\lambda = (p^{2h}, 1^{n-2hp})$, so

$$|x^G \cap H| = |x^G \cap (H - B)| \le \frac{t!}{h!(t - hp)!p^h} (q(q^2 - 1))^{h(p-1)}$$

and the result follows via (47). Now assume $n \ge 4t$. Using Proposition 2.1 and arguing as in the proof of Proposition 2.6 (see (36)) we deduce that

$$|x^G \cap H| < 2\left(\frac{t^p}{p}\right)^h p^{n+\frac{n}{t}h(1-p)} 2^{pt} q^{\left(\frac{1}{t} + \frac{2}{n+2}\right)\dim x^{\tilde{G}}}.$$

Applying the lower bound on $\dim x^{\bar{G}}$ given in (42), we calculate that this bound with (47) is sufficient unless (h, p) = (1, 3) and (n, t) is one of a handful of cases. As usual, these exceptional cases are easily settled through direct calculation.

Next assume p = 2 and x is an a-type involution, i.e. x is G-conjugate to $a_{nh/t+j}$, where $0 \le j < n/t$ is even. If t = 2 then (h, j) = (1, 0) and

$$|x^G \cap (H-B)| \le |\operatorname{Sp}_{n/2}(q)| < q^{\frac{1}{8}n(n+2)}, |x^G| > \frac{1}{2}q^{\frac{1}{4}n^2}.$$

Clearly, either $x^G \cap B$ is empty or $n \equiv 0$ (8) and $|x^G \cap B| < 4q^{n^2/8}$ since each $y \in x^G \cap B$ must act on both V_1 and V_2 as an $a_{n/4}$ involution. We leave the reader to check that these bounds are always sufficient. Now assume $t \geqslant 3$. Evidently, each B-class in $x^G \cap B\pi$ is determined by a choice of elements x_{2h+1}, \ldots, x_t in $\operatorname{Sp}_{n/t}(q)$ (up to conjugacy) such that each non-trivial x_k is conjugate to a_{l_k} for some even integer l_k and $\sum_k l_k = j$. If n = 2t then $q \geqslant 4$ (see Table 2.1), j = 0 and the result follows since

$$|x^G \cap H| = |x^G \cap (H - B)| < \left(\frac{t!}{h!(t - 2h)!2^h}\right)q^{3h}, |x^G| > \frac{1}{2}q^{4h(t - h)}.$$

Now assume $n \geqslant 4t$. Then [4, 3.22] gives $|x^G| > \frac{1}{2}q^{\dim x^{\bar{G}}}$ and using the proof of Proposition 2.1 we deduce that

$$|x^G \cap H| < 2\left(\frac{t^2}{2}\right)^h 2^{\frac{n}{4} + t} q^{\left(\frac{1}{t} + \frac{1}{n}\right)\dim x^{\bar{G}}}.$$

(Note that if $x^G \cap B\rho$ is non-empty then the number of B-classes in $x^G \cap B\rho$ is at most $2^{n/4}$.) Applying (42) (with r = p = 2) we find that the above bounds are always sufficient if $h \ge 2$.

If h = 1 then $|x^G| > \frac{1}{2}q^{\dim x^{\bar{G}}}$, where $\dim x^{\bar{G}} = (n/t + j)(n - n/t - j)$, and the desired result follows since the proof of Proposition 2.1 implies that

$$|x^G \cap B| < {t + n/2t + j/2 - 1 \choose n/2t + j/2} 2^t q^{\frac{1}{t} \dim x^{\bar{G}}}$$

and

$$|x^G \cap (H-B)| < \binom{t}{2} \binom{t-3+j/2}{j/2} 2^{t-2} q^{\left(\frac{1}{t} + \frac{1}{n}\right) \dim x^{\bar{G}}}.$$

Finally, let us assume p=2 and x is a b- or c-type involution. In this case, x is conjugate to b_l or c_l , where l=nh/t+j and $1 \le j \le n/t$. In particular, we note that t>2h. If n=2t then

$$|x^G \cap H| < \sum_{k=0}^h \left[|\rho_k^{S_t}| \binom{t-2k}{2h+j-2k} q^{4h+2j-k} \right] < \left(\binom{t}{2h+j} + \frac{t!}{(t-2h-j)!j!} \right) q^{4h+2j},$$

where $\rho_k \in S_t$ has cycle-shape $(2^k, 1^{t-2k})$, and the result follows since $|x^G| > \frac{1}{2}q^{(2h+j)(2t-2h-j+1)}$. Now assume $n \ge 4t$. Arguing as before we deduce that

$$|x^G \cap H| < 2\left(\frac{t^2}{2}\right)^h 2^{\frac{n}{2} + t} 2^t q^{\left(\frac{1}{t} + \frac{1}{n}\right) \dim x^{\bar{G}}}, \quad |x^G| > \frac{1}{2} q^{\dim x^{\bar{G}}},$$

where dim $x^{\bar{G}} \ge (nh/t+1)(n-nh/t)$, and the result follows if $h \ge 2$. If h=1 then

$$|x^G \cap B| < 2^t {t + n/t + j - 1 \choose n/t + j} 2^t q^{\left(\frac{1}{t} + \frac{2}{n+2}\right) \dim x^{\bar{G}}}$$

and

$$|x^G \cap (H-B)| < 2^{t-2} \binom{t}{2} \binom{t-3+j}{j} 2^{t-2} q^{\left(\frac{1}{t} + \frac{2}{n+2}\right) \dim x^{\bar{G}}},$$

where $\dim x^{\bar{G}} \geqslant (nh/t+j)(n-nh/t-j+1)$. Now $|x^G| > \frac{1}{2}q^{\dim x^{\bar{G}}}$ and we find that these bounds are sufficient with the exception of a handful of cases (n,t,j) with which we can calculate directly. For example, if (n,t,j)=(12,3,2) then x is G-conjugate to c_6 , so $|x^G|>\frac{1}{2}q^{42}$. If $y=(y_1,y_2,y_3)\in x^G\cap B$ then at least one y_i is $\operatorname{Sp}_4(q)$ -conjugate to c_2 and [4,3.22] implies that $|x^G\cap B|<2^3(q^{18}+3q^{16}+3q^{14})$. If $\pi=(12)\in S_3$ and $z\in B\pi$ then z is B-conjugate to $[I_4,I_4,c_2]\pi$ and $|x^G\cap (H-B)|<3.2q^{16}$. We conclude that f(x,H)<.539 for all $q\geqslant 2$.

2.4 Proof of Theorem 1.1: Cases (iii), (iv) and (v) of Table 2.1

Fix a Frobenius morphism σ of $\bar{G} = \mathrm{PSO}_n(K)$ such that \bar{G}_{σ} has socle $\mathrm{P}\Omega_n^{\epsilon}(q)$. Let (Δ) denote the hypothesis " $(n,\epsilon)=(8,+)$ and G contains triality automorphisms", and note that if (Δ) holds then we may assume that H is of type $\mathrm{O}_4^+(q) \wr S_2$ or $\mathrm{O}_2^{\epsilon'}(q) \wr S_4$ (see [4, 3.3]).

Proposition 2.10. The conclusion to Theorem 1.1 holds in case (iii) of Table 2.1.

Proof. Here $q = p \ge 3$, $n \ge 7$ and $H \le 2^{n-1}.S_n = B.S_n \le PGL(V)$. Let $x \in H$ be an element of prime order r and note that $x^G \cap (H - B)$ is non-empty. If r is odd then $x^G \cap B\pi$ is non-empty if and only if $\pi \in S_t$ has cycle-shape $(r^h, 1^{n-hr})$ for a uniquely determined integer $h \ge 1$. Therefore

$$|x^{G} \cap H| = |x^{G} \cap (H - B)| \le \left(\frac{n!}{h!(n - hr)!r^{h}}\right) 2^{h(r-1)}$$

and

$$|x^{G}| > \begin{cases} \frac{1}{2} \left(\frac{q}{q+1}\right)^{\frac{1}{2}(r-1)} q^{\dim x^{\bar{G}}} & \text{if } r \neq p \\ \frac{1}{8} \left(\frac{q}{q+1}\right)^{2} q^{\dim x^{\bar{G}}} & \text{if } r = p, \end{cases}$$

where dim $x^{\bar{G}} = \frac{1}{2}(r-1)(2nh-h^2r-h)$. These bounds are sufficient unless (n,r,q) = (7,3,3), where direct calculation yields f(x,H) < .590.

Now assume r=2. Define $h \ge 1$ as in (17) and observe that the maximality of h implies that $\nu(x) = h$. If n=2h and $C_G(x)$ is of type $\mathrm{GL}_{n/2}^{\epsilon}(q)$ then the result follows since

$$|x^G \cap H| = |x^G \cap (H - B)| \le \frac{n!}{(n/2)!}, |x^G| > \frac{1}{4}(q+1)^{-1}q^{\frac{1}{4}n(n-2)+1}.$$

For the remainder, we may assume that x lifts to an involution in $O_1(q) \wr S_n$ and thus

$$|x^G \cap H| \le \sum_{j=0}^h \left[\frac{n!}{j!(n-2j)!2^j} |\mathcal{O}_1(q)|^j \binom{n-2j}{h-j} \right] \le \frac{n!}{(n-2h)!}.$$
 (48)

If n=2h then $|x^G|>\frac{1}{8}q^{n^2/4}$ and we are left to deal with the case (n,q)=(8,3). Here (48) gives $|x^G\cap H|\leqslant 14630$ and we conclude that f(x,H)<.619<5/8 since $|x^G|>\frac{1}{8}3^{16}$. On the other hand, if n>2h then $|x^G|>\frac{1}{4}(q+1)^{-1}q^{h(n-h)+1}$ and if $h\geqslant 2$ then (48) is sufficient with the exception of a handful of cases which we can deal with by computing more accurate bounds. For instance, if (n,h,q)=(7,2,3) then $H\cap G_0\cong 2^6.A_7$ (see [9, 4.2.15]) and therefore f(x,H)<.609 if $x\in G_0$ since

$$|x^G \cap H| \le {7 \choose 2} + \frac{7!}{2!3!} = 441, |x^G| = |O_7(3) : O_5(3)O_2^-(3)| = 22113.$$

Similarly, we calculate that f(x, H) < .500 if $x \notin G_0$. Finally, if h = 1 then $|x^G| > \frac{1}{4}q^{n-1}$, $|x^G \cap H| \le n + \binom{n}{2}|O_1(q)| = n^2$ and we are left to deal with the cases (n, q) = (8, 3) and (7, 3). These cases are easily settled through direct calculation.

Proposition 2.11. The conclusion to Theorem 1.1 holds for cases (iv) and (v) of Table 2.1.

Proof. We deal with both cases simultaneously. Let $\bar{B} = PSO_{n/t}(K)^t$ and observe that

$$H \cap PGL(V) \leq \left(\left((2, q-1)^{t-1}.PO_{\frac{n}{t}}^{\epsilon'}(q)^t \right).(2, n/t, q-1) \right).S_t = B.S_t,$$

where B is the image of $\mathrm{GO}_{n/t}^{\epsilon'}(q)^t$ in $\mathrm{PGO}_n^{\epsilon}(q)$ and (2,n/t,q-1) is a cyclic group of order $\mathrm{hcf}(2,n/t,q-1)$. Let $x\in H\cap\mathrm{PGL}(V)$ be an element of prime order r and suppose $y\in x^G\cap B\rho$, where $\rho\in S_t$ has cycle-shape $(r^k,1^{t-kr})$ for some $k\geqslant 0$ and y fixes each subspace V_j with j>kr in the decomposition $V=V_1\oplus\cdots\oplus V_t$. If we assume $\nu(x)< n/2$ if r=2< p then y lifts to an element $\hat{y}=(\hat{y}_1,\ldots,\hat{y}_t)\rho\in \hat{B}\rho$ of order r which is \hat{B} -conjugate to $(I_{n/t},\ldots,I_{n/t},\hat{y}_{kr+1},\ldots,\hat{y}_t)\rho$, where $\hat{B}=\mathrm{O}_{n/t}^{\epsilon'}(q)^t$ and

$$|y^{B}| \le |\hat{y}^{\widehat{B}}| = |\mathcal{O}_{n/t}^{\epsilon'}(q)|^{k(r-1)} \prod_{j>kr} |\hat{y}_{j}^{\mathcal{O}_{n/t}^{\epsilon'}(q)}|.$$
 (49)

We note that if p=2 then every element of order two in S_t acts on V as an a-type involution.

Case 1. $x \in H \cap \mathrm{PGL}(V)$

Here we can argue as in the proof of Proposition 2.9 and for brevity we only provide details in the case where x is a semisimple involution.

Assume for now that (Δ) does not hold. Write $s = \nu(x)$, define h as in (17) and let us start by assuming s < n/2 and h = 0, so $x^G \cap H \subseteq B$ and dim $x^{\bar{G}} = s(n-s)$. If s = 1 then applying Lemma 2.4 we deduce that $|x^G \cap H| < t(q+1)q^{n/t-2}$, $|x^G| > \frac{1}{4}q^{n-1}$ and we are left to deal with the case (t,q) = (2,3). Here $\epsilon = +$ (see Table 2.1) and if we assume $n \equiv 0$ (4) then the bounds

$$|x^G \cap H| \le 2|\mathcal{O}_{\frac{n}{2}}^-(3) : \mathcal{O}_{\frac{n}{2}-1}(3)|, |x^G| \ge \frac{1}{2}|\mathcal{O}_n^+(3) : \mathcal{O}_{n-1}(3)|$$

are sufficient; the case $n \equiv 2$ (4) is similar. If s = 2 then the desired result follows since

$$|x^G \cap H| < {t \choose 2} \left(\frac{q+1}{q}\right)^2 q^{2\left(\frac{n}{t}-1\right)} + t \cdot 2q^{2\frac{n}{t}-4}, \quad |x^G| > \frac{1}{4}(q+1)^{-1}q^{2n-3}.$$

Now assume $s \ge 3$. Applying Proposition 2.1 and Lemma 2.4 we see that

$$|x^G \cap H| < {t+s-1 \choose s} 2^t q^{\frac{1}{t}s(n-s)}, |x^G| > \frac{1}{4} q^{s(n-s)}$$

and it is easy to check that these bounds are always sufficient if $t \ge 3$. If t = 2 then

$$|x^G \cap H| < 2^2 \left(\frac{q^2 + 1}{q^2 - 1}\right) q^{\frac{1}{2}s(n-s)} \tag{50}$$

and if we assume $s \ge 3$ then the bound $|x^G| > \frac{1}{4}q^{s(n-s)}$ is sufficient unless s = q = 3 and $n \in \{8, 10\}$. These cases are easily dealt with through direct calculation.

Now assume s < n/2 and h > 0. Then t > 2h,

$$|x^G| > \frac{1}{4}(q+1)^{-1}q^{s(n-s)+1}$$
 (51)

and applying Proposition 2.1, Lemma 2.4 and (49) we deduce that

$$|x^G \cap H| < 2\left(\frac{t^2}{2}\right)^h 2^{t+n} q^{\frac{1}{t}s(n-s)}.$$
 (52)

If we assume $h \ge 3$ then these bounds are sufficient unless (n,t,h,q) = (14,7,3,3). Here the hypothesis s < n/2 implies that s = 6 and direct calculation yields f(x,H) < .260. If h = 2 then we are left to deal with a handful of cases with n = 2t; here the maximality of h implies that $s \in \{4,5\}$ and the desired result follows by applying (51) and a more accurate upper bound for $|x^G \cap H|$. For instance, if s = 4 then

$$|x^G \cap H| \leqslant \binom{t}{4}(q+1)^4 + 12\binom{t}{4}(q+1)^3 + \left(12\binom{t}{4} + 3\binom{t}{3}\right)(q+1)^2 + 6\binom{t}{3}(q+1) + \binom{t}{2}(q+1)^3 + \left(12\binom{t}{4} + 3\binom{t}{3}\right)(q+1)^2 + 6\binom{t}{3}(q+1) + \binom{t}{2}(q+1)^3 + \binom{t}{4}(q+1)^3 + \binom{t}{4}(q+1)^4 + \binom{t}{4}(q$$

and the result follows via (51). Now assume h=1. If n=2t then $s \in \{2,3\}$. If s=2 then $|x^G \cap H| \leq {t \choose 2}(q+1)^2 + 2{t \choose 2}(q+1) + t$ and (51) is good enough. The case s=3 is similar. If n > 2t then (51) is always sufficient since

$$|x^G \cap H| < \left(2\binom{t+s-1}{s} + \binom{t}{2}\binom{t+j-3}{j}\right)2^{t-1}q^{\frac{1}{t}s(n-s)}.$$

Next assume s = n/2. If $C_G(x)$ is of type $O_{n/2}^{\epsilon''}(q) \times O_{n/2}^{\epsilon'''}(q)$ then our earlier work applies since each $y \in x^G \cap B\rho$ lifts to an involution $\hat{y} = (\hat{y}_1, \dots, \hat{y}_t)\rho \in \widehat{B}\rho$. In particular, if t = 2 then appealing to (49) and (50) we deduce that

$$|x^G \cap B| < 2^2 \left(\frac{q^2+1}{q^2-1}\right) q^{\frac{1}{8}n^2}, \quad |x^G \cap (H-B)| \leqslant \frac{1}{2} |\mathcal{O}^{\epsilon'}_{n/2}(q)| < q^{\frac{1}{8}n(n-2)}$$

and the bound $|x^G| > \frac{1}{8}q^{n^2/4}$ is sufficient unless $(n,q) \in \{(10,3),(8,3)\}$; these cases are easily resolved. Now assume $t \ge 3$. Applying Proposition 2.1, Lemma 2.4 and (49) we deduce that

$$|x^G \cap H| < 2\left(\frac{t^2}{2}\right)^{\lfloor \frac{t}{2} \rfloor} 2^{t+n} q^{\frac{n^2}{4t}}$$

(see (52)) and if we assume n > 2t then the bound $|x^G| > \frac{1}{8}q^{n^2/4}$ is sufficient unless (n, t, q) = (12, 3, 3), where direct calculation yields f(x, H) < .370. Finally, suppose n = 2t. If $t \ge 5$ then the previous bounds are sufficient with the exception of the cases

$$(t,q) \in \{(8,3), (7,3), (6,3), (5,5), (5,3)\}.$$

Here we apply the more accurate upper bound

$$|x^{G} \cap H| \leqslant \sum_{k=0}^{t'/2} \left[\frac{t!}{k!(t-2k)!} (q-\epsilon')^{k+\beta} \sum_{l=0}^{t'/2-k} \left(\binom{t'-2k}{2l} (q-\epsilon')^{2l} \binom{t'-2k-2l}{t'/2-k-l} \right) \right], \quad (53)$$

where $t' = t - \beta$, $t \equiv \beta(2)$ and the desired result quickly follows. For instance, if (t,q) = (5,3) then (53) gives $|x^G \cap H| \leq 11416$ and thus f(x,H) < .348 since $|x^G| \geq |\mathcal{O}_{10}^+(3) : \mathcal{O}_5(3)^2|$. Finally, if (n,t) = (8,4) then (53) implies that

$$|x^G \cap H| \le (q - \epsilon')^4 + 12(q - \epsilon')^3 + 24(q - \epsilon')^2 + 24(q - \epsilon') + 6$$

and we conclude that f(x, H) < .456 since $|x^G| \ge \frac{1}{2} |O_8^+(q) : O_4^-(q)^2|$.

Next assume $C_G(x)$ is of type $O_{n/2}^{\epsilon''}(q^2)$, where $\epsilon'' = \epsilon$ if n/2 is even. Then $|x^G| > \frac{1}{8}q^{n^2/4}$ and if we assume n/t is odd then

$$|x^G \cap H| \le \frac{t!}{(t/2)!2^{t/2}} \frac{1}{2} |\mathcal{O}_{n/t}^{\epsilon'}(q)|^{\frac{t}{2}} < \frac{t!}{(t/2)!2} q^{\frac{n^2}{4t} - \frac{n}{4}}$$

since t is even and $x^G \cap B\rho$ is non-empty if and only if $\rho \in S_t$ has cycle-shape $(2^{t/2})$. These bounds are always sufficient. On the other hand, if n/t is even then

$$|x^G \cap H| \leqslant \sum_{k=0}^{\lfloor t/2 \rfloor} \left\lceil \frac{t!}{k!(t-2k)!2^k} |\mathcal{O}_{n/t}^{\epsilon'}(q)|^k \left(\frac{|\mathcal{O}_{n/t}^{\epsilon'}(q)|}{|\mathcal{O}_{n/2t}^{\zeta}(q^2)|} \right)^{t-2k} \right\rceil < 2 \left(\frac{t^2}{2} \right)^{\lfloor \frac{t}{2} \rfloor} \left(\frac{q+1}{q} \right)^t 2^t q^{\frac{n^2}{4t}},$$

where $\zeta = \epsilon'$ if n/2t is even. If we assume $t \ge 3$ then this bound with $|x^G| > \frac{1}{8}q^{n^2/4}$ is sufficient unless $(n, t, q) \in \{(10, 5, 3), (8, 4, 3)\}$. In these cases the desired result is easily obtained through direct calculation. If t = 2 then the more accurate bounds

$$|x^G \cap H| \leqslant \left(\frac{|\mathcal{O}^{\epsilon'}_{n/2}(q)|}{|\mathcal{O}^{\zeta}_{n/4}(q^2)|}\right)^2 + \frac{1}{2}|\mathcal{O}^{\epsilon'}_{n/2}(q)| < (q^{\frac{n}{4}} + 1)q^{\frac{1}{8}n(n-2)}, \quad |x^G| > \frac{1}{8}q^{\frac{1}{4}n^2}$$

are sufficient unless (n,q)=(8,3), where direct calculation yields f(x,H)<.541.

Finally, suppose $C_G(x)$ is of type $\mathrm{GL}_{n/2}^{\epsilon''}(q)$, in which case

$$|x^G| > \frac{1}{4}(q+1)^{-1}q^{\frac{1}{4}n(n-2)+1}.$$
 (54)

Assume for now that n/t is even and let the symbol (†) represent the following conditions on ϵ'' and n/t with respect to ϵ' :

$$\begin{array}{ll}
\epsilon' & \text{conditions} \\
+ & \epsilon'' = + \text{ if } n/t \equiv 2 (4) \\
- & \epsilon'' = - \text{ and } n/t \equiv 2 (4)
\end{array}$$

If (†) holds then using [8, Table 4.5.1] we deduce that

$$|x^{G} \cap H| \leqslant \sum_{k=0}^{\lfloor t/2 \rfloor} \left[\frac{t!}{k!(t-2k)!2^{k}} |\mathcal{O}_{n/t}^{\epsilon'}(q)|^{k} \left(\frac{|\mathcal{O}_{n/t}^{\epsilon'}(q)|}{|\mathcal{GL}_{n/2t}^{\epsilon''}(q)|} \right)^{t-2k} \right] < 2 \left(\frac{t^{2}}{2} \right)^{\lfloor \frac{t}{2} \rfloor} 2^{2t} q^{\frac{n^{2}}{4t} - \frac{n}{4}}$$
 (55)

and if we assume $t \ge 3$ then one can check that (54) is sufficient unless (n,t) = (8,4) or $(n,t,q) \in \{(12,6,3),(10,5,3)\}$. If (n,t) = (8,4) then the result follows via (54) since (55) gives

$$|x^G \cap H| \le 2^4 + 2^3 \binom{4}{2} (q+1) + 3 \cdot 2^2 (q+1)^2;$$

the other two cases are similar. If t=2 then $\epsilon=+$ (see Table 2.1), $n\equiv 0$ (4) and the bounds

$$|x^G \cap H| \leqslant \left(\frac{|\mathcal{O}_{n/2}^{\epsilon'}(q)|}{|\mathcal{GL}_{n/4}^{\epsilon''}(q)|}\right)^2 + \frac{1}{2}|\mathcal{O}_{n/2}^{\epsilon'}(q)| < (2^4 + q^{\frac{n}{4}})q^{\frac{1}{8}n(n-4)}$$

and (54) are sufficient unless n=8 and $q\in\{3,5\}$. Here $x^G\cap B$ is empty if $\epsilon'=-$ (see [4, Table 3.8]) and direct calculation yields f(x,H)<.546.

Now assume that either n/t is odd or (†) does not hold if n/t is even. Then t is even and $x^G \cap B\rho$ is non-empty if and only if $\rho \in S_t$ has cycle-shape $(2^{t/2})$. Therefore

$$|x^G \cap H| \leqslant \frac{t!}{(t/2)!2^{t/2}} \frac{1}{2} |\mathcal{O}_{n/t}^{\epsilon'}(q)|^{\frac{t}{2}} < \frac{t!}{(t/2)!} \frac{1}{2} \left(\frac{q+1}{q}\right)^{\frac{t}{2}} q^{\frac{1}{4t}n(n-t)}$$

and the reader can check that this bound with (54) is always sufficient.

To complete the proof, let us assume (\triangle) holds and recall that we may assume H is of type $O_4^+(q) \wr S_2$ or $O_2^{\epsilon'}(q) \wr S_4$. In view of [4, 3.55(iii)], we can also assume that $C_G(x)$ is not of type $O_4^+(q)^2$. If $\nu(x) = 1$ then $x^G \cap H \subseteq B$, $|x^G| \ge \frac{3}{2}q^3(q^4 - 1)$ and the bounds

$$|x^G \cap H| \le \begin{cases} 6q(q^2 - 1) & \text{if } t = 2\\ 12(q + 1) & \text{if } t = 4 \end{cases}$$

are always sufficient. Similarly, if $\nu(x)=3$ and t=2 then $x^G\cap H\subseteq B$ and the bounds

$$|x^G \cap H| \le 12 \frac{|\mathcal{O}_4^+(q)|}{|\mathcal{O}_3(q)||\mathcal{O}_1(q)|} \left(1 + \frac{|\mathcal{O}_4^+(q)|}{|\mathcal{O}_2^+(q)|^2} + \frac{|\mathcal{O}_4^+(q)|}{|\mathcal{O}_2^-(q)|^2}\right) < 24q^7 + 12q^3$$

and $|x^G| > \frac{3}{4}q^{15}$ are sufficient unless q = 3, where direct calculation yields f(x, H) < .559. If t = 4 then $|x^G| > \frac{3}{4}q^{15}$ and the bounds

$$|x^G \cap B| \le 12(q - \epsilon')^3 + 36(q - \epsilon'), |x^G \cap (H - B)| \le 3\binom{4}{2}|O_2^{\epsilon'}(q)|2(q - \epsilon') = 72(q - \epsilon')^2$$

are always sufficient.

Next assume $C_G(x)$ is of type $\mathrm{GL}_4^{\epsilon''}(q)$. If t=2 then the bounds

$$|x^{G} \cap H| \leq 2 \left(\frac{|\mathcal{O}_{4}^{+}(q)|}{|\mathcal{O}_{2}^{+}(q)|^{2}} + \frac{|\mathcal{O}_{4}^{+}(q)|}{|\mathcal{O}_{2}^{-}(q)|^{2}} \right) + \left(\frac{2|\mathcal{O}_{4}^{+}(q)|}{|\mathcal{O}_{3}(q)||\mathcal{O}_{1}(q)|} \right)^{2} + \left(\frac{|\mathcal{O}_{4}^{+}(q)|}{|\mathcal{GL}_{2}^{e''}(q)|} \right)^{2} + \frac{1}{2}|\mathcal{O}_{4}^{+}(q)|$$

$$= 2q^{6} + 4q^{2}(q + \epsilon'')^{2} - 2q^{4} + 4q^{2}$$

(see [4, 3.55(iii)]) and

$$|x^{G}| \geqslant 3 \frac{|\mathrm{SO}_{8}^{+}(q)|}{|\mathrm{GL}_{4}^{\ell''}(q)|^{2}} = \frac{3}{2} q^{6} (q + \epsilon'') (q^{2} + 1) (q^{3} + \epsilon'')$$
(56)

are always sufficient. Similarly, if t = 4 then

$$|x^G \cap B| \le 4 + {4 \choose 2} (q - \epsilon')^2 + |O_2^{\epsilon'}(q) : GL_1^{\epsilon'}(q)|^4 = 6(q - \epsilon')^2 + 20,$$

$$|x^{G} \cap (H - B)| \leq {4 \choose 2} |O_2^{\epsilon'}(q)| \left(1 + |O_2^{\epsilon'}(q)| \cdot \operatorname{GL}_1^{\epsilon'}(q)|^2\right) + \frac{3}{2} |O_2^{\epsilon'}(q)|^2 = 60(q - \epsilon') + 6(q - \epsilon')^2$$

and the desired result follows via (56). Finally, let us assume x is conjugate to $[-I_4, I_4]$. If t = 2 then the bounds

$$|x^{G} \cap H| \leq \left(\frac{2|\mathcal{O}_{4}^{+}(q)|}{|\mathcal{O}_{3}(q)||\mathcal{O}_{1}(q)|}\right)^{2} + \left(\frac{|\mathcal{O}_{4}^{+}(q)|}{|\mathcal{O}_{2}^{+}(q)|^{2}} + \frac{|\mathcal{O}_{4}^{+}(q)|}{|\mathcal{O}_{2}^{-}(q)|^{2}}\right)^{2} + 2\left(\frac{|\mathcal{O}_{4}^{+}(q)|}{|\mathcal{O}_{2}^{+}(q^{2})|}\right)^{2} + 1 + \frac{3}{2}|\mathcal{O}_{4}^{+}(q)|$$

$$= 4q^{2}(q^{2} - 1)^{2} + (q^{4} + q^{2})^{2} + 2q^{4}(q^{2} - 1)^{2} + 1$$

and

$$|x^G| \geqslant 3 \frac{|SO_8^+(q)|}{|SO_4^-(q)|^2 4} = \frac{3}{4} q^8 (q^2 - 1)(q^6 - 1)$$

are always sufficient. The case t = 4 is very similar.

Case 2. $x \in H - PGL(V)$

If $x \in G$ is a field automorphism of prime order r then $q = q_0^r$ and [4, 3.48] gives

$$|x^G| > \frac{1}{4}q^{\frac{1}{2}(n^2-n)\left(1-\frac{1}{r}\right)}.$$
 (57)

Now, if r is odd then

$$|x^{G} \cap H| \leqslant \sum_{j=0}^{\lfloor t/r \rfloor} \left[\frac{t!}{j!(t-jr)!r^{j}} |\mathcal{O}_{n/t}^{\epsilon'}(q)|^{j(r-1)} \left(\frac{|\mathcal{O}_{n/t}^{\epsilon'}(q)|}{|\mathcal{O}_{n/t}^{\epsilon'}(q^{1/r})|} \right)^{t-jr} \right] < 2^{t}t!q^{\frac{1}{2}\left(\frac{n^{2}}{t}-n\right)\left(1-\frac{1}{r}\right)}$$
(58)

and the desired result follows via (57). Next assume $q=q_0^2$ and x is an involutory field or graph-field automorphism, so $\epsilon \neq -$ and (57) holds (with r=2). If n/t is odd then (58) is valid (with r=2) and we find that (57) is always sufficient. If $\epsilon'=+$ then

$$|x^G \cap H| \leqslant \sum_{j=0}^{\lfloor t/2 \rfloor} \left[\frac{t!}{j!(t-2j)!2^j} |\mathcal{O}^+_{n/t}(q)|^j \left(\frac{|\mathcal{O}^+_{n/t}(q)|}{|\mathcal{O}^+_{n/t}(q^{1/2})|} + \frac{|\mathcal{O}^+_{n/t}(q)|}{|\mathcal{O}^-_{n/t}(q^{1/2})|} \right)^{t-2j} \right] < 2^{2t}t!q^{\frac{n^2}{4t} - \frac{n}{4}}$$

and (57) is sufficient unless (n, t, q) = (8, 2, 4) (note that $(n, t, q) \neq (8, 4, 4)$ - see Table 2.1). Here direct calculation yields f(x, H) < .530. Finally, if $\epsilon' = -$ then t is even (see Table 2.1) and $x^G \cap B\rho$ is non-empty if and only if $\rho \in S_t$ has cycle-shape $(2^{t/2})$. Therefore

$$|x^G \cap H| \le \frac{t!}{(t/2)!2^{t/2}} |\mathcal{O}_{n/t}^-(q)|^{\frac{t}{2}} < \frac{t!}{(t/2)!} \left(\frac{q+1}{q}\right)^{\frac{t}{2}} q^{\frac{n^2}{4t} - \frac{n}{4}}$$

and (57) is always sufficient.

Now assume (\triangle) holds. If x is a triality graph-field automorphism then $q=q_0^3$ and [4, 3.48] gives $|x^G|>\frac{1}{4}q^{56/3}$. If t=4 then the trivial bound

$$|x^G \cap H| < |H| \le 3\log_2 q \cdot 4!2^4 (q+1)^4$$
 (59)

is always sufficient. On the other hand, if t=2 then we may assume $\epsilon'=+$. Since $\Omega_4^+(q)\cong \mathrm{SL}_2(q)\circ\mathrm{SL}_2(q)$ (central product) we deduce that

$$|x^G \cap H| \leqslant \frac{4!}{3} |\mathrm{SL}_2(q)|^2 \frac{|\mathrm{SL}_2(q)|}{|\mathrm{SL}_2(q^{1/3})|} < 16q^8$$

and the desired result follows since $|x^G| > \frac{1}{4}q^{56/3}$.

Finally, let us assume x is a triality graph automorphism, and assume for now that t=4. If x is a non- G_2 triality (see [4, 3.47]) then $|x^G| > \frac{1}{8}q^{20}$ (see [4, Table 3.10]) and we find that (59) is sufficient for all $q \ge 4$. If q=3 then a calculation using GAP [7] yields f(x,H) < .405. Similarly, if q=2 then $\epsilon'=-$ (see Table 2.1) and using GAP we deduce that f(x,H) < .555. If x is a G_2 -type triality then $|x^G| > \frac{1}{8}q^{14}$ and (59) is sufficient for all $q \ge 9$. The cases $5 \le q \le 8$ are easily settled. For example, if q=5 then $|H \cap G_0| \le 62208$ (see [9,4.2.11]), $|x^{G_0}|=1521000000$ and thus

$$f(x, H) \le \frac{\log(24.62208)}{\log(8.1521000000)} < .613.$$

Now assume q < 5, in which case $\epsilon' = -$ (see Table 2.1). Here we compute the following results using GAP [7, 11]:

\overline{q}	$ x^G \cap H \leqslant$	$ x^G \geqslant$	f(x,H) <
4	800	266342400	.345
3	512	1166400	.447
2	288	14400	.592

For the remainder we may assume t=2, so $\epsilon'=+$ and $q\geqslant 3$ (see Table 2.1). As previously remarked, there is an isomorphism $\Omega_4^+(q)\cong \mathrm{SL}_2(q)\circ\mathrm{SL}_2(q)$ and it is helpful to consider the corresponding situation for algebraic groups. Here $A_1^4.S_4\leqslant D_4.S_3$ and a triality graph automorphism τ acts as a 3-cycle on the A_1 -factors and centralizes the remaining factor only if $C_{D_4}(\tau)=G_2$; either τ centralizes this factor or it acts on it as an inner automorphism of order three. Therefore, if x is a G_2 -type triality then

$$|x^G \cap H| \le \frac{4!}{3} |\mathrm{SL}_2(q)|^2 < 8q^6, |x^G| > \frac{1}{8}q^{14}$$

and we are left to deal with the case q=3, where direct calculation yields f(x,H)<.604. Likewise, if x is a non- G_2 triality then

$$|x^G \cap H| \le \frac{4!}{3} |\operatorname{SL}_2(q)|^2 \frac{|\operatorname{SL}_2(q)|}{q-1} < 16q^8, |x^G| > \frac{1}{8}q^{20}$$

and we conclude that f(x, H) < .582 for all $q \ge 3$.

3 Proof of Theorem 1.1: $H \in \mathcal{C}_3$

The subgroups in \mathcal{C}_3 arise from field extensions of prime degree k, where k divides the dimension n of the natural G_0 -module V. As advertised in §2, we also deal with the \mathcal{C}_2 -subgroups of unitary, symplectic and orthogonal groups which stabilize a totally singular n/2-decomposition of V. The cases we shall consider in this section are listed in Table 3.1 (see [9, Tables 4.2.A, 4.3.A]).

	G_0	type of H	conditions
$\overline{(i)}$	$\mathrm{PSL}_n^{\epsilon}(q)$	$\mathrm{GL}_{n/k}^{\epsilon}(q^k)$	$k \text{ odd if } \epsilon = -$
(ii)	$PSU_n(q)$	$\operatorname{GL}_{n/2}(q^2)$	n even
(iii)	$PSp_n(q)$	$\operatorname{Sp}_{n/k}(q^k)$	n/k even
(iv)	$P\Omega_n^{\epsilon}(q)$	$\mathrm{O}_{n/k}^{\epsilon}(q^k)$	$n/k \geqslant 4$ even
(v)	$\Omega_n(q)$	$O_{n/k}(q^k)$	$nkq \text{ odd}, n/k \geqslant 3$
(vi)	$P\Omega_n^{\epsilon}(q)$	$O_{n/2}(q^2)$	$n/2 \text{ odd}, q \equiv -\epsilon (4)$
(vii)	$PSp_n(q)$	$\operatorname{GL}_{n/2}^{\epsilon}(q).2$	q odd
(viii)	$P\Omega_n^+(q)$	$\operatorname{GL}_{n/2}^{\epsilon'}(q).2$	$n \equiv 0 (4) \text{ if } \epsilon' = -$
(ix)	$P\Omega_n^-(q)$	$\mathrm{GU}_{n/2}(q).2$	$n \equiv 2 (4)$

Table 3.1: The collection \mathcal{C}_3

Proposition 3.1. The conclusion to Theorem 1.1 holds in cases (i) and (ii) of Table 3.1.

Proof. We may assume $n \geq 3$. Let $\bar{G} = \mathrm{PSL}_n(K)$, $\bar{B} = \mathrm{PSL}_{n/k}(K)$ and let σ be a Frobenius morphism of \bar{G} such that \bar{G}_{σ} has socle $\mathrm{PSL}_n^{\epsilon}(q)$. Let V denote the natural G_0 -module. We only give details for case (i) of Table 3.1; a very similar argument applies in case (ii) and the reader can easily make the necessary minor adjustments. We partition the proof into a number of separate cases, where Case i.j is a subcase of Case i.

Case 1. $x \in H \cap PGL(V)$ According to [9, (4.3.10)] we have

$$H \cap \mathrm{PGL}(V) \leqslant \left(\left(\frac{q^k - \epsilon}{q - \epsilon} \right) . \mathrm{PGL}_{\frac{n}{k}}^{\epsilon}(q^k) \right) . \langle \phi \rangle = B.k,$$

where ϕ acts on $\operatorname{PGL}_{n/k}^{\epsilon}(q^k)$ as a field automorphism of order k and B is the image of $\operatorname{GL}_{n/k}^{\epsilon}(q^k)$ in $\operatorname{PGL}_n^{\epsilon}(q)$. Let $x \in H \cap \operatorname{PGL}(V)$ be an element of prime order r and write $B = \widehat{B}/Z$, where

 $\widehat{B} = \operatorname{GL}_{n/k}^{\epsilon}(q^k)$ and $Z = q - \epsilon$ (i.e. Z is a cyclic group of order $q - \epsilon$). If $x \in B$ then the proof of [4, 3.11] implies that either there exists an element $\widehat{x} \in \widehat{B}$ of order r such that $|x^B| = |\widehat{x}^{\widehat{B}}|$, or $r|(q - \epsilon)$ and $C_{\bar{G}}(x)$ is non-connected. Set $s = \nu(x)$ with respect to V and note that

$$|x^G \cap H| \leqslant |H \cap \operatorname{PGL}(V)| < 2kq^{\frac{n^2}{k} - 1}.$$
(60)

Case 1.1. $k \ge 5$

If $C_{\bar{G}}(x)$ is non-connected then r divides n and the bounds (14) and (60) are sufficient for all $k \geq 5$. Now assume $C_{\bar{G}}(x)$ is connected. If $s \geq n/2$ then [4, 3.38] implies that $|x^G| > \frac{1}{2}(q+1)^{-n}q^{(n^2+2n-2)/2}$ and (60) is sufficient unless (n,k,q)=(5,5,2). Here r is odd and thus [4, 3.36] implies that $|x^G| > (1/2)(2/3)^42^{15}$ since we are assuming $s \geq 3$. We conclude that f(x,H) < .625 since $|x^G \cap H| \leq |H \cap \mathrm{PGL}(V)| \leq 155$.

Next suppose s < n/2. If $x^G \cap (H - B) \neq \emptyset$ then r = k and

$$x = \begin{cases} [I_{n/k}, \omega I_{n/k}, \dots, \omega^{k-1} I_{n/k}] & \text{if } p \neq k \\ [J_k^{n/k}] & \text{if } p = k \end{cases}$$

$$(61)$$

(up to \bar{G} -conjugacy) where $\omega \in K$ is a primitive k^{th} root of unity and J_k is a standard Jordan block of size k. Therefore $s = n(1-1/k) \geqslant n/2$, and so the hypothesis s < n/2 implies that $x^G \cap H \subseteq B$. Consequently, we may define $s_0 = \nu(x)$ with respect to the action of x on the natural B-module and we note that the hypothesis s < n/2 implies that $s_0 > 0$. Therefore $s \geqslant k$ and $n \geqslant 3k$ since $s \geqslant ks_0$ (see the proof of [10, 4.2]). If x is unipotent then $|x^G| > \frac{1}{2}(q+1)^{-1}q^{2s(n-s)+1}$ and appealing to [4, 3.15, 3.24, 3.38] we deduce that

$$|x^{G} \cap H| < \left(\frac{q^{k} - \epsilon}{q - \epsilon}\right) \cdot 2\left(\frac{q^{k}}{q^{k} - 1}\right)^{\frac{s}{k}} q^{\frac{1}{k}(2ns - s^{2} - sk)} \cdot \sum_{s_{0} = 1}^{\lfloor s/k \rfloor} k_{s_{0}, p, u}(\operatorname{PGL}_{\frac{n}{k}}^{\epsilon}(q^{k}))$$

$$< 4\left(\frac{q^{k}}{q^{k} - 1}\right)^{\frac{s}{k} + 1} q^{\frac{1}{k}(2ns - s^{2} + k^{2} - k)},$$

where $k_{s_0,p,u}(\operatorname{PGL}_{\frac{n}{k}}^{\epsilon}(q^k))$ denotes the number of distinct classes in $\operatorname{PGL}_{\frac{n}{k}}^{\epsilon}(q^k)$ of elements y of order p such that $\nu(y) = s_0$. These bounds also hold if x is semisimple (see [4, 3.40]) and the desired result follows since $5 \leq k \leq s \leq \frac{1}{2}(n-1)$.

Case 1.2. $k < 5, x^G \cap (H - B) \neq \emptyset$

Here r = k and (61) holds (up to \bar{G} -conjugacy). If k = 3 then the desired result quickly follows via (60). Now assume k = 2, so $\epsilon = +$ (see Table 3.1). Applying [4, 3.43] we deduce that

$$|x^G \cap (H-B)| \le (q+1)|\phi^{\operatorname{PGL}_{n/2}(q^2)}| < 2(q+1)q^{\frac{1}{4}n^2 - 1}.$$
 (62)

If p=2 then $|x^G|>\frac{1}{2}q^{n^2/2}$ and the desired result follows via (62) if $n\equiv 2$ (4) since $x^G\cap B$ is empty; if $n\equiv 0$ (4) then any element in $x^G\cap B$ is \bar{B} -conjugate to $[J_2^{n/4}]$, whence $|x^G\cap B|< q^{n^2/4}$ and we are left to deal with the case (n,q)=(4,2), where direct calculation yields f(x,H)<.712. Now assume $p\neq 2$. If $n\equiv 2$ (4) then either $x^G\cap B$ is empty or $C_G(x)$ is of type $\mathrm{GL}_{n/2}(q^2)$ and $x^G\cap B=\{z\}$, where z is the unique central involution in B. In this case, the desired result follows via (62) since $|x^G|>\frac{1}{4}q^{n^2/2}$. On the other hand, if $n\equiv 0$ (4) and $C_G(x)$ is of type $\mathrm{GL}_{n/2}(q)^2$ then $x^G\cap B=y_1^B$; if $C_G(x)$ is of type $\mathrm{GL}_{n/2}(q^2)$ then $x^G\cap B=\{z\}\cup y_2^B$, where

$$y_1=\left(\begin{array}{c} I_{n/4} \\ I_{n/4} \end{array}\right), \ \ y_2=\left(\begin{array}{c} \omega^{q+1}I_{n/4} \\ I_{n/4} \end{array}\right)$$

and $\mathbb{F}_{a^2}^* = \langle \omega \rangle$. In either case we deduce that

$$|x^G \cap B| \le 1 + \frac{1}{2}|\operatorname{GL}_{n/2}(q^2) : \operatorname{GL}_{n/4}(q^2)^2| < q^{\frac{1}{4}n^2}, |x^G| > \frac{1}{4}q^{\frac{1}{2}n^2}$$

and (62) is sufficient unless (n,q)=(4,3), where direct calculation gives f(x,H)<.661.

Case 1.3. $k < 5, x^G \cap H \subseteq B, r = p$

If $x \in B$ has associated partition $\lambda' = (m^{a_m}, \dots, 1^{a_1}) \vdash m$, where m = n/k, then it is clear that the Jordan form of x on V corresponds to the partition $\lambda = (m^{ka_m}, \dots, 1^{ka_1}) \vdash n$. In particular, the corresponding \bar{B} - and \bar{G} -classes are uniquely determined by λ and [6, 2.3] implies that $\dim x^{\bar{G}} = k^2 \dim x^{\bar{B}}$. Therefore

$$|x^{G} \cap H| \le |x^{\operatorname{PGL}_{n/k}^{\epsilon}(q^{k})}| < 2^{t} q^{\frac{1}{k} \dim x^{\bar{G}}}, \quad |x^{G}| > \frac{1}{2} \left(\frac{q}{q+1}\right)^{t} q^{\dim x^{\bar{G}}-1}$$
 (63)

where t denotes the number of non-zero terms a_j in λ . If t=1 then $n \geq 2k$, [6, 2.4] implies that $\dim x^{\bar{G}} \geq \frac{1}{2}n^2$ and one can check that the bounds in (63) are sufficient unless (n,k,q)=(4,2,3), where direct calculation yields f(x,H)<.545 (note that $x^G\cap (H-B)$ is non-empty if (n,k,q)=(4,2,2)). Now assume $t\geq 2$. Here $n\geq \frac{1}{2}kt(t+1)$ and [4, 3.25] implies that

$$\dim x^{\bar{G}} \geqslant k^2 \left(\frac{n}{k} (t^2 - t) - \frac{1}{4} t^4 + \frac{1}{6} t^3 + \frac{1}{4} t^2 - \frac{1}{6} t \right).$$

Therefore (63) is sufficient unless (k,t)=(2,2) and $q\leqslant 3$; here the bounds $|x^G\cap H|<2q^{\frac{1}{2}\dim x^{\bar{G}}}$ and $|x^G|>\frac{1}{2}q^{\dim x^{\bar{G}}}$ are always sufficient since $\dim x^{\bar{G}}\geqslant 4n-8$.

Case 1.4. $k < 5, x^G \cap H \subseteq B, r \neq p$

Suppose r=2. If $C_{\bar{G}}(x)$ is connected then $|x^G\cap H|<2q^{\frac{1}{k}\dim x^{\bar{G}}},\ |x^G|>\frac{1}{2}(q+1)^{-1}q^{\dim x^{\bar{G}}+1}$ and the result follows since $\dim x^{\bar{G}}\geqslant 2k(n-k)$. If $C_{\bar{G}}(x)$ is non-connected then the hypotheses imply that k=3 and $n\equiv 0$ (6) and the subsequent bounds $|x^G\cap H|<2q^{n^2/6}$ and $|x^G|>\frac{1}{4}(q+1)^{-1}q^{n^2/2+1}$ are always sufficient.

Now assume r > 2 and suppose $C_{\bar{G}}(x)$ is connected. Let $i \ge 1$ be minimal such that $r|(q^i - 1)$ and $i_0 \ge 1$ minimal such that $r|(q^{ki_0} - 1)$. Observe that

$$i_0 = \begin{cases} i/k & \text{if } k \text{ divides } i\\ i & \text{otherwise.} \end{cases}$$
 (64)

Define the integers l and d as in [4, 3.32] and define $c = c(i, \epsilon)$ as in the statement of [4, 3.33].

Suppose k does not divide i. Then $i=i_0$ and σ - and σ^k -orbits coincide (see [4, 3.26]). In particular, if c>1 and $x\in G$ has associated σ -tuple $\mu=(l,a_1,\ldots,a_t)$ then each non-zero term in μ must be a multiple of k. Indeed, x acts on the natural B-module with associated σ^k -tuple $\mu'=(l/k,a_1/k,\ldots,a_t/k)$ and thus dim $x^{\bar{G}}=k^2\dim x^{\bar{B}}$. Now

$$|x^G| > \frac{1}{2} \left(\frac{q}{q+1}\right)^{\alpha d} q^{\dim x^{\bar{G}}} \tag{65}$$

and we deduce that $|x^G \cap H| < 2\log_2 q \cdot 2^{d(1-\alpha)+\alpha} q^{\frac{1}{k}\dim x^{\bar{G}}}$ where α is defined in (4) and

$$\dim x^{\bar{G}} \geqslant n^2 - l^2 - \frac{1}{c}(n - l - kc(d-1))^2 - ck^2(d-1).$$

The same bounds hold if c = 1 and the result follows since $n \ge l + kdc$.

Now assume k does divide i, so $i_0 = i/k$ and each non-trivial σ -orbit is a union of k distinct σ^k -orbits. In particular, c > 1 and we may assume x has associated σ -tuple $\mu = (l, a_1, \ldots, a_t)$. For $k \leq 3$ we claim that

$$|x^G \cap H| < 2\log_2 q \cdot 2^{kd(1-\alpha)+\alpha} \left(\frac{q^k}{q^k - 1}\right)^d q^{\frac{1}{k}\dim x^{\bar{G}}},$$
 (66)

where α is defined as before. Applying (65) and the lower bound on dim $x^{\bar{G}}$ given in [4, 3.33], we find that (66) is sufficient with the exception of a handful of cases for which we can calculate

more accurate bounds. For example, if (k, i, q) = (2, 2, 2) and n = l + 2 then the reader can check that the bounds

$$|x^G \cap H| \le 2 \frac{|\operatorname{GL}_{n/2}(4)|}{|\operatorname{GL}_{n/2-1}(4)||\operatorname{GL}_1(4)|}, |x^G| \ge \frac{|\operatorname{GL}_n(2)|}{|\operatorname{GL}_{n-2}(2)||\operatorname{GL}_1(2^2)|}$$

are sufficient for all $n \ge 4$. It remains to justify (66).

Proof of (66).

Modulo field and graph automorphisms, each B-class in $x^G \cap B$ is determined by a tk-tuple of the form

$$(b_{11},\ldots,b_{1k},b_{21},\ldots,b_{2k},\ldots,b_{tk}),$$

where the b_{ij} are non-negative integers such that $\sum_j b_{ij} = a_i$ for each $1 \le i \le t$. Let \mathcal{B} denote the set of all such tk-tuples and for each $b \in \mathcal{B}$, let $x_b \in B$ represent the corresponding B-class in $x^G \cap B$ and fix $\hat{x}_b \in \hat{B}$ of order r such that $|x_b^B| = |\hat{x}_b^{\hat{B}}|$. Accounting for the possible effect of field and graph automorphisms, it follows that

$$|x^G \cap H| \leqslant 2 \log_2 q \cdot \sum_{b \in \mathscr{R}} |\hat{x}_b^{\widehat{B}}|.$$

Assume for now that k = 3, so $|\hat{x}_b^{\hat{B}}| < 2^{3d(1-\alpha)+\alpha}q^{3\dim x_b^{\bar{B}}}$ for all $b \in \mathcal{B}$. Let a be the number of terms a_i in μ which are not divisible by 3, so if

$$\Sigma := \sum_{b \in \mathcal{B}} q^{3\dim x_b^{\bar{B}}} < 3^a \left(\frac{q^3}{q^3 - 1}\right)^d q^{3\zeta} \tag{67}$$

holds, where $\zeta = \max_{b \in \mathscr{B}} \dim x_b^{\bar{B}} = \frac{1}{9} \dim x^{\bar{G}} - \frac{2}{9} ac$, then

$$|x^G \cap H| < 2\log_2 q.2^{3d(1-\alpha)+\alpha} \left(\frac{3}{q^{2c/3}}\right)^a \left(\frac{q^3}{q^3-1}\right)^d q^{\frac{1}{3}\dim x^{\tilde{G}}}$$

and (66) follows. To establish (67) we argue by induction on d. Without loss of generality we may assume that $a_1 > 0$.

If d = 1 then for $0 \le j \le a_1$ define

$$\Sigma_j = \sum_{b \in \mathscr{B}_j} q^{3\dim x_b^{\bar{B}}}, \quad \zeta_j = \max_{b \in \mathscr{B}_j} \dim x_b^{\bar{B}},$$

where a tuple $b \in \mathcal{B}$ lies in the subset \mathcal{B}_j if and only if $b_{11} = j$. Clearly $\Sigma = \Sigma_0 + \cdots + \Sigma_{a_1}$. Next fix j and observe that if $b \in \mathcal{B}_j$ with $b_{12} = v$ then $\dim x_b^{\bar{B}} = f(v) = c_1 v^2 + c_2 v + c_3$ for some constants c_i , with $c_1 < 0$. Now f(v) is even (it is the dimension of a \bar{B} -class) and thus

$$\Sigma_j < 2\left(1 + (q^3)^2 + (q^3)^4 + \dots + (q^3)^{\zeta_j - 2}\right) + \eta q^{3\zeta_j} < \eta\left(\frac{q^6 + 2 - \eta}{q^6 - 1}\right)q^{3\zeta_j},$$

where $\eta = 2$ if $a_1 - j$ is odd, otherwise $\eta = 1$. Now, if a = 0 then $\zeta = \zeta_j$ if and only if $j = \frac{1}{3}a_1$ and it follows that

$$\Sigma < 2^2 \left(\frac{q^6}{q^6 - 1} \right) \left(1 + (q^3)^2 + (q^3)^4 + \dots + (q^3)^{\zeta - 2} \right) + \left(\frac{q^6 + 1}{q^6 - 1} \right) q^{3\zeta} < \left(\frac{q^3}{q^3 - 1} \right) q^{3\zeta}$$

since $\frac{2}{3}a_1$ is even. Similarly, if a=1 then

$$\Sigma < 2^{2} \left(\frac{q^{6}}{q^{6} - 1} \right) \left(1 + (q^{3})^{2} + (q^{3})^{4} + \dots + (q^{3})^{\zeta - 2} \right) + \left(2 \left(\frac{q^{6}}{q^{6} - 1} \right) + \frac{q^{6} + 1}{q^{6} - 1} \right) q^{3\zeta}$$

$$< 3 \left(\frac{q^{3}}{q^{3} - 1} \right) q^{3\zeta}$$

and we conclude that (67) holds when d = 1.

Now assume d > 1. For $0 \le j \le a_1$ define \mathcal{B}_j , Σ_j and ζ_j as before. If $a_1 \equiv 0$ (3) then the inductive hypothesis implies that

$$\Sigma_j < 3^a \left(\frac{q^3}{q^3 - 1}\right)^{d - 1} q^{3\zeta_j},$$

and since $\Sigma = \Sigma_0 + \cdots + \Sigma_{a_1}$ we conclude that

$$\Sigma < 3^a \left(\frac{q^3}{q^3 - 1} \right)^{d - 1} \left(2(1 + (q^3)^2 + \dots + (q^3)^{\zeta - 2}) + q^{3\zeta} \right) < 3^a \left(\frac{q^3}{q^3 - 1} \right)^d q^{3\zeta}.$$

The case $a_1 \not\equiv 0$ (3) is very similar. This establishes (67) and thus (66) holds when k = 3. The argument when k = 2 is similar (and shorter).

Finally, let us assume r is odd and $C_{\bar{G}}(x)$ is non-connected. Then the hypothesis $x^G \cap H \subseteq B$ implies that $r \neq k$, so rk divides n. If k = 3 then the bounds (14) and (60) are sufficient, so assume k = 2, in which case $\epsilon = +$. Define $i \geq 1$ as before and observe that our earlier arguments apply if i > 1. For example, if i is even then $|x^G| > \frac{1}{2}q^{n^2(1-1/r)}$ and (66) implies that

$$|x^G \cap H| < 2^{r-1} \left(\frac{q^2}{q^2 - 1}\right)^{\frac{1}{2}(r-1)} q^{\frac{1}{2}n^2\left(1 - \frac{1}{r}\right)}$$

since $d \leq \frac{1}{2}(r-1)$ and \mathcal{E}_x , the multiset of eigenvalues of $\hat{x} \in \mathrm{GL}_n(q)$, is fixed by all automorphisms of G_0 . One can check that this bound with (14) is always sufficient. If i = 1 and x is \bar{G}_{σ} -conjugate to x_0 (in the notation of [4, 3.35]) then $x^G \cap H = x^H$ and the result follows via (14) since

$$|x^G \cap H| \le \frac{|\mathrm{GL}_{n/2}(q^2)|}{|\mathrm{GL}_{n/2r}(q^2)|^r r} < 2^{r-1} q^{\frac{1}{2}n^2(1-\frac{1}{r})}.$$

On the other hand, if x is not \bar{G}_{σ} -conjugate to x_0 then

$$|x^G \cap H| \le (r-1) \frac{|\operatorname{GL}_{n/2}(q^2)|}{|\operatorname{GL}_{n/2r}(q^{2r})|r} < 2q^{\frac{1}{2}n^2(1-\frac{1}{r})}$$

and the result follows once again via (14).

Case 2. $x \in H - PGL(V)$

Let us begin by assuming $x \in G$ is a field automorphism of prime order r, so $q = q_0^r$ and $r \neq k$ since every element of order k in $H \cap \mathrm{P}\Gamma\mathrm{L}(V)$ lies in $B.\langle \phi \rangle \leqslant \mathrm{P}\mathrm{G}\mathrm{L}(V)$, where $\mathrm{P}\Gamma\mathrm{L}(V)$ is the projective general semilinear group on V. Applying [4, 3.15, 3.43] we deduce that

$$|x^G \cap H| \leqslant \left(\frac{q^k - \epsilon}{q - \epsilon}\right) \frac{|\operatorname{PGL}_{n/k}^{\epsilon}(q^k)|}{|\operatorname{PGL}_{n/k}^{\epsilon}(q^{k/r})|} < 2\left(\frac{q^k - 1}{q - 1}\right) q^{k\left(\frac{n^2}{k^2} - 1\right)\left(1 - \frac{1}{r}\right)}$$

and (37) is sufficient unless (n,k,r)=(3,3,2). Here $\epsilon=+$ and we conclude that f(x,H)<.812 for all $q\geqslant 4$ since $|x^G\cap H|\leqslant q^2+q+1$ and $|x^G|>\frac{1}{6}q^4$. Similar reasoning applies when $x\in G$ is an involutory graph-field automorphism. (Note that k is odd since every involution in H lies in $\mathrm{PGL}(V).\langle\gamma\rangle$ if k=2, where γ is an involutory graph automorphism.)

To complete the proof, let us assume that $x \in G$ is an involutory graph automorphism. We begin by assuming $n \geqslant 3k$ and k is odd. Then $x^G \cap H \subseteq Bx$ and x induces an involutory graph automorphism on B such that $C_B(x)$ and $C_{G_0}(x)$ are of the same type. In particular, if n is even and $C_{G_0}(x)$ is symplectic then

$$|x^G \cap H| \leqslant \left(\frac{q^k - \epsilon}{q - \epsilon}\right) \frac{|\operatorname{PGL}_{n/k}^{\epsilon}(q^k)|}{|\operatorname{Sp}_{n/k}(q^k)|} < 2\left(\frac{q^k - 1}{q - 1}\right) q^{\frac{n^2}{2k} - \frac{n}{2} - k}$$

and the result follows via (39). The non-symplectic case is very similar. Now assume k is odd and n < 3k. If n = k then the bounds $|x^G \cap H| \leq (q-1)^{-1}(q^n-1)$ and $|x^G| > \frac{1}{2}(q+1)^{-1}q^{(n^2+n-2)/2}$ are always sufficient. If n = 2k then x induces an automorphism on $\widehat{B} = \mathrm{GL}_2^{\epsilon}(q^k)$ which restricts to an inner automorphism i_x of $\mathrm{SL}_2(q^k)$; if i_x is non-trivial then $C_{G_0}(x)$ is non-symplectic and (39) is sufficient since

$$|x^G \cap H| \leqslant \left(\frac{q^k - \epsilon}{q - \epsilon}\right) \left(\frac{|\operatorname{PGL}_2(q^k)|}{|\operatorname{PGO}_2^+(q^k)|} + \frac{|\operatorname{PGL}_2(q^k)|}{|\operatorname{PGO}_2^-(q^k)|}\right) \leqslant \left(\frac{q^k - 1}{q - 1}\right) q^{2k};$$

if i_x centralizes $SL_2(q^k)$ then $C_{G_0}(x)$ is symplectic and again the result follows via (39) since $|x^G \cap H| \leq (q-1)^{-1}(q^k-1)$.

Next assume k=2 and $n \neq 4$. Then $\epsilon = +$ (see Table 3.1) and we observe that $C_{G_0}(x)$ is non-symplectic if $n \equiv 2$ (4). Therefore, for any n, we have $x^G \cap H \subseteq Bx \cup Bx\phi$ where x acts on B as an involutory graph automorphism such that $C_B(x)$ and $C_{G_0}(x)$ are of the same type and $x\phi$ induces an involutory graph-field automorphism on B. Now, if $n \equiv 0$ (4) and $C_{G_0}(x)$ is symplectic then using [4, 3.43] we deduce that

$$|x^G \cap H| \leqslant (q+1) \frac{|\operatorname{PGL}_{n/2}(q^2)|}{|\operatorname{Sp}_{n/2}(q^2)|} + \frac{|\operatorname{PGL}_{n/2}(q^2)|}{|\operatorname{PGU}_{n/2}(q)|} < (2q^{\frac{n}{2}+1} + q + 1)q^{\frac{1}{4}n^2 - \frac{n}{2} - 2}$$

and $|x^G| > \frac{1}{2}q^{(n^2-n-4)/2}$. If we assume $n \ge 8$ then these bounds are sufficient unless (n,q) = (8,2), where $B = \mathrm{GL}_4(4)$ and direct calculation yields f(x,H) < .573. The non-symplectic case is similar. Finally, if n = 4 and $C_{G_0}(x)$ is non-symplectic then f(x,H) < .699 for all $q \ge 2$ since

$$|x^G \cap H| \le (q+1) \left(\frac{|\operatorname{PGL}_2(q^2)|}{|\operatorname{PGO}_2^+(q^2)|} + \frac{|\operatorname{PGL}_2(q^2)|}{|\operatorname{PGO}_2^-(q^2)|} \right) + \frac{|\operatorname{PGL}_2(q^2)|}{|\operatorname{PGU}_2(q)|} = q(q^4 + q^3 + q^2 + 1)$$

and $|x^G| \ge (4, q-1)^{-1}q^4(q^2-1)(q^3-1)$. On the other hand, if $C_{G_0}(x)$ is symplectic then

$$|x^G \cap H| \le (q+1) + \frac{|\operatorname{PGL}_2(q^2)|}{|\operatorname{PGU}_2(q)|} = q^3 + 2q + 1, \ |x^G| \ge (4, q-1)^{-1}q^2(q^3 - 1)$$

and it follows that f(x, H) < 3/4 unless q = 2, where $f(x, H) = (\log 13)/(\log 28) \approx .770^*$; this exceptional case is recorded in Table 1.1.

Proposition 3.2. The conclusion to Theorem 1.1 holds in cases (iii)-(vi) of Table 3.1.

Proof. These cases are all very similar and we only give details for (iii). Here the statement of Theorem 1.1 gives $\iota = 1/(n+2)$ if k=2. Define $\bar{G} = \mathrm{PSp}_n(K)$, $\bar{B} = \mathrm{PSp}_{n/k}(K)$ and let σ be a Frobenius morphism of \bar{G} such that \bar{G}_{σ} has socle $G_0 = \mathrm{PSp}_n(q)$. According to [4, 3.3], if (n,p)=(4,2) then we may assume G does not contain any graph-field automorphisms. (Similarly, in cases (iv) and (vi) we may assume that G does not contain a triality automorphism if $G_0 = \mathrm{P}\Omega_8^+(q)$ - see [4, 3.3].)

According to [9, p.116] we have $H \cap \mathrm{PGL}(V) \leq B.\langle \phi \rangle = \widetilde{H}$, where ϕ acts on B as a field automorphism of order k and

$$B \cong \begin{cases} \langle z \rangle \times \operatorname{PSp}_{n/2}(q^2) & \text{if } k = 2 \text{ and } p \neq 2 \\ \operatorname{PGSp}_{n/k}(q^k) & \text{otherwise.} \end{cases}$$

Here $z \in \bar{G}_{\sigma} - G_0$ is an involution with $C_G(z)$ of type $\mathrm{Sp}_{n/2}(q^2)$.

Now, if $x \in H - \operatorname{PGL}(V)$ has prime order r then x is a field automorphism, so $q = q_0^r$, $r \neq k$ and the result follows since [4, 3.43, 3.48] imply that

$$|x^G \cap H| \leqslant |\operatorname{Sp}_{n/k}(q^k) : \operatorname{Sp}_{n/k}(q^{k/r})| < 2q^{\frac{n}{2k}(n+k)\left(1-\frac{1}{r}\right)}, \ |x^G| > \frac{1}{4}q^{\frac{1}{2}n(n+1)\left(1-\frac{1}{r}\right)}.$$

For the remainder, let us assume $x \in H \cap PGL(V)$ of prime order r. Arguing as in the proof of the previous proposition, applying [4, 3.24, 3.38, 3.40], we quickly reduce to the case k < 5.

Case 1. $k < 5, x^G \cap (H - B) \neq \emptyset$

Here r = k and applying [4, 3.43] we deduce that

$$|x^{G} \cap (H - B)| \leq (k - 1)|\operatorname{Sp}_{n/k}(q^{k}) : \operatorname{Sp}_{n/k}(q)| < 2(k - 1)q^{\frac{n}{2k}(k - 1)(\frac{n}{k} + 1)}. \tag{68}$$

Let us start by assuming k=3. If p=3 then x has associated partition $\lambda=(3^{n/3})$ (see (61)) and thus $|x^G|>\frac{1}{2}q^{n(n+1)/3}$. Furthermore, if $x^G\cap B$ is non-empty then $n\equiv 0$ (18) and $|x^G\cap B|< q^{n(n+3)/9}$ since each $y\in x^G\cap B$ is \bar{B} -conjugate to $[J_3^{n/9}]$. These bounds with (68) are always sufficient. The case k=3 with $p\neq 3$ is very similar. Now assume (k,p)=(2,2). Then $|x^G|>\frac{1}{2}q^{n^2/4}$ since x is \bar{G} -conjugate to $a_{n/2}$. Furthermore, $x^G\cap B$ is either empty or $n\equiv 0$ (8) and $|x^G\cap B|<2q^{n^2/8}$ since each $y\in x^G\cap B$ is \bar{B} -conjugate to $a_{n/4}$ (see (69) below). If we assume $n\geqslant 8$ then (68) is sufficient unless (n,q)=(8,2), where direct calculation yields f(x,H)<.668. If n=4 then $|x^G\cap H|=|x^G\cap (H-B)|=q(q^2+1), |x^G|=q^4-1$ and thus f(x,H)<.851 for all $q\geqslant 2$.

Finally, let us assume k=2 and p is odd. Here $C_{\bar{G}}(x)$ is non-connected and there are four cases to consider. If $C_G(x)$ is of type $\operatorname{Sp}_{n/2}(q^2)$ then $|x^G| > \frac{1}{4}q^{n^2/4}$, $x^G \cap B = \{z\}$ and we find that (68) is always sufficient if $n \geq 8$. If n=4 then f(x,H) < .774 for all $q \geq 3$ since

$$|x^G \cap H| \le 1 + \frac{1}{2}|\operatorname{Sp}_2(q^2) : \operatorname{Sp}_2(q)| = 1 + \frac{1}{2}q(q^2 + 1), \ |x^G| = \frac{1}{2}q^2(q^2 - 1)$$

The case where $C_G(x)$ is of type $\operatorname{Sp}_{n/2}(q)^2$ is similar. Now assume $C_G(x)$ is of type $\operatorname{GL}_{n/2}^{\epsilon}(q)$. If $q \equiv \epsilon(4)$ then $x^G \cap B = (1, t)^B$, where $t \in \operatorname{PSp}_{n/2}(q^2)$ is an involution with centralizer of type $\operatorname{GL}_{n/4}(q^2)$ (note that $t \in \operatorname{PSp}_{n/2}(q^2)$ since $q^2 \equiv 1$ (4) - see [8, Table 4.5.1]). Therefore

$$|x^G \cap B| \le \frac{|\operatorname{Sp}_{n/2}(q^2)|}{|\operatorname{GL}_{n/4}(q^2)|2} < q^{\frac{1}{8}n(n+4)}, |x^G| > \frac{1}{4}(q+1)^{-1}q^{\frac{1}{4}(n^2+2n+4)}$$

and (68) is sufficient unless (n,q)=(4,3), where direct calculation gives f(x,H)<.732. Similarly, if $q\equiv -\epsilon\,(4)$ then $x^G\cap B=(z,t)^B$ so the previous bounds hold and again it remains to deal with the case (n,q)=(4,3). This time direct calculation yields f(x,h)<.651.

Case 2. $k < 5, x^G \cap H \subseteq B, r = p$

First assume p=2 and observe that the natural embedding $\operatorname{Sp}_{n/k}(q^k) \hookrightarrow \operatorname{Sp}_n(q)$ maps involution class representatives as follows:

$$a_l \mapsto a_{kl}, \ c_l \mapsto c_{kl}, \ b_l \mapsto \begin{cases} b_{kl} & \text{if } k \text{ is odd} \\ c_{kl} & \text{if } k = 2. \end{cases}$$
 (69)

If x is G-conjugate to a_{kl} then $\dim x^{\bar{G}} = k^2 \dim x^{\bar{B}}$, [4, 3.22] implies that $|x^G \cap H| < 2q^{\dim x^{\bar{B}}}$, $|x^G| > \frac{1}{2}q^{\dim x^{\bar{G}}}$ and the desired result follows since $\dim x^{\bar{G}} \ge 2n - 4$ and $n \ge 4k$. Similarly, if x is G-conjugate to b_{kl} or c_{kl} then the bounds $|x^G \cap H| < 2q^{l(n-kl+k)}$ and $|x^G| > \frac{1}{2}q^{kl(n-kl+1)}$ are sufficient unless (k, n, l, q) = (2, 4, 1, 2). Here direct calculation yields f(x, H) < .712 since $|x^G \cap H| = 15$ and $|x^G| = 45$.

Now assume p is odd. Let $\lambda = (m^{ka_m}, \dots, 1^{ka_1}) \vdash n$ be the associated partition of x, where m = n/k. We claim that

$$|x^{G} \cap H| < 2^{t} q^{\left(\frac{1}{2} + \frac{\delta_{2,k}}{n+2}\right) \dim x^{\bar{G}}}, \quad |x^{G}| > \left(\frac{1}{2}\right)^{t+1} \left(\frac{q}{q+1}\right)^{t\delta_{2,k}} q^{\dim x^{\bar{G}}},$$
 (70)

where t is the number of non-zero terms a_i in λ . In view of [4, 3.18], it is sufficient to show that

$$\dim x^{\bar{B}} \leqslant \left(\frac{1}{2k} + \frac{\delta_{2,k}}{2n+4}\right) \dim x^{\bar{G}}.\tag{71}$$

Let $d = \sum_{i \text{ odd}} a_i$ and observe that $\dim x^{\bar{G}} = k^2 \dim x^{\bar{B}} - \frac{1}{2}(k-1)(n-kd)$. If k = 3 then [6, 2.3, 2.4] imply that $\dim x^{\bar{G}} \ge n^2/4 + n/2 - 9d^2/4 + 9d/2$ (minimal if $\lambda = (2^{n/2-3d/2}, 1^{3d})$) and (71) quickly follows since $n \ge 3d + 6$. Similar reasoning applies when k = 2 (note that we have equality in (71) if $\lambda = (2^{n/2})$).

Let us now apply (70). If t = 1 then $\dim x^{\bar{G}} \geqslant \frac{1}{4}n(n+2)$ and we are left to deal with the case (n,k,q) = (4,2,3), where direct calculation yields f(x,H) < .800. Now assume $t \geqslant 2$. We claim that

$$\dim x^{\bar{G}} \geqslant g(n,t) = \begin{cases} \frac{3}{2}nt(t-1) - \frac{9}{8}t^4 + \frac{3}{4}t^3 + \frac{15}{8}t^2 - \frac{3}{4}t - \frac{3}{4} & \text{if } k = 3\\ (t^2 - t)n - \frac{1}{2}t^4 + \frac{1}{3}t^3 + t^2 - \frac{1}{3}t - \frac{1}{2} & \text{if } k = 2. \end{cases}$$
(72)

If k=2 then [6, 2.4] implies that $\dim x^{\bar{G}} \geqslant \dim y^{\bar{G}}$, where $y \in \bar{G}$ is unipotent with associated partition $(t^2, \dots, 2^2, 1^{n-t^2-t+2}) \vdash n$, and (72) follows from [6, 2.3]. Now assume k=3 and define

$$f(\rho) = \frac{1}{2}n^2 + \frac{1}{2}n - \sum_{i < j} ia_i a_j - \frac{1}{2} \sum_i ia_i^2 - \frac{1}{2} \sum_{i \text{ odd}} a_i,$$

where $\rho = (n^{a_n}, \dots, 1^{a_1}) \vdash n$ is an arbitrary partition of n. Note that $f(\rho) = \dim y^{\bar{G}}$ if ρ is the associated partition of a unipotent element $y \in \bar{G}$, and $g(n,t) = f(\rho')$ where

$$\rho' = (t^3, (t-1)^3, \dots, 2^3, 1^{n-\frac{3}{2}t^2 - \frac{3}{2}t + 3}) \vdash n.$$

The claim now follows by arguing as in the proof of [4, 3.25].

If k=3 then $n\geqslant \frac{3}{2}t(t+1)$ and (72) implies that the bounds in (70) are sufficient unless (t,q)=(2,3). Here $n\geqslant 12$ and (70) is good enough since $\dim x^{\bar{G}}\geqslant 3n-6$ (minimal if $\lambda=(2^3,1^{n-6})$). Now assume k=2. Then $n\geqslant t(t+1)$ and if we assume $t\geqslant 3$ then (70) (with (72)) is sufficient unless (t,q)=(3,3). In this case $n\geqslant 20$ (since a_1 and a_3 must be positive multiples of 4) and the result follows via (70) since (72) gives $\dim x^{\bar{G}}\geqslant 6n-24$. Finally, if t=2 and $\lambda\neq (2^2,1^{n-4})$ then $\dim x^{\bar{G}}\geqslant 4n-12$ (minimal if $\lambda=(2^4,1^{n-8})$) and (70) is sufficient. If $\lambda=(2^2,1^{n-4})$ then $|x^G\cap H|< q^n, |x^G|>\frac{1}{4}(q+1)^{-1}q^{2n-1}$ and the desired result follows.

Case 3. $k < 5, x^G \cap H \subseteq B, r \neq p$

If r=2 then the hypothesis $x^G \cap H \subseteq B$ implies that x is \bar{G} -conjugate to $[-I_{2ka}, I_{n-2ka}]$ for some $1 \leqslant a < n/4k$ and the subsequent bounds $|x^G \cap H| < 2q^{\frac{1}{k} \dim x^{\bar{G}}}$ and $|x^G| > \frac{1}{2}q^{\dim x^{\bar{G}}}$ are always sufficient since $\dim x^{\bar{G}} \geqslant 2k(n-2k)$. Now assume r>2. Define the integers i and i_0 as in the proof of the previous proposition and observe that (64) holds. Let $\mu=(l,a_1,\ldots,a_t)$ denote the associated σ -tuple of $x \in G$ and let d denote the number of non-zero parts a_j in μ . Note that (41) holds and that d is even if i is odd.

If k does not divide i then $i=i_0$ and thus σ - and σ^k -orbits coincide. Therefore each term in μ is divisible by k and we calculate that $k^2 \dim x^{\bar{B}} = \dim x^{\bar{G}} + \frac{1}{2}(n-l)(k-1)$, whence

$$|x^G\cap H|<\log_2 q.2^{\frac{d}{2}(e-1)}q^{\frac{1}{k}\dim x^{\bar{G}}+\frac{1}{2k}(n-l)(k-1)},$$

where e = 2 if i is odd, e = 1 if i is even, and

$$\dim x^{\bar{G}} \geqslant \frac{1}{2}(n^2 + n - l^2 - l - \frac{1}{e^i}(n - l - ki(d - e))^2 - k^2i(d - e)). \tag{73}$$

The result follows via (41). Now assume k divides i, so $i_0 = i/k$ and each non-trivial σ -orbit is a union of k distinct σ^k -orbits. If k = 2 and $i \equiv 2$ (4) then each term in μ must be even and we deduce that

$$|x^G \cap H| < \log_2 q \cdot 2^d q^{\frac{1}{2} \dim x^{\bar{G}} + \frac{1}{4}(n-l)}$$

where (73) holds and $n \ge l + 2di$. Then (41) is sufficient unless (n, l, i, d) = (4, 0, 2, 1) and $q \in \{2, 4\}$, where direct calculation yields f(x, H) < .813. Now assume $(k, i \mod 4) \ne (2, 2)$. Then arguing as in the proof of Proposition 3.1 (in particular, the proof of (66)) we deduce that

$$|x^G \cap H| < \log_2 q. 2^{\frac{1}{2}kd(e-1)} \left(\frac{q^k}{q^k-1}\right)^{\frac{d}{e}} q^{\frac{1}{k} \dim x^{\overline{G}} + \frac{1}{2k}(n-l)(k-1)}$$

and the desired result follows via (41) and the lower bound on $\dim x^{\bar{G}}$ given in [4, 3.33].

Proposition 3.3. The conclusion to Theorem 1.1 holds in cases (vii)-(ix) of Table 3.1.

Proof. All three cases are very similar and we only give details for (viii) and (ix), which we deal with simultaneously; say H is of type $\operatorname{GL}_{n/2}^{\epsilon'}(q).2$. Define $\bar{G}=\operatorname{PSO}_n(K)$, $\bar{B}=\operatorname{PSL}_{n/2}(K)$, where $n\geqslant 8$, and let σ be a Frobenius morphism of \bar{G} such that \bar{G}_{σ} has socle $G_0=\operatorname{P}\Omega_n^{\epsilon}(q)$. In addition, let σ' be a Frobenius morphism of \bar{B} such that $\bar{B}_{\sigma'}\cong\operatorname{PGL}_{n/2}^{\epsilon'}(q)$. Recall from the statement of Theorem 1.1 that $\iota=1/(n-2)$ and note that we may assume G is without triality if $(n,\epsilon)=(8,+)$ (see [4,3.3]). Also observe that $H\cap\operatorname{PGL}(V)\leqslant \tilde{H}$, where $\tilde{H}=C_{\tilde{G}}(z)$ for a suitable involution $z\in\bar{G}_{\sigma}$ if p is odd, and $\tilde{H}=\operatorname{GL}_{n/2}^{\epsilon'}(q).\langle\psi\rangle=B.2$ if p=2 where ψ induces an involutory graph automorphism on B (see [9,4.2.7,4.3.18] for example).

If $x \in H - \operatorname{PGL}(V)$ has odd prime order r then x is a field automorphism, $q = q_0^r$ and [4, 3.48] states that $|x^G| > \frac{1}{4}q^{n(n-1)(1-1/r)/2}$. Moreover, [4, 3.15, 3.38] imply that

$$|x^G \cap H| \leqslant \frac{1}{2} (q - \epsilon') \frac{|\operatorname{PGL}_{n/2}^{\epsilon'}(q)|}{|\operatorname{PGL}_{n/2}^{\epsilon'}(q^{1/r})|} < (q+1)q^{\frac{1}{4}(n^2-4)(1-\frac{1}{r})}$$

and the result follows. If x is an involution then $q = q_0^2$ and $\epsilon' = +$ since every involution in H lies in PGL(V) if $\epsilon' = -$. Again, applying [4, 3.15, 3.38] we deduce that

$$|x^G \cap H| \le \frac{1}{2}(q-1)\left(\frac{|\operatorname{PGL}_{n/2}(q)|}{|\operatorname{PGL}_{n/2}(q^{1/2})|} + \frac{|\operatorname{PGL}_{n/2}(q)|}{|\operatorname{PGU}_{n/2}(q^{1/2})|}\right) < 2(q-1)q^{\frac{1}{8}n^2 - \frac{1}{2}}$$

and the bound $|x^G| > \frac{1}{4}q^{n(n-1)/4}$ is always sufficient. Now assume $x \in H \cap PGL(V)$. For the reader's convenience, we partition the proof into three cases.

Case 1. r = p

Let us start by assuming p=2. If $x^G \cap H \subseteq B$ then x is \bar{G} -conjugate to a_{2l} for some $1 \leqslant l < n/4$ and the desired result follows since $|x^G \cap H| < 2q^{l(n-2l)}$ and $|x^G| > \frac{1}{2}q^{2l(n-2l-1)}$. Now assume $x^G \cap (H-B) \neq \emptyset$, so $\nu(x) = n/2$. If $n \equiv 0$ (4) and x is \tilde{G} -conjugate to $a_{n/2}$ then [4, 3.22] implies that $|x^G \cap B| < 2q^{n^2/8}$, $|x^G| > \frac{1}{2}q^{n(n-2)/4}$ and we deduce that

$$|x^G \cap (H-B)| \le |\operatorname{GL}_{n/2}^{\epsilon'}(q) : \operatorname{Sp}_{n/2}(q)| < 2(q+1)q^{\frac{1}{8}(n^2-2n-8)}$$

since each $y \in x^G \cap (H-B)$ acts on B as a symplectic-type graph automorphism. These bounds are sufficient unless (n,q)=(8,2), where direct calculation yields f(x,H)<.721. On the other hand, if x is G-conjugate to $b_{n/2}$ or $c_{n/2}$ (according to the parity of n/2) then $|x^G|>\frac{1}{2}q^{n^2/4}$ and $|x^G\cap H|<2(q+1)q^{(n^2+2n-8)/8}$ since $x^G\cap B$ is empty and each $y\in x^G\cap (H-B)$ induces a non-symplectic graph automorphism on B. These bounds are always sufficient.

Now assume p > 2. Let $\lambda = (m^{2a_m}, \dots, 1^{2a_1}) \vdash n$ denote the associated partition of $x \in G$, where m = n/2, and let t denote the number of non-zero terms a_j . Then applying [6, Theorem 1] and [4, 3.21] we deduce that

$$|x^{G} \cap H| < 2^{t} q^{\left(\frac{1}{2} + \frac{1}{n-2}\right) \dim x^{\bar{G}}}, \ |x^{G}| > \left(\frac{1}{2}\right)^{t+1} \left(\frac{q}{q+1}\right)^{t} q^{\dim x^{\bar{G}}}.$$
 (74)

If t=1 then [6,2.4] implies that $\dim x^{\bar{G}} \geqslant \frac{1}{4}n(n-2)$ and thus (74) is sufficient unless (n,q)=(8,3), where direct calculation yields f(x,H)<.707. Now assume $t\geqslant 2$ and observe that $n\geqslant t(t+1)$ and $\dim x^{\bar{G}}\geqslant n(t^2-t)-t^4/2+t^3/3-t/3$ (minimal if $\lambda=(t^2,\ldots,2^2,1^{n-t^2-t+2})$). If $t\geqslant 3$ then these bounds imply that (74) is sufficient unless (t,q)=(3,3) and $12\leqslant n\leqslant 16$. These cases are easily settled through direct calculation. Now assume t=2 and set $d=\sum_{i \text{ odd}} a_i$. If d=0 then there exists a non-zero a_i with $j\geqslant 4$, hence $p\geqslant 5$, $\dim x^{\bar{G}}\geqslant n^2/4+3n/2-8$

(minimal if $\lambda = (4^2, 2^{n/2-4})$) and it is easy to check that (74) is always sufficient. Now assume d > 0 and observe that $n \equiv 0$ (4) if and only if d is even. Applying [6, 2.3, 2.4] we deduce that

$$\dim x^{\bar{B}} = \frac{1}{2} \dim x^{\bar{G}} + \frac{1}{4}n - \frac{1}{2}d, \quad \dim x^{\bar{G}} \geqslant \frac{1}{4}n^2 - \frac{1}{2}n - d^2 + d$$

(minimal if $\lambda = (2^{n/2-d}, 1^{2d})$). In particular, if d = 1 then $n \ge 10$ and the bounds

$$|x^G\cap H|<2q^{\frac{1}{2}\dim x^{\bar{G}}+\frac{1}{4}n-\frac{1}{2}},\ |x^G|>\frac{1}{4}(q+1)^{-1}q^{\dim x^{\bar{G}}+1}$$

are always sufficient. Finally, if $d\geqslant 2$ then $n\geqslant 2d+4$ and the desired result follows since $|x^G\cap H|<2q^{\frac{1}{4}(2\dim x^{\bar{G}}+n-2d)}$ and $|x^G|>\frac{1}{4}q^{\dim x^{\bar{G}}}$.

Case 2. $r \neq p, r = 2$

If $\nu(x) < n/2$ then x is \bar{G} -conjugate to $[-I_{2a}, I_{n-2a}]$ for some $1 \leqslant a < n/4$ and the bounds $|x^G \cap H| < 2q^{a(n-2a)}$ and $|x^G| > \frac{1}{4}(q+1)^{-1}q^{2a(n-2a)+1}$ are sufficient without exception. Now assume $\nu(x) = n/2$. If $n \equiv 2$ (4) and x is an involutory graph automorphism of G_0 then $|x^G| > \frac{1}{4}q^{n^2/4}$ and the result follows since

$$|x^G \cap H| \le \frac{1}{2} (q - \epsilon') \frac{|\operatorname{PGL}_{n/2}^{\epsilon'}(q)|}{|\operatorname{SO}_{n/2}(q)|} < (q+1) q^{\frac{1}{8}(n^2 + 2n - 8)}.$$

On the other hand, if $n \equiv 2$ (4) and $C_G(x)$ is of type $\operatorname{GL}_{n/2}^{\epsilon''}(q)$ then (54) holds and $\epsilon = \epsilon' = \epsilon''$ (see Table 3.1 and [4, Table 3.8]). Moreover, we have

$$|x^G \cap H| \leqslant \sum_{j=0}^{\frac{1}{4}(n-2)} \frac{|\operatorname{GL}_{n/2}^{\epsilon'}(q)|}{|\operatorname{GL}_{j}^{\epsilon'}(q)||\operatorname{GL}_{n/2-j}^{\epsilon'}(q)|} < 2\left(\frac{q^2}{q^2 - 1}\right) q^{\frac{1}{8}n^2 - \frac{1}{2}}$$

and the desired result follows. Now assume $n \equiv 0$ (4), so $\epsilon = +$ (see Table 3.1). If $C_G(x)$ is of type $O_{n/2}^+(q^2)$ or $O_{n/2}^{\epsilon''}(q)^2$ then

$$|x^{G} \cap H| \leq \frac{1}{2} (q - \epsilon') \left(\frac{|\operatorname{PGL}_{n/2}^{\epsilon'}(q)|}{|\operatorname{PGO}_{n/2}^{+}(q)|} + \frac{|\operatorname{PGL}_{n/2}^{\epsilon'}(q)|}{|\operatorname{PGO}_{n/2}^{-}(q)|} \right) + \frac{|\operatorname{GL}_{n/2}^{\epsilon'}(q)|}{|\operatorname{GL}_{n/4}^{\epsilon'}(q)|^{2}} + \frac{|\operatorname{GL}_{n/2}^{\epsilon'}(q)|}{|\operatorname{GL}_{n/4}(q^{2})|^{2}}$$

$$< ((q+1)q^{\frac{n}{4}-1} + 2)q^{\frac{1}{8}n^{2}}$$

and the result follows since $|x^G| > \frac{1}{8}q^{n^2/4}$. Finally, let us assume $n \equiv 0$ (4) and $C_G(x)$ is of type $GL_{n/2}^{\epsilon''}(q)$. If $\epsilon' = \epsilon''$ then

$$|x^{G} \cap H| \leq \frac{1}{2} (q - \epsilon') \frac{|\operatorname{PGL}_{n/2}^{\epsilon'}(q)|}{|\operatorname{Sp}_{n/2}(q)|} + \frac{|\operatorname{GL}_{n/2}^{\epsilon'}(q)|}{|\operatorname{GL}_{n/4}^{\epsilon'}(q)|^{2}} + \sum_{j=0}^{\frac{1}{4}n-1} \frac{|\operatorname{GL}_{n/2}^{\epsilon'}(q)|}{|\operatorname{GL}_{j}^{\epsilon'}(q)||\operatorname{GL}_{n/2-j}^{\epsilon'}(q)|}$$

$$< (q^{\frac{n}{4}+1} + q + 1)q^{\frac{1}{8}n^{2} - \frac{1}{4}n - 1} + 2(q^{2} - 1)^{-1}q^{\frac{1}{8}n^{2}}$$

and (54) is sufficient unless (n,q)=(8,3), where direct calculation yields f(x,H)<.681. Similarly, if $\epsilon'=-\epsilon''$ then

$$|x^G \cap H| \leqslant \frac{1}{2} (q - \epsilon') \frac{|\operatorname{PGL}_{n/2}^{\epsilon'}(q)|}{|\operatorname{Sp}_{n/2}(q)|} + \frac{|\operatorname{GL}_{n/2}^{\epsilon'}(q)|}{|\operatorname{GL}_{n/4}(q^2)|2} < (q^{\frac{n}{4} + 1} + q + 1) q^{\frac{1}{8}n^2 - \frac{1}{4}n - 1}$$

and (54) is always sufficient.

Case 3. $r \neq p, r > 2$

Since r is odd, each $y \in x^G \cap H$ lifts to an element $\hat{y} \in \mathrm{GL}_{n/2}^{\epsilon'}(q)$ of order r. Let $i \geqslant 1$ be minimal

such that $r|(q^i-1)$, let $\mu=(l,a_1,\ldots,a_t)$ denote the associated σ -tuple of x and let d denote the number of non-zero terms a_j in μ , so d is even if i is odd. Define the integer $c=c(i,\epsilon')$ as in the statement of [4,3.33].

We begin by assuming c is even. Then each non-zero term in μ is even and

$$\dim x^{\bar{B}} = \frac{1}{4}(n^2 - l^2 - c\sum_j a_j^2) = \frac{1}{2}\dim x^{\bar{G}} + \frac{1}{4}(n - l).$$

In particular, we deduce that

$$|x^G \cap H| < \log_2 q. 2^{\frac{d}{e}} \left(\frac{q+1}{q}\right)^{\frac{1}{2}(1-\epsilon')} q^{\frac{1}{2}\dim x^{\bar{G}} + \frac{1}{4}(n-l)}$$

and

$$|x^G| > \frac{1}{2} \left(\frac{q}{q+1}\right)^{d(2-e)+1} q^{\dim x^{\bar{G}}},$$
 (75)

where

$$\dim x^{\bar{G}} \geqslant \frac{1}{2}(n^2 - n - l^2 + l - \frac{1}{ei}(n - l - 2i(d - e))^2 - 4i(d - e))$$

and e = 2 if i is odd, otherwise e = 1. Now $n \ge l + 2di$ and these bounds are sufficient with the exception of a handful of cases with which we can calculate directly.

Now assume c is odd. Then $\dim x^{\bar{B}} \leqslant \frac{1}{2} \dim x^{\bar{G}} + \frac{1}{4}(n-l)$ and we claim that

$$|x^{G} \cap H| < \log_{2} q. 2^{\frac{d}{2}(1+\epsilon')} \left(\frac{q+1}{q}\right)^{\frac{1}{2}(1-\epsilon')} \left(\frac{q}{q-1}\right)^{\frac{d}{e}} q^{\frac{1}{2}\dim x^{\bar{G}} + \frac{1}{4}(n-l)}. \tag{76}$$

To see this, suppose $\epsilon' = +$, in which case i is odd and d is even. Then modulo field automorphisms, each B-class in $x^G \cap B$ is determined by a choice of s-tuple (b_1, \ldots, b_s) , where each $b_j \leq a_j$ is a non-negative integer and s = (r-1)/2c = t/2. Let \mathscr{B} denote the set of all such s-tuples and for each $b \in \mathscr{B}$ let $x_b \in B$ represent the B-class corresponding to b. Then

$$|x^G \cap H| \leq \log_2 q \cdot \sum_{b \in \mathscr{R}} |\hat{x}_b^{\mathrm{GL}_{n/2}(q)}|,$$

where $\hat{x}_b \in GL_{n/2}(q)$ has order r and $|x_b^B| = |\hat{x}_b^{GL_{n/2}(q)}|$, and thus (76) holds if

$$\Sigma := \sum_{b \in \mathscr{B}} q^{\dim x_b^{\bar{B}}} \leqslant \left(\frac{q}{q-1}\right)^{\frac{d}{2}} q^{\frac{1}{2}\dim x^{\bar{G}} + \frac{1}{4}(n-l)}.$$

If $a \ge 0$ is the number of terms a_j in μ which are odd then

$$\alpha := \max_{b \in \mathscr{B}} \dim x_b^{\bar{B}} = \frac{1}{2} \dim x^{\bar{G}} + \frac{1}{4}(n-l) - \frac{1}{4}ai$$

and so it suffices to show that

$$\Sigma \leqslant 2^{\frac{a}{2}} \left(\frac{q}{q-1} \right)^{\frac{a}{2}} q^{\alpha}.$$

We now proceed by induction on d. The argument is similar to the proof of (66) and we leave the details to the reader. The case $\epsilon' = -$ is very similar.

Now $n \ge l + di$ and if we apply (76), together with (75) and the lower bound on $\dim x^{\bar{G}}$ given in [4, 3.33], we find that we are left to deal with a handful of exceptional cases. For example, if $\epsilon' = +$ then it remains to deal with the cases $(n,q) \in \{(10,4),(8,8),(8,7),(8,4)\}$ for (i,l,d) = (1,0,2). These are easily settled. For instance, if (n,q) = (10,4) then r = 3 and f(x,H) < .631 since

$$|x^G \cap H| \le 2 + 2 \frac{|\operatorname{GL}_5(4)|}{|\operatorname{GL}_4(4)||\operatorname{GL}_4(4)|} + 2 \frac{|\operatorname{GL}_5(4)|}{|\operatorname{GL}_2(4)||\operatorname{GL}_2(4)|}, |x^G| \ge |\Omega_{10}^+(4) : \operatorname{GL}_5(4)|.$$

References

- [1] M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math. **76** (1984), 469–514.
- [2] M. Aschbacher and G.M. Seitz, *Involutions in Chevalley groups over fields of even order*, Nagoya Math. J. **63** (1976), 1–91.
- [3] T.C. Burness, Fixed point ratios in actions of finite classical groups, I, to appear.
- [4] _____, Fixed point ratios in actions of finite classical groups, II, to appear.
- [5] _____, Fixed point ratios in actions of finite classical groups, IV, to appear.
- [6] _____, Fixed point spaces in actions of classical algebraic groups, J. Group Theory 7 (2004), 311–346.
- [7] The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.4, 2004.
- [8] D. Gorenstein, R. Lyons, and R. Solomon, *The Classification of the Finite Simple Groups*, *Number 3*, Mathematical Surveys and Monographs, vol. 40, Amer. Math. Soc., 1998.
- [9] P.B. Kleidman and M.W. Liebeck, *The Subgroup Structure of the Finite Classical Groups*, London Math. Soc. Lecture Note Series, vol. 129, Cambridge University Press, 1990.
- [10] M.W. Liebeck and A. Shalev, Simple groups, permutation groups, and probability, J. Amer. Math. Soc. 12 (1999), 497–520.
- [11] F. Lübeck, private communication, 2005.