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Abstract

This is the second in a series of four papers on fixed point ratios in non-subspace actions
of finite classical groups. Our main result states that if G is a finite almost simple classical
group and Ω is a non-subspace G-set then either fpr(x) . |xG|− 1

2 for all elements x ∈ G of
prime order, or (G,Ω) is one of a small number of known exceptions. In this paper we record
a number of preliminary results and prove the main theorem in the case where the stabilizer
Gω is contained in a maximal non-subspace subgroup which lies in one of the Aschbacher
families Ci, where 4 6 i 6 8.

1 Introduction

Let G be a finite almost simple classical group over Fq, with socle G0 and natural module V ,
where q = pf for a prime p. Recall that if G acts on a set Ω then the fixed point ratio of x ∈ G,
which we denote by fpr(x), is defined to be the proportion of points in Ω which are fixed by x.
If G acts transitively then it is easy to see that

fpr(x) =
|xG ∩H|
|xG|

(1)

where H = Gω is the point stabilizer of an element ω ∈ Ω. In studying actions of classical
groups, it is natural to make a distinction between those actions which permute subspaces of
the natural module and those which do not.

Recall from [3] that H 6 G is a subspace subgroup if every maximal subgroup M of G0

containing H ∩ G0 is either reducible on V or (G0,M, p) = (Sp2m(q)′,O±
2m(q), 2). All other

subgroups are non-subspace and a transitive action of G on a set Ω is a non-subspace action if
the point stabilizer Gω of an element ω ∈ Ω is a non-subspace subgroup of G. Our main result,
which we refer to as Theorem 1, states that if Ω is a faithful, transitive, non-subspace G-set then

fpr(x) < |xG|−
1
2
+ 1

n
+ι

for all elements x ∈ G of prime order, where either ι = 0 or (G0,Ω, ι) belongs to a short list of
known exceptions (see [3, Table 1]). In almost all cases n = dimV (see Remark 1.2).

In order to prove Theorem 1, it is clear from (1) that we may assume G acts primitively.
In particular, we can base our proof on Aschbacher’s main theorem on the subgroup structure
of finite classical groups. In [1], eight collections of subgroups of G are defined, labelled Ci for
1 6 i 6 8, and it is shown that if H is a maximal subgroup of G not containing G0 then either
H is contained in one of the Ci collections, or it belongs to a family S of almost simple groups
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description
C4 stabilizers of tensor product decompositions V = V1 ⊗ V2

C5 stabilizers of subfields of Fq of prime index
C6 normalizers of symplectic-type k-groups (k prime) in absolutely

irreducible representations
C7 stabilizers of decompositions V =

⊗t
i=1 Vi, where dimVi = a

C8 stabilizers of non-degenerate unitary, symplectic or quadratic forms on V

Table 1.1: The subgroup collections Ci, 4 6 i 6 8

G0 type of H ι

PSLε
n(q) Spn(q) 1/n

PSp4(3) 24.O−
4 (2) .086

Table 1.2: The exceptional cases with ι > 0

which act irreducibly on V (see [18] for a detailed description of these subgroup collections). A
small additional collection of subgroups, which we denote by N , arises when G0 is Sp4(q)′ (q
even) or PΩ+

8 (q) (see Table 3.1 and [5, §3]). We follow [18] in labelling the Ci collections and
we note that a maximal subgroup of G is non-subspace unless it is a member of the collection
C1, or is a particular example of a subgroup in C8.

In [3] we provided some background to Theorem 1 and established a number of corollaries.
In addition, we described how Theorem 1 can be applied to the study of bases for primitive
actions of finite classical groups and we explained how it may be useful in efforts to classify
primitive monodromy groups of covers of Riemann surfaces. In this paper we prove Theorem 1
in the case where Gω is contained in a maximal non-subspace subgroup which lies in one of the
collections Ci, where 4 6 i 6 8. This is the content of Theorem 1.1 below. A rough description
of the relevant Ci collections is given in Table 1.1.

Theorem 1.1. Let G be a finite almost simple classical group acting transitively and faithfully
on a set Ω with point stabilizer Gω 6 H, where H 6 G is a maximal non-subspace subgroup in
one of the Aschbacher collections Ci, where 4 6 i 6 8. Then

fpr(x) < |xG|−
1
2
+ 1

n
+ι

for all elements x ∈ G of prime order, where either ι = 0 or (G0,H, ι) is listed in Table 1.2,
where G0 denotes the socle of G.

Remark 1.2. In general, the integer n = n(G) in the statement of Theorem 1.1 is simply
the dimension of the natural G0-module. More precisely, if G0 ∈ {Sp4(2)′,SL3(2)} then n =
n(G) = 2, otherwise n = n(G) is defined to be the minimal degree of a non-trivial irreducible
KĜ0-module, where Ĝ0 is a covering group of G0 and K is the algebraic closure of Fq (see [3,
Definition 2]). Following [18, §4], the type of H referred to in Table 1.2 provides an approximate
group-theoretic structure for H ∩ PGL(V ).

This paper is organised as follows. In Section 2 we begin with some general remarks on
the proof of Theorem 1 and in Section 3 we present a number of preliminary results which
will be needed for the proof; some of these are new and may be of independent interest. The
proof proper begins in Section 4 when we consider the tensor product subgroups which comprise
Aschbacher’s collection C4. Moreover, for 4 6 i 6 8, Section i is devoted to a proof of Theorem
1.1 in the case where the stabilizer Gω is a non-subspace subgroup contained in a member of Ci;
the specific cases we need to consider are listed in Table i.1. We adopt the notation of [18] for
the possible subgroup types which appear in Table i.1. (For convenience, the C5-subgroups of
type Spn(q) and Oε

n(q) in unitary groups are considered in §8 and not §5 as might be expected.)
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The proof of Theorem 1 is completed in [4] and [5]. In [4] we deal with the imprimitive
subgroup collection C2 and also the field extension subgroups which comprise C3. Finally, in
[5] we consider the irreducible almost simple subgroups in Aschbacher’s collection S , together
with the small additional set N of subgroups which arise when G is either an 8-dimensional
orthogonal group or a 4-dimensional symplectic group in even characteristic. In both [4] and [5]
we will refer repeatedly to the preliminary results collected in §3 of this note.

Notation. Our notation and terminology for classical groups are standard (see [18] for example).
In particular, a finite classical group G is said to be over Fq if the natural G-module is defined
over Fqu , where u = 2 if G is unitary, otherwise u = 1. We write PSLε

n(q) for PSLn(q) and
PSUn(q) if ε = + and − respectively. In addition, for x ∈ R it is convenient to write x − ε
for x − ε1, where ε = ±. We use the notation a|b to signify that the integer b is divisible by
the integer a. Further, Z(G) denotes the centre of a group G; G′ is its derived subgroup; Gm

is the direct product of m copies of G and H.G denotes an (arbitrary) extension of a group H
by G. We write Zn or just n to denote a cyclic group of order n, while Zm

p or pm denotes an
elementary abelian p-group of order pm for a prime p. We also use (a1, . . . , am) to denote the
highest common factor of the integers a1, . . . , am.

2 Remarks on the proof of Theorem 1

According to Aschbacher’s theorem, a maximal non-subspace subgroup of a finite almost simple
classical group belongs to one of nine subgroup collections. In turn, we consider the primitive
actions for which the stabilizer of a point belongs to each collection, hence the proof of Theorem
1 is naturally partitioned into nine parts. Inevitably, our methods differ somewhat between the
collections; for instance, in some cases we require a greater degree of accuracy than in others.
However, there are some common features to our approach which apply quite generally.

Let G be an almost simple classical group over Fq with socle G0, where q = pf for a prime
p. Let H 6 G be a maximal non-subspace subgroup. In view of (1), it suffices to show that

f(x,H) :=
log |xG ∩H|

log |xG|
<

1
2

+
1
n

+ ι (2)

for all elements x ∈ G of prime order, where n = n(G0) is defined as in Remark 1.2 and ι > 0 is
given in the statement of [3, Theorem 1]. Of course, we can always assume x ∈ H and n > 3; in
addition, we may also assume n > 7 if G0 is an orthogonal group. We start by identifying the
structure of H ∩ PGL(V ), where V is the natural G0-module, and we then consider the cases
x ∈ H ∩ PGL(V ) and x ∈ H − PGL(V ) in turn.

Case 1. x ∈ H ∩ PGL(V )
Our initial aim is to partition the elements of (fixed) prime order r in H∩PGL(V ) according to a
set of parameters z = (z1, . . . , zm) associated to the action of these elements on V . For example,
we may choose to partition the elements of order p according to the parameters z = (z1, z2, z3),
where z1 = a1, z2 is the number of non-zero aj in λ with j > 2 and z3 is the sum of the
terms aj with j odd, with respect to a general partition λ = (nan , . . . , 1a1) ` n = dimV which
corresponds to the possible Jordan normal forms on V of the elements of order p in H. Similar
parameters can be defined in the semisimple case (see Definition 3.32 for example). The number
of parameters we choose will depend on the degree of accuracy required.

Given z, we derive bounds on |xG ∩H| and |xG| of the form

|xG ∩H| < f1(z′)qf2(z′) dim xḠ
, |xG| > f3(z′)qdim xḠ

,

where z′ = (z, n, q, ι) and Ḡ is a simple classical algebraic group over the algebraic closure of Fq

such that G0 = Op′(Ḡσ) for a suitable Frobenius morphism σ of Ḡ. Then (2) holds if

Γ = (n+ 2 + 2nι− 2nf2(z′)) dimxḠ log q + (n+ 2 + 2nι) log f3(z′)− 2n log f1(z′) > 0.
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A lower bound on dimxḠ can be given in terms of z′ (see Propositions 3.25 and 3.33 for example)
and this yields Γ > Γ′(z′). It then remains to show that Γ′ is non-negative for all possible values
of z′, with perhaps the exception of a small number of cases for which we can derive more
accurate bounds through direct calculation. It is often the case that the function Γ′ is increasing
in each of its variables and thus it is quite straightforward to check that Γ′ is non-negative. In
more complicated cases, we have used a computer to identify the precise values of z′ for which
Γ′(z′) < 0. When a direct calculation is required, we present bounds to three decimal places;
often a worked example is presented and the reader is encouraged to check the other cases. We
do not claim that the bounds we obtain through direct calculation are the best possible.

Of course, there are cases where this approach is not applicable, or perhaps not appropriate.
For instance, it is not always clear how arbitrary elements of H act on V . This comment is
particularly pertinent to the almost simple irreducible subgroups in Aschbacher’s S collection.
In these cases we can often bound |xG| by applying Corollary 3.38, together with various lower
bounds on the codimension of the largest eigenspace of x on V (see Definition 3.16, Lemmas
6.3, 7.1 and [5, 2.2] for example). Fortunately, in these cases we often find that |H| is small
compared with |G| (see [5, 2.4] for instance) and the trivial bound |xG ∩H| 6 |H ∩ PGL(V )| is
often sufficient.

Case 2. x ∈ H − PGL(V )
Here x is a field, graph or graph-field automorphism of G0 and in most cases we consider each
type in turn. Lower bounds for |xG| are given in Lemma 3.48 and we often find that the trivial
bound |xG ∩H| < |H| is sufficient. Alternatively, if x has order r then |xG ∩H| 6 ir(H), where
ir(H) is the number of elements of order r in H, and thus Proposition 3.14 is particularly useful
when r = 2 or 3. In other cases, a more accurate upper bound on |xG ∩H| can be derived by
applying Proposition 3.43 and Lemma 3.50 for example.

3 Preliminary results

In this section we present a number of results which are needed for the proof of Theorem 1. We
begin with a brief description of Aschbacher’s main theorem on the subgroup structure of the
finite classical groups; this provides the organising principle on which the proof of Theorem 1 is
based. Much of this section concerns the prime order automorphisms of finite simple classical
groups; we consider unipotent and semisimple elements in §3.3 and §3.4 respectively, and outer
automorphisms are studied in §3.5. Finally, in §3.6 we make some further remarks on orthogonal
groups, concentrating in particular on the dimension eight case.

3.1 Subgroup structure

A general theorem on the subgroup structure of the finite classical groups was established by M.
Aschbacher in 1984. Let G0 be a finite simple classical group over Fq, with natural (projective)
module V of dimension n. Write q = pf , where p is prime. Let Γ 6 Aut(G0) denote the
projective semilinear group corresponding to G0, i.e. Γ = 〈G̃, φ〉 where G̃ = Aut(G0)∩PGL(V )
and φ is naturally induced from the field automorphism of Fqu which sends µ to µp, where u = 2
if G0 is unitary, otherwise u = 1. Let G be a group such that

G0 P G 6 Γ. (3)

In [1], eight collections of subgroups of G are defined, labelled Ci = Ci(G) for 1 6 i 6 8,
and Aschbacher proves that any maximal subgroup H of G not containing G0 is either in
C (G) :=

⋃8
i=1 Ci, or is almost simple and satisfies numerous irreducibility conditions (see [18,

§1.2]). We write S = S (G) for this collection of almost simple irreducible subgroups. We refer
the reader to [18] for detailed information on each of these subgroup collections.

Of course, this fundamental theorem relies on the hypothesis that (3) holds. It is well-known
that Aut(G0) 6= Γ only if G0 = PSLn(q) (n > 3), G0 = Sp4(q)′ (q even) or G0 = PΩ+

8 (q). In
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G0 type of H conditions
PΩ+

8 (q) GLε
3(q)×GLε

1(q) q > 3 if ε = +
O−

2 (q2)×O−
2 (q2)

O1(q) o S8 q = p > 2
G2(q)

Sp4(q)′ Oε
2(q) o S2 ε = − if q = 2

(q even) O−
2 (q2).2

Table 3.1: The collection N

G0 collection type of H conditions
PΩ+

8 (q) C2 O+
4 (q) o S2 q > 3

Oε
2(q) o S4 q > 5 if ε = +

C5 O+
8 (q0) q = qk

0 , k prime
S PSLε

3(q) q ≡ ε (3)
3D4(q1) q = q31
Ω+

8 (2) q = p > 3
Sz(8) q = 5

Sp4(q)′ C5 Sp4(q0) q = qk
0 , k prime

(q even) S Sz(q) log2 q > 3 odd

Table 3.2: Some maximal non-subspace subgroups

[1], Aschbacher proves a similar theorem in the case where G 66 Γ and G0 6= PΩ+
8 (q). In later

work [17], Kleidman gives a complete description of the maximal subgroups of the almost simple
groups with socle G0 = PΩ+

8 (q).

Proposition 3.1. Let G be a finite almost simple classical group with socle G0 and suppose
G 66 Γ. Let H be a maximal non-subspace subgroup of G not containing G0. Then H = NG(K)
where K 6 Γ ∩G and either K ∈ C (Γ ∩G) ∪S (Γ ∩G) or (G0,H) is listed in Table 3.1.

Proof. There are three cases to consider. If G0 = Sp4(q)′ and q is even then the result follows
from [1, 14.2] (note that the normalizer in G of a Sylow 2-subgroup of Sp4(q) is a subspace
subgroup). The case G0 = PΩ+

8 (q) is similar, using [17, Tables I, III] (again, we exclude the
subspace subgroups labelled P2 and Rs2 in [17, Table III]). Finally, if G0 = PSLn(q) and n > 3
then an additional collection C ′

1 of subspace subgroups of G can be defined and a version of
Aschbacher’s result is proved using C ′

1 (see [1, §13]).

Definition 3.2. Suppose G 66 Γ and H = NG(K) is a maximal non-subspace subgroup of G,
where K 6 Γ ∩G. We say that H belongs to the collection Ci (resp. S (G)) if K ∈ Ci(Γ ∩G)
(resp. K ∈ S (Γ ∩ G)), otherwise (G0,H) is listed in Table 3.1 and we say that H ∈ N . As
before, we write C (G) =

⋃
i Ci.

Proposition 3.3. Suppose G 66 Γ and H ∈ C (G) ∪S (G) is a maximal non-subspace subgroup
of G. Then the possibilities for H are given in Table 3.2.

Proof. This follows from [1, 14.2] and [17, Tables I, III].

Remark 3.4. In Tables 3.1 and 3.2 we refer to the type of H (see Remark 1.2). If H ∈ S then
the type of H is just the socle of the almost simple group H ∩G0. The conditions listed in the
final column are necessary (but not always sufficient) for H to be maximal in G (see [17, 18]).
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3.2 Preliminaries

Let Ḡ be an algebraic group and fix an element x ∈ Ḡσ = {g ∈ Ḡ : gσ = g}, where σ is a
Frobenius morphism of Ḡ. Then σ restricts to an endomorphism of the centralizer E = CḠ(x)
and induces a homomorphism σ : E/E0 → E/E0, where E0 denotes the connected component
of E containing the identity.

Definition 3.5. Let σ : X → X be a homomorphism of a group X and let H1(σ,X) denote
the set of equivalence classes of X under the equivalence relation

x ∼ y ⇔ y = z−1xzσ for some z ∈ X.

The equivalence class containing x is called the σ-class of x.

Let H1(σ,E/E0) denote the set of equivalence classes corresponding to the induced homo-
morphism σ : E/E0 → E/E0 described above. Then the following proposition is an application
of the well-known Lang-Steinberg Theorem (see [23, 10.1]) and the corollary follows at once.

Proposition 3.6 ([22, I, 2.7]). Let Ḡ be a connected linear algebraic group, and let σ be a
Frobenius morphism of Ḡ. If x ∈ Ḡσ then xḠ∩ Ḡσ is a union of precisely |H1(σ,E/E0)| distinct
Ḡσ-conjugacy classes, where E = CḠ(x).

Corollary 3.7. If x ∈ Ḡσ and CḠ(x) is connected then (xḠ)σ = xḠσ .

Consequently, much of this preliminary section is dedicated to studying the conjugacy classes
of elements of prime order in finite classical groups of the form Ḡσ, where Ḡ is a simple classical
algebraic group of adjoint type over the algebraic closure of Fq. Then Ḡσ is almost simple, with
socle G0. In the terminology of [11], Ḡσ is the group Inndiag(G0) of inner-diagonal automor-
phisms of the finite simple classical group G0. We start with a number of basic results on the
order of certain finite classical groups which will be used repeatedly in the proof of Theorem 1.

Notation. Unless otherwise stated, for the remainder of §3 we shall adopt the following nota-
tion: Ḡ is a simple classical algebraic group of adjoint type over the algebraic closure K of Fq,
where q = pf for a prime p; σ is a Frobenius morphism of Ḡ such that Ḡσ is a finite almost
simple classical group over Fq with socle G0 and natural module V of dimension n.

Lemma 3.8 ([19, 1.2(i)]). If {a1, . . . , al} and {b1, . . . , bm} are two sets of distinct integers, all
at least 2, then ∏l

1(q
ai − 1)∏m

1 (qbi − 1)
< 2q

P
ai−

P
bi .

Proposition 3.9. The following bounds hold:

(i) 1
2q

dim Ḡ < |Ḡσ| < qdim Ḡ;

(ii) If q > 3 then 1
2q

n2
< |GLn(q)| < qn2

;

(iii) qn2
< |GUn(q)| 6 (q + 1)qn2−1;

(iv) If a = {a1, . . . , as} and b = {b1, . . . , bs} are two sets of natural numbers and n >
∑

j ajbj
then

|GUn(q)|∏
j |GUaj (qbj )|

6

(
q + 1
q

)α

qn2−
P

j a2
j bj ,

where α = 0 if s > 2 and each bj = 1, otherwise α = 1;

(v) If l, m and n are natural numbers such that l is even and lm 6 n then

|GUn(q)| < 2|GLm(ql)|qn2−lm2
.
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Proof. First consider (i) and suppose G0 = PΩε
n(q), where n is even. Then

|Ḡσ| = q
1
4
n(n−2)(q

n
2 − ε)

n/2−1∏
i=1

(q2i − 1)

and the upper bound is immediate since (q2 − 1)(qn/2 + 1) < qn/2+2 for all n > 4. If n ≡ 2 (4)
then the lower bound follows at once from Lemma 3.8; if n ≡ 0 (4) then

|Ḡσ| > q
1
4
n(n−2)+1(q2 − 1)(q4 − 1) . . . (qn−2 − 1)(q

n
2
−1 − 1)

and again Lemma 3.8 gives the lower bound. The other cases in (i) are very similar. In (ii), the
upper bound is trivial and the lower bound holds since

|GLn(q)|
qn2 =

n∏
i=1

qi − 1
qi

>

∞∏
i=1

qi − 1
qi

> 1− 1
q
− 1
q2

for all q > 2 (see [21, 3.5]). Part (iii) is an easy exercise. If α = 1 then (iv) is immediate from
(iii), otherwise we may as well assume s = 2. If ai is odd then |GUn(q) : GUai(q)| 6 qn2−a2

i

since
(q2j − 1)(q2j+1 + 1) < q4j+1 (4)

for all j > 1 and the result follows from (iii). On the other hand, if both a1 and a2 are even,
say a1 = 2k and a2 = 2l with k > l > 1, then (iv) holds if and only if

2l∏
j=1

(
q2k+j − (−1)j

qj − (−1)j

)
·

n−2(k+l)∏
j=1

(q2(k+l)+j − (−1)j) < q
1
2
(n−2(k+l))(n+2(k+l)+1)+4kl.

Now (4) implies that

n−2(k+l)∏
j=1

(q2(k+l)+j − (−1)j) 6 (q2(k+l)+1 + 1)q
1
2
(n−2(k+l))(n+2(k+l)+1)−2(k+l)−1

and so we may as well assume n = 2(k + l) + 1. It is easy to check that

(q2k+2m − 1)(q2k+2m+1 + 1) < q4k+2(q2m−1 + 1)(q2m − 1)

for all k,m > 1 and we quickly reduce to the case l = 1. The desired result follows since

(q2k+1 + 1)(q2k+2 − 1)(q2k+3 + 1) < q6k+3(q + 1)(q2 − 1)

for all k > 1. Finally, let us consider (v). Summing over the odd positive integers we get∑
i odd

log(1 + q−i) <
∑
i odd

q−i =
q

q2 − 1
< log 2

and thus
∏k

i=1 (q2i−1 + 1) < 2qk2
for all k > 1 and (v) follows.

Remark 3.10. The lower bound in (ii) does not hold if q = 2. In this case (i) implies that
|GLn(2)| = |PGLn(2)| > 2n2−2. In (iv) we note that |GUn(q) : GUa(q)| 6 qn2−a2

if and only if
a is odd.

Next we record a useful result on the lifting of elements of odd prime order.

Lemma 3.11. Let x ∈ Ḡσ be an element of odd prime order r. Define (G, Ĝ) as follows:

G0 PSLε
n(q) PSpn(q) PΩε

n(q)
(G, Ĝ) (Ḡσ,GLε

n(q)) (G0,Spn(q)) (G0,Ωε
n(q))

Then one of the following holds:
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(i) x lifts to an element x̂ ∈ Ĝ of order r such that |xG| = |x̂ bG|;
(ii) G0 = PSLε

n(q), r|(q − ε) and x is Ḡ-conjugate to [In
r
, ωIn

r
, . . . , ωr−1In

r
], where ω ∈ K is a

primitive rth root of unity.

Proof. First suppose G0 = PSLε
n(q) and (ii) does not hold. Let Z = 〈λ〉 denote the centre of Ĝ,

so Ḡσ = Ĝ/Z and x = x̃Z for some x̃ ∈ Ĝ. Since x has order r we have x̃r = λl for an integer l
such that 0 6 l 6 q− ε− 1. Now, if (r, q− ε) = 1 then there exists an integer y such that yr ≡ l
mod (q − ε) and we define x̂ = λ−yx̃. On the other hand, if r|(q − ε) then we claim that x̃ is
diagonalisable. Seeking a contradiction, suppose x̃ is not diagonalisable. Then f(z) = zr − λl

is the minimal polynomial of x̃ and thus x̃ has rational canonical form diag[A1, . . . , Am], where
mr = n and

Ai =
(

λl

Ir−1

)
for each i. Therefore x̃ is GLn(K)-conjugate to the block-diagonal matrix

[λl/rIn
r
, ωλl/rIn

r
, . . . , ωr−1λl/rIn

r
]

and thus x is Ḡ-conjugate to [In/r, ωIn/r, . . . , ω
r−1In/r], where ω ∈ K is a primitive rth root of

unity, a contradiction. Therefore x̃ is diagonalisable, say x̃ = [λ1, . . . , λn], and x̂ = λ−1
1 x̃ is a lift

of x of order r. To see that |xG| = |x̂ bG|, consider the natural embedding ρ : C bG(x̂)/Z → C bG/Z
(x).

If ŷZ ∈ C bG/Z
(x) then ŷ−1x̂ŷ = µx̂ for an element µ ∈ Z with µr = 1. If µ 6= 1 then r must divide

|Z| = q − ε and we deduce that x̂ is Ĝ-conjugate to [In/r, ωIn/r, . . . , ω
r−1In/r], a contradiction.

Therefore µ = 1, so ρ is an isomorphism and the result follows.
Finally, let us assume G0 is a symplectic or orthogonal group. If p = 2 or n is odd then

G = Ĝ so assume otherwise. Then G0 = G/Z, where Z ∼= Z2 is the centre of G, and x ∈ G0

since r is odd. The result now follows as before.

Remark 3.12. If x ∈ Ḡσ is a semisimple element of odd prime order then Lemma 3.11(i) holds
if and only if |H1(σ,E/E0)| = 1, where E = CḠ(x) (see Lemmas 3.34 and 3.35).

Remark 3.13. If r 6= p then xG0 = xḠσ (see [11, 4.2.2(j)]). In general, this is not true for
unipotent elements; we refer the reader to Lemma 3.20 for further details.

Let X be a subset of a finite group and let r be a positive integer. Then we define ir(X)
to be the number of elements of order r in X. The next result gives an upper bound for the
number of elements of order two and three in a finite almost simple classical group.

Proposition 3.14 ([19, 1.3]). Let N = |Φ+(Ḡ)| be the number of positive roots in the root
system of Ḡ and define N2 = dim Ḡ−N , N3 = dim Ḡ− 2N/3. If r = 2 or 3 then

ir(Aut(G0)) < 2(1 + q−1)qNr .

The next lemma is a useful observation.

Lemma 3.15 ([15, 2.24]). Let N be a normal subgroup of a finite group G and let x̄ ∈ G/N
denote the image of x ∈ G under the natural homomorphism G→ G/N . Then

|xG| 6 |N | · |x̄G/N |.

Definition 3.16. Let V̄ = V ⊗ K and for x ∈ PGL(V ) let x̂ be a pre-image of x in GL(V ).
Define

ν(x) = min{dim[V̄ , λx̂] : λ ∈ K∗}

and observe that ν(x) is equal to the codimension of the largest eigenspace of x̂ on V̄ . In
particular, we note that ν(x) > 0 if x 6= 1.
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Bounds on |xḠσ | in terms of ν(x), dimV and q for elements of prime order will serve as a
useful tool in the proof of Theorem 1. Such bounds are obtained in [20, 3.4] and we slightly
refine these results in Propositions 3.22 and 3.36 below. In particular, our bounds do not involve
undetermined constants.

Definition 3.17. Let G 6 PGL(V ) be a finite classical group over Fq. We define ks,r,u(G) (resp.
ks,r,s(G)) to be the number of conjugacy classes in G of unipotent (resp. semisimple) elements
x of prime order r such that ν(x) = s with respect to the natural action on V . Upper bounds
for ks,r,·(Ḡσ) are established in Propositions 3.24 and 3.40.

3.3 Unipotent elements

Let Ḡ be a simple classical algebraic group of adjoint type over an algebraically closed field of
characteristic p > 0 with natural module V̄ . If Ḡ is symplectic or orthogonal then we say that p
is good for Ḡ if p 6= 2, whereas any p is good if Ḡ = PSL(V̄ ). From the natural correspondence
arising from the Jordan normal form we can associate a unique partition of dim V̄ = n to each
unipotent conjugacy class as follows

(nan , . . . , 1a1) ` n←→ [Jan
n , . . . , Ja1

1 ]Ḡ, (5)

where Ji denotes a standard Jordan block of size i. The partition λ ` n corresponding to the
Ḡ-class of a unipotent element x is called the associated partition of x. In good characteristic,
a partition λ ` n corresponds to a unipotent class in a symplectic (resp. orthogonal) group if
and only if odd (resp. even) parts in λ occur with an even multiplicity. It is well-known that
if p is good for Ḡ then this map from unipotent Ḡ-classes to partitions of n is almost always
injective. Indeed, the single exception is the case Ḡ = PSOn, where n is even and the associated
partition has no odd parts. Here such a partition corresponds to precisely two distinct unipotent
Ḡ-classes which fuse in POn.

Detailed information on conjugacy classes in the finite classical groups GLε
n(q), Spn(q) and

Oε
n(q) is given by Wall in [25]. In the next lemma we use some of these results to compute |xḠσ |

for unipotent elements x ∈ Ḡσ of prime order.

Lemma 3.18. Suppose x ∈ Ḡσ has order p and associated partition λ = (nan , . . . , 1a1) ` n. If
p is good for Ḡ then the order of the centralizer CḠσ

(x) is recorded in Table 3.3, where

G0 |CḠσ
(x)|

PSLε
n(q) (q − ε)−1qα1

∏
i |GLε

ai
(q)|

PSpn(q) 2−βqα2

∏
i even

|Oεi
ai

(q)|
∏
i odd

|Spai
(q)|

PΩε
n(q) 2−γqα3

∏
i odd

|Oεi
ai

(q)|
∏
i even

|Spai
(q)|

Table 3.3: Unipotent centralizers, p good

α1 = 2
∑
i<j

iaiaj +
∑

i

(i− 1)a2
i = 2α2 −

∑
i even

ai = 2α3 +
∑
i even

ai

and where

β =
{

0 if each non-zero aj is even
1 otherwise,

γ =


0 if aj = 0 for all odd j
1 if n is odd or if each non-zero aj is even
2 otherwise

and {εi} is a choice of signs so that
∏

i εi = ε if G0 = PΩε
n(q) and n is even.
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Proof. First observe that x lies in G0 since |Ḡσ : G0| is not divisible by p. Now if G0 = PSLε
n(q)

and p is odd then Lemma 3.11 implies that x lifts to an element x̂ ∈ GLε
n(q) such that x̂p = 1

and |xḠσ | = |x̂GLε
n(q)|; it is clear from the proof of Lemma 3.11 that the same conclusion also

holds if p = 2. The centralizer order |CḠσ
(x)| now follows from [25, p.34]. The other cases are

similar. For example, suppose G0 = PΩε
n(q) and n is even. Then p is odd and Lemma 3.11

implies that there exists x̂ ∈ Ωε
n(q) such that x̂p = 1 and |xG0 | = |x̂Ωε

n(q)|. If l denotes the
number of non-zero terms aj with j odd in λ then [25, p.39] gives |x̂Oε

n(q)| = 21−lf(q), where
f(q) is a monic polynomial in q of degree dimxḠ. Now, if E = CḠ(x) then Proposition 3.6
implies that |xḠσ | = |H1(σ,E/E0)|−1f(q), where |H1(σ,E/E0)| = |E : E0| since E/E0 is either
trivial or is an elementary abelian 2-group. More precisely, [8, p.399] gives

|H1(σ,E/E0)| =
{

2l−1−δ if l > 0
1 otherwise,

where δ = 1 if there is an odd aj , otherwise δ = 0. The polynomial f(q) can be read off from
[25, p.39] and the desired result follows. The other cases are very similar.

Remark 3.19. According to [25, p.38], if x ∈ PΩ−
n (q) is unipotent and q is odd then the

associated partition of x has at least one odd part.

Lemma 3.20. Suppose x ∈ Ḡσ has order p and associated partition λ = (nan , . . . , 1a1) ` n. If
p is good for Ḡ then the following hold:

(i) If Ḡσ = PGLε
n(q) then |xḠσ | = (v, q − ε)|xG0 |, where v = hcf{j : aj > 0};

(ii) If Ḡσ is symplectic then |xḠσ | = 2α|xG0 |, where α = 1 if aj is odd for some even j,
otherwise α = 0;

(iii) If Ḡσ is orthogonal and n is even then |xḠσ | = 4|xG0 | only if aj is odd for some odd j.

Proof. In (i), x lifts to a unique element x̂ ∈ SLε
n(q) of order p such that |xG0 | = |x̂SLε

n(q)| and
Lemma 3.18 gives |xḠσ | = f(q), where f is a monic polynomial in q. Now [22, 1.10] states that
E/E0 is cyclic of order v, where E = CSLn(K)(x̂), hence |H1(σ,E/E0)| = (v, q− ε) and therefore
|xG0 | = (v, q− ε)−1f(q) as claimed. For (ii), let x̂ ∈ Spn(q) be the unique lift of x to an element
of order p (see Lemma 3.11). Then |xG0 | = |x̂Spn(q)| = 2−l′f(q), where l′ denotes the number
of even j with aj > 0 and f is a monic polynomial in q (see [25, p.36]). Now [8, p.399] gives
|CḠ(x) : CḠ(x)0| = 2l′−δ′ , where δ′ = 1 if there exists an even j with aj odd, otherwise δ′ = 0.
The result now follows since |xḠσ | = 2−l′+δ′f(q).

Now consider (iii). Let x̂ ∈ Ωε
n(q) be the unique lift of x to an element of order p such

that |xG0 | = |x̂Ωε
n(q)| and define the integers l and δ as in the proof of Lemma 3.18. Since

|Oε
n(q) : Ωε

n(q)| = 4 we have 4|xG0 | > |x̂Oε
n(q)|. Now, if l = 0 then |x̂Oε

n(q)| = 2|xḠσ | and therefore
2|xG0 | > |xḠσ | as claimed. If l > 0 then |x̂Oε

n(q)| = 21−lf(q) for some monic polynomial f in q
and |xḠσ | = 21+δ−lf(q). Moreover, x and xγ are Ḡ-conjugate, where γ is an involutory graph
automorphism of Ḡ, and thus |x̂SOε

n(q)| = |x̂Oε
n(q)|. In turn, this implies that 2|xG0 | > |x̂Oε

n(q)|
and the result follows since |xḠσ | = |x̂Oε

n(q)| if δ = 0.

Corollary 3.21. Suppose Ḡ is symplectic or orthogonal, p is odd and x ∈ Ḡσ has order p and
associated partition λ = (nan , . . . , 1a1) ` n. If l is the number of odd j with aj > 0 then

|xG0 | >
(

1
2

)l+1+δl,0
(

q

q + 1

)l

qdim xḠ
.

In [2] one can find detailed information on involutions in symplectic and orthogonal groups
over fields of even characteristic and we adopt the notation therein for labelling representatives
of involution classes.
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Proposition 3.22. Let x ∈ Ḡσ be an element of order p such that ν(x) = s. Then

fi(n, s, q) < |xḠσ | < gi(n, s, q),

where i = 1 + δ2,p and the functions fi and gi are defined in Tables 3.4 and 3.5 below.

Proof. We begin by assuming p is odd. Let λ = (nan , . . . , 1a1) ` n denote the associated partition
of x, let t > 1 be the number of non-zero aj and observe that the hypothesis ν(x) = s implies
that

∑
j aj = n− s. If G0 = PSLn(q) then Lemmas 3.8, 3.18 and Proposition 3.9(ii) imply that

G0 f1(n, s, q) g1(n, s, q)

PSLε
n(q) 1

2

(
q

q+1

)
max(q2s(n−s), qns) 2qs(2n−s−1)

PSpn(q) 1
2

(
q

q+1

)
max(qs(n−s), q

1
2
ns) q

1
2
(2ns−s2+1)

PΩ±
n (q) 1

2

(
q

q+1

)
max(qs(n−s−1), q

1
2
n(s−1)) 2q

1
2
s(2n−s−2)

Ωn(q) 1
2 max(qs(n−s−1), q

1
2
n(s−1)) q

1
2
s(2n−s−2)

Table 3.4: Bounds on unipotent conjugacy classes, p > 2

1
2
qdim xḠ

< |xḠσ | < 2t−1qdim xḠ
(6)

and thus |xḠσ | > f1(n, s, q) by [6, 2.9]. For the upper bound, first observe that [6, 2.4] implies
that dimxḠ 6 dim yḠ, where y ∈ Ḡ is unipotent with associated partition

λ′ = (s+ 3t/2− t2/2, t− 1, t− 2, . . . , 2, 1n−s−t+1) ` n.

Using [6, 2.3] we calculate that dim yḠ = 2ns− s2 − s− t3/3− t2 + 2t/3 and (6) yields

|xḠσ | < 2t−1qdim xḠ
< 2qdim yḠ+t−2 6 g1(n, s, q)

as claimed. Next suppose G0 = PSUn(q). Here

1
2

(
q

q + 1

)t−1

qdim xḠ
< |xḠσ | < 2qdim xḠ

and [6, 2.9] gives |xḠs | < g1(n, s, q). For the lower bound, [6, 2.4] implies that dimxḠ > dim yḠ,
where y ∈ Ḡ is unipotent with associated partition ((m+1)r,mn−s−r) ` n and m = bn/(n−s)c.
In particular, if |xḠσ | is minimal then t = 2 and again the result follows via [6, 2.9]. The other

G0 conditions x f2(n, s, q) g2(n, s, q)

PSLε
n(q) [Js

2 , In−2s] 1
2

(
q

q+1

)
q2s(n−s) 21+δ2,qq2s(n−s)

Spn(q) as
1
2q

s(n−s) 2qs(n−s)

bs, cs
1
2q

s(n−s+1) 2qs(n−s+1)

Ωε
n(q) (s, ε) 6= (n

2 ,+) as
1
2q

s(n−s−1) 2qs(n−s−1)

cs
1
2q

s(n−s) 2qs(n−s)

Ω+
n (q) s = n

2 an
2
, a′n

2

1
2q

1
4
n(n−2) q

1
4
n(n−2)

cn
2

1
2q

1
4
n2

2q
1
4
n2

Table 3.5: Bounds on unipotent conjugacy classes, p = 2

cases with p odd are similar. For example, if G0 = PSpn(q) and ν(x) = s is odd then the largest
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possible partition is (s + 1, 1n−s−1) ` n (with respect to the familiar dominance ordering on
partitions) and using Lemma 3.18 we deduce that

|xḠσ | 6 |Spn(q)|
|Spn−s−1(q)|qn−s/2−1/2

< q
1
2
(2ns−s2+1) = g1(n, s, q).

Now assume p = 2. If Ḡ = PSLn(K) then [2, 4.3] gives

|xḠσ | = |GLε
n(q)|

|GLε
s(q)||GLε

n−2s(q)|q2ns−3s2

and the desired bounds follow at once from Proposition 3.9. Next suppose Ḡ = Spn(K). If s
is even then there are precisely two distinct classes of involutions in Ḡσ whose elements satisfy
ν(x) = s (see [2, §7]). These classes are represented by as and cs, where

1
2
qs(n−s) < |aḠσ

s | =
|Spn(q)|

|Sps(q)||Spn−2s(q)|qns−3s2/2+s/2
< 2qs(n−s)

and
1
2
qs(n−s+1) < |cḠσ

s | =
|Spn(q)|

|Sps−2(q)||Spn−2s(q)|qns−3s2/2+3s/2−1
< 2qs(n−s+1).

If s is odd then x is Ḡσ-conjugate to bs and

1
2
qs(n−s+1) < |bḠσ

s | =
|Spn(q)|

|Sps−1(q)||Spn−2s(q)|qns−3s2/2+s/2
< 2qs(n−s+1).

Finally suppose that G0 = Ωε
n(q), where n is even. Here Ḡσ = G0 since q is even. We first

consider involution classes in G̃ = Oε
n(q) = Ḡσ.2. As described in [2, §8], there are precisely two

distinct G̃-classes of involutions in G̃ whose elements satisfy ν(x) = s, where s < n/2 is even.
These classes are represented by the elements as and cs. The same is true if s = n/2 is even and
ε = +, whereas every involution with s = n/2 even is G̃-conjugate to cn/2 if ε = −. In all cases,
applying [2, 8.6, 8.8] (or [25, p.60]) we deduce that

1
2
qs(n−s−1) < |a eG

s | =
|Oε

n(q)|
|Sps(q)||Oε

n−2s(q)|qns−3s2/2−s/2
< 2qs(n−s−1)

and
1
2
qs(n−s) < |c eG

s | =
|Oε

n(q)|
2|Sps−2(q)||Spn−2s(q)|qn(s−1)−3s2/2+5s/2−1

< 2qs(n−s).

If s is odd then there is a unique G̃-class of such involutions, with class representative bs such
that

1
2
qs(n−s) < |b eG

s | =
|Oε

n(q)|
2|Sps−1(q)||Spn−2s(q)|qn(s−1)−3s2/2+3s/2

< 2qs(n−s).

The elements as and cs lie in Ḡσ whereas bs ∈ G̃−Ḡσ. According to [2, 8.12] we have xḠσ = x
eG,

unless ε = + and x is G̃-conjugate to an/2 in which case a eG
n/2 = aḠσ

n/2 ∪ a
′Ḡσ

n/2, and |aḠσ

n/2| = |a
′Ḡσ

n/2|.
The bounds listed in Table 3.5 follow at once.

Remark 3.23. Suppose G0 = Spn(q) and H is a C8-subgroup of type Oε
n(q), where q is even,

so H is a subspace subgroup of G (see §1). If x ∈ H is an involution which is Spn(q)-conjugate
to al then xG ∩H = xH and the bounds in Table 3.5 imply that fpr(x) > |xG|−α, where

α =
log 4ql

log 2ql(n−l)
→ 0 as n, q →∞.

The maximal subgroups in C1 exhibit a similar behaviour and therefore it is necessary to exclude
subspace subgroups from the statement of Theorem 1.
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As previously remarked, in good characteristic p the natural map from unipotent classes in
Ḡ to partitions of n (see (5)) is almost always injective. According to Proposition 3.6, if the
Ḡ-class of x is uniquely determined by its associated partition λ ` n then there are precisely
|H1(σ,E/E0)| distinct Ḡσ-classes which correspond to λ, where E = CḠ(x). As we now describe,
this observation provides an effective means of computing ks,p,u(Ḡσ).

Let x ∈ Ḡ be an element of order p such that ν(x) = s, where p is a good prime for Ḡ. Then
the associated partition of x has the form

λ = (pap , (p− 1)ap−1 , . . . , 1a1) ` n, (7)

where
∑

i ai = n− s and ai is even if i is odd (resp. even) if Ḡ is symplectic (resp. orthogonal).
Subtracting 1 from each part gives a partition of s and we let P (s) denote the number of
(unordered) partitions of s. If Ḡ = PSLn(K) then CḠ(x) is connected and thus Corollary 3.7
implies that

ks,p,u(Ḡσ) 6 P (s) < 2s. (8)

If Ḡ = PSpn(K) with p 6= 2 then [8, p.399] implies that |E : E0| 6 2l, where l is the number of
even integers i such that ai > 0. Given n and l it is clear that

∑
i ai is maximal if

λ = (2l, 2(l − 1), . . . , 2, 1n−l(l+1)) ` n

and we deduce that l 6
√
s. In turn, this implies that

ks,p,u(Ḡσ) 6 P (s)2
√

s < 2s+
√

s. (9)

If Ḡ is orthogonal then ks,p,u(Ḡσ) = 0 if s is odd and it is easy to check that (9) holds if s is
even and p is odd. If p = 2 then [2, §§7,8] gives

ks,2,u(Spn(q)) =
{

2 if s is even
1 if s is odd.

Similarly, if n is even then ks,2,u(Ωε
n(q)) = 0 if s is odd; for even s we have

ks,2,u(Ωε
n(q)) =


3 if (s, ε) = (n

2 ,+)
1 if (s, ε) = (n

2 ,−)
2 otherwise.

Proposition 3.24. ks,p,u(Ḡσ) 6 p
s
2 .

Proof. Let P (s,m) be the number of partitions of s with no part of size greater than m. Then
P (s, 2) 6 s

2 + 1 and working recursively we compute

P (s, 3) 6
bs/3c∑
i=0

[
1
2
(s− 3i) + 1

]
6

1
12
s2 +

7
12
s+ 1 (10)

and

P (s, 4) 6
bs/4c∑
i=0

[
1
12

(s− 4i)2 +
7
12

(s− 4i) + 1
]

6
1

144
s3 +

11
96
s2 +

43
72
s+ 1. (11)

If Ḡ = PSLn(K) then ks,p,u(Ḡσ) = P (s, p− 1) and the above bounds are sufficient for p 6 5; if
p > 5 then the result follows via (8). Now assume Ḡ is symplectic or orthogonal. In view of our
earlier comments, we may assume p is odd. For s 6 3, the upper bounds for ks,p,u(Ḡσ) recorded
in the following table are readily verified:

Ḡ s = 1 2 3
PSpn(K) 1 2 2
PSOn(K) 0 3 0
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Therefore we may assume s > 4 and applying (9) we reduce to the case p 6 7. If p ∈ {3, 5} then
the desired result follows via (11) since

ks,3,u(Ḡσ) 6 2.P (s, 2), ks,5,u(Ḡσ) 6 22.P (s, 4)

and P (s, 2) 6 s
2 + 1. Finally, if p = 7 then we may as well assume s 6 6 as the result is

immediate from (9) if s > 6. Now, if Ḡ = PSpn(K) and x ∈ Ḡ has associated partition λ, with
parts labelled as in (7), then the hypothesis s 6 6 implies that a7 = a5 = 0 and a6 6 1. In fact,
it is clear that λ = (6, 2s−5, 1n−2s+4) is the only possibility with a6 = 1 and applying (10) we
deduce that

ks,7,u(Ḡσ) 6 2 + 2.P (s, 3) 6 7
s
2

for all 4 6 s 6 6. Similarly, if Ḡ = PSOn(K) then ks,7,u(Ḡσ) 6 5 + 2.P (s, 2).

Lemma 3.25. Suppose p is good for Ḡ and x ∈ Ḡ is unipotent with precisely t > 1 distinct
Jordan block sizes in its action on V̄ . Then dimxḠ > g(n, t), where g is defined as follows:

Ḡ g(n, t)
PSLn(K) (t2 − t)n− 1

4 t
4 + 1

6 t
3 + 1

4 t
2 − 1

6 t
PSpn(K) 1

2(t2 − t)n− 1
8 t

4 + 1
12 t

3 + 3
8 t

2 − 1
12 t−

1
4

PSOn(K) 1
2(t2 − t)n− 1

8 t
4 + 1

12 t
3 − 1

8 t
2 − 1

12 t

Proof. If Ḡ = PSLn(K) then the result follows immediately from [6, 2.3, 2.4]: simply compute
dim yḠ, where y ∈ Ḡ is a unipotent element with associated partition

λ = (t, t− 1, . . . , 2, 1n−t2/2−t/2+1) ` n, (12)

and apply [6, 2.4]. Next assume Ḡ = PSpn(K). For an arbitrary partition ρ = (nan , . . . , 1a1) ` n
define

f(ρ) =
1
2
n(n+ 1)−

∑
i<j

iaiaj −
1
2

∑
i

ia2
i −

1
2

∑
i odd

ai

and observe that f(ρ) = dimxḠ if x ∈ PSpn(K) has associated partition ρ (see [6, 2.3]). Now
g(n, t) = f(λ), where λ is the partition in (12), and so we need to show that f(ρ) > f(λ) for all
partitions ρ ` n which correspond to unipotent classes in PSpn(K). Let m = max{j : aj > 0},
write ρ = (mam , . . . , 1a1) and define

ρ′ = (mam−1, (m− 1)am−1 , . . . , 2a2 , 1a1+m) ` n.

Then

f(ρ′) = f(ρ)−

(
1
2
m2 −m− α+

m∑
i=1

(m− i)ai

)
, (13)

where α = 1/2 if m is odd, otherwise α = 0. Therefore we may assume m = t. If there exists
some k > 1 such that ak > 1 then define

ρ′ = (tat , . . . , (k + 1)ak+1 , kak−1, (k − 1)ak−1 , . . . , 2a2 , 1a1+k) ` n

and observe that (13) holds, with m replaced by k. We conclude that f(ρ) > f(λ) as required.
The argument for Ḡ = PSOn(K) is very similar.

3.4 Semisimple elements

Let r 6= p be an odd prime and write Sr for the complete set of rth roots of unity in K. With
respect to Ḡσ we define a bijection Sr → Sr as follows:

λ 7→
{
λ−q if Ḡσ = PGUn(q)
λq otherwise.

We write σ(λ) to denote the image of λ ∈ Sr under this mapping and we call {σj(λ) : j > 0}
the σ-orbit of λ; the σ-orbit {1} is the trivial orbit. If Λ is a σ-orbit then we define Λ−1 = {λ−1 :
λ ∈ Λ}. Evidently, the σ-orbits partition Sr.
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Lemma 3.26. Let r 6= p be an odd prime and let {1},Ωj (1 6 j 6 t) denote the distinct σ-orbits
on Sr. Let i > 1 be minimal such that r divides qi − 1.

(i) If Ḡσ is not unitary then |Ωj | = i for each j, and Ωj = Ω−1
j if and only if i is even.

(ii) If Ḡσ is unitary then |Ωj | = ci, where

imod 4 0 1 2 3
c 1 2 1/2 2

and Ωj = Ω−1
j if and only if i 6≡ 2 (4).

Proof. Fix 1 6= λ ∈ Sr and let Ωj denote the σ-orbit of λ. In (i) we have σm(λ) = λqm
= λ if

and only if r|(qm − 1), whence |Ωj | = min {m : σm(λ) = λ} = i. Furthermore, if i = 2l then r
divides ql + 1, so σl(λ) = λ−1, Ωj = Ω−1

j and (i) follows. In (ii) we have σm(λ) = λ(−q)m
and

|Ωj | = m, where m > 1 is the smallest integer such that r divides qm − (−1)m. If i = 4l then
the minimality of i implies that m = i and thus Ωj = Ω−1

j since σ2l(λ) = λ−1. The other cases
are just as straightforward.

Let us assume for now that x ∈ Ḡσ is a semisimple element of odd prime order r and CḠ(x)
is connected. If Ḡσ = PGLε

n(q) then Lemma 3.11 (in view of Lemma 3.34 below) implies that
x lifts to an element x̂ ∈ GLε

n(q) of order r such that |xḠσ | = |x̂GLε
n(q)| and we define Ex̂ to be

the multiset of eigenvalues of x̂ in K, so each µ ∈ Ex̂ is an rth root of unity. If (r, q − ε) = 1
then x̂ is uniquely determined and we define Ex by setting Ex = Ex̂. Of course, if r divides
|Z(GLε

n(q))| = q − ε then Ex̂ is determined only up to scalar multiplication by an rth root of
unity and we shall treat this as a special case in our subsequent analysis. If Ḡ = PSpn(K)
then Lemma 3.11 applies and we define Ex to be the multiset of eigenvalues of the unique lift
x̂ ∈ Spn(q) of order r. We make an analogous definition when Ḡ is orthogonal.

The simple observation that Ex is a union of σ-orbits suggests the following definition.

Definition 3.27. Let x ∈ Ḡσ be a semisimple element of prime order r > 2, let {1},Ωj

(1 6 j 6 t) denote the distinct σ-orbits on Sr and assume (r, q − ε) = 1 if Ḡσ = PGLε
n(q).

The associated σ-tuple of x is the (t + 1)-tuple µ = (l, a1, . . . , at), where l > 0 is equal to the
multiplicity of 1 in Ex and aj > 0 denotes the multiplicity of Ωj in Ex.

Remark 3.28. Let i > 1 be minimal such that r|(qi − 1). If i is odd and Ḡσ is not a unitary
group then we may assume that the non-trivial σ-orbits are labelled so that Ω−1

j = Ωj+s for all
1 6 j 6 s = t/2. In particular, if Ḡ is symplectic or orthogonal then aj = aj+s for all 1 6 j 6 s
if i is odd since 1 6= λ ∈ Ex must occur with the same multiplicity as λ−1.

Remark 3.29. Suppose G0 = PΩε
n(q), where n is even. Let x ∈ Ḡσ be a semisimple element of

odd prime order r with associated σ-tuple µ = (l, a1, . . . , at) and let i > 1 be minimal such that
r divides qi − 1. Then according to [25, p.38] we have the following conditions on µ.

(i) If i is odd and ε = − then l > 0.

(ii) If i is even, l = 0 and ε = + (resp. ε = −) then
∑

j aj is even (resp. odd).

The next lemma describes how the centralizer order |CḠσ
(x)| of a semisimple element of odd

prime order can be read off from the associated σ-tuple µ.

Lemma 3.30. Let x ∈ Ḡσ be a semisimple element of odd prime order r such that CḠ(x) is
connected. Assume (r, q − ε) = 1 if Ḡσ = PGLε

n(q). Let i > 1 be minimal such that r|(qi − 1)
and let µ = (l, a1, . . . , at) be the associated σ-tuple of x. Let d > 1 be the number of non-zero
terms aj in µ. Then |CḠσ

(x)| and subsequent bounds f < |xḠσ | < g are given in Table 3.6,
where α = 1− δl,0.
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G0 i |CḠσ
(x)| f g

PSLn(q) arbitrary (q − 1)−1|GLl(q)|
∏

j |GLaj
(qi)| 1

2q
dim xḠ

2dqdim xḠ

PSUn(q) i ≡ 0 (4) (q + 1)−1|GUl(q)|
∏

j |GLaj
(qi)| 1

2q
dim xḠ

2d
(

q+1
q

)α

qdim xḠ

i ≡ 2 (4) (q + 1)−1|GUl(q)|
∏

j |GUaj
(q

i
2 )| 1

2

(
q

q+1

)d

qdim xḠ
(

q+1
q

)
qdim xḠ

odd (q + 1)−1|GUl(q)|
∏

j |GLaj (q
2i)| 1

2q
dim xḠ

2d
(

q+1
q

)α

qdim xḠ

PSpn(q) even |Spl(q)|
∏

j |GUaj (q
i
2 )| 1

2

(
q

q+1

)d

qdim xḠ

qdim xḠ

odd |Spl(q)|
∏s

j=1 |GLaj (q
i)| 1

2q
dim xḠ

2dqdim xḠ

PΩε
n(q) even 2−α|Oε′

l (q)|
∏

j |GUaj
(q

i
2 )|

† 1
2

(
q

q+1

)d+α

qdim xḠ

2αqdim xḠ

(n even) odd 2−α|Oε
l (q)|

∏s
j=1 |GLaj

(qi)| 1
2

(
q

q+1

)α

qdim xḠ

2d+αqdim xḠ

Ωn(q) even |SOl(q)|
∏

j |GUaj (q
i
2 )| 1

2

(
q

q+1

)d

qdim xḠ

qdim xḠ

(n odd) odd |SOl(q)|
∏s

j=1 |GLaj (q
i)| 1

2q
dim xḠ

2dqdim xḠ

† ε′ = ε if and only if there are an even (or zero) number of odd parts aj .

Table 3.6: Semisimple centralizers, CḠ(x) connected

Proof. First observe that xG0 = xḠσ (see [11, 4.2.2(j)]) and |xḠσ |, and thus |CḠσ
(x)|, is a monic

polynomial in q (see Corollary 3.7). If Ḡσ = PGLε
n(q) then Lemma 3.11 implies that x lifts to

an element x̂ ∈ GLε
n(q) which has order r and satisfies |xḠσ | = |x̂GLε

n(q)|. In this case the result
follows from [25, p.34]; the other cases are similar. For instance, if G0 = PΩε

n(q), where n is
even, then x ∈ G0 (since r is odd) and x lifts to an element x̂ ∈ Ωε

n(q) of order r such that
|xG0 | = |x̂Ωε

n(q)| (see Lemma 3.11). Now [25, p.39] gives |x̂Oε
n(q)| = 2αf(q), where f(q) is a monic

polynomial and α = 1− δl,0. We conclude that |xḠσ | = f(q) and the result follows. The bounds
f < |xḠσ | < g quickly follow via Proposition 3.9.

Remark 3.31. As previously remarked, if x ∈ Ḡσ = PGLε
n(q) has prime order r and CḠ(x)

is connected, where r|(q − ε), then Ex̂ depends on the choice of preimage x̂ ∈ GLε
n(q) and the

associated σ-tuple of x is not well-defined. However, the centralizer order |CḠσ
(x)| is easily

computed: choose any lift x̂ of order r and suppose ωj occurs with a multiplicity aj in Ex̂, where
ω ∈ K is a primitive rth root of unity. Then |CḠσ

(x)| = (q − ε)−1
∏

j |GLε
aj

(q)|.

Definition 3.32. Let x ∈ Ḡσ be a semisimple element of odd prime order r such that CḠ(x) is
connected. We associate unique integers l and d to x as follows.

(i) If Ḡσ = PGLε
n(q) and r|(q − ε) then let x̂ ∈ GLε

n(q) be a lift of x of order r such that
ν(x̂) = n− l′, where l′ is the dimension of the 1-eigenspace of x̂. We set l = l′ and define
d to be the number of distinct primitive rth roots of unity which occur as eigenvalues of
x̂. Note that l > 0 and d+ l 6 n 6 l(d+ 1).

(ii) Otherwise, let µ = (l, a1, . . . , at) be the associated σ-tuple of x and define d to be the
number of non-zero terms aj .

Lemma 3.33. Let x ∈ Ḡσ be a semisimple element of odd prime order r such that CḠ(x) is
connected. Define the integers l and d as above and let i > 1 be minimal such that r|(qi − 1).
Then dimxḠ > L, where L is defined as follows:

G0 L

PSLε
n(q) n2 − l2 − 1

c (n− l − c(d− 1))2 − c(d− 1)
PSpn(q) 1

2(n2 + n− l2 − l − 1
ei(n− l − i(d− e))

2 − i(d− e))
PΩε

n(q) 1
2(n2 − n− l2 + l − 1

ei(n− l − i(d− e))
2 − i(d− e))
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Here

c = c(i, ε) =


2i if ε = − and i is odd
i/2 if ε = − and i ≡ 2 (4)
i otherwise

and e = 2 if i is odd, otherwise e = 1.

Proof. This is immediate since dim GLa+b > dim GLa + dim GLb for all integers a and b.

A well-known theorem of Steinberg states that centralizers of semisimple elements in a simply
connected algebraic group are always connected (see [8, 3.5.6] for example) but this is not always
the case for the adjoint algebraic groups we are working with. However, the next lemma reveals
that very few semisimple elements of odd prime order have a non-connected centralizer.

Lemma 3.34. Let x ∈ Ḡ be a semisimple element of odd prime order r. Then either CḠ(x) is
connected or Ḡ = PSLn(K), r divides n and x is Ḡ-conjugate to [In

r
, ωIn

r
, . . . , ωr−1In

r
] (modulo

scalars) where ω ∈ K is a primitive rth root of unity.

Proof. The argument for Ḡ = PSLn(K) is entirely straightforward. The fact that CḠ(x) is
connected when Ḡ is symplectic or orthogonal follows from [22, Corol. 4.6, p.204].

Lemma 3.35. Suppose Ḡ = PSLn(K) and x ∈ Ḡσ is a semisimple element of odd prime order
r such that E = CḠ(x) is non-connected. Then the following hold.

(i) |H1(σ,E/E0)| = (r, q − ε).
(ii) If r divides q − ε then

(xḠ)σ =
r−1⊔
j=0

xḠσ
j (14)

where

|CḠσ
(xj)| =

{
|SLε

n
r
(q)||GLε

n
r
(q)|r−1r if j = 0

(q − ε)−1|GLε
n
r
(qr)|r if 1 6 j 6 r − 1.

(iii) If (r, q − ε) = 1 then (xḠ)σ = xḠσ and |CḠσ
(x)| is as follows

ε i |CḠσ
(x)|

+ arbitrary |SLn
r
(q)||GLn

r
(qi)|

1
i
(r−1)

− i ≡ 0 (4) |SUn
r
(q)||GLn

r
(qi)|

1
i
(r−1)

i ≡ 2 (4) |SUn
r
(q)||GUn

r
(q

i
2 )|

2
i
(r−1)

odd |SUn
r
(q)||GLn

r
(q2i)|

1
2i

(r−1)

where i > 1 is minimal such that r|(qi − 1).

Proof. First observe that E/E0 ∼= Zr and therefore |H1(σ,E/E0)| = 1 or r since the number
of elements in each equivalence class divides r. In particular, |H1(σ,E/E0)| = r if and only if
z−1zσ = 1 for all z ∈ E/E0. Without loss we may assume zσ = zεq and (i) follows immediately.
If |H1(σ,E/E0)| = 1 then Lemma 3.11 implies that x lifts to an element x̂ ∈ GLε

n(q) of order
r such that |xḠσ | = |x̂GLε

n(q)| and so (iii) follows from Lemma 3.30. Finally, let us consider
(ii). Here (14) follows from Proposition 3.6 and so it remains to justify the orders of the Ḡσ-
centralizers. Relabelling if necessary, we may assume that xj ∈ PGLε

n(q) lifts to an element
x̂j ∈ GLε

n(q) which is GLε
n(q)-conjugate to the monomial matrix(

λjIn/r

In−n/r

)
,
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where Z(GLε
n(q)) = 〈λIn〉. Since r divides |Z(GLε

n(q))| we have r|xḠσ
j | = |x̂GLε

n(q)
j |. If j = 0

then x̂j has order r and we can argue as we did in the proof of Lemma 3.30. Now assume j > 0.
Then x̂j has order rj = (r/j)[j, q − ε], where [j, q − ε] denotes the lowest common multiple of j
and q − ε, and thus ij = 1

2(3− ε)r, where ij > 1 is the least integer such that rj divides qij − 1.
The desired result now follows from [25, p.34].

Next we establish a semisimple analogue of Proposition 3.22.

Proposition 3.36. Let x ∈ Ḡσ be an element of odd prime order r 6= p such that ν(x) = s and
CḠ(x) is connected. Then f3(n, s, q) < |xḠσ | < g3(n, s, q), where the functions f3 and g3 are
defined in Table 3.7 and a = 1

2(1− ε).

G0 f3(n, s, q) g3(n, s, q)

PSLε
n(q)


1
2

(
q

q+1

)a
q2s(n−s) s < n/2

1
2

(
q

q+1

) as
n−s

qns s > n/2
2
(

q
q−1

)s
qs(2n−s−1)

PSpn(q) 1
2 max(qs(n−s), q

1
2
ns) 2

(
q

q−1

) s
2
q

1
2
(2ns−s2+1)

PΩε
n(q)


1
4

(
q

q+1

)
qs(n−s) s < n/2

1
2

(
q

q+1

) n
2(n−s)

q
1
2
n(s−1) s > n/2

2
(

q
q−1

) s
2
q

1
2
s(2n−s−2)

Table 3.7: Bounds on semisimple conjugacy classes

Proof. We begin with the case G0 = PSLε
n(q). Since CḠ(x) is connected, Lemmas 3.11 and 3.34

imply that there exists a lift x̂ ∈ GLε
n(q) of x such that x̂ has order r and |xḠσ | = |x̂GLε

n(q)|. If
ε = + then the hypothesis ν(x) = s implies that GLn−s(ql) 6 CGLn(q)(x̂) for some l > 1 and
thus

|xḠσ | 6 |GLn(q)|
|GLn−s(q)||GL1(q)|s

< g3(n, s, q).

Further, Lemma 3.30 implies that |xḠσ | > 1
2q

dim xḠ
and the lower bound follows since [6, 2.9]

gives dimxḠ > max(2s(n− s), ns). Now assume ε = −. Then

|xḠσ | 6 |GUn(q)|
|GUn−s(q)||GL1(q2)|

s
2

< 2
(

q2

q2 − 1

) s
2

q2ns−s2−s < g3(n, s, q)

and the lower bound holds if s < n/2 since |xḠσ | > |GUn(q) : GUn−s(q)GUs(q)|. If s > n/2
then

|xḠσ | > |GUn(q)|
|GUn−s(q)|n/(n−s)

> f3(n, s, q)

as claimed. The symplectic and orthogonal cases are very similar. For example, if G0 = PSpn(q)
and s is odd then s > n/2 and the result follows via Proposition 3.9 since

|Spn(q)|
|GUn−s(q)|n/2(n−s)

6 |xḠσ | 6 |Spn(q)|
|GLn−s(q)||GL1(q)|s−

n
2

.

The remaining cases are left to the reader.

Detailed information on the semisimple involution classes in Ḡ and Ḡσ is given in [11]. We
summarise some of this data in the next proposition.

Proposition 3.37. Suppose p is odd and x ∈ Ḡσ is an involution. Then |CḠσ
(x)| and bounds

f4(n, s, q) < |xḠσ | < g4(n, s, q) are recorded in Table 3.8.
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G0 s ks,2,s(Ḡσ) |CḠσ
(x)| f4(n, s, q) g4(n, s, q)

PSLε
n(q) < n

2 1 |SLε
s(q)||GLε

n−s(q)| 1
2

(
q

q+1

) 1
2 (1−ε)

q2s(n−s) 2
1
2 (1+ε)q2s(n−s)

n
2 2 |SLε

n
2
(q)||GLε

n
2
(q)|2 1

4

(
q

q+1

) 1
2 (1−ε)

q
1
2 n2

2−
1
2 (1−ε)q

1
2 n2

(q − ε)−1|GLn
2
(q2)|2 1

4q
1
2 n2

2
1
2 (1−ε)q

1
2 n2

PSpn(q) < n
2 , even 1 |Sps(q)||Spn−s(q)| 1

2q
s(n−s) 2qs(n−s)

n
2 odd 2 |GLε

n
2
(q)|2 1

4

(
q

q+1

)
q

1
4 n(n+2) q

1
4 n(n+2)

n
2 even 4 |GLε

n
2
(q)|2 1

4

(
q

q+1

)
q

1
4 n(n+2) q

1
4 n(n+2)

|Spn
2
(q)|22 1

4q
1
4 n2

q
1
4 n2

|Spn
2
(q2)|2 1

4q
1
4 n2 1

2q
1
4 n2

PΩ+
n (q) < n

2 , even 2 |SOε
s(q)||SOε

n−s(q)|2 1
4

(
q

q+1

)
qs(n−s) 2qs(n−s)

n
2 odd 1 |GLn

2
(q)| 1

2q
1
4 n(n−2) 2q

1
4 n(n−2)

n
2 even 8 |GLε

n
2
(q)|2† 1

4

(
q

q+1

)
q

1
4 n(n−2) q

1
4 n(n−2)

|SO+
n
2
(q2)|4† 1

8q
1
4 n2 1

2q
1
4 n2

|SOε
n
2
(q)|24 1

8q
1
4 n2

q
1
4 n2

PΩ−
n (q) < n

2 , even 2 |SOε
s(q)||SO−ε

n−s(q)|2 1
4

(
q

q+1

)
qs(n−s) 2qs(n−s)

n
2 odd 1 |GUn

2
(q)| 1

2

(
q

q+1

)
q

1
4 n(n−2) q

1
4 n(n−2)

n
2 even 2 |SO+

n
2
(q)||SO−

n
2
(q)|2 1

4q
1
4 n2

2q
1
4 n2

|SO−
n
2
(q2)|2 1

4q
1
4 n2

q
1
4 n2

Ωn(q) 1 2 |SOε
n−1(q)|2 1

4

(
q

q+1

)
qn−1 qn−1

even 2 |SOε
s(q)||SOn−s(q)|2 1

4

(
q

q+1

)
qs(n−s) qs(n−s)

> 1, odd 2 |SOs(q)||SOε
n−s(q)|2 1

4

(
q

q+1

)
qs(n−s) qs(n−s)

† There are precisely two distinct Ḡσ-classes with centralizer of this type

Table 3.8: Semisimple involutions
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Proof. The entries in the third and fourth columns of Table 3.8 follow from [11, Table 4.5.1],
while the bounds on |xḠσ | are obtained via Proposition 3.9.

As an immediate corollary to Propositions 3.22, 3.36 and 3.37 we obtain the next result.

Corollary 3.38. Let x ∈ Ḡσ be an element of prime order r such that ν(x) = s. Then

F (n, s, q) < |xḠσ | < G(n, s, q),

where the functions F and G are defined in Table 3.9 and a = 1
2(1− ε). Here b = 1 if n is odd

and (r, s) = (2, 1), otherwise b = 0.

G0 F (n, s, q) G(n, s, q)

PSLε
n(q)


1
2

(
q

q+1

)a
q2s(n−s) s < n/2

1
2r

(
q

q+1

) as
n−s

qns s > n/2
2
(

q
q−1

)s
qs(2n−s−1)

PSpn(q) 1
4

(
q

q+1

)
max(qs(n−s), q

1
2
ns) 2

(
q

q−1

) s
2
q

1
2
(2ns−s2+1)

PΩε
n(q)


1
4

(
q

q+1

)
qs(n−s−1) s 6 n/2

1
2

(
q

q+1

) n
2(n−s)

q
1
2
n(s−1) s > n/2

2
(

q
q−1

) s
2
q

1
2
s(2n−s−2)+ b

2

Table 3.9: Bounds on conjugacy classes of elements of prime order

To close this section on semisimple elements we establish a semisimple analogue of Propo-
sition 3.24. Let x ∈ Ḡσ be a semisimple element of odd prime order r, with associated σ-tuple
µ. In order to compute ks,r,s(Ḡσ), it is important to know when µ uniquely determines the
Ḡσ-class of x. According to Corollary 3.7, this happens if and only if the Ḡ-class of x is uniquely
determined by Ex.

Lemma 3.39. Let x ∈ Ḡσ be a semisimple element of odd prime order r such that CḠ(x) is
connected and (r, q − ε) = 1 if Ḡσ = PGLε

n(q). Then one of the following holds:

(i) The Ḡ-class of x is uniquely determined by Ex;
(ii) Ḡ = PSOn(K), n is even, 1 6∈ Ex and there are precisely two distinct Ḡ-classes correspond-

ing to Ex which fuse in POn(K).

Proof. Let y ∈ Ḡσ be a semisimple element of prime order r such that CḠ(y) is connected and
Ey = Ex = {λ1, . . . , λn}. We begin by assuming Ḡσ = PGLε

n(q). Let x̂ and ŷ denote the unique
lifts of x and y to elements of order r in GLε

n(q) and observe that x̂, ŷ ∈ SLε
n(q) 6 SLn(K).

Replacing y by a suitable Ḡ-conjugate, we may assume that there is a K-basis {v1, . . . , vn}
of V̄ = V ⊗ K and a permutation ρ ∈ Sn such that vkx̂ = λkvk and vkŷ = λρ(k)vk for each
1 6 k 6 n. Write ρ = ρ1 · · · ρl as a product of transpositions. If a transposition π ∈ Sn swaps i
and j (i 6= j) then define Tπ to be the unique element in SLn(K) which maps vi 7→ vj , vj 7→ −vi

and fixes every other basis vector. Then x̂ = z−1ŷz, where z =
∏l

1 Tρi , and thus x and y are
Ḡ-conjugate as claimed.

If Ḡ = PSpn(K) then we may lift x and y to elements x̂ and ŷ of order r in Spn(K). The
previous argument implies that x̂ and ŷ are SLn(K)-conjugate and thus Spn(K)-conjugate (see
[25, p.36] for example). Similarly, if Ḡ = PSOn(K) then x̂ and ŷ are On(K)-conjugate. If
1 ∈ Ex (which must be the case if n is odd) then On(K)-conjugacy implies SOn(K)-conjugacy
as we can always ensure that our conjugating element comprises an even number of reflections.
On the other hand, if 1 6∈ Ex then the On(K)-class of x splits into two SOn(K)-classes, with
representatives x and xγ where γ ∈ On(K) is a reflection.
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Proposition 3.40. If r is prime then

ks,r,s(Ḡσ) 6

{
qζs if s < n/2
qζ(s+1) otherwise,

where ζ = 1 if Ḡ = PSLn(K), otherwise ζ = 1/2.

Proof. In view of Proposition 3.37 we may assume r is odd. Let i > 1 be minimal such that
r|(qi − 1) and assume for now that Ḡσ = PGLε

n(q). Define c = c(i, ε) as in the statement of
Lemma 3.33 and let x ∈ Ḡσ be a semisimple element of prime order r with ν(x) = s. If c = 1
and CḠ(x) is connected then x lifts to an element x̂ ∈ GLε

n(q) such that x̂ = [In−s, λ1, . . . , λs],
where each λj is a primitive rth root of unity. Applying Lemma 3.35 we deduce that

ks,r,s(Ḡσ) 6 (r − 1)s + α(r − 1),

where α = 1 if s = n(1 − 1/r), otherwise α = 0. The result now follows since the hypothesis
c = 1 implies that r − 1 6 q. Now assume c > 1. Here we apply Lemma 3.39 and count the
number of possible associated σ-tuples. Let N1 (resp. N2) denote the set of associated σ-tuples
(l, a1, . . . , at) with l = n − s (resp. l < n − s) which correspond to semisimple Ḡσ-classes xḠσ ,
where x has order r and ν(x) = s. Then Lemma 3.39 implies that ks,r,s(Ḡσ) 6 |N1|+ |N2| and
we note that N2 is empty if s < n/2. A tuple µ = (l, a1, . . . , at) in N1 satisfies

∑
j aj = s/c and

since there are precisely (r − 1)/c distinct non-trivial σ-orbits on Sr it follows that

|N1| 6
(
r − 1
c

) s
c

6

(
qc

c

) s
c

6
1
2
qs.

If s = n− 1 and N2 is non-empty then n = mc for some m 6 (r − 1)/c and

|N2| =
(

(r − 1)/c
m

)
6

(
r − 1
c

) 1
c
(s+1)

6
1
2
qs+1

since m = (s + 1)/c and
(
a
b

)
6 ab for all integers a > b > 0. If n − s > 1 then define N j

2

to be the set of tuples in N2 with aj = n − s, where 1 6 j 6 (r − 1)/c. If µ ∈ N j
2 then

0 6
∑

m6=j am 6 bn/c− n+ sc = k and thus

|N2| =
(r−1)/c∑

j=1

|N j
2 | 6

(
r − 1
c

) k∑
m=0

(
r − 1
c
− 1
)m

<

k∑
m=0

(
qc

c

)m+1

6
1
2
qc(k+1).

The result now follows since the hypothesis n− s > 1 implies that c(k + 1) 6 s.
Now assume Ḡ is symplectic or orthogonal. Define i, N1 and N2 as before and note that

we may assume n > 4. Also observe that Lemma 3.39 implies that ks,r,s(Ḡσ) 6 |N1| + 2a|N2|,
where a = 1 if Ḡ = PSOn(K) and n is even, otherwise a = 0. Assume for now that i is even, so
r − 1 6 qi/2,

|N1| 6
(
r − 1
i

) s
i

6
1
2
q

s
2 (15)

and |N2| = 0 if s < n/2. If r−1 = i then |N2| 6 1 and the result follows. Now assume r−1 > i,
whence q > 4 if i = 2. If s = n− 1 then

|N2| 6
(

(r − 1)/i
(s+ 1)/i

)
6

(
1
i

) 1
i
(s+1)

q
1
2
(s+1) <

1
4
q

1
2
(s+1)

and the result follows via (15). Now assume s < n− 1. Then

|N2| <
k∑

m=0

(
qi/2

i

)m+1

<

(
2

ik+1

)
q

i
2
(k+1) 6

(
2

ik+1

)
q

1
2
(n−ni+si+i),
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G0 r type of CG0(α)
PSLε

n(q) 2 PSOn(q) n odd
(n > 3) PSOε

n(q), PSpn(q) n even, q odd
Spn(q), CSpn(q)(t) n even, q even

PΩ+
8 (q) 3 G2(q), PGLε

3(q) if q ≡ ε (3)
G2(q), CG2(q)(t) if q ≡ 0 (3)

Table 3.10: Graph automorphisms of prime order r

where k = bn/i− n+ sc. Since i is even we have n− ni+ si+ i 6 s and thus

|N2| <
(

2
q1/2ik+1

)
q

1
2
(s+1) = b.q

1
2
(s+1).

If k > 1 then b 6 1/4 and the result follows; if k = 0 then

|N2| 6
1
i
(r − 1) 6

1
i
q

i
2 6

1
i
q

1
2
(s+1)

and we are left to deal with the case (i, a) = (2, 1). Here s > 2, q > 4 and thus |N2| 6 1
2q 6

1
4q

(s+1)/2 as required. The argument when i is odd is very similar.

3.5 Outer automorphisms

We now consider the other automorphisms of a finite simple classical group. The following
fundamental theorem is due to Steinberg.

Theorem 3.41 ([24, Theorem 30]). If G0 is a finite simple group of Lie type then Aut(G0)
is generated by inner, diagonal, field and graph automorphisms.

Remark 3.42. We adopt the terminology of [11, 2.5.13] for the various automorphisms of G0.
In particular, if G0 ∈ {PSUn(q),PΩ−

n (q)} then there are no field automorphisms of even order
and no graph-field automorphisms.

In the next proposition it is convenient to write L(q) for a simple group of Lie type, where
L ranges over the familiar Lie symbols An−1, 3D4, E6 and so on. We write ∆L(q) for the group
of inner-diagonal automorphisms of L(q).

Proposition 3.43 ([11, 4.9.1]). Let L = L(q) be a simple group of Lie type over Fq and let x
be a field or graph-field automorphism of prime order r. Then the following hold.

(i) If y ∈ ∆Lx has order r then x and y are ∆L-conjugate;

(ii) If x is a field automorphism then q = qr
0 and C∆L

(x) ∼= ∆L(q0), while if x is a graph-field
automorphism and (L, p) 6= (Sp4(q)′, 2) then r = 2 or 3, q = qr

0 and C∆L
(x) ∼= ∆ rL(q0).

Remark 3.44. If p = 2 then G0 = Sp4(q)′ admits an outer automorphism ϕ ∈ Aut(G0) −
PGL(V ). Following [11, 2.5.13], we say that ϕ is a graph-field automorphism. If log2 q is odd
then G0 admits a field automorphism θ such that τ = ϕθ is an involution and C∆G0

(τ) = Sz(q).
We refer the reader to Proposition 3.52 (and its proof) for further details.

Proposition 3.45. If α ∈ G − PGL(V ) is a graph automorphism of prime order r then the
possibilities for G0, CG(α) and r are listed in Table 3.10, where t is a long root element.

Proof. If G0 = PSLε
n(q) then this follows from [11, Table 4.5.1] when p is odd and [2, §19] when

p = 2. See [17, 1.4.1] for the case G0 = PΩ+
8 (q).
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Remark 3.46. In Table 3.10, CG0(α) could contain the listed group with small index, hence
the term ‘type’. More precisely, if CG0(α) is of type T then CG0(α) = NG0(T ) and we note
that NG0(T ) = T if G0 = PΩ+

8 (q) (see [17, 1.4.1]). The element t appearing in the fourth
row of the table is a long root element of Spn(q), i.e. t is a b1-involution in the terminology of
Proposition 3.22 and thus |tSpn(q)| = qn − 1. Similarly, in the last row we have |tG2(q)| = q6 − 1.
If G0 = PSLε

n(q) (resp. PΩ+
8 (q)) then each possible type for CG0(α) corresponds to precisely

one (resp. two) ∆G0-class(es) of graph automorphisms.

Definition 3.47. Suppose α ∈ G − PGL(V ) is a graph automorphism of prime order. If
G0 = PSLε

n(q) then we say that α is of symplectic-type if CG0(α) has socle PSpn(q), otherwise α
is non-symplectic (or orthogonal if q is odd). If G0 = PΩ+

8 (q) then α is said to be a triality graph
automorphism; it is of G2-type if CG0(α) = G2(q), otherwise α is a non-G2 triality. In general,
a triality automorphism is any order three graph or graph-field automorphism of PΩ+

8 (q).

Lower bounds on the size of G0-classes of certain outer automorphisms are recorded in the
next lemma. Here we denote the type of each outer automorphism by writing f , g and gf for
f ield, graph and graph-f ield automorphisms respectively.

Lemma 3.48. Let x ∈ Aut(G0) − PGL(V ) be an element of prime order r. Then |xG0 | >
h(n, r, q), where h is given in Table 3.11.

Proof. For field and graph-field automorphisms we apply Proposition 3.43(ii). For example, if
G0 = PΩε

n(q), where n is even and q = qr
0, then the relevant bounds hold since

|Oε
n(qr

0) : Oε
n(q0)| > q

1
2
n(n−1)(1− 1

r ), |O+
n (q20) : O−

n (q0)| > q
1
4
n(n−1).

Similarly, if G0 = PSLε
n(q) and x is a field automorphism then

|xG0 | > (n, q − ε)−1|xḠσ | = |PSLε
n(q)|

|PGLε
n(q1/r)|

>
1
2

(
q

q + 1

) 1
2
(1−ε)

q(n
2−1)(1− 1

r )−1

as claimed. If G0 = PΩ+
8 (q), q = q30 and x is a triality graph-field automorphism then CG0(x) ∼=

3D4(q0) and the result follows since

|xG0 | = |PΩ+
8 (q30) : 3D4(q0)| >

1
4
q240 (q20 + 1)(q120 − 1)(q180 − 1) >

1
4
q560 .

The possibilities for CG0(x) when x is a triality graph automorphism are listed in Table 3.10
and the bound |xG0 | > 1

8q
14 quickly follows. If G0 = Sp4(q)′ and x is an involutory graph-field

automorphism then |xG0 | > |Sp4(q) : Sz(q)| = q2(q + 1)(q2 − 1) > q5 as claimed. Finally, let
us assume x is an involutory graph automorphism of G0 = PSLε

n(q). If n is odd then CG0(x) is
orthogonal and the desired bound follows since |CG0(x)| = 2−α|On(q)|, where α = 2− δ2,p (see
[18, 4.5.5, 4.8.4] and [2, 19.9(i)]). If n is even then the bound follows from [18, 4.5, 4.8] if q is
odd and from [2, 19.9(ii)] if q is even.

Corollary 3.49. If x ∈ Aut(G0)− PGL(V ) has prime order then |xG0 | > H(n, q), where H is
defined as follows:

G0 H(n, q)

PSLε
n(q) 1

2

(
q

q+1

) 1
2
(1−ε)

q
1
2
(n2−n−4)

PSpn(q) 1
4q

1
4
n(n+1)

PΩε
n(q) 1

8q
1
4
n(n−1)

Lemma 3.50. Let H 6 G be a subgroup and suppose x ∈ H −PGL(V ) has prime order. Then
either xG ∩H ⊆ H̃x, where H̃ = H ∩ Ḡσ, or x is a triality automorphism of G0 = PΩ+

8 (q), G
contains an involutory graph automorphism of G0 and xG ∩H ⊆ H̃x ∪ H̃x2.
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G0 type conditions h(n, r, q)

PSLε
n(q) f q = qr

0, r > 2 if ε = − 1
2

(
q

q+1

) 1
2
(1−ε)

q(n
2−1)(1− 1

r )−1

g r = 2, n odd 1
2

(
q

q+1

) 1
2
(1−ε)

q
1
2
(n2+n−4)

g r = 2, n even 1
2

(
q

q+1

) 1
2
(1−ε)

q
1
2
(n2−n−4)

gf (r, q, ε) = (2, q20,+) 1
2q

1
2
(n2−3)

PSpn(q) f q = qr
0

1
4q

1
2
n(n+1)(1− 1

r )

gf (n, r, p) = (4, 2, 2), log2 q odd q5

PΩε
n(q), n even f q = qr

0
1
4q

1
2
n(n−1)(1− 1

r )

gf (r, q, ε) = (2, q20,+) 1
4q

1
4
n(n−1)

gf (n, r, q, ε) = (8, 3, q30,+) 1
4q

56
3

g (n, r, ε) = (8, 3,+) 1
8q

14

Ωn(q), nq odd f q = qr
0

1
4q

1
2
n(n−1)(1− 1

r )

Table 3.11: Conjugacy classes of graph, field and graph-field automorphisms

Proof. Define G̃ = G ∩ Ḡσ. According to [11, 2.5.12], field and graph automorphisms of G0

commute modulo Ḡσ and it follows that either xG = x
eG or x is a triality automorphism of

G0 = PΩ+
8 (q), G contains an involutory graph automorphism and xG = x

eG ∪ (x2) eG. Since G̃ is
normal in G we have (xi) eG ∩H ⊆ H̃xi and the desired result follows.

In the next proposition we describe how the elements of Aut(G0) permute the Ḡσ-classes of
elements of prime order. Two cases merit special attention:

(a) G0 = Sp4(q)′, q even: action of graph-field automorphisms;

(b) G0 = PΩ+
8 (q): action of triality graph automorphisms.

We deal with cases (a) and (b) in Propositions 3.52 and 3.55 respectively; the remaining cases
are considered in Proposition 3.51 below. Here we adopt the c(i, ε) notation from Lemma 3.33
and also the xj notation from Lemma 3.35.

Proposition 3.51. Let x ∈ Ḡσ be an element of prime order r and define

G =


Sp4(q).〈φ〉 if G0 = Sp4(q)′, q even
PGO+

8 (q).〈φ〉 if G0 = PΩ+
8 (q)

Aut(G0) otherwise,

where φ is a field automorphism of order f = logp q.

(i) Suppose r 6= p is odd. Let i > 1 be minimal such that r|(qi − 1) and set c = c(i, ε) if
G0 = PSLε

n(q).

(a) If x has associated σ-tuple µ = (l, a1, . . . , at) and τ ∈ G then xτ has corresponding
σ-tuple µ′ = (l, aρ(1), . . . , aρ(t)) for one of M possible permutations ρ ∈ St, where M
divides N = 2αf and α = 1 if G0 = PSLε

n(q) and c is odd, otherwise α = 0.

(b) Suppose G0 = PSLε
n(q). If CḠ(x) is connected and c = 1 then xG is a union of d

distinct Ḡσ-classes, for some divisor d of 2f . If CḠ(x) is non-connected and c = 1
then either x = x0 and xG = xḠσ or x = xj for some 1 6 j 6 r − 1 and xG =⋃

λ∈Λ x
Ḡσ
λ for a subset Λ ⊆ {1, . . . , r − 1} where |Λ| divides 2f . If CḠ(x) is non-

connected and c > 1 then xG = xḠσ .
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(ii) Now assume r = 2 if r 6= p. Then either xG = xḠσ or G0 = PΩ+
n (q) and xG = xḠσ∪(xτ )Ḡσ

where τ is an involutory graph automorphism, n ≡ 0 (4) and one of the following holds:

(a) r = p > 2 and the associated partition of x has no odd parts;

(b) r = p = 2 and x is O+
n (q)-conjugate to an/2;

(c) r = 2 < p and |CḠσ
(x)| = |GLε

n/2(q)|2 or |O+
n/2(q

2)|2.

Proof. We begin with (i)(a). If τ is a field automorphism then without loss we may assume τ is
standard, say τ = σj

p where σp is the Frobenius morphism corresponding to the automorphism
λ 7→ λp of the underlying finite field. Then µ′ has the given form since σj

p permutes the non-
trivial σ-orbits. Furthermore, µ′ is determined by Exτ and so the number of distinct possibilities
for µ′ divides logp q = f . If G0 = PSLε

n(q) and τ ∈ G is an involutory graph automorphism
then Exτ = {λ−1 : λ ∈ Ex}. Therefore Ex 6= Exτ if and only if c is odd and the multiplicity of a
non-trivial σ-orbit Ωj in Ex differs from that of Ω−1

j for some j. Now consider (i)(b). If CḠ(x)
is non-connected then Lemma 3.34 implies that x is Ḡ-conjugate to [In/r, ωIn/r, . . . , ω

r−1In/r],
where ω ∈ K is a primitive rth root of unity. If c > 1 then Ex is well-defined and xG = xḠσ since
Ex = Exτ for all τ ∈ G. The same argument applies if c = 1 and x is Ḡσ-conjugate to x0. The
remaining claims are trivial since |G : Ḡσ| = 2f .

For (ii), let us begin by assuming G0 = PSLε
n(q). If r = p then the Ḡσ-class of x is uniquely

determined by its associated partition λ. Of course, if τ ∈ G is a field automorphism then x and
xτ have the same Jordan decomposition on V̄ = V ⊗K and therefore x and xτ are Ḡσ-conjugate
since CḠ(x) is connected. The same conclusion holds if τ is a graph automorphism since A
and A−t are conjugate whenever A ∈ GLn(K) is unipotent. If x is a semisimple involution
then inspection of Table 3.8 reveals that |xḠσ | uniquely determines the Ḡσ-class of x and thus
xG = xḠσ as claimed. Now assume G0 is symplectic and let τ ∈ G be a field automorphism of
order l. Without loss we may assume σ = σf

p and τ = σ
f/l
p , so Ḡτ 6 Ḡσ. If x is a semisimple

involution then the previous argument applies so let us assume r = p. As before, x and xτ have
the same Jordan decomposition on V̄ = V ⊗K and the result follows from Proposition 3.22 in
the case p = 2. Now assume p > 2. We claim that the map yḠτ 7→ yḠσ induces a bijection
between the set of Ḡτ -classes of elements of order p in Ḡτ and the set of Ḡσ-classes of order p
elements in Ḡσ (so in particular, every unipotent class in Ḡσ is defined over the prime field). To
see this, fix an element y ∈ Ḡτ of order p, set E = CḠ(y) and define bijections

ψ1 : {Ḡτ -classes in yḠ ∩ Ḡτ} → H1(τ, E/E0), ψ2 : {Ḡσ-classes in yḠ ∩ Ḡσ} → H1(σ,E/E0)

(see Proposition 3.6). Since |H1(τ, E/E0)| = |H1(σ,E/E0)| = |E : E0|, the map

ϕ : H1(τ, E/E0)→ H1(σ,E/E0), ψ1((yz)Ḡτ ) 7→ ψ2((yz)Ḡσ)

is a bijection and hence the composition ψ−1
2 ϕψ1 is also a bijection and the claim follows.

Therefore (xτ )Ḡσ∩Ḡτ is non-empty and so there exists an element z ∈ Ḡσ such that z−1xτz ∈ Ḡτ .
Since Ḡτ 6 Ḡτ l−1 and τ l = σ we have

z−1xτz = (z−1xτz)τ l−1
= (z−1)τ l−1

xσzτ l−1
= (zτ l−1

)−1xzτ l−1

and we conclude that x and xτ are Ḡσ-conjugate.
Finally, suppose G0 = PΩε

n(q). Let us start by assuming x has order r = p > 2. Now, if
the associated partition λ of x has no odd parts then ε = + (see Remark 3.19) and there are
precisely two distinct Ḡ-classes corresponding to λ, with representatives x1 = x and x2 say,
which fuse in POn(K). Since CḠ(xi) is connected (see [8, p.399]) we have (xḠ

i )σ = xḠσ
i and

thus xG = xḠσ
1 ∪ x

Ḡσ
2 since x and xg have the same Jordan form on V̄ for all g ∈ G. Because x1

and x2 are conjugate in POn(K), there exists a reflection τ ∈ G such that x2 = xτ
1 . We claim

that this is the only case for which xG 6= xḠσ . To see this, recall that a unipotent Ḡ-class is
uniquely determined by its associated partition λ if and only if λ has one or more odd parts.
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Consequently, if λ has odd parts and ε 6= − then x and xτ are Ḡσ-conjugate for all τ ∈ PGL(V ).
Further, if τ is a field automorphism then our earlier argument applies and the same conclusion
holds. Now assume Ḡσ has socle G0 = PΩ−

n (q), so Ḡσ 6 Ḡσ2 and Ḡσ2 has socle PΩ+
n (q2). Let

y ∈ Ḡσ be an element of order p. Repeating our earlier argument, we find that the natural
map yḠσ 7→ yḠσ2 of conjugacy classes extends to an injection ι from the set of Ḡσ-classes of
elements of order p in Ḡσ to the corresponding set of Ḡσ2-classes in Ḡσ2 . Any τ ∈ Aut(G0)
is the restriction of an automorphism of PΩ+

n (q2) and therefore our earlier work implies that
x and xτ are Ḡσ2-conjugate and thus Ḡσ-conjugate since ι is injective. Finally, let us assume
x is an involution. If p = 2 then the result follows from [2, 8.12]; the case p 6= 2 is entirely
straightforward and is left to the reader.

Proposition 3.52. Let Ḡ = Sp4(K), where K is the algebraic closure of Fq and q = 2f with
f = 2m + 1. Let σ be a Frobenius morphism of Ḡ such that Ḡσ = Sp4(q), let x ∈ Ḡσ be an
element of prime order r and let τ ∈ Aut(G0) be an involutory graph-field automorphism. If x
and xτ are Ḡσ-conjugate then one of the following holds:

(i) r = 2 and x is Ḡσ-conjugate to c2;
(ii) r > 5 and Ex = {ω, ω−1, ω2θ+ε, ω−2θ−ε} for ε = ±1, where ω ∈ K is a primitive rth root of

unity and θ : Fq → Fq is the field automorphism µ 7→ µ2m
.

Proof. Let Π = {a, b} be a set of simple roots which generate a root system Φ of type B2, where
a is short and b is long. Then Φ = {±a,±b,±(a+ b),±(2a+ b)} is the full root system, where
± b and ± (2a + b) are long roots, and Ḡσ is generated by the corresponding root elements
{xα(t) : α ∈ Φ, t ∈ Fq}. As described in [7, §12.3], there is a bijection ρ of Φ which interchanges
long and short roots; we may assume that aρ = b and (a + b)ρ = 2a + b. It is also well-known
that the bijection ϕ : Ḡσ → Ḡσ defined by

ϕ : xα(t) 7→ xαρ(tλ(αρ)) (16)

extends to a graph-field automorphism ϕ of Ḡσ, where λ(β) = 2 if β is a long root, otherwise
λ(β) = 1. We note that ϕ2 = φ is the field automorphism induced from the map Fq → Fq which
sends µ to µ2. In particular, φmϕ is an involutory graph-field automorphism and in view of
Proposition 3.43(i) we may assume that τ = φmϕ.

Next we identify the root subgroups Xα = {xα(t) : t ∈ Fq} for each positive root α ∈ Φ+.
Fix a standard symplectic basis {e1, e2, f2, f1} of V , where (ei, ej) = (fi, fj) = 0 and (ei, fj) = δi,j
with respect to the non-degenerate Ḡσ-invariant symmetric bilinear form ( , ) on V . For t ∈ Fq

define
xa(t) = I4 + E21(t) + E43(t), xb(t) = I4 + E32(t),

xa+b(t) = I4 + E31(t) + E42(t), x2a+b(t) = I4 + E41(t)

where (Eij(t))kl = tδi,kδj,l with respect to this specific ordered basis. Evidently, representatives
for the three classes of involutions in Ḡσ can be chosen by setting

a2 = xa(1), b1 = xb(1), c2 = xa(1)xb(1)

and (i) follows since (16) implies that τ maps a2 to b1 and fixes the Ḡσ-class of c2.
Now consider (ii). For each α ∈ Φ and t ∈ K∗ define

hα(t) = xα(t)x−α(t−1)xα(t)xα(1)x−α(1)xα(1) ∈ Ḡ,

where xα(t) for t ∈ K∗ is represented in the obvious way. Then

{ha(t), hb(t), ha+b(t), h2a+b(t)} = {[t−1, t, t−1, t], [1, t−1, t, 1], [t−1, t−1, t, t], [t−1, 1, 1, t]},

where the diagonal matrices are written with respect to the basis ordering {e1, e2, f2, f1}, and
any x ∈ Ḡ of odd order is Ḡ-conjugate to an element in 〈ha(s), hb(t) : s, t ∈ K〉. Furthermore,
the proof of [7, 12.3.3] gives

τ : hα(t) 7→ hαρ(tθλ(αρ)), (17)
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where ρ and λ are defined as before and θ = φm. Now if ν(x) = 2 then x is Ḡ-conjugate to
ha(t) or hb(t) for some t ∈ K∗ − 1 and therefore (17) implies that x and xτ belong to distinct
Ḡ-classes, and hence distinct Ḡσ-classes. Now assume ν(x) = 3, say

x = diag[λ−1, µ−1, µ, λ] = ha(λ)hb(λ)hb(µ)

(up to Ḡ-conjugacy) where λ and µ are primitive rth roots of unity. Then r > 5 and (17) implies
that xτ is Ḡ-conjugate to diag[λ−θµ−θ, λ−θµθ, λθµ−θ, λθµθ] and we easily deduce that x and xτ

are Ḡ-conjugate (and hence Ḡσ-conjugate) if and only if µ2θ+ε ∈ {λ, λ−1} for some ε = ±1.

3.6 Some further remarks on orthogonal groups

Let us assume Ḡ = PSOn(K) and Ḡσ has socle G0 = PΩε
n(q), where n is even. For the proof of

Theorem 1 we require results analogous to Propositions 3.22, 3.24, 3.36 and 3.40 for the group
G̃ = PGOε

n(q) = Ḡσ.〈γ〉, where γ is an involutory graph automorphism of G0. In the statement
of the next proposition, the functions F and G are defined as in Corollary 3.38.

Proposition 3.53. If x ∈ G̃ has prime order and ν(x) = s then F (n, s, q) < |x eG| < 2.G(n, s, q).
Also, if r is prime then

ks,p,u(G̃) 6 p
s
2 , ks,r,s(G̃) 6

{
q

1
2
s if s < n/2

q
1
2
(s+1) otherwise.

Proof. If x ∈ Ḡσ then Corollary 3.38 gives

F (n, s, q) < |xḠσ | 6 |x eG| 6 2|xḠσ | < 2.G(n, s, q)

so we may as well assume x ∈ G̃ − Ḡσ is an involution and thus s 6 n/2 is odd. If q is even
then x is G̃-conjugate to bs and the proof of Proposition 3.22 gives 1

2q
s(n−s) < |x eG| < 2qs(n−s).

On the other hand, if q is odd and s < n/2 then

1
2
qs(n−s) < |x eG| = |SOε

n(q)|
|SOs(q)||SOn−s(q)|

< 2qs(n−s)

and there is a unique G̃-class for each such s. If s = n/2 is odd then there are precisely two
distinct G̃-classes, with representatives y and z where

1
4
q

1
4
n2
< |y eG| = |SOε

n(q)|
|SOn/2(q)|22

< 2q
1
4
n2
,

1
4
q

1
4
n2
< |z eG| = |SOε

n(q)|
|SOn/2(q2)|2

< q
1
4
n2
.

Finally, let r be a prime. If s is even or r is odd then ks,r,α(G̃) 6 ks,r,α(Ḡσ) for α ∈ {s, u}
and the result follows from Propositions 3.24 and 3.40. On the other hand, if s 6 n/2 is odd
and r = 2 then as above we have ks,2,n/2(G̃) = 2 if s = n/2, otherwise ks,2,α(G̃) = 1.

Remark 3.54. We also require similar results for the (non-almost simple) group G̃ = PGO+
4 (q).

Here s = 2 or 3 and the reader can check that the conclusion to Proposition 3.53 holds for G̃.

For the remainder we shall assume G0 = PΩ+
8 (q). Here the corresponding Dynkin diagram

D4 admits a rotational symmetry of order three, giving rise to the triality automorphisms we
introduced in Definition 3.47. As remarked in §3.1, Aschbacher’s main theorem excluded the
case G0 = PΩ+

8 (q) with G containing triality automorphisms; an extension to these groups was
obtained later by Kleidman [17].

If G0 = PΩ+
8 (q) and G contains a triality automorphism then Proposition 3.51 fails to hold.

This underlines the fact that this special case needs to be treated separately in our subsequent
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analysis. In Proposition 3.55 below we describe how a triality graph automorphism acts on the
conjugacy classes of elements of prime order in Inndiag(G0).

As before, let K denote the algebraic closure of Fq, where q = pf for some prime p. Let
Ḡ = PSO8(K) and let σ be a Frobenius morphism of Ḡ such that Ḡσ has socle G0 = PΩ+

8 (q). As
previously described, we can uniquely associate a partition λ to each unipotent Ḡσ-class; if p is
odd then this correspondence is 1-1 unless λ ∈ {(42), (32, 12), (24)} in which case λ corresponds
to precisely two distinct Ḡσ-classes, with representatives λ and λ′ say. For semisimple involutions
we label Ḡσ-class representatives as follows (see Table 3.8):

type of Ḡσ-centralizer Ḡσ-class representatives
O−

4 (q)2 y1

O+
4 (q2) y2, y3

GLε
4(q) zε

1, z
ε
2

Oε
6(q)×Oε

2(q) zε
3

Proposition 3.55. With the notation established, let x ∈ Ḡσ be an element of prime order r
and fix a triality graph automorphism τ ∈ Aut(G0). Then the following hold.

(i) If r = p > 2 then τ permutes the class representatives in the sets {(24), (24)′, (3, 15)} and
{(42), (42)′, (5, 13)} and fixes all others.

(ii) If r = p = 2 then τ permutes the Ḡσ-class representatives {c2, a4, a
′
4} and fixes all others.

(iii) If r = 2 and p is odd then τ permutes the Ḡσ-class representatives {y1, y2, y3}, {zε
1, z

ε
2, z

ε
3}

and fixes the remaining class.
(iv) If r 6= p is odd and Ex = {µ±i : 1 6 i 6 4} then

Exτ =
1
αζ
{µζ

1µ2, µ
ζ
1µ3, µ

ζ
1µ4, µ2µ3, µ2µ4, µ3µ4, 1, α2

ζ},

where α2
ζ = µζ

1µ2µ3µ4 and ζ = ± is a choice of sign.

Proof. Part (iv) follows from [18, p.196]. (There is a choice of sign since E
xτ−1 = Exγτ , where

γ ∈ Aut(G0) is an involutory graph automorphism.) Now consider parts (i), (ii) and (iii).
Inspecting Ḡσ-class sizes, it is clear that the only classes which could possibly be cyclically
permuted by τ are precisely the classes which we claim are indeed permuted. To justify this
claim we appeal to [17, Table I]. For example, suppose r = p > 2 and x has associated partition
λ = (24). According to [17, Table I] we may assume without loss that x lies in a C4-subgroup H1

of type Sp4(q)⊗Sp2(q) with the property thatHτ
1 is a C1-subgroup of type O5(q)×O3(q). Clearly

there are no unipotent elements in Hτ
1 with associated partition (24) and we conclude that τ does

indeed cyclically permute the Ḡσ-class representatives in the set {(24), (24)′, (3, 15)}. Similarly,
if r = p = 2 and x is a c2-involution then x lies in a C1-subgroup K1 of type O+

6 (q)×O+
2 (q) and

Kτ
1 is a C2-subgroup of type GL4(q). The result follows since there are no c2-type involutions

in Kτ
1 . We leave the remaining cases to the reader.

Remark 3.56. Let x ∈ Ḡσ be a semisimple element of odd prime order. Then part (iv) of
Proposition 3.55 implies that Exτ = E

xτ−1 if and only if 1 ∈ Ex. Further, if 1 ∈ Ex then either x
and xτ are Ḡσ-conjugate or 1 6∈ Exτ .

Remark 3.57. There are exactly six distinct Ḡσ-classes of involutory graph automorphisms in
Aut(G0) and a triality graph automorphism permutes these classes with cycle-shape (32).

4 Proof of Theorem 1.1: H ∈ C4

We begin the proof of Theorem 1.1 by considering the collection C4. The subgroups here arise
from a tensor product decomposition V = V1 ⊗ V2 of the natural module V ; the specific cases
to be considered are listed in Table 4.1, where dimV = n = ab (see [18, Tables 3.5.H, 4.4.A]).
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G0 type of H conditions
(i) PSLε

n(q) GLε
a(q)⊗GLε

b(q) a > b > 2, (b, q) 6= (2, 2)
(ii) PSpn(q) Spa(q)⊗Oε

b(q) a even, q odd, b > 3, (b, q) 6= (3, 3)
(iii) PΩ+

n (q) Spa(q)⊗ Spb(q) a > b > 4, a, b even
(iv) PΩ+

n (q) Spa(q)⊗ Sp2(q) a > 4 even, q 6= 2, (a, p) 6= (4, 2)
(v) Ωn(q) Oa(q)⊗Ob(q) a > b > 3, abq odd
(vi) PΩ+

n (q) Oε1
a (q)⊗Oε2

b (q) a > b > 4, a, b even, q odd
(vii) PΩε

n(q) Oε
a(q)⊗Ob(q) bq odd, a > 4 even, b > 3

Table 4.1: The collection C4

Proposition 4.1. The conclusion to Theorem 1.1 holds in case (i) of Table 4.1.

Proof. Let σ be a Frobenius morphism of Ḡ = PSLn(K) such that Ḡσ = PGLε
n(q). Observe

that H ∩ PGL(V ) 6 PGLε
a(q)× PGLε

b(q) = H̃.

Case 1. x ∈ H ∩ PGL(V )
Let x ∈ H ∩ PGL(V ) be an element of prime order r such that ν(x) = s (with respect to V )
and note that

|xG ∩H| 6 |H ∩ PGL(V )| < qa2+b2−2. (18)

If s > n/2 and CḠ(x) is connected then Corollary 3.38 implies that

|xG| > 1
2

(
q

q + 1

)n

q
1
2
(n2+2n−2)

and thus (18) gives f(x,H) < 1/2 + 1/n as required (see (2)). Similarly, if s > n/2 and CḠ(x)
is non-connected then r is odd and again (18) is sufficient since

|xG| > 1
2r

(
q

q + 1

)r

qn2(1− 1
r ).

Now assume s = n/2. Here CḠ(x) is non-connected if and only if r = 2 and p > 2, whence
Corollary 3.38 gives |xG| > 1

4(q + 1)−1q
1
2
n2+1 and (18) is sufficient unless (n, a, q) = (6, 3, 3).

(Note that Lemma 3.20(i) implies that |xG0 | > 1
2 |x

Ḡσ | if r = p.) In this case the desired result
quickly follows through direct calculation. For example, if ε = + then Lagrange’s Theorem
implies that r ∈ {2, 3, 13} and the hypothesis s = 3 rules out r = 13. If (r, ε) = (2,+) then we
calculate that f(x,H) < .374 since

|xG ∩H| 6
(

|GL3(3)|
|GL2(3)||GL1(3)|

+ 1
)(

|GL2(3)|
|GL1(3)|22

+
|GL2(3)|
|GL1(32)|2

)
, |xG| > |GL6(3)|

|GL3(32)|2
.

The other cases are similar.
Now assume s < n/2. Following the proof of [20, 4.3], write x = (x1, x2) and define si = ν(xi)

with respect to the obvious natural modules. Then [20, 3.7] states that

s > max(as2, bs1) (19)

and thus s1 < a/2 and s2 < b/2. Furthermore, Lemma 3.40 yields

ks,r,s(H̃) 6
bs/bc∑
s1=0

qs1 .

bs/ac∑
s2=0

qs2 <

(
q

q − 1

)2

q
s
a
+ s

b

and if we assume x is semisimple then Corollary 3.38 implies that

|xG ∩H| < ks,r,s(H̃).4
(

q

q − 1

) s
a
+ s

b

max
s16bs/bc, s26bs/ac

{q2as1−s2
1−s1+2bs2−s2

2−s2}.
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The maximum is realized when s1 and s2 are as large as possible, whence

|xG ∩H| < 4
(

q

q − 1

)2+ s
a
+ s

b

q
2as
b
− s2

b2
+ 2bs

a
− s2

a2

and it is clear that this upper bound also holds if x is unipotent (see Lemma 3.24 and Corollary
3.38). The hypothesis s < n/2 implies that |xḠσ | = |xG0 |, so Corollary 3.38 gives |xG| >
1
2(q + 1)−1q2s(n−s)+1 and the result follows since 2 6 s 6 1

2(n− 1).

Case 2. x ∈ H − PGL(V )
First assume x is a field automorphism of prime order r. Then q = qr

0, (ε, r) 6= (−, 2) (see
Remark 3.42) and Lemma 3.48 gives

|xG| > 1
2
(q + 1)−1q(n

2−1)(1− 1
r ). (20)

Now Lemma 3.50 states that xG∩H ⊆ H̃x, where x induces field automorphisms on both direct
factors of H̃, whence Proposition 3.43 implies that

|xG ∩H| 6 |xPGLε
a(q)||xPGLε

b(q)| < 4q(a
2+b2−2)(1− 1

r )

and the desired result follows. The argument for an involutory graph-field automorphism is very
similar. Finally, if x is an involutory graph automorphism then |xG| > 1

2(q + 1)−1q
1
2
(n2−n−2)

and applying Lemma 3.14 we deduce that

|xG ∩H| 6 i2(Aut(PSLε
a(q))).i2(Aut(PSLε

b(q))) < 4(1 + q−1)2q
1
2
(a2+a+b2+b−4).

These bounds are sufficient unless (n, a) = (6, 3) and q ∈ {3, 4}. Here f(x,H) < .591 since
|xG| > |PSLε

6(q)|/|Sp6(q)| and i2(Aut(PSLε
m(q))) takes the following values:

m (q, ε) = (3,+) (3,−) (4,+) (4,−)
3 351 315 1963 1235
2 9 9 25 25

Proposition 4.2. The conclusion to Theorem 1.1 holds in case (iv) of Table 4.1.

Proof. Set Ḡ = PSO2a(K), H̄ = PSpa(K)× PSp2(K) and let σ be a Frobenius morphism of Ḡ
such that Ḡσ has socle G0 = PΩ+

n (q), where n = 2a. If a = 4 then we may assume p is odd (see
Table 4.1) and G does not contain any triality automorphisms (see Proposition 3.3). Observe
that

H ∩ PGL(V ) 6 PGSpa(q)× PGSp2(q) = H̃.

Now, if x ∈ H − PGL(V ) has prime order r then q = qr
0 and the bounds

|xG ∩H| 6 |xPGSpa(q)||xPGSp2(q)| < 4q(
1
2
(a2+a)+3)(1− 1

r ), |xG| > 1
4
q(2a2−a)(1− 1

r )

are always sufficient. For the remainder, let us assume x ∈ H ∩ PGL(V ) has prime order r.
Write x = (x1, x2) and define s, s1 and s2 as before, so (19) reads s > max(2s1, as2).

Case 1. s < a
Since s > max(2s1, as2), the hypothesis s < a implies that x2 = I2, whence s = 2s1 and x ∈ Ḡσ.
Let us start by assuming x is semisimple. Then 2 6 s1 < a/2 and thus s > 4 and a > 6.
Applying Corollary 3.38 and Proposition 3.51 we deduce that

|xG ∩H| 6 log2 q.|x
PGSpa(q)
1 | < log2 q.2

(
q

q − 1

) s
4

q
as
2
− s2

8
+ 1

2 , |xG| > 1
4

(
q

q + 1

)
qs(2a−s−1)
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and the desired result follows.
Next assume r = p > 2. Let λ′ = (ama , . . . , 1m1) ` a denote the associated partition of

x1 ∈ PSpa(K) and observe that the Jordan form of x = x1 ⊗ I2 on V is described by the
partition λ = (a2ma , . . . , 12m1) ` 2a. Therefore xḠ ∩ H̄ = xH̄ and [6, 2.3] implies that

dimxH̄ =
1
4

dimxḠ +
3
4
(a−

∑
j odd

mj)

since p is odd. If t denotes the number of non-zero terms mj in λ then the hypothesis s < a
implies that t > 2 and applying Lemma 3.18 and Corollary 3.21 we deduce that

|xG ∩H| < 2tq
1
4
(dim xḠ+3a), |xG| >

(
1
2

)t+1( q

q + 1

)t

qdim xḠ
, (21)

where a > max(4, 1
2 t(t+ 1)). Now [6, 2.3, 2.4] imply that

dimxḠ > 2at(t− 1)− 1
2
t4 +

1
3
t3 − 1

3
t

and thus (21) is sufficient if t > 3. Now assume t = 2. If λ′ = (2, 1a−2) (which must be the
case if a = 4) then |xG ∩ H| 6 qa − 1, |xG| > 1

8q
4a−6 and the result follows. If not, then

dimxḠ > 8a− 20 (minimal if λ′ = (22, 1a−4)) and the bounds in (21) are sufficient for all a > 6
and q > 3.

Finally, let us assume r = p = 2. Here it is easy to see that the Spa(q)-class of x1 and the
Sp2(q)-class of x2 determine the O+

n (q)-class of x as follows:

x2 = I2 b1
x1 = Ia I2a aa

al a2l aa

bl, cl a2l ca

(22)

For instance, if x2 = b1 then x is O+
n (q)-conjugate to either aa or ca since J2⊗J2 = I2⊗J2 = [J2

2 ]
(up to conjugacy). If v = v1 ⊗ v2 ∈ V then

(vx, v) = (v1x1, v1)1(v2x2, v2)2,

where ( , ), ( , )1 and ( , )2 denote the relevant non-degenerate symmetric bilinear forms on V ,
V1 and V2 respectively. By definition, if x1 is an a-type involution then (v1x1, v1)1 = 0 for all
v1 ∈ V1 and thus (vx, v) = 0 for all v ∈ V and x is also an a-involution. If not, then there exists
some v = v1 ⊗ v2 ∈ V such that (v1x1, v1)1 6= 0 and (v2x2, v2)2 6= 0, so (vx, v) 6= 0 and x is a
c-type involution. In particular, the hypothesis s < a implies that x is Ḡ-conjugate to as and
Proposition 3.22 yields

|xG ∩H| < 2bq
1
4
s(2a−s) + 2q

1
4
s(2a−s+2), |xG| > 1

2
qs(2a−s−1)

where b = 1 if s ≡ 0 (4), otherwise b = 0. These bounds are always sufficient.

Case 2. s > a, r = 2
Here s = a and we start by assuming p = 2, so a > 6 (see Table 4.1). If x is an a-type involution
then (22) implies that

|xG ∩H| 6
ba/4c∑
j=0

|(a2j ⊗ b1)
eH |+

{
|(aa

2
⊗ I2)

eH |+ |(ca
2
⊗ I2)

eH | if a ≡ 0 (4)

|(ba
2
⊗ I2)

eH | if a ≡ 2 (4),

where we set a0 = Ia. Using Proposition 3.22 we deduce that

|xG ∩H| < 2(q2 − 1)−1q
1
4
a2+4 + 2q

1
4
a2+ 1

2
a(1 + q−

1
2
a) < 4q

1
4
a2+ 1

2
a
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and the result follows since |xG| > 1
2q

a(a−1). Similarly, if x is Ḡ-conjugate to ca then |xG| > 1
2q

a2

and Proposition 3.22 gives

|xG ∩H| 6
ba/4c∑
j=1

|(c2j ⊗ b1)
eH |+ ba/4−1/2c∑

j=0

|(b2j+1 ⊗ b1)
eH | < 2(q2 − 1)−1q

1
4
(a2+2a+16).

Again, one can check that these bounds are always sufficient.
Now assume p is odd. If x is conjugate to [−Ia, Ia] then |xG| > 1

8q
a2

and xḠ ∩ H̄ is a
union of at most two distinct H̄-classes. The result follows since Proposition 3.37 implies that
|xG ∩H| < 2qa2/4+a/2+2 + 2bqa2/4 where b = 1 if a ≡ 0 (4), otherwise b = 0. On the other hand,
if CḠ(x) is of type GLa then xḠ ∩ H̄ is a union of precisely ba/4c + 2 distinct H̄-classes, with
representatives

z0 = [−iIa/2, iIa/2]⊗ I2, zj = [−I2j , Ia−2j ]⊗ [−i, i], 0 6 j 6 a/4,

where i ∈ K satisfies i2 = −1. Using Proposition 3.37 we deduce that

|xG ∩H| < 2q
1
4
(a2+2a) +

ba/4c∑
j=0

4q2aj−4j2+2 < 2q
1
4
a2

(q
1
2
a + 2(q2 − 1)−1q4)

and |xG| > 1
4(q + 1)−1qa2−a+1. It remains to deal with the case a = 4 for q 6 5. Here we can

calculate directly. For example, if q = 3 then |xG ∩H| 6 A+AB + C = 1548, where

A =
|Sp2(3)|
|GL1(3)|2

+
|Sp2(3)|
|GU1(3)|2

, B =
|Sp4(3)|
|Sp2(32)|2

+
|Sp4(3)|
|Sp2(3)|22

, C =
|Sp4(3)|
|GL2(3)|2

+
|Sp4(3)|
|GU2(3)|2

and we conclude that f(x,H) < .605 since |xG| > 1
2 |SO+

8 (3) : GU4(3)| = 189540.

Case 3. s > a, r = p > 2
Here x ∈ Ḡσ and s is even. We claim that xḠ ∩ H̄ is a union of at most two distinct H̄-classes.
To see this, first observe that up to conjugacy we have Ji ⊗ I2 = [J2

i ] and

Ji ⊗ J2 =
{

[Ji+1, Ji−1] if i < p
[J2

p ] if i = p.
(23)

Since p is odd, a unipotent class in PSpa(K) is uniquely determined by its associated partition
and therefore it is sufficient to show that elements (x1, x2), (x′1, x2) in H̃ are Ḡ-conjugate only
if x1 and x′1 are PSpa(K)-conjugate. This is trivial if x2 = I2 so assume x2 = J2 and suppose
x1 and x′1 have associated partitions (pap , . . . , 1a1) ` a and (pbp , . . . , 1b1) ` a respectively. Then
applying (23) we deduce that x1 ⊗ x2 has associated partition λ, where

λ = (p2ap+ap−1 , (p− 1)ap−2 , (p− 2)ap−1+ap−3 , . . . , 2a3+a1 , 1a2) ` 2a (24)

if p > 5 and λ = (32a3+a2 , 2a1 , 1a2) ` 2a if p = 3. Therefore x1⊗ x2 and x′1⊗ x2 are Ḡ-conjugate
only if

2ap + ap−1 = 2bp + bp−1, ap−2 = bp−2, a2 = b2

and
ap−i+2 + ap−i = bp−i+2 + bp−i, 3 6 i 6 p− 1.

The claim follows since these equations hold if and only if aj = bj for each 1 6 j 6 p.
Suppose x ∈ Ḡ has associated partition λ = (pmp , . . . , 1m1) ` 2a, with precisely t non-zero

terms mj . If y = x1 ⊗ J2 is conjugate to x, where x1 has associated partition (pap , . . . , 1a1) ` a,
then (24) and [6, 2.3] imply that |yG ∩H| < 2tqdim yH̄

, where

dim yH̄ =
1
4

dimxḠ +
3
4
a+ 2− 1

4

ap +
p−1∑
j=1

a2
j +

p−2∑
j=1

ajaj+1 +
∑

j

aj +
∑
j odd

aj


6

1
4

dimxḠ +
3
4
a+

3
2
.
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Applying our earlier work (see (21)) we deduce that

|xG ∩H| < 2t(1 + q
3
2 )q

1
4
(dim xḠ+3a), |xG| >

(
1
2

)t+1( q

q + 1

)t

qdim xḠ

where dimxḠ > a(a − 1) (minimal if t = 1 and λ = (2a)). The reader can check that these
bounds are sufficient unless a = 4. Here the possibilities are listed in the following table (the
symbol † denotes the additional condition p > 5 which ensures x has prime order).

x [J5, J3]† [J2
4 ]† [J2

3 , I2] [J3, J
2
2 , I1] [J4

2 ]
x1 ⊗ x2 [J4]⊗ [J2] [J4]⊗ [I2] [J2

2 ]⊗ [J2] [J2, I2]⊗ [J2] [J2
2 ]⊗ [I2], [I4]⊗ [J2]

f(x,H) < .472 .408 .488 .400 .552

For example, if x = [J2
3 , I2] and q = 3 then f(x,H) < .488 since

|xG ∩H| 6 |Sp4(3)|
|SO+

2 (3)|33
.
|Sp2(3)|

3
= 7680, |xG| > |O+

8 (3)|
|O−

2 (3)|238
= 94348800.

The same bound holds for all q > 5 and the other bounds are derived in a similar fashion.

Case 4. s > a, r 6= p, r > 2
Let i > 1 be minimal such that r|(qi−1) and let µ = (l, a1, . . . , at) denote the associated σ-tuple
of x ∈ Ḡσ. Let d be the number of non-zero terms aj in µ and set e = 2 if i is odd, otherwise
e = 1. We note that d is even if i is odd and we also observe that

|xG| > 1
2

(
q

q + 1

)d(2−e)+1

qdim xḠ
. (25)

Let y = (y1, y2) be an arbitrary element of xG ∩ H. Now, if i > 3 then y2 = I2 and y1 has
associated σ-tuple µ′ = (l/2, aρ(1)/2, . . . , aρ(t)/2) for some ρ ∈ St. Therefore

dimxH̄ =
1
2
a2 +

1
2
a− 1

8
l2 − 1

4
l − i

4e

∑
j

a2
j =

1
4

dimxḠ +
3
4
(a− l) (26)

and
|xG ∩H| < log2 q.2

d
2
(e−1)q

1
4
(dim xḠ+3a),

where dimxḠ > a(a− 1) (see [6, 2.9]). This bound with (25) is always sufficient.
Now assume i 6 2. We claim that if the elements y1 ⊗ y2 and z1 ⊗ z2 in H̃ are PO2a(K)-

conjugate and y2 is PSp2(K)-conjugate to z2 then y1 and z1 are PSpa(K)-conjugate. This is
trivial if y2 = I2 so assume Ey2 = {ω, ω−1}, where ω ∈ K is a primitive rth root of unity.
Set Γ0 = {1, 1} and Γj = {ωj , ω−j} for 1 6 j 6 t, where t = 1

2(r − 1). For any two subsets
A = {a1, a2} and B = {b1, b2} of K define A⊗B = {a1b1, a1b2, a2b1, a2b2} and observe that

Γ0 ⊗ Γ1 = Γ1 ∪ Γ1, Γt ⊗ Γ1 = Γt ∪ Γt−1, Γj ⊗ Γ1 = Γj+1 ∪ Γj−1 1 6 j 6 t− 1.

If cj (resp. dj) denotes the multiplicity of Γj in Ey1 (resp. Ez1) then these relations imply that

c1 = d1, 2c0 + c2 = 2d0 + d2, ct−1 + ct = dt−1 + dt, cj + cj+2 = dj + dj+2 1 6 j 6 t− 2

and therefore cj = dj for all j. In particular, Ey1 = Ez1 and Lemma 3.39 implies that y1 and z1
are PSpa(K)-conjugate as claimed.

Now, if y = y1 ⊗ y2 is conjugate to x, where Ey2 = Γ1 and cj denotes the multiplicity of Γj

in Ey1 , then the above relations imply that dim yH̄ 6 1
4(dimxḠ + 3a+ 8) since

dim yH̄ =
1
4
(dimxḠ + 3a+ 8− 4c0 − c1 − (2c0 − c2)2 − (ct−1 − ct)2)−

1
4

t−2∑
j=1

(cj − cj+2)2.
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Our above work implies that the H̃-classes in xG ∩ H are parameterized by the number N of
choices for y2 ∈ PSp2(K) (up to conjugacy). Evidently, N 6 t + 1 = 1

2(r + 1) and therefore
N 6 1

2(q + 4− 2e) since i 6 2. In view of (26) we conclude that

|xG ∩H| < log2 q.2
d
2
(e−1)(1 +

1
2
(q + 4− 2e)q2)q

1
4
(dim xḠ+3a), (27)

where dimxḠ > a(a − 1). The reader can check that this bound with (25) is sufficient unless
a = 4. Here q is odd (see Table 4.1). If CḠ(x) = GL4 then xG ∩H is a union of at most two
distinct H̃-classes, with representatives [I4] ⊗ [λ, λ−1] and [λI2, λ−1I2] ⊗ [I2] for some λ ∈ K∗.
In this case the bounds

|xG ∩H| 6 log3 q.(q(q + ε) + q3(q + ε)(q4 − 1)), |xG| > q6(q + ε)(q2 + 1)(q3 + ε)(q4 − 1)

are always sufficient, where ε = (−1)i+1. If CḠ(x) 6= GL4 then dimxḠ > f(d), where f(e) =
f(2e) = 18, f(3e) = 22 and f(4e) = 24. The result follows via (25) and (27).

The remaining cases in Table 4.1 are entirely straightforward and are left to the reader.

5 Proof of Theorem 1.1: H ∈ C5

Here q = qk
0 , where k is a prime, and the specific cases are recorded in Table 5.1 (see [18, Table

4.5.A]). For convenience we postpone the analysis of the C5-subgroups of type Spn(q) and Oε
n(q)

in unitary groups to §8 and our work with the collection C8.

G0 type of H conditions
(i) PSLε

n(q) GLε
n(q0) k odd if ε = −

(ii) PSpn(q) Spn(q0)
(iii) PΩε

n(q) Oε
n(q0) k odd if ε = −

(iv) PΩ+
n (q) O−

n (q0) k = 2

Table 5.1: The collection C5

Proposition 5.1. The conclusion to Theorem 1.1 holds in case (i) of Table 5.1.

Proof. We may assume n > 3. Let σ0 be a Frobenius morphism of Ḡ = PSLn(K) such that Ḡσ

has socle G0 = PSLε
n(qk

0 ), where σ = σk
0 . We begin by considering elements x ∈ H ∩PGL(V ) of

prime order r, where H ∩ PGL(V ) 6 PGLε
n(q0) = Ḡσ0 (see [18, (4.5.5)]).

Case 1. x ∈ H ∩ PGL(V ), r = p
Let λ = (nan , . . . , 1a1) ` n be the associated partition of x and observe that |xG ∩H| 6 |xḠσ0 |.
Applying Lemma 3.18 we deduce that

|xG ∩H| < 2(t−1)(δ2,q0+ 1
2
(1+ε))

(
q0 + 1
q0

) 1
2
(1−ε)

qdim xḠ

0 (28)

and

|xG| > 1
2

(
qk
0

qk
0 + 1

) t
2
(1−ε)

q
k(dim xḠ−1)
0 (29)

where t denotes the number of non-zero terms aj in λ.
First assume λ = (2j , 1n−2j) for some j > 1 (note that λ must have this form if p = 2). Then

dimxḠ = 2j(n − j), t 6 2 and the bounds (28) and (29) are always sufficient if k > 3. Now
assume k = 2, so ε = + (see Table 5.1). If j > 1 then n > 4, dimxḠ > 4n− 8 and (28) and (29)

34



are sufficient unless (n, q0) = (4, 2), where direct calculation yields f(x,H) < .483. If j = 1 and
q0 > 3 then we are left to deal with the case (n, q0) = (3, 3) where a similar calculation gives
f(x,H) < .523. Finally, if (j, q0) = (1, 2) then the bounds |xG ∩H| < 22n−1 and |xG| > 24n−5

are sufficient for all n > 3.
Now assume λ 6= (2j , 1n−2j) and p is odd. If t = 1 then [6, 2.4] implies that dimxḠ > 1

2n
2

(minimal if λ = (2n/2)) and the result follows via (28) and (29). If t > 2 then n > 1
2 t(t+ 1) and

if we assume (t, k) 6= (2, 2) then the above bounds are sufficient since dimxḠ > g(n, t), where
g is defined in the statement of Lemma 3.25. If (t, k) = (2, 2) then ε = + and the bounds (28)
and (29) are sufficient since n > 4 and dimxḠ > 4n− 6 (minimal if λ = (3, 1n−3)).

Case 2. x ∈ H ∩ PGL(V ), r 6= p
Let us begin by assuming r = 2. If CḠ(x) is connected then dimxḠ > 2n− 2 and the bounds

|xG ∩H| 6 |xḠσ0 | < 2qdim xḠ

0 , |xG| > 1
2

(
qk
0

qk
0 + 1

)
qk dim xḠ

0

are always sufficient. On the other hand, if CḠ(x) is non-connected then n is even,

|xG ∩H| 6 |GLε
n(q0)|

|GLε
n/2(q0)|22

+
|GLε

n(q0)|
|GLn/2(q20)|2

< 2q
1
2
n2

0 , |xG| > 1
4

(
qk
0

qk
0 + 1

)
q

1
2
kn2

0

and the result follows.
Assume for the remainder that r is odd. If CḠ(x) is non-connected then Lemma 3.35 implies

that r divides n and we deduce that

|xG ∩H| < 2r−1q
n2(1− 1

r )
0 , |xG| > 1

2r

(
qk
0

qk
0 + 1

)r−1

q
kn2(1− 1

r )
0 .

These bounds are sufficient unless (n, k, r, q0) = (3, 2, 3, 2), where a more accurate calculation
yields f(x,H) < .587. Now assume CḠ(x) is connected and let i > 1 (resp. i0 > 1) be minimal
such that r|(qi − 1) (resp. r|(qi0

0 − 1)), so

i =
{
i0/k if k divides i0
i0 otherwise.

(30)

Define the integers l and d as in Definition 3.32 (with respect to σ-orbits). Now, if k does
not divide i0 then σ0- and σ-orbits coincide, otherwise each non-trivial σ0-orbit is a union of k
distinct σ-orbits and thus k divides d. Applying Lemma 3.30 we deduce that

|xG ∩H| < 2 log2 q0.2
di
i0

(1−α)
(
q0 + 1
q0

) 1
2
(1−ε)

qdim xḠ

0 , |xG| > 1
2

(
qk
0

qk
0 + 1

)αd

qk dim xḠ

0 ,

where α = 1 if ε = − and i ≡ 2 (4), otherwise α = 0. The result now follows by applying the
lower bound for dimxḠ given in Lemma 3.33.

Case 3. x ∈ H − PGL(V )
First assume x ∈ G is a field automorphism of prime order r. Then Lemma 3.50 implies that
xG ∩H ⊆ Ḡσ0x and Lemma 3.49 gives

|xG| > 1
2
(qk

0 + 1)−1q
k(n2−1)(1− 1

r )
0 . (31)

If r 6= k then q0 = qr
1 and x induces a field automorphism on Ḡσ0 . In this case, Proposition

3.43 implies that |xG ∩ H| 6 |xḠσ0 | < 2q(n
2−1)(1−1/r)

0 and the result follows. If r = k then we
may assume that x centralizes Ḡσ0 and thus |xG ∩H| 6 ir(Ḡσ0) + 1. In fact, if r = k > 3 then
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it is easy to see that the bounds |xG ∩ H| 6 |Ḡσ0 | < qn2−1
0 and (31) are always sufficient. If

r = k = 2 then ε = + and Lemma 3.14 implies that

|xG ∩H| 6 i2(Ḡσ0) + 1 6 2(1 + q−1
0 )q

1
2
(n2+n−2)

0 .

Now |xG| > 1
2(n, q20 − 1)−1qn2−1

0 and we find that we are left to deal with the following cases:

(n, q0) (4, 3) (4, 2) (3, 4) (3, 2)
i2(Ḡσ0) 8451 315 315 21
f(x,H) < .594 .534 .572 .646

Here the listed upper bounds are derived using the upper bound |xG ∩ H| 6 i2(Ḡσ0) + 1 and
an accurate lower bound for |xG|. For example, if (n, q0) = (3, 2) then f(x,H) < .646 since
i2(PGL3(2)) = 1

8 |GL3(2)| = 21 and |xG| > 1
3 |SL3(4) : SL3(2)| = 120.

The argument for an involutory graph-field automorphism is similar and is left to the reader.
Finally, let us assume x ∈ G is an involutory graph automorphism. Then xG ∩ H ⊆ Ḡσ0x
and each y ∈ xG ∩ H induces an involutory graph automorphism on Ḡσ0 such that CḠσ0

(y)
and CG0(x) are of the same type, i.e. they are either both symplectic or non-symplectic (see
Definition 3.47). Therefore

|xG ∩H| < 2q
1
2
(n2+αn−2)

0 , |xG| > 1
2

(
qk
0

qk
0 + 1

)
q

k
2
(n2+αn−4)

0 ,

where α = 1 if x is non-symplectic, otherwise α = −1. If x is non-symplectic then these bounds
are sufficient unless (k, n, q0) = (2, 3, 2), where direct calculation yields f(x,H) < .573. On the
other hand, if x is symplectic then n is even and we are left to deal with the case (n, k) = (4, 2)
for q0 < 4. Here ε = +, |xG ∩H| 6 q20(q

3
0 − 1), |xG| > 1

4q
4
0(q

6
0 − 1) and thus f(x,H) < .603 for

all q0 > 2.

Proposition 5.2. The conclusion to Theorem 1.1 holds in case (ii) of Table 5.1.

Proof. This is very similar to the previous case and to avoid unnecessary repetition we shall
assume (n, p) = (4, 2) and G contains a graph-field automorphism (see Remark 3.44).

We start by assuming x ∈ H∩PGL(V ) has prime order r, whereH∩PGL(V ) 6 Sp4(q0) = H̃.
If r = 2 and x is G-conjugate to c2 then Lemma 3.22 gives |xG ∩ H| < 2q60, |xG| > 1

2q
6k
0 and

the result follows. On the other hand, if x is G-conjugate to b1 then the subsequent bounds
|xG∩H| = 2|bSp4(q0)

1 | < 2q40 and |xG| > q4k
0 are always sufficient (note that the involutions b1 and

a2 are G-conjugate - see Proposition 3.52). The case r > 2 is just as easy. Define the integers
i, i0, l and d as in the proof of the previous proposition and set e = 2 if i is odd, otherwise
e = 1. Note that (30) holds. Now, if i and i0 have the same parity then replacing x by a suitable
G-conjugate we deduce that

|xG ∩H| < 2 log2 q0.2
di
2i0

(e−1)
qdim xḠ

0 , |xG| > 1
2

(
qk
0

qk
0 + 1

)(2−e)d

qk dim xḠ

0

and the result follows via Lemma 3.33. The argument when i and i0 are of different parity is
just as easy.

Finally, let us assume x ∈ H − PGL(V ). If x is a field automorphism of prime order r 6= k
then q0 = qr

1 and the bounds

|xG ∩H| 6 |x eH | < 2q
10(1− 1

r )
0 , |xG| > 1

4
q
10k(1− 1

r )
0

are always sufficient. If r = k then we may assume x centralizes H̃, thus |xG ∩H| 6 ir(H̃) + 1.
In fact if k is odd then the trivial bound |xG ∩ H| 6 |H̃| is always sufficient; if k = 2 then
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Lemma 3.14 implies that |xG ∩H| 6 2(1 + q−1
0 )q60 and it remains to deal with the case q0 = 2.

Here f(x,H) < .601 since i2(H̃) = 75. Finally, let us assume x is an involutory graph-field
automorphism. Then xG ∩ H ⊆ H̃x and l and k are both odd, where q0 = 2l. If l > 1 then
applying Proposition 3.43 we deduce that

|xG ∩H| 6 |Sp4(q0) : Sz(q0)| < 2q50, |xG| > |Sp4(q
k
0 ) : Sz(qk

0 )| > q5k
0

and the result follows. Alternatively, if l = 1 then the bounds |xG ∩ H| 6 |H̃x| = 720 and
|xG| > |Sp4(8) : Sz(8)| = 36228 imply that f(x,H) < .627.

Proposition 5.3. The conclusion to Theorem 1.1 holds in cases (iii) and (iv) of Table 5.1.

Proof. We consider both cases simultaneously. Fix a Frobenius morphism σ0 of Ḡ = PSOn(K)
such that Ḡσ has socle G0 = PΩε

n(qk
0 ), where σ = σk

0 and n > 7. Observe that H ∩ PGL(V ) 6
PGOε′

n (q0) = H̃. Let (4) denote the hypothesis “(n, ε) = (8,+) and G contains triality au-
tomorphisms”. According to Proposition 3.3, if (4) holds then we may assume ε′ = +. The
argument when x ∈ H ∩ PGL(V ) is straightforward and is left to the reader. Note that if (4)
holds then a triality graph automorphism τ of G0 induces a triality on PΩ+

8 (q0) and Proposition
3.55 describes the action of τ on H̃-classes.

For the remainder let us assume x ∈ H − PGL(V ) has prime order r, beginning with the
case where x ∈ G is a field automorphism. Here Lemma 3.50 implies that xG ∩H ⊆ Ĥx, where
Ĥ = Ḡσ0 6 H̃, and Lemma 3.49 gives

|xG| > 1
4
q

k
2
(n2−n)(1− 1

r )
0 . (32)

If r 6= k then q0 = qr
1 for some q1 and the result follows via (32) since Proposition 3.43 gives

|xG ∩H| < 2q
1
2
(n2−n)(1− 1

r )
0 .

If r = k is odd then the bounds (32) and |xG∩H| 6 |Ĥx| < q
n(n−1)/2
0 are sufficient. If r = k = 2

then ε = + if n is even (see Remark 3.42) and we may assume that x centralizes Ĥ if n is odd
or ε′ = +; if ε′ = − then x induces an involutory graph automorphism on Ĥ. In all cases we
have |xG ∩H| 6 i2(H̃) + 1 and applying Lemma 3.14 we deduce that

|xG ∩H| 6 i2(H̃) + 1 6 2(1 + q−1
0 )q

1
4
(n2−γ)

0 , (33)

where n ≡ γ (2). If q0 is even then |xG| > 1
2q

n(n−1)/2
0 and we may assume that n is even. Here

we find that (33) is sufficient unless (n, q0) ∈ {(10, 2), (8, 2)}. Similarly, if q0 is odd then (32)
holds and we are left to deal with the cases (n, q0) ∈ {(8, 3), (7, 3)}. In these exceptional cases
we derive the following upper bounds through direct calculation:

(n, q0) (10, 2) (8, 2) (8, 3) (7, 3)
f(x,H) < .585 .617 .608 .630

For instance, if (n, q0) = (8, 2) then f(x,H) < .617 since |xG| > |O+
8 (4) : O+

8 (2)| and (33) gives
|xG ∩H| 6 3.216. Similarly, if (n, q0) = (8, 3) then |xG| > 1

4 |O
+
8 (9) : O+

8 (3)| and we deduce that
f(x,H) < .608 since Propositions 3.37 and 3.53 imply that i2(PGOε′

8 (3)) 6 61301583.
The argument when x is an involutory graph-field automorphism is very similar and is left to

the reader. Finally, let us assume (4) holds and recall that we may assume H is of type O+
8 (q0).

Now if x ∈ G is a triality graph automorphism then Lemma 3.50 implies that xG∩H ⊆ Ĥx∪Ĥx2,
where xi induces a triality graph automorphism on Ĥ such that the centralizers CPΩ+

8 (q0)(x
i)

and CG0(x
i) are of the same type. The possibilities for CG0(x) are listed in Table 3.10 and the

result quickly follows. For instance, if x is a G2-type triality (see Definition 3.47) then

|xG ∩H| 6 |PGO+
8 (q0)|

|G2(q0)|
< 4q140 , |xG| > |PΩ+

8 (qk
0 )|

|G2(qk
0 )|

> 22δ2,p−3q14k
0
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and we conclude that f(x,H) < 5/8 for all k, q0 > 2. Finally, if x ∈ G is a triality graph-
field automorphism then Lemma 3.48 gives |xG| > 1

4q
56k/3
0 and we find that the trivial bound

|xG ∩ H| < |H| < 6k log2 q0.q
28
0 is sufficient for all k > 3 and q0 > 2. If k = 2 then q0 = q31

for some q1 and again Lemma 3.50 implies that xG ∩ H ⊆ Ĥx ∪ Ĥx2, where xi acts on Ĥ as
a triality graph-field automorphism. Therefore Proposition 3.43 implies that |xG ∩H| 6 2|Ĥ :
3D4(q

1/3
0 )| < 4q56/3

0 and the bound |xG| > 1
4q

112/3
0 is always sufficient.

6 Proof of Theorem 1.1: H ∈ C6

Let k be a prime. Then a k-group R is said to be of symplectic type if every characteristic
abelian subgroup of R is cyclic. Let R be a symplectic type k-group of minimal exponent,
i.e. exp(R) = k(k, 2), and fix a prime p 6= k. Then R has precisely |Z(R)| − 1 inequivalent
faithful absolutely irreducible representations over an algebraically closed field of characteristic
p. Furthermore, each of these representations has degree km for some fixed m > 1 and the
smallest field over which they are realized is Fpe , where

e = min{z ∈ N : pz ≡ 1 mod |Z(R)|} (34)

(see [18, 4.6.3] for example). In this way we obtain embeddings R 6 Cln(q), where n = km,
Cln(q) is a finite almost simple classical group over Fq with socle G0 and

q =
{
p

e
2 if G0 is unitary
pe otherwise.

(35)

The members of the collection C6 are the subgroups NG(R), where R 6 G is a symplectic type
k-group of minimal exponent irreducibly embedded in G. Here n = km and q is defined by (35),
with e given in (34) (this restriction on the underlying field ensures that a subgroup in C6 is not
contained in a member of the subfield subgroup collection C5). The cases we need to consider
are listed in Table 6.1 (see [18, Table 4.6.B]).

G0 type of H |Z(R)| conditions
(i) PSLε

n(q) k2m.Sp2m(k) k k odd, ε = (−1)e+1

(ii) PSLε
n(q) 22m.Sp2m(2) 4 k = 2, ε = (−1)e+1

(iii) PSpn(q) 22m.O−
2m(2) 2 k = 2, e = 1

(iv) PΩ+
n (q) 22m.O+

2m(2) 2 k = 2, e = 1

Table 6.1: The collection C6

Lemma 6.1. Let G be a finite group, V an m-dimensional faithful irreducible FqG-module,
where q = pf , and let X = V.G be an extension of V by G. Fix a prime r dividing |X| and let
{g1, . . . , gN} be a complete set of representatives for the G-classes of elements of order r in G.

(i) If r 6= p then ir(X) 6
∑N

i=1 q
m−mi |gG

i |, where mi = dimCV (gi).

(ii) If r = p then ir(X) 6 qm−1+
∑N

i=1 q
m−m′

i |gG
i |, where m′

i is the number of Jordan r-blocks
in the Jordan normal form of gi on V .

Proof. Let x ∈ X − V be an element of prime order r and let x̄ = V x denote the image of x
under the quotient map X → X/V ∼= G. Now an element vx ∈ V x has order r if and only if

v + vx + vx2
+ · · ·+ vxr−1

= 0

which is equivalent to the condition v(1+ x̄+ x̄2 + · · ·+ x̄r−1) = 0 as a linear map. If r 6= p then
v(1 + x̄ + · · · + x̄r−1) = 0 if and only if v ∈ im (1 − x̄) and thus ir(V x) 6 |im (1 − x̄)| = qm−l,
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where l = dimCV (x̄). Then (i) follows since ir(V ) = 0 and dimCV (x̄1) = dimCV (x̄2) if x̄1 and
x̄2 are G-conjugate. On the other hand, if r = p then ir(V ) = qm − 1 and (ii) holds since

ir(V x) 6 |ker (1 + x̄+ · · ·+ x̄r−1)| = qm−ar ,

where ar denotes the number of Jordan r-blocks in the Jordan normal form of x̄ on V .

Remark 6.2. If V.G is a split extension then equality holds in both parts of Lemma 6.1.

Let H be a C6-subgroup of G and let V be the natural G0-module. Then H ∩ PGL(V )
is primitive, irreducible and tensor-indecomposable on V . In particular, each non-trivial x ∈
H ∩ PGL(V ) lifts to an element x̂ ∈ GL(V̄ ), where V̄ = V ⊗ F̄q, with the property that there
exist four GL(V̄ )-conjugates of x̂ whose product is a non-trivial scalar (see [13, p.452]). This
implies that ν(x) > n/4, where n = dimV , and lower bounds on |xG| follow via Corollary 3.38.
For easy reference, we record this fact in the next lemma.

Lemma 6.3. If x ∈ H ∩ PGL(V ) is non-trivial then ν(x) > n/4, where n = dimV .

Proposition 6.4. The conclusion to Theorem 1.1 holds in case (i) of Table 6.1.

Proof. Let x ∈ H be an element of prime order r and observe that [18, Table 4.6.A, (4.6.1)]
implies that H ∩ PGL(V ) 6 k2m.Sp2m(k) = H̃. First assume x ∈ H ∩ PGL(V ). Then applying
Lemma 6.3 and Corollary 3.38 we deduce that

|xG ∩H| 6 |H̃| < k2m2+3m, |xG| > 1
2
(q + 1)−2q

3
8
n2+1

and we are left to deal with the cases (k,m) ∈ {(5, 1), (3, 1)} and (k,m, q) = (3, 2, 2). If
(k,m, q) = (3, 2, 2) then G0 = PSU9(2), H̃ = 34.Sp4(3) and Lagrange’s Theorem implies that
r ∈ {2, 3, 5}. Applying Lemma 6.1 we get ir(H̃) 6 nr, where

n5 = 34.5184, n3 = 34 − 1 + 34.(480 + 240 + 40 + 40), n2 = 34.1 + 32.90.

Since n = 9, Lemma 6.3 implies that ν(x) > 3. In particular, if r = 2 then |xG| is minimal when
x has associated partition λ = (23, 13) and thus f(x,H) < .276 since |xG ∩H| 6 n2. The case
r ∈ {3, 5} is similar. If (k,m) = (3, 1) then H̃ = 32.Sp2(3), r ∈ {2, 3} and we may assume p > 5
since p 6= k and PSU3(2) ∼= 32.Q8. Therefore x is semisimple, hence |xG| > 1

2(q + 1)−1q5 and
the result follows since Lemma 6.1 implies that |xG∩H| 6 9 if r = 2 and |xG∩H| 6 80 if r = 3.
The case (k,m) = (5, 1) is just as easy.

Now assume x ∈ H − PGL(V ). If x is a field automorphism of prime order r then q = qr
0,

k > 5 (since q = p if k = 3) and the result follows via Lemma 3.48 since

|xG ∩H| < |H| < 2 log2 q.k
2m2+3m. (36)

The argument for an involutory graph-field automorphism is entirely similar. Now assume x is an
involutory graph automorphism. Since n = km is odd we have |xG| > 1

2(q+1)−1q(n
2+n−2)/2 (see

Lemma 3.48) and (36) is sufficient unless (k,m) = (3, 1). Here q = p > 5, |xG∩H| 6 |H̃x| = 216
and the previous bound for |xG| is sufficient unless p = 5. In this exceptional case we have
G0 = PSU3(5) and therefore f(x,H) < .773 since |xG| > 1050.

Proposition 6.5. The conclusion to Theorem 1.1 holds in case (ii) of Table 6.1.

Proof. Here n = 2m, m > 2 and G0 = PSLε
n(q), where q = p and ε = (−1)e+1. Observe that

H ∩ PGL(V ) 6 22m.Sp2m(2) = H̃ and first assume x ∈ H ∩ PGL(V ) has prime order r. Then
arguing as in the proof of the previous proposition we quickly reduce to the case m = 2. Here
r ∈ {2, 3, 5} and Lemma 6.1 implies that ir(H̃) 6 nr, where

n5 = 24.144, n3 = 24.40 + 22.40, n2 = 24 − 1 + 23.15 + 22.(45 + 15).

39



If ν(x) = 1 then we claim that x is semisimple and r divides q− ε. Of course, if x is semisimple
and ν(x) = 1 then r must divide q − ε since each σ-orbit must be a singleton set. To rule out
unipotent elements, we appeal to [16, Theorem II]. Here Kantor lists all subgroups of SL(V )
which are generated by transvections and it is easy to see that no subgroup of H̃ belongs to this
list. This justifies the claim. In particular, if ν(x) = 1 then

|xG| > |GLε
4(q)|

|GLε
3(q)||GLε

1(q)|
= q3(q + ε)(q2 + 1)

and one can check that the bounds |xG ∩ H| 6 nr are sufficient unless (ε, r, q) = (−, 2, 3). In
this exceptional case the associated permutation character χ is given in [9, p.53] and we derive
the following results, where PGU4(3)-classes are labelled as in [9].

PGU4(3)-class of x ν(x) |xG ∩H| |xG| f(x,H) <
2A 2 195 2835 .664
2B 1 60 540 .651
2C 2 120 4536 .569

Similarly, if ν(x) > 2 then |xG| > 1
4(q+ 1)−1q9 and we are left to deal with the case q = 3. Here

we can work with the associated permutation character and the desired result quickly follows.
Now assume x ∈ H−PGL(V ) has prime order. Then x is an involutory graph automorphism

since q = p. According to Lemma 3.50 we have |xG ∩H| 6 |H̃x| < 22m2+3m and if we assume
CG0(x) is orthogonal then |xG| > 1

2(q + 1)−1q(n
2+n−2)/2 and the desired result follows for all

m > 3. Similarly, if CG0(x) is symplectic then |xG| > 1
2(q + 1)−1q(n

2−n−2)/2 and if we assume
m > 3 then we are left to deal with the case (m, q) = (3, 3). Here H 6 27.Sp6(2) and we deduce
that f(x,H) < .471 since

|xG ∩H| 6 i2(H) 6 27i2(Sp6(2)) = 27.4823, |xG| > |PSU8(3) : PSp8(3).2|.

Finally, if m = 2 then using GAP [10, 14] we obtain the following bounds:

Aut(G0)-class of x |xG ∩H| 6 |xG| > f(x,H) <
2D 36 126 .741
2E 340 5670 .675

(Note that the class labelled 2F does not meet H.)

Proposition 6.6. The conclusion to Theorem 1.1 holds in case (iii) of Table 6.1.

Proof. Here G0 = PSpn(q), where n = 2m and m > 2. Since q = p is odd we have H 6 PGL(V )
and [18, (4.6.1)] implies that H 6 22m.O−

2m(2) = H̃. Applying Lemma 6.3 and Corollary 3.38
we deduce that

|xG ∩H| 6 |H̃| < 22m2+m+1, |xG| > 1
8
(q + 1)−1q

3
16

n2+1

and if we assume m > 3 then these bounds are sufficient unless m = 3 and q < 11. Here
H̃ = 26.O−

6 (2), so r ∈ {2, 3, 5} and Lemma 6.1 implies that ir(H̃) 6 nr, where

n5 = 24.5184, n3 = 26.80 + 24.480 + 22.240, n2 = 26 − 1 + 25.36 + 24.(270 + 45) + 23.540.

Now |xG ∩ H| 6 nr and we find that the previous bound for |xG| is sufficient unless q = 3 or
(q, r) = (5, 5). If (q, r) = (5, 5) then |xG| is minimal when x has associated partition λ = (22, 14)
and we find that an accurate bound for |xG| is sufficient. If (q, r) = (3, 3) then using GAP [10]
we calculate that ν(x) > 4 and f(x,H) < .369. The other cases with q = 3 are dealt with in a
similar fashion.
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It remains to deal with the case m = 2. Here H̃ = 24.O−
4 (2) so Lagrange’s Theorem implies

that r ∈ {2, 3, 5} and Lemma 6.1 gives ir(H̃) 6 nr, where

n5 = 24.24, n3 = 22.20, n2 = 24 − 1 + 23.10 + 22.15.

Clearly, there are no semisimple elements x ∈ H with ν(x) = 1 (indeed, there are no such
elements in G) and [16, Theorem II] implies that the same is true for unipotent elements.
Therefore Corollary 3.38 implies that |xG| > 1

8(q + 1)−1q5 and the bounds |xG ∩ H| 6 nr

are sufficient unless (q, r) = (11, 5) or q 6 7. If (q, r) = (11, 5) then f(x,H) < .411 since
|xG ∩ H| 6 n5 and |xG| > |Sp4(11) : Sp2(11)GL1(11)|. We claim that the following upper
bounds for f(x,H) hold when q 6 7.

r = 2 3 5
q = 3 .836∗ .800∗ .696

5 .526 .629 .681
7 .392 .371 .384

Here the asterisk indicates that we have an exception to the main statement of Theorem 1.1
and therefore the case (m, q) = (2, 3) is listed in Table 1.2. We now explain how we derive these
results. In the case r = 2, GAP [10] gives the following results, where q ≡ ε (4) and G-classes
are labelled as in [9]. The relevant entries in the above table follow at once.

PGSp4(q)-class of x |xG ∩H| |xG|
2A 5 1

2q
2(q2 + 1)

2B 70 1
2q

3(q + ε)(q2 + 1)
2C 20 1

2q
2(q2 − 1)

2D 60 1
2q

3(q − ε)(q2 + 1)

Now assume r ∈ {3, 5}. If q ∈ {5, 7} then we compute more accurate lower bounds for |xG| and
apply the bound |xG ∩H| 6 nr. For instance, if (q, r) = (7, 5) then |xG| = |Sp4(7) : GU1(72)|
and thus f(x,H) < .384 since n5 = 24.24. Finally, if q = 3 then the associated permutation
character χ is given in [9] and we can compute accurate values for both |xG ∩H| and |xG|. For
instance, if r = 3 then χ(x) > 0 if and only if x resides in the G0-class labelled 3C, whence
|xG ∩H| = 80, |xG| = 240 and thus f(x,H) < .800∗.

Proposition 6.7. The conclusion to Theorem 1.1 holds in case (iv) of Table 6.1.

Proof. Here G0 = PΩ+
n (q), where n = 2m, m > 3 and q = p is odd. According to Proposition 3.3

we may assume G does not contain any triality automorphisms if m = 3 and thus [18, (4.6.1)]
implies that H 6 22m.O+

2m(2) = H̃ 6 PGL(V ).

Since |xG ∩H| 6 |H̃| < 22m2+m+1, we quickly reduce to the case m = 3 by applying Lemma
6.3 and Corollary 3.38. Then r ∈ {2, 3, 5, 7} and using Lemma 6.1 we deduce that ir(H̃) 6 nr,
where n7 = 26.5760, n5 = 24.1344 and

n3 = 24.1120 + 22.112, n2 = 26 − 1 + 25.28 + 24.(210 + 105) + 23.420.

Applying Lemma 6.3 and Corollary 3.38 we deduce that |xG| > 1
8(q + 1)−1q11 and the bound

|xG ∩H| 6 nr is sufficient unless (q, r) = (7, 7) or q 6 5. If (q, r) = (7, 7) then [16, Theorem I]
implies that

|xG| > |O+
8 (7)|

|O5(7)||O1(7)|76

(minimal if x has associated partition λ = (3, 15)) and we conclude that f(x,H) < .566. In the
remaining cases we derive the following upper bounds for f(x,H):

r = 2 3 5 7
q = 3 .590 .534 .459 .495

5 .497 .514 .536 .334
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The entries in the case q = 5 are obtained by applying the bound |xG∩H| 6 nr, together with a
more accurate bound for |xG|. For instance, if (q, r) = (5, 3) then |xG| > |O+

8 (5) : O−
6 (5)GU1(5)|

and therefore f(x,H) < .514 since |xG ∩ H| 6 n3. If q = 3 then the listed bounds are easily
checked using GAP [10].

7 Proof of Theorem 1.1: H ∈ C7

Here V admits a tensor decomposition V = V1 ⊗ · · · ⊗ Vt, where dimVi = a and t > 2. The
subgroups in C7 preserve this tensor product structure; the particular cases which we must
consider are listed in Table 7.1, where n = at (see [18, Tables 3.5.B-E, 4.7.A] and [17, p.194]).

G0 type of H conditions
(i) PSLε

n(q) GLε
a(q) o St a > 3, (a, q) 6= (3, 2) if ε = −

(ii) PSpn(q) Spa(q) o St a even, qt odd, (a, q) 6= (2, 3)
(iii) Ωn(q) Oa(q) o St aq odd, (a, q) 6= (3, 3)
(iv) PΩ+

n (q) Spa(q) o St a, qt even, (a, q) 6∈ {(2, 2), (2, 3)}, (a, t) 6= (2, 3)
(v) PΩ+

n (q) Oε
a(q) o St q odd, a > 4 if ε = −, a > 6 if ε = +

Table 7.1: The collection C7

We begin with a preliminary lemma which is taken from the proof of [12, 7.1].

Lemma 7.1. Let X 6 GL(V ) be a group preserving a tensor product structure V = V1⊗· · ·⊗Vt,
where t > 2 and dimVi = a for each i. If x ∈ X is a non-scalar element of prime order r and
(a, t, r) 6∈ {(2, 2, 2), (2, 3, 2)} then ν(x) > at/2.

Proof. Let (rh, 1t−hr) be the cycle-shape of the permutation induced by x on the subspaces
{V1, . . . , Vt}. If t = hr then without loss of generality we may assume x = x1 ⊗ x2, where
x1 ∈ GL(V1 ⊗ · · · ⊗ Vr) = GL(U), x2 ∈ GL(Vr+1 ⊗ · · · ⊗ Vt) = GL(W ) and 〈x1〉 acts transitively
on {V1, . . . , Vr}. It follows that νU (x1) = (ar−a)(1−r−1), where νU (x1) denotes the codimension
of the largest eigenspace of x1 in its action on U , and thus (19) implies that

ν(x) > at−r(ar − a)(1− r−1). (37)

We conclude that ν(x) > at/2 for all (a, t, r) 6∈ {(2, 2, 2), (2, 3, 2)}. Now assume k = t− hr > 0,
say x fixes the subspaces {V1, . . . , Vk}. If k = t then (19) gives ν(x) > at−1 > at/2 so let us
assume otherwise. Write x = x′1 ⊗ x′2, where x′1 ∈ GL(V1 ⊗ · · · ⊗ Vk) = GL(U ′) and x′2 ∈
GL(Vk+1⊗ · · · ⊗ Vt) = GL(W ′). Then as before we have νW ′(x′2) > at−k−r(ar − a)(1− r−1) and
a further application of (19) implies that (37) holds.

Proposition 7.2. The conclusion to Theorem 1.1 holds when H ∈ C7.

Proof. Consider case (ii) of Table 7.1. The other cases are very similar and are left to the reader.
Let σ be a Frobenius morphism of Ḡ = PSpn(K) such that Ḡσ has socle G0 = PSpn(q), with q
odd. Observe that H ∩ PGL(V ) 6 PGSpa(q)t.St. Let x ∈ H ∩ PGL(V ) be an element of prime
order r and assume (a, t) 6= (2, 3). Then applying Lemma 7.1 and Corollary 3.38 we deduce that
|xG| > 1

8(q+1)−1qat(at/2−1)+1 and the result follows since |xG∩H| 6 |H∩PGL(V )| < t!qt(a2+a)/2.
If (a, t) = (2, 3) then we may assume q > 5 (see Table 7.1). Now if xG ∩ H ⊆ B, where

B = PGSp2(q)3, then |xG ∩H| < q9 and the result follows via Corollary 3.38 since (19) implies
that ν(x) > 4. Now assume xG ∩H 6⊆ B, so r ∈ {2, 3}. If r = 3 then the proof of [6, 5.3] gives

x =
{

[I4, ωI2, ω2I2] if p 6= 3
[J 2

3 , I2] if p = 3

(up to Ḡ-conjugacy) where ω ∈ K is a primitive cube root of unity. Therefore |xG| > 1
4q

22

and the trivial bound |xG ∩ H| 6 |H ∩ PGL(V )| < 6q9 is always sufficient. If r = 2 then
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without loss we may assume that x ∈ Bπ, where π = (12) ∈ S3 fixes V3. Evidently there are
precisely three distinct B-classes of involutions in the coset Bπ, with representatives π, (1, 1, z)π
and (1, 1, z′)π, where z and z′ represent the two classes of involutions in PGSp2(q). If x is B-
conjugate to either (1, 1, z)π or (1, 1, z′)π then x is Ḡ-conjugate to [−iI4, iI4], where i ∈ K
satisfies i2 = −1. Therefore |xG| > 1

4q
20 and the bound |xG ∩H| < 6q9 is always sufficient. On

the other hand, if x is B-conjugate to π then |xG| > 1
2q

12 since x is Ḡ-conjugate to [−I2, I6]. In
particular, π = π1 is Ḡ-conjugate to both π2 = (13) and π3 = (23) and therefore |xG ∩H| < 3q3

since CB(πi) ∼= PGSp2(q)2. The result now follows.
Finally, if x ∈ H − PGL(V ) has prime order r then q = qr

0,

|xG ∩H| < |H| < log3 q.t!q
t
2
(a2+a)

and Corollary 3.49 gives |xG| > 1
4q

(a2t+at)/4. These bounds are always sufficient.

8 Proof of Theorem 1.1: H ∈ C8

In this final section we assume H is a maximal non-subspace subgroup in the classical collection
C8. As advertised in §5, we also include the C5-subgroups of type Spn(q) and Oε′

n (q) in almost
simple groups with socle G0 = PSUn(q). Therefore G0 = PSLε

n(q) and the cases to be considered
are listed in Table 8.1 (see [18, Tables 4.5.A, 4.8.A]).

type of H conditions
(i) Spn(q) n even
(ii) Oε′

n (q) q odd
(iii) Un(q0) ε = +, q = q20

Table 8.1: The collection C8

Proposition 8.1. The conclusion to Theorem 1.1 holds in case (i) of Table 8.1.

Proof. Here ι = 1/n (see Table 1.2) and so we may assume n > 6. Let σ be a Frobenius
morphism of Ḡ = PSLn(K) such that Ḡσ has socle G0 = PSLε

n(q). Let H̄ = PSpn(K) and
observe that H ∩ PGL(V ) 6 PGSpn(q) = H̃.

Case 1. x ∈ H ∩ PGL(V )
Let x ∈ H ∩ PGL(V ) be an element of prime order r, so [6, Theorem 1] implies that

dimxH̄ 6

(
1
2

+
1
n

)
dimxḠ. (38)

First suppose r = p > 2. Let λ = (nan , . . . , 1a1) ` n denote the associated partition of x and
let t be the number of non-zero terms aj in λ (note that odd parts in λ must occur with an even
multiplicity). Since p is odd, the H̄-class of x is uniquely determined by λ and applying (38) we
deduce that

|xG ∩H| < 2tq(
1
2
+ 1

n)dim xḠ
, |xG| > 1

2

(
q

q + 1

)t

qdim xḠ−1. (39)

If t = 1 then [6, 2.4] implies that dimxḠ > 1
2n

2 and these bounds are always sufficient. Now
assume t > 3. Here the parity condition on the parts of λ implies that

n > 2
α∑

i=0

(2i+ 1) +
t−1−α∑

i=1

2i >
2
3
t2 +

2
3
t− 1

12
,
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where α = b(t − 1)/3c, and if we assume t > 3 then the result follows via (39) since dimxḠ >
g(n, t), where g is given in the statement of Lemma 3.25. If t = 2 and λ 6= (2, 1n−2) then
dimxḠ > 4n− 8 (minimal if λ = (22, 1n−4)) and (39) is sufficient unless (n, q) = (6, 3). Here we
may assume λ = (22, 12) (if not, then dimxḠ > 24 and (39) is sufficient) and direct calculation
yields f(x,H) < .637. Finally, if λ = (2, 1n−2) then the bounds |xG ∩ H| < qn and |xG| >
1
2(q + 1)−1q2n−3 are always sufficient.

Next assume r = p = 2. Then x is Ḡ-conjugate to [J l
2, In−2l] for some integer 1 6 l 6 n/2

and applying Lemma 3.20 and Proposition 3.22 we deduce that

|xG| > 1
2
(q + 1)−1q2l(n−l)+1. (40)

If l is odd then x is H̃-conjugate to bl, so |xG ∩ H| < 2ql(n−l+1) and (40) is always sufficient.
Similarly, if l is even then Proposition 3.22 implies that |xG ∩ H| < 2ql(n−l) + 2ql(n−l+1) and
again the desired result follows via (40). The case r = 2 < p is just as easy so assume r 6= p and
r is odd. If CḠ(x) is non-connected then Lemma 3.34 implies that r divides n and the bounds

|xG ∩H| < 2
1
2
(r−1)q

1
2
(n2+n)(1− 1

r ), |xG| > 1
2r

(
q

q + 1

)r−1

qn2(1− 1
r )

are always sufficient. Now suppose CḠ(x) is connected. Let i > 1 be minimal such that r|(qi−1)
and define the integers l and d as in Definition 3.32, and c = c(i, ε) as in the statement of Lemma
3.33. Observe that l is even (or zero) and d is even if c is odd. Then

|xG| > 1
2

(
q

q + 1

)αd

qdim xḠ
,

where α = 1 if ε = − and i ≡ 2 (4), otherwise α = 0. Applying (38) we deduce that

|xG ∩H| < log2 q.2
d
2
βq(

1
2
+ 1

n)dim xḠ
,

where β = 0 if i is even, otherwise β = 1
2(3− ε). Now n > l + dc and the reader can check that

these bounds are always sufficient by applying the lower bound on dimxḠ from Lemma 3.33.

Case 2. x ∈ H − PGL(V )
If x is a field automorphism of prime order r then q = qr

0 and (20) holds. The result now follows
since xG ∩H ⊆ H̃x (see Lemma 3.50) and Proposition 3.43 implies that

|xG ∩H| 6 |Spn(q) : Spn(q1/r)| < 2q
1
2
n(n+1)(1− 1

r ).

The same bounds hold (with r = 2) if x is an involutory graph-field automorphism. To complete
the proof, let us assume x is an involutory graph automorphism of G0, so

|xG| > 1
2
(q + 1)−1q

1
2
(n2+αn−2), (41)

where α = 1 if x is non-symplectic, otherwise α = −1. Let γ be a symplectic-type graph
automorphism of G0 which centralizes H̃. If we identify GLn 6 Sp2n as the stabilizer of a
maximal totally singular subspace then we may assume that

γ =
(

J
− J

)
∈ Sp2n, where J =

(
In/2

− In/2

)
∈ Spn

and J is written with respect to the specific ordering {e1, . . . , en/2, f1, . . . , fn/2} of a standard
symplectic basis for V . First assume CG0(x) is symplectic. Then xG ∩H ⊆ {h ∈ I2(H̃) : hγ ∼
γ}, where the relation ∼ signifies Ḡσ-conjugacy and I2(H̃) denotes the set of elements h ∈ H̃
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such that h2 = 1. Now if q is odd and h ∈ I2(H̃) satisfies CH̄(h)0 = GLn/2 then we may view h
as the block diagonal matrix [J, J ] ∈ Sp2n and we deduce that CG0(hγ) is orthogonal since

hγ =
(

− In
In

)
∈ Sp2n.

In fact, we see that hγ is an orthogonal-type graph automorphism if and only if CH̄(h)0 = GLn/2.
Therefore

|xG ∩H| <
bn/4c∑
j=0

2q2j(n−2j) < 2
(

q2

q2 − 1

)
q

1
4
n2

(42)

and (41) is always sufficient. Now assume p = 2. Here hγ ∼ γ if and only if hγ ∈ Sp2n is
conjugate to an and this is true if and only if h is an a-type involution. Therefore (42) holds and
(41) is sufficient unless (n, q) = (6, 2), where direct calculation yields f(x,H) < .658. Finally, if
x is non-symplectic then the desired result follows via (41) since

|xG ∩H| <
n/2∑
j=0

2qj(n−j+1) < 2
(

q2

q2 − 1

)
q

1
4
n(n+2).

Proposition 8.2. The conclusion to Theorem 1.1 holds in case (ii) of Table 8.1.

Proof. Here q is odd (see Table 8.1) and we may assume n > 3. Define Ḡ = PSLn(K), H̄ =
PSOn(K) and let σ be a Frobenius morphism of Ḡ such that Ḡσ has socle G0 = PSLε

n(q).
Observe that H ∩ PGL(V ) 6 PGOε′

n (q) = H̃. If x ∈ H ∩ PGL(V ) then we proceed as in the
proof of Proposition 8.1 and the reader is left to make the necessary minor adjustments. For
the remainder we will assume x ∈ H − PGL(V ) has prime order r.

If x is a field automorphism of prime order r then q = qr
0, (20) holds and Lemma 3.50

implies that xG ∩ H ⊆ H̃x. Moreover, if either n or r is odd then xG ∩ H ⊆ Ĥx, where
Ĥ = Inndiag(PΩε′

n (q)), and the desired result follows since Proposition 3.43 implies that

|xG ∩H| 6 |Oε′
n (q) : Oε′

n (q1/r)| < 2q
1
2
n(n−1)(1− 1

r ).

Now assume both n and r are even, in which case ε = + (see Remark 3.42). If ε′ = + then
Proposition 3.43 gives

|xG ∩H| 6 |O+
n (q) : O+

n (q1/2)|+ |O+
n (q) : O−

n (q1/2)| < 4q
1
4
n(n−1)

and the result follows via (20). On the other hand, if ε′ = − then x induces an inner automor-
phism on H̃ and again (20) is sufficient since Lemma 3.14 implies that

|xG ∩H| 6 i2(H̃) + 1 6 2(1 + q−1)q
1
4
n2
.

Similar reasoning applies when x is an involutory graph-field automorphism.
To complete the proof, let us assume x is an involutory graph automorphism. Let γ be an

orthogonal graph automorphism of G0 which centralizes H̃. Now, if CG0(x) is orthogonal (which
must be the case if n is odd) then Lemma 3.14 implies that

|xG ∩H| 6 i2(H̃) + 1 6 2(1 + q−1)q
1
4
(n2−ζ),

where n ≡ ζ (2). This bound with (41) is sufficient unless (n, q) = (3, 3), where f(x,H) < .423
since i2(H̃) = 9 and |xG| > |SL3(3) : SO3(3)| = 234. Finally, if n is even and CG0(x) is
symplectic then |xG ∩ H| is at most the number of involutions h ∈ H̃ such that hγ ∈ G is a
symplectic graph automorphism. Identifying GLn 6 Sp2n we may assume

γ =
(

In
− In

)
∈ Sp2n
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and arguing as in the proof of the previous proposition we deduce that hγ is a symplectic-type
graph automorphism if and only if CH̄(h)0 = GLn/2. Therefore |xG ∩H| < 3qn(n−2)/4 and (41)
is sufficient for all n > 6. If n = 4 then we may assume ε′ = + (see Proposition 3.37) and we
calculate that f(x,H) < .711 for all q > 3 since

|xG ∩H| 6 |SO+
4 (q)|

|GL2(q)|
+
|SO+

4 (q)|
|GU2(q)|

= 2q2, |xG| > |PSL4(q)|
|Sp4(q)|

>
1
4
q2(q3 − 1).

Proposition 8.3. The conclusion to Theorem 1.1 holds in case (iii) of Table 8.1.

Proof. We may assume n > 3. Let σ0 be a Frobenius morphism of Ḡ = PSLn(K) such that
Ḡσ0 = PGLn(q0) and let γ denote the inverse-transpose graph automorphism of Ḡ. Then

H ∩ PGL(V ) 6 Ḡσ0γ = PGUn(q0) < PGLn(q) = Ḡσ,

where σ = σ2
0 and q = q20. The argument for elements x ∈ H ∩ PGL(V ) is straightforward.

For example, suppose x has odd prime order r 6= p and CḠ(x) is connected. Let i > 1 (resp.
i0 > 1) be minimal such that r|(qi− 1) (resp. r|(qi0

0 − 1)) and observe that i = i0/2 if i0 is even,
otherwise i = i0. Define the integers l and d as in Definition 3.32 (with respect to σ-orbits) and
note that each non-trivial σ0γ-orbit is a union of two distinct σ-orbits if i0 6≡ 2 (4), whereas σ0γ-
and σ-orbits coincide if i0 ≡ 2 (4). In particular, d is even if i0 6≡ 2 (4) and we deduce that

|xG ∩H| < 21−α log2 q0.2
αd
2

+1qdim xḠ

0 ,

where α = 0 if i0 ≡ 2 (4), otherwise α = 1. Now |xG| > 1
2q

2 dim xḠ

0 and the result follows by
applying the lower bound on dimxḠ given in Lemma 3.33 (with c = i).

Now suppose x ∈ H −PGL(V ). If x ∈ G is a field automorphism of odd prime order r then
q0 = qr

1 and the bounds

|xG ∩H| < 2q
(n2−1)(1− 1

r )
0 , |xG| > 1

2
q
2(n2−1)(1− 1

r )−2

0

obtained via Proposition 3.43 are always sufficient. If φ ∈ G is an involutory field automorphism
then φG ∩ H ⊆ H̃φ (see Lemma 3.50) and φ induces an involutory graph automorphism on
H̃ = PGUn(q0). Applying Lemma 3.14 we deduce that

|φG ∩H| 6 i2(Aut(PSUn(q0))) < 2(1 + q−1
0 )q

1
2
(n2+n−2)

0 . (43)

Similarly, if ψ ∈ G is an involutory graph-field automorphism then we may assume ψ centralizes
H̃, whence |ψG ∩H| 6 i2(H̃) + 1 and again (43) holds (with φ replaced by ψ). Now if x = φ

or ψ then |xG| > 1
2(n, q20 − 1)−1qn2−1

0 and one can check that (43) is sufficient unless (n, q0) ∈
{(4, 3), (4, 2), (3, 4), (3, 2)}. Let us assume (n, q0) is one of these exceptional cases. Now

|xG| > (n, q20 − 1)−1q
1
2
n(n−1)

0

n∏
j=2

(qj
0 + βj),

where β = 1 if x = φ, β = −1 if x = ψ, and we calculate that (43) is sufficient unless
(n, q0) = (3, 2). Here f(φ,H) < .609 since

|xG ∩H| = 3ζ |PSU3(2) : Ω3(2)| = 3ζ .12, |xG| = 3ζ−1|PGL3(4) : PGL3(2)| = 3ζ .120,

where ζ = 1 if PGL3(4) 6 G, otherwise ζ = 0. Similarly, for ψ we have f(ψ,H) < .409 since
|ψG ∩H| 6 i2(PGU3(2)) + 1 = 10 and |ψG| > 280.
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Finally, let us assume x ∈ G is an involutory graph automorphism of G0, so

|xG| > 1
2n
qn2+αn−2
0 , (44)

where α = 1 if x is non-symplectic, otherwise α = −1. Then xG∩H ⊆ H̃x and each y ∈ xG∩H
induces a graph automorphism on PSUn(q0) such that the centralizers CPSUn(q0)(y) and CG0(x)
are of the same type. If x is non-symplectic (which must be the case if n is odd) then the bounds
|xG ∩H| < 2q(n

2+n−2)/2
0 and (44) are always sufficient; otherwise |xG ∩H| < 2q(n

2−n−2)/2
0 and

we are left to deal with the case (n, q0) = (4, 2). Here we calculate that f(x,H) < .519 since
|xG ∩H| = |SU4(2) : Sp4(2)| = 36 and |xG| = |SL4(4) : Sp4(4)| = 1008.
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