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Abstract

This is the first in a series of four papers on fixed point ratios in actions of finite classical
groups. Our main result states that if G is a finite almost simple classical group and Ω is
a non-subspace G-set then either fpr(x) . |xG|− 1

2 for all elements x ∈ G of prime order, or
(G, Ω) is one of a small number of known exceptions. In this introductory note we present our
results and describe an application to the study of minimal bases for primitive permutation
groups. A further application concerning monodromy groups of covers of Riemann surfaces
is also outlined. The proof of the main theorem appears in three subsequent papers [3], [4]
and [5].

Introduction

If a group G acts on a set Ω then we define CΩ(x) to be the set of points in Ω which are fixed
by a given element x ∈ G. If G and Ω are finite then we define the fixed point ratio of x, which
we denote by fpr(x), to be the proportion of points in Ω fixed by x, i.e. fpr(x) = |CΩ(x)|/|Ω|. If
G acts transitively on Ω then it is easy to see that

fpr(x) =
|xG ∩H|
|xG|

(1)

where H is the stabilizer in G of some element ω ∈ Ω. In this way the analysis of such ratios is
reduced to a study of conjugacy classes and their intersections with subgroups of G.

Fixed point ratios have been extensively studied since the days of Jordan in the nineteenth
century and this work has found a wide range of applications. In recent years, a number of papers
have appeared where bounds on fixed point ratios for actions of simple groups are obtained and
then applied to a number of different problems, see [11, 12, 13, 14, 17, 20] for example. More
specifically, in [19] Liebeck and Saxl prove that if G is a finite almost simple group of Lie type
over Fq acting faithfully and transitively on a set Ω then either

fpr(x) 6
4
3q

(2)

for all non-identity elements x ∈ G, or (G, Ω, x) belongs to a short list of known exceptions
which involves certain ‘small’ classical groups of (Lie) rank less than four.

In studying actions of classical groups, it is natural to distinguish between those actions which
permute subspaces of the natural module and those which do not. In particular, the stabilizers
of subspaces tend to be large subgroups (parabolic subgroups for example) and therefore (1)
suggests that such actions give rise to relatively large fixed point ratios. In this series of papers
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we obtain upper bounds on fixed point ratios for finite almost simple classical groups in non-
subspace actions; our main result is Theorem 1 below. If G is such a group with socle G0,
a classical group with natural module V over a field of prime characteristic p, then roughly
speaking we say that a subgroup H of G is a non-subspace subgroup if H ∩G0 is irreducible on
V . This notion was introduced by Liebeck and Shalev in [20].

Definition 1. A subgroup H of G is a subspace subgroup if for each maximal subgroup M of
G0 containing H ∩G0 one of the following holds:

(a) M is the stabilizer in G0 of a proper non-zero subspace U of V , where U is totally singular,
non-degenerate, or, if G0 is orthogonal and p = 2, a non-singular 1-space (U can be any
subspace if G0 = PSL(V ));

(b) M = O±
2m(q) if (G0, p) = (Sp2m(q)′, 2).

A transitive action of G on a set Ω is a subspace action if the point stabilizer Gω of an element
ω ∈ Ω is a subspace subgroup of G; non-subspace subgroups and actions are defined accordingly.

The main theorem on the subgroup structure of finite classical groups is due to Aschbacher.
In [1], eight collections of subgroups of G are defined, labelled Ci for 1 6 i 6 8, and in general
it is shown that if H is a maximal subgroup of G not containing G0 then either H is contained
in C (G) :=

⋃
i Ci or it belongs to a family S of almost simple groups which act irreducibly on

the natural G-module V (see [16] for a detailed description of these subgroup collections). Due
to the existence of certain outer automorphisms, a small additional collection N arises when
G0 is Sp4(q)′ (q even) or PΩ+

8 (q) (see [3, Table 3.1] and [5, §3]). Roughly speaking, a maximal
subgroup is non-subspace unless it is a member of the collection C1 or is a particular example
of a subgroup in C8, where we label the Ci collections as in [16].

The statement of Theorem 1 involves a natural number n which we associate to each finite
classical group G. In general, n is simply the dimension of the natural G-module. However,
in some small-dimensional cases we have a choice of natural G-module due to the existence of
exceptional isomorphisms between certain finite simple classical groups. The list of isomorphisms
between finite simple classical groups which act naturally on vector spaces of different dimensions
is as follows

PΩε
6(q) ∼= PSLε

4(q), Ω5(q) ∼= PSp4(q), Ω−
4 (q) ∼= PSL2(q2), Ω3(q) ∼= PSL2(q),

Sp4(2)′ ∼= PSL2(9), SL3(2) ∼= PSL2(7)

and subsequently we make the following definition.

Definition 2. Let G be a finite almost simple classical group over Fq with socle G0 and let K
denote the algebraic closure of Fq. If G0 ∈ {Sp4(2)′,SL3(2)} then set n = n(G) = 2, in all other
cases we define n = n(G) to be the minimal degree of a non-trivial irreducible KĜ0-module,
where Ĝ0 is a covering group of G0.

A major motivation for this work comes from an existence theorem of Liebeck and Shalev
[20, Theorem (?)]. This result states that there exists an absolute constant ε > 0 so that if G is
any finite almost simple classical group in a non-subspace action then

fpr(x) < |xG|−ε (3)

for all elements x ∈ G of prime order. Evidently, for non-subspace actions of classical groups,
this result is a significant improvement on the Liebeck-Saxl upper bound (2) and it finds a
wide range of striking applications in [20]. In particular, the result lies at the heart of their
proof of the Cameron-Kantor base conjecture and also their attack on the Guralnick-Thompson
genus conjecture (see §§1.2-3). However, [20, Theorem (?)] is strictly an existence result and no
information on ε is given. For future applications, it is very desirable to obtain an explicit value
for ε in (3). The central aim of this series of papers is to show that (3) holds with ε ≈ 1/2.
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G0 type of H ι

PSLε
n(q) Spn(q) 1/n

PSpn(q) Spn/2(q) o S2 1/n

PSpn(q) Spn/2(q2) 1/(n + 2)
PΩε

n(q) GLε′

n/2(q) 1/(n− 2)
SU4(2) GU1(2) o S4 .010
Ω+

8 (2) O−
4 (2) o S2 .001

SL4(2) GL2(4) .020
PSp4(3) 24.O−

4 (2) .086
PΩ+

8 (q) Ω7(q) .219
Ω7(q) G2(q) .108
Ω−

10(2) A12 .087
Sp8(2) A10 .062
Ω+

8 (2) A9 .124
PΩ+

8 (3) Ω+
8 (2) .081

Ω7(3) Sp6(2) .065
PSU6(2) PSU4(3) .076
Sp6(2) SU3(3) .054
PSU4(3) PSL3(4) .011
SL4(2) A7 .164

Table 1: The exceptional cases with ι > 0

Theorem 1. Let G be a finite almost simple classical group acting transitively and faithfully on
a set Ω with point stabilizer Gω 6 H, where H is a maximal non-subspace subgroup of G. Then

fpr(x) < |xG|−
1
2
+ 1

n
+ι

for all elements x ∈ G of prime order, where n is given in Definition 2 and either ι = 0 or
(G0,H, ι) is listed in Table 1, where G0 denotes the socle of G.

Remark 1. In Table 1 we refer to the type of H. If H lies in one of the Ci collections then
the type provides an approximate group-theoretic structure for H ∩ PGL(V ). This notation is
consistent with [16, §4]. In the remaining cases, the type refers to the socle of the almost simple
group H ∩G0.

As an immediate corollary, we obtain the following result.

Corollary 1. If n > 10 and x ∈ G has prime order then fpr(x) < |xG|−
1
2
+ 1

n
+ι, where either

ι = 0 or (G0,H, ι) is one of the following:

G0 type of H ι

PSLε
n(q) Spn(q) 1/n

PSpn(q) Spn/2(q) o S2 1/n

PSpn(q) Spn/2(q2) 1/(n + 2)
PΩε

n(q) GLε′

n/2(q) 1/(n− 2)

The next result follows from Theorem 1 and Lemma 1.1 below. Here the untwisted Lie rank
of G0 simply refers to the rank of the ambient simple algebraic group.

Corollary 2. Let G be a finite almost simple classical group over Fq with socle G0 and natural
module V , where dim V > 7. If l denotes the untwisted Lie rank of G0 then

fpr(x) < 2q−
l(l−1)

l+1
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for all non-identity elements x ∈ G and all non-subspace actions of G.

This work constitutes the second stage of a two-part programme. In [6] we studied non-
subspace actions of simple classical algebraic groups. In this context, the natural analogue of
the fixed point ratio is the difference in dimensions dim CΩ(x)− dim Ω. The main result of [6]
can be stated as follows.

Theorem ([6, Theorem 1]). Let Ḡ be a simple classical algebraic group over an algebraically
closed field and let Ω be a primitive non-subspace Ḡ-variety. If x ∈ Ḡ is a non-scalar element
of prime order then

dim Ω− dim CΩ(x) >

(
1
2
− δ

)
dim xḠ,

where δ = 0, or (Ḡ, Ω, δ) is one of a small number of known exceptions. In the exceptional cases,
δ tends to 0 as rank(Ḡ) →∞.

This theorem says that the algebraic group analogue of (3) holds with ε ≈ 1/2. Our aim is
to use this information to establish a similar result for the corresponding finite groups, passing
from algebraic to finite groups by taking the set of fixed points of a Frobenius morphism. This is
similar to the approach taken by Lawther, Liebeck and Seitz in their work on fixed point spaces
in actions of simple groups of exceptional type [17, 18].

Layout. This work is organised as follows. In this introductory note we state our main results
and describe an application to the study of minimal bases for primitive permutation groups. We
also explain how Theorem 1 may be useful in efforts to classify primitive monodromy groups of
covers of Riemann surfaces. The proof of Theorem 1 appears in the three subsequent papers
[3], [4] and [5]. In [3] we collect a number of results from the literature and we show that
the conclusion to Theorem 1 holds when H is a maximal non-subspace subgroup in one of the
collections Ci, where 4 6 i 6 8. In [4] we show that the same conclusion holds when H lies in
C2 or C3. Finally, in [5] we complete the proof of Theorem 1 by dealing with the almost simple
subgroups in the S collection and the small additional set of subgroups N .

Notation and terminology. A finite group G is almost simple if G0 P G 6 Aut(G0) for some
non-abelian simple group G0, the socle of G. We say that G is classical if G0 is. Associated to
each finite simple classical group G0 is a natural module V over a finite field F of characteristic
p. Strictly speaking, in most cases V is not a module for G0, but a module for some covering
group. This slight abuse of terminology is harmless. Following [16] we define F = Fqu , where
u = 2 if G0 is unitary, otherwise u = 1. Here Fqu = GF(qu) is the field with qu elements and the
term finite classical group over Fq will refer to any finite classical group whose natural module
is defined over F. Our notation for such groups is standard (see [16, Table 2.1.B] for example).
For example, PSLε

n(q) denotes PSLn(q) if ε = + and PSUn(q) if ε = −. We note that there
exists an isomorphism Ω2m+1(q) ∼= Sp2m(q) when q is even and thus we only refer explicitly to
odd-dimensional orthogonal groups when the characteristic of the underlying field is odd.

Acknowledgements. This note and the subsequent papers [3], [4] and [5] comprise part of
the author’s Ph.D thesis written under the supervision of Martin Liebeck at Imperial College
London. The author would like to thank Professor Liebeck for bringing the problem to his
attention and for his encouragement and invaluable advice. In addition, he also thanks Alexander
Hulpke and Frank Lübeck for their generous assistance with some GAP calculations, and Ross
Lawther for his many helpful comments regarding an earlier draft. This work was supported
financially by EPSRC.
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1 Applications of Theorem 1

Here we prove Corollary 2 and describe how Theorem 1 can be applied to the study of bases
in primitive actions of finite classical groups. We also explain how Theorem 1 may be useful in
ongoing efforts to classify the primitive monodromy groups of covers of Riemann surfaces whose
socle is not a product of alternating groups. In particular, Theorem 1 applies to monodromy
groups of arbitrary genus.

1.1 Fixed point ratios

In order to prove Corollary 2 we first establish a lower bound on |xG| in terms of the field Fq and
the untwisted Lie rank l. In [6, p.314] we remarked that if Ḡ is a simple classical algebraic group
of rank r then dim xḠ > 2r for all non-identity elements x ∈ Ḡ. The following result can be
thought of as a finite analogue. In the proof, there are numerous references to the preliminary
results in [3, §3].

Lemma 1.1. Let G be a finite almost simple classical group over Fq with socle G0 and let l
denote the untwisted Lie rank of G0. If l > f(G0), where f is defined as follows,

G0 PSLε
l+1(q) PSp2l(q) PΩε

2l(q) Ω2l+1(q)
f(G0) 4 2 4 3

then |xG| > 1
4q2l−α for all non-identity elements x ∈ G, where α = 1 if G0 = PΩε

2l(q), otherwise
α = 0.

Proof. First observe that CG(x) 6 CG(xm) for all m > 1 and so we may assume x has prime
order. Suppose x ∈ PGL(V ) has prime order r, where V denotes the natural G0-module. Let x̂
be a pre-image of x in GL(V ) and define

ν(x) = min{dim[V̄ , λx̂] : λ ∈ K∗}, (4)

where K is the algebraic closure of Fq and V̄ = V ⊗ K. (Note that ν(x) is equal to the
codimension of the largest eigenspace of x̂ on V̄ .) If r = p (where q = pf ) and (G0, p) 6=
(PΩε

2l(q), 2) then the proof of [3, 3.22] implies that |xG| is minimal when x is a long root element
and the result quickly follows. For example, if G0 = PSp2l(q) and q is odd then [3, Table 3.4]
indicates that |x eG| > 1

2(q+1)−1qs(2l−s)+1, where G̃ is the group of inner-diagonal automorphisms
of G0 and s = ν(x). In particular, if s > 2 then |xG| > 1

2(q + 1)−1q4l−3 and the claim follows; if
s = 1 then x is a long root element and via [3, 3.18, 3.20] we conclude that |xG| > 1

2(q +1)−1q2l.
Similarly, if (G0, r, p) = (PΩε

2l(q), 2, 2) then the proof of [3, 3.22] yields |xG| > |yG| > 1
2q2l−1

where y ∈ Oε
2l(q) is a transvection (i.e. y is conjugate to b1 in the terminology of [2]).

The case r 6= p is just as easy. For instance, if G0 = PSp2l(q) then from [3, Tables 3.7, 3.8]
we deduce that |xG| > 1

4q4(l−1) (minimal if r = 2 and x is conjugate to [−I2, I2l−2]) and the
result follows since l > 2. Finally, let us assume x ∈ G − PGL(V ). If G0 = PSLε

l+1(q) then [3,
3.49] gives |xG| > 1

4q(l2+l−4)/2 and the desired conclusion follows since l > 4. The other cases
are very similar and we leave them to the reader.

Proof of Corollary 2.
First observe that the hypothesis n > 7 implies that l > f(G0), where f is the function defined
in the statement of Lemma 1.1. In particular, the conclusion to Lemma 1.1 holds and Theorem
1 applies since fpr(x) 6 fpr(xm) for all m > 1.

Let us begin by considering the relevant exceptional cases listed in Table 1, excluding the first
four cases for now. Here it is easy to check that the corollary holds. For example, if G0 = Ω+

8 (2)
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then we obtain the following results (see [4, 2.11] and [5, 2.5, 2.7]):

type of H O−
4 (2) o S2 A9 Sp6(2)

fpr(x) 6 1/6 3/10 3/10
G0-class of x 2F 2F 3B

The entries in the second row of the table provide sharp upper bounds for maxx∈G# fpr(x),
where G# denotes the set of non-identity elements in G. In the last row we record a specific
G0-class which contains an element x which realizes this maximal fixed point ratio (here we
adopt the standard notation of [10]). The conclusion to Corollary 2 follows immediately since
(l, q) = (4, 2). The other cases are just as easily verified. For example, if G0 = PΩ+

8 (3) and H
is of type Ω7(3) then [5, (3)] implies that

max
x∈G#

fpr(x) 6
32760
262080

=
1
8

< 2.3−
3
2 .

Similarly, if G0 = Sp8(2) and H is of type A10 then the proof of [5, 2.5] yields

max
x∈G#

fpr(x) 6
45
255

=
3
17

< 2.2−
12
5 .

Now assume G0 = PSLε
l+1(q), with l > 6. If ι = ι(G, H) = 0 then Theorem 1 and Lemma

1.1 imply that

fpr(x) < |xG|−
1
2
+ 1

l+1 < (4q−2l)
1
2
− 1

l+1 < 2q−
l(l−1)

l+1

as claimed. If ι > 0 then we may assume H is of type Spl+1(q) (see Table 1) in which case
ι = 1/(l + 1) and l > 7 is odd. Now if x ∈ H ∩ PGL(V ) has prime order r and ν(x) = 1
(see (4)) then r = p and x is a long root element. Then [3, 3.22] (and its proof) implies that
|xG ∩ H| < ql+1, |xG| > 1

2(q + 1)−1q2l+1 and the result follows. Similarly, if ν(x) > 1 then [3,
3.20, 3.24] and [3, Tables 3.7, 3.8] imply that |xG| > 1

2(q +1)−1q4l−3 (minimal if r = p and x has
Jordan form [J2

2 , J l−3
1 ] on V , where Ji is a standard Jordan block of size i) and thus Theorem

1 yields

fpr(x) < (2(q + 1)q−(4l−3))
1
2
− 2

l+1 < 2q−
l(l−1)

l+1

for all l > 7 and q > 2. Finally, if x ∈ H − PGL(V ) then |xG| > 1
2(q + 1)−1q(l2+l−2)/2 (see [3,

3.49]) and the result follows via Theorem 1.
Now assume G0 = PSp2l(q). If ι = 0 then the result follows from Theorem 1 and Lemma

1.1 so let us assume ι > 0. In view of our earlier work, we may assume H is of type Spl(q) o S2

or Spl(q2) (see Table 1). First consider the C2-subgroup of type Spl(q) o S2. Here ι = 1/2l and
we find that the desired result follows via Theorem 1 if

|xG| > 1
2
(q + 1)−1q4l−3. (5)

In view of [3, 3.49] and [3, Tables 3.4-5, 3.7-8], it is clear that (5) holds unless r = p and
x ∈ H∩PGL(V ) is a long root element. In this case, the bounds |xG| > 1

2dq2l, where d = 2−δ2,p

(see [3, 3.18, 3.20] and the proof of [3, 3.22]), and |xG ∩H| < 2ql (see Case 2 in the proof of [4,
2.9]) are sufficient. If H is the C3-subgroup of type Spl(q2) then ι = 1/(2l + 2) and the proof of
[20, 4.2] implies that ν(x) > 2 for all non-trivial x ∈ H ∩ PGL(V ). In particular, (5) holds for
all x ∈ H of prime order and the result follows as before.

To complete the proof let us assume G0 is an orthogonal group. Here, arguing as before, we
quickly reduce to the case ι > 0, so we may assume G0 = PΩε

2l(q) and H is a subgroup of type
GLε′

l (q) (see Table 1). Then ι = 1/(2l − 2) and the result follows via Theorem 1 if (5) holds.
As in the proof of [20, 4.2], we deduce that ν(x) > 2 for all x ∈ H ∩ PGL(V ) and thus we can
assume r = p and x is a long root element (see [3, 3.49] and [3, Tables 3.4-5, 3.7-8]). Then [3,
3.20, 3.22] imply that |xG| > 1

2dq4l−6, where d = 2 − δ2,p, and the desired result follows since
|xG ∩H| < 2q2l−2 (see [3, 3.18] and the proof of [4, 3.3]). 2
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1.2 Minimal base sizes

Let G be a permutation group on a finite set Ω and recall that a base for G is a subset B ⊆ Ω
whose pointwise stabilizer G(B) is trivial. Let b(G) be the minimal size of a base for G. The
Cameron-Kantor conjecture [8, 9] concerns almost simple primitive groups G; it asserts that for
such groups, either b(G) is bounded by some absolute constant or G lies in a prescribed list of
exceptions. The conjecture was finally confirmed by Liebeck and Shalev, with their result on
fixed point ratios [20, Theorem (?)] playing a central role in the proof.

Theorem 1.2 ([20, 1.3]). There is a constant c such that if G is any almost simple primitive
permutation group on a set Ω then one of the following holds:

(i) G is An or Sn acting on k-subsets of {1, . . . , n} or an orbit of partitions of {1, . . . , n};
(ii) G is a classical group in a subspace action;
(iii) b(G) 6 c.

Furthermore, in (iii), the probability that a random c-tuple of elements from Ω forms a base for
G tends to 1 as |G| → ∞.

Remark 1.3. In general, (iii) does not hold for the examples in (i) and (ii). Indeed, the
definition of a base implies that |G| 6 |Ω|b(G) and in most cases the orders of the groups in (i)
and (ii) are not bounded by some fixed polynomial function of their degree |Ω|.

In [9] it is shown that if the socle G0 of G is an alternating group then the probabilistic
statement in Theorem 1.2 holds with a best possible constant c = 2. In fact, Guralnick and Saxl
have recently shown that if G0 = An and n > 12 then b(G) = 2 for all primitive actions of G,
with the obvious exclusion of the examples in (i). According to the proof of [20, 1.3], if G is a
finite almost simple classical group then the Cameron-Kantor conjecture holds with a constant
c = 11ε−1, where ε is the undetermined constant given in [20, Theorem (?)] (see (3)). Of course,
Theorem 1 states that ε ≈ 1/2 and Liebeck and Shalev have used this result to establish a much
stronger version of Theorem 1.2 for classical groups.

Theorem 1.4 ([21, 1.11]). Let G be a finite almost simple classical group, with natural module
of dimension greater than 15. If G acts primitively on a set Ω in a non-subspace action then
the probability that 3 randomly chosen points in Ω form a base for G tends to 1 as |G| → ∞. In
particular, for G sufficiently large we have b(G) 6 3.

Remark 1.5. Observe that |G| > |Gω|2 if b(G) = 2. Therefore Theorem 1.4 is best possible
since there are infinitely many primitive non-subspace actions with |G| < |Gω|2. For example,
the action of Spn(q) on the set of cosets of Spn/2(q) o S2 has this property.

As observed in the proof of [20, 1.3], the connection between fixed point ratios and base sizes
arises as follows: if Q(G, c) denotes the probability that a randomly chosen c-tuple in Ω does
not form a base for G then

Q(G, c) 6
k∑

i=1

|xG
i | · fpr(xi)c, (6)

where x1, . . . , xk represent the distinct G-classes of elements of prime order in G. Of course, G
admits a base of size c if and only if Q(G, c) < 1. If G is a classical group and Ω is a non-subspace
G-set then we can use Theorem 1 to bound Q(G, c) via (6). In this way, the “zeta function”

ζG(t) =
∑
C∈C

|C|−t

arises naturally, where C denotes the set of conjugacy classes in G of elements of prime order.
Evidently there exists a real number 0 < tG < 1 such that ζG(tG) = 1 and Theorem 1 implies
that G admits a base of size c if c(1/2− 1/n− ι)− 1 > tG. In particular, we can bound b(G) by
bounding the function tG. Proceeding in this manner, we have proved the following result.
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Theorem 1.6 ([7]). Let G be a finite almost simple classical group, Ω a primitive non-subspace
G-set and H = Gω for some ω ∈ Ω. Then either b(G) 6 4 or G = PSU6(2).2, H = PSU4(3).22

and b(G) = 5.

Of course, Theorem 1.6 only concerns classical groups and in [7] we also consider base sizes
in actions of finite groups of exceptional Lie type. Here a similar approach is possible, utilising
the detailed results on fixed point ratios in [17].

1.3 Monodromy groups

Following [15], we say that a finite permutation group G has genus g if it is isomorphic to
the monodromy group of a branched covering ϕ : X → P1C, where X is a compact connected
Riemann surface of genus g. According to the Riemann Existence Theorem, if G has genus g
then G is generated by elements x1, . . . , xk such that

∏k
1 xi = 1 and

2(d + g − 1) =
k∑

i=1

ind(xi),

where d is the degree of G and ind(x) =
∑l

1 (ri − 1) if x ∈ G acts on Ω with cycles of length
r1, . . . , rl. The Guralnick-Thompson genus conjecture [15] asserts that if E (g) is the set of non-
abelian, non-alternating composition factors of groups of genus g, then E (g) is finite for each g.
This was finally established in [12] and [20], with bounds on fixed point ratios playing a key role
in the proof (see [11] and [20, 1.2] for example).

It is known that for any g > 0 there are only finitely many primitive permutation groups
of fixed genus g whose socle is not a product of alternating groups. In recent work, Frohardt,
Magaard and Guralnick have completely classified the primitive groups of genus at most two
(with the above condition on the socle) and furthermore, they have shown that the genus of
such primitive groups grows as a linear function of the degree.

A basic result suggests that Theorem 1 may be useful in classifying the primitive permutation
groups of higher genus (see [15, Theorem E] for the case g = 0). This result states that if G is
a finite almost simple primitive permutation group of genus g and degree d then there exists a
non-identity element x ∈ G such that

fpr(x) >
1
85

(
1− 84g

d

)
. (7)

Therefore for each g, using Corollary 2, we can compile a finite list of almost simple classical
groups which could possibly admit a primitive non-subspace action of genus g. Moreover, since
G = 〈x1, . . . , xk〉, with the properties described above, we can derive more precise lower bounds
on the size of conjugacy classes in G and thus strong upper bounds on fixed point ratios via
Theorem 1. In this way, the list of possible candidates can be further refined. This may provide
an effective means to study primitive classical groups of arbitrary genus.
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