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Introduction

Let G < Sym(Q) be a permutation group.
A subset B of 2 is a base if the pointwise stabiliser of B in G is trivial.

The base size of G, denoted b(G), is the minimal size of a base.

Examples:

@ G has a regular orbit on Q < b(G) =1
e G=S5, Q={1,...,n}=[1,n] = b(G)=n—-1
o G = Dy, Q = {vertices of a regular n-gon} — b(G) =2

e G=GL(V), Q=V = b(G) =dimV



Preliminary bounds

Let G be a permutation group on a finite set Q with a base B.

If x,y € G and o = oY for all a € B, then x = y. So |G| < |Q|'Bl and

log |G|
b(G) >
(c) log ||

For an upper bound, let B = {a1,...,apg)} € 2 be a base. Then
G > Goy > Gojap >0 > Goél,__,%(c)f1 > G%_,_,ab(c) =1

so |G| > 2b(¢) and thus

log |G|
< b(G) < log|G
og | (G) < log |G|



log |G|
log Q|

N\

b(G) < log |G|

Example 1. Let G =S, and Q = {1,...,n}. Then

log |G|
log |Q]

b(G)=n—-1<2

Example 2. Let G = 21 Zy = Z¥k x Zy and Q = {1,...,2k}, 50 G
preserves the partition

Q={1,2}U{3,4} U---U{2k — 1,2k}

Then )
b(G) =k = log|G| — logk > Elog]G\



Primitivity

Let G < Sym(fQ) be a finite transitive permutation group.

The degree of G is ||, and the socle of G, denoted Soc(G), is the
product of the minimal normal subgroups of G.

Definition. G is primitive if the only G-invariant partitions of Q are {Q}
and {{a} : a € Q}, otherwise G is imprimitive.

Equivalently, G is primitive iff G, is a maximal subgroup of G.

Examples:
e Primitive: G =5,, Q={1,...,n}
o Imprimitive (but transitive): G = 2, Z,, Q ={1,...,2k}



Pyber's conjecture

“All primitive permutation groups have small bases”

Conjecture (Pyber, 1993)

There is a constant ¢ such that

log |G|

<
b(G) <€ log n

for any primitive group G of degree n.

Primitivity is essential, e.g. G = Zo 1 Zk, k = 2¢, n = 2k = 2¢+1:

log |G| 2¢+¢

b(G) =2* —
(6) " logn (+1




Primitive groups
Let G < Sym(f2) be a finite primitive permutation group.
The possibilities for G are described by the O’Nan-Scott Theorem

(Here T is a nonabelian simple group, k > 2, V = (F,)?)

Type Description

I Almost simple: T < G < Aut(T)

I Diagonal: T < G < T*.(Out(T) x P), P < Sk

[l Affine: G =V x Gy < AGL(V), Go < GL(V) irreducible
v Product-type: G < H! P, H primitive type | or Il, P < S

\% Twisted wreath product




Almost simple groups
Let G < Sym(Q) be an almost simple primitive group with socle T, so

T < G < Aut(T)

Say G is standard if one of the following holds:

e T = A, and Q is an orbit of subsets or partitions of {1,...,n}
e T =CI(V) is a classical group and Q is an orbit of subspaces of V

Pyber’s conjecture holds for almost simple groups.

e Benbenishty, 2005: Standard groups (with explicit constant)

o Liebeck & Shalev, 1999: There is a constant ¢ such that b(G) < ¢
for all non-standard G (c = 7 is optimal)



Diagonal groups

Let G < Sym(Q) be a primitive diagonal-type group of degree n, so
Tk< G < TR (Out(T) x P)

where k > 2, T is a nonabelian simple group, and P < S is the group
induced by the conjugation action of G on the k factors of TX.

Theorem (Fawcett, 2013)

Pyber’s conjecture holds for diagonal groups:

b(G) < [M] 2
log n

In fact, b(G) =2 if P # A, Sk.



Affine groups

Let G = V x Gy < AGL(V) be a primitive affine group, so V = (Fp)¢
and Gy < GL(V) is irreducible.

Seress, 1996: Go soluble = b(G)< 4
Gluck & Magaard, 1998: pt|G| = b(G) <95

Halasi & Podoski, 2014: pt|G| = b(G)<3

Theorem (Liebeck & Shalev, 2002)

Pyber’s conjecture holds (with an explicit constant) for all affine groups
G = V x Gg such that Gy < GL(V) is primitive (as a linear group).




Pyber's conjecture: The remaining cases

To complete the proof, we need to handle the following cases:

(A) G =V x Gy < AGL(V) insoluble, where V = (F,)?, Gy < GL(V) is
imprimitive and p divides |G|

(B) G is a product-type group

(C) G is a twisted wreath product
Our main theorem deals with cases (B) and (C):

Theorem (B & Seress, 2013)

Pyber’s conjecture holds for all non-affine groups.




Product-type groups

Let H < Sym(I") be a primitive group.

Fix kK > 2 and set

W=H1S =H"xS={(h,...,h)m : hj € Hm € Sk}

Product action: Combine the natural actions of H* and Sy on Q = I'k:

(1, ) 0 = () () )

This defines a faithful, primitive action of W on Q.



Product-type groups

Let H < Sym(I') be a primitive almost simple or diagonal group.
Set W = H 1Sk, Q =T* and view W < Sym(Q) via the product action.

Let A= Soc(H) and B = Soc(W), so B = Ak,

A subgroup G < W < Sym(€Q) is a primitive product-type group if
e AK < G; and
e G induces a transitive group P < Sy on the k factors of AX.

In particular,
Soc(G) =A< G HIP



The Key Lemma

Let G < Sym(X) be a finite permutation group and let p = (X1,..., Xn)
be an m-partition of X.

Define G, = ﬂ Gix;): the intersection of the setwise stabilisers of the X;.
i=1

Note: If m =2 then G, = Gyx,) is just the setwise stabiliser of Xi

Key Lemma
There is a constant ¢ with the following property:

If G < Sym(X) is a transitive permutation group of degree k then there
exist 2-partitions {p1, ..., p¢} of X such that

¢
I
ﬂGp;=1 and /< ( + ng‘G’>

i=1



Key Lemma

There is a constant ¢ with the following property:

If G < Sym(X) is a transitive permutation group of degree k then there
exist 2-partitions {p1, ..., p¢} of X such that

‘

I
ﬂGpizl and €<C(1+ng|G|>
i=1

This is essentially best possible:

log |G
Example. If G = Sy then at least [log k| > ng|| distinct 2-partitions

are required, e.g. if k = 8 take

p1=({1,2,3,4},{5,6,7,8})
p2 = ({1,2,5,6},{3,4,7,8})
p3 = ({1,3,5,7},{2,4,6,8})



Applying the Key Lemma
Let G < Sym(Q) be a primitive product-type group, where Q = I'%,
TK<GKHIP=HxP

and H < Sym(l') is an almost simple primitive group with socle T.

Recall that P < S, is transitive and G acts on Q via

("Yl, - ,fyk)(hh...,hk)ﬂ' _ (("/17771)h1”71 N (’}/kw—l)hkﬂil)



Applying the Key Lemma

Let G < Sym(R) be a primitive product-type group, where Q = 'k,
TK<SG<KHIP=HxP

and H < Sym(l') is an almost simple primitive group with socle T.

Let {v1,...,7} C T be a base for H with b = b(H).

For 1 < i< bseta;=(yi...,7) € Q.

If g = (h1,...,hx)m € G fixes each «; then

(Vir 7)) = (Vi 1) = ((’Yi)h”il ,...,(fy,-)hkﬂ*)

so h; fixes ~; for all i and all j. Therefore g = (1,...,1)7.



Since P < Sk is transitive, let {p1,..., p¢} be 2-partitions of X = [1, k]
provided by the Key Lemma, where

log | P
€<c1(1+0g| !)

k

for some constant ¢;. Set r = [log|l'|| and assume ¢ > r.

e Set Y ={p1,...,pr} and let 0 = (01, ...,0s) be the common
refinement of the partitions in Y.

i.e., if pi = (Ai, Bj), 1 <i < r, then the o; are the nonempty subsets
in the collection

{ClﬂC2ﬁ~--ﬁCr : C,'E{A;,B;},lgigr}

@ By construction, o is an s-partition of X, s < 2" < || and each ojis
contained in one of the two parts of each 2-partition in Y.

o Note: m € S fixes 0 = 7 fixes each p; € Y



An example. k=8, r =2

P11 = ({1,3,6}, {2,4,5,7,8}) = (Al, Bl)

p2 = ({4,6,7,8},{1,2,3,5}) = (A2, Bo)

o= (A]_ NA,AINBy,, BiNA), BiN BQ)
= ({6}7 {173}7 {47 7, 8}7 {27 5})

m € Sg fixes 0 = 7 fixes p1 and py



Since P < Sy is transitive, let {p1,..., p¢} be 2-partitions of X = [1, k]
provided by the Key Lemma, where

log | P
£<c1(1+°gk|’)

for some constant c;. Set r = [log ||| and assume ¢ > r.

o Y={p1,....,pr}, 0 =(01,...,05), s <2" < |I'| and each g is
contained in one of the two parts of each 2-partition in Y.

@ Choose distinct 71,...,7s € ' and define 5 € Q so that all the
coordinates in 3 corresponding to points in o; are equal to ;.

eg. if k=8and o =({1,3,4},{2,7},{5,6,8}), then s = 3 and
B = (71,72, 71, 71, 13, 13, Y2, 73) € M8 = Q

Note. 7 € S fixes 5 = m fixes 0 = m fixes each p; € Y



Since P < Sk is transitive, let {p1,..., p¢} be 2-partitions of X = [1, k]
provided by the Key Lemma, where

log |P
f<C1<1+ng|’)

for some constant ¢;. Set r = [log|l'|| and assume ¢ > r.

o Y={p1,....,pr}, 0 =(01,...,05), s <2" < |I'| and each g is
contained in one of the two parts of each 2-partition in Y.

@ Choose distinct 71,...,7s € ' and define 5 € Q so that all the
coordinates in [ corresponding to points in o; are equal to 7;.

g=(1,...,1)w € G fixes § = T fixes o
— 7 fixes each p; € Y

In this way, we obtain {f1,...,Br/n} CQsothatif g =(1,...,1)mr€ G
fixes each B; then 7 fixes p1,...,p¢, so m =1 and thus g = 1.



We now have a base {a1,...,ap, B1,..., 8.} for G, where

log |P| log |H|
t<al1 Cr=llog|l||, b= b(H)<
e (1 B = ogirl), b= (k) < i

for constants ¢y, ¢; (via Pyber for almost simple groups).

Note that |H| < |Aut(T)| < |T|? (H is almost simple with socle T), so

1
61> TP > (JHI¥PI)?

HE) < /1 +0 < |y + gy | + gy

log ||
<o loslPl log [H|*
= Plog|] T log Q]
log |G|

]



Proof of the Key Lemma

Key Lemma
There is a constant ¢ with the following property:

If G < Sym(A) is a transitive permutation group of degree k then there
exist 2-partitions {p1,...,p¢} of A such that

¢
I
ﬂGpizl and €<c<1+¥>
=i



Distinguishing number

The distinguishing number D(G) of a permutation group G < Sym(A)
is the minimal m such that A admits an m-partition with trivial stabiliser.

Examples:
e D(G)=1 <<= G=1
@ D(G) =2 <= G has a regular orbit on the power set of A

o D(S¢) =k and D(Ay) =k —1

Let G be a primitive group of degree k, with G # Ay, Sk.
Cameron, Neumann & Saxl, 1984: D(G) =2if k>0
Seress, 1997: D(G) =2 if k > 32

Dolfi, 2000: D(G) < 4 for all k



Key Lemma: The primitive case
Let G < Sym(A) be a primitive group of degree k.

Case 1. If G # Ak, Sk then D(G) < 4 by Dolfi, so let (X1, X2, X3, Xs) be
a distinguishing partition of A. Then the stabiliser of the 2-partitions

(X1 U Xz, X3 U X4) , (X1 U Xz, Xo U X4)

is trivial.

Case 2. If G = Ak or Sk then [log k| < 2 (1 + %) 2-partitions are
sufficient, e.g. if k = 8 then take

({1,2,3,4},{5,6,7,8}), ({1,2,5,6},{3,4,7,8}), ({1,3,5,7},{2,4,6,8})



The imprimitive case

Let G < Sym(A) be imprimitive, where A = [1, k].

Fix a structure tree for G. This is a rooted tree T, with levels To = {A}
(the root), T1,..., Ts—1 and Ts = {{x} : x € A} (the leaves).
Example: G = 5,053, A = [1,12]:

N

{1,2,3,4} {5,6,7,8} {9,10,11,12}

AN PN TN

{1y {2y 38+ {4 {5y {6} {7} {8 {9} {10} {11} {12}

[1,12]




Structure trees
Fix a structure tree for G. This is a rooted tree T, with levels Ty = {A}
(the root), T1,..., Ts—1 and Ts = {{x} : x € A} (the leaves).

@ The vertices on each fixed level of T correspond to subsets in a
G-invariant partition of A

@ The action of G on A extends naturally to an action on T

o If x € T;_1 is a non-leaf vertex with children A(x) C T; then
e A(x) is a partition of x

e G,, the setwise stabiliser of x in G, acts primitively on A(x); the
induced group is denoted by G(x) < Sym(A(x))

o Level T;is large if |A(x)| > 7 and G(x) = Alt(A(x)) or Sym(A(x))
for some (hence all) x € T;_;



The Key Lemma: G imprimitive, no large levels

Key Lemma

There is a constant ¢ with the following property:

If G < Sym(A) is a transitive permutation group of degree k then there
exist 2-partitions {p1,...,p¢} of A such that

¢
[
ﬂGpizl and Eéc(l—i—%)
i=1

Theorem. If G < Sym(A) is imprimitive with a structure tree T with no
large levels, then the Key Lemma holds with { = 6.



G imprimitive, no large levels

G < Sym(A) is imprimitive with a structure tree T with no large levels.
Let x € T be a non-leaf vertex with children A(x).

Then G(x) < Sym(A(x)) is primitive and D(G(x)) < 6 by Dolfi, so there
exist three 2-partitions

A(x) = Aj(x)UAj(x), 1</j<3

such that the intersection of their stabilisers in G(x) is trivial.

We inductively define three 3-colourings of the vertices of T, denoted
Fi: T —=TFs3 1<j<3.
Set Fj(Tp) =0. For x € T; and y € A(x) we define

Fi(x) if y € Aj(x)
2 { Fi(x) +1 ifi € A(x)



An example. Fix j € {1,2,3}

Every non-root vertex in T is either a square or circle:

Squares: children of x in Aj(x)
Circles: children of x in Aj(x)’
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An example. Fix j € {1,2,3}

Every non-root vertex in T is either a square or circle:

Squares: children of x in Aj(x)
Circles: children of x in Aj(x)’



Claim. If g € G fixes each Fj-colouring of T, then g = 1.

Let x = Tg be the root vertex. Then g stabilises the 2-partitions
A(x) = Aj(x) UAj(x), j=1,2,3

so g fixes T1 pointwise.

Let y € T1. Then g € G, stabilises the 2-partitions
Aly) = Aj(y)ULi(y), j=1,2,3
so g fixes A(y) pointwise. Therefore g fixes T pointwise.

By induction on i =0,1,...,s, g fixes ToU Ty U---U T; pointwise, so g
fixes Ts = A pointwise and thus g = 1.



Claim. If g € G fixes each Fj-colouring of T, = A, then g = 1.

Each Fj-colouring of T can be reconstructed from the corresponding
colouring of the leaves.

By induction on i =s,5 —1,...,0, g € G fixes the Fj-colouring of
TiUTi1U---UTs.
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An example. Fix j € {1,2,3}

Every non-root vertex in T is either a square or circle:

Squares: children of x in Aj(x)
Circles: children of x in Aj(x)’



Claim. If g € G fixes each Fj-colouring of T; = A then g = 1.
Each Fj-colouring of T can be reconstructed from the corresponding
colouring of the leaves.

By induction on i = 5,5 —1,...,0, g fixes each Fj-colouring of
TiUTigqU---U Ts.

Therefore, g fixes all three Fj-colourings of T, so g = 1.
The final step!

G-stabiliser of Fj-colouring of A = G-stabiliser of a 3-partition of A
= Gy, N Gp,, where p; is a 2-partition of A

Theorem. There are 2-partitions {p1,...,pe} of A such that

6
(G =1
i=1



Concluding remarks

@ A similar, but more complicated, argument via tree colourings applies
if T has large levels.

@ We can argue by induction on the number of large levels — the base
case (a unique large level) is the most difficult.

@ For product-type groups G, the constant ¢ such that

log |G|
log n

b(G) < c

is undetermined.

o A proof of Pyber’s conjecture?





