Pyber's base size conjecture

Tim Burness University of Bristol

Joint work with Ákos Seress

Group Theory Seminar Ecole Polytechnique Fédérale de Lausanne March 26th 2015

Introduction

Let $G \leq \text{Sym}(\Omega)$ be a permutation group.

A subset B of Ω is a **base** if the pointwise stabiliser of B in G is trivial. The **base size** of G, denoted b(G), is the minimal size of a base.

Examples:

- G has a regular orbit on $\Omega \iff b(G) = 1$
- $G = S_n$, $\Omega = \{1, \ldots, n\} = [1, n] \implies b(G) = n 1$
- $G = D_{2n}$, $\Omega = \{$ vertices of a regular *n*-gon $\} \implies b(G) = 2$
- $G = GL(V), \ \Omega = V \implies b(G) = \dim V$

Preliminary bounds

Let G be a permutation group on a finite set Ω with a base B.

If $x, y \in G$ and $\alpha^x = \alpha^y$ for all $\alpha \in B$, then x = y. So $|G| \leq |\Omega|^{|B|}$ and

$$b(G) \geqslant \frac{\log |G|}{\log |\Omega|}$$

For an upper bound, let $B = \{\alpha_1, \dots, \alpha_{b(G)}\} \subseteq \Omega$ be a base. Then

$$G > G_{\alpha_1} > G_{\alpha_1,\alpha_2} > \cdots > G_{\alpha_1,\dots,\alpha_{b(G)-1}} > G_{\alpha_1,\dots,\alpha_{b(G)}} = 1$$

so $|G| \ge 2^{b(G)}$ and thus

$$rac{\log|G|}{\log|\Omega|}\leqslant b(G)\leqslant \log|G|$$

$$rac{\log |G|}{\log |\Omega|} \leqslant b(G) \leqslant \log |G|$$

Example 1. Let $G = S_n$ and $\Omega = \{1, \ldots, n\}$. Then

$$b(G) = n - 1 < 2 \frac{\log |G|}{\log |\Omega|}$$

Example 2. Let $G = Z_2 \wr Z_k = Z_2^k \rtimes Z_k$ and $\Omega = \{1, \ldots, 2k\}$, so G preserves the partition

$$\Omega = \{1,2\} \cup \{3,4\} \cup \cdots \cup \{2k-1,2k\}$$

Then

$$b(G) = k = \log|G| - \log k > \frac{1}{2}\log|G|$$

Primitivity

Let $G \leq \text{Sym}(\Omega)$ be a finite transitive permutation group.

The **degree** of G is $|\Omega|$, and the **socle** of G, denoted Soc(G), is the product of the minimal normal subgroups of G.

Definition. G is **primitive** if the only G-invariant partitions of Ω are $\{\Omega\}$ and $\{\{\alpha\} : \alpha \in \Omega\}$, otherwise G is **imprimitive**.

Equivalently, G is primitive iff G_{α} is a maximal subgroup of G.

Examples:

- **Primitive:** $G = S_n$, $\Omega = \{1, ..., n\}$
- Imprimitive (but transitive): $G = Z_2 \wr Z_k$, $\Omega = \{1, \ldots, 2k\}$

Pyber's conjecture

"All primitive permutation groups have small bases"

Conjecture (Pyber, 1993)

There is a constant c such that

$$p(G) \leqslant c \frac{\log|G|}{\log n}$$

for any primitive group G of degree n.

Primitivity is essential, e.g. $G = Z_2 \wr Z_k$, $k = 2^{\ell}$, $n = 2k = 2^{\ell+1}$:

$$b(G) = 2^{\ell}, \quad \frac{\log |G|}{\log n} = \frac{2^{\ell} + \ell}{\ell + 1}$$

Primitive groups

Let $G \leq \text{Sym}(\Omega)$ be a finite primitive permutation group.

The possibilities for G are described by the **O'Nan-Scott Theorem**

(Here T is a nonabelian simple group, $k \ge 2$, $V = (\mathbb{F}_p)^d$)

Туре	Description
I	Almost simple: $T \leq G \leq Aut(T)$
П	Diagonal: $T^k \leq G \leq T^k.(\operatorname{Out}(T) \times P), P \leq S_k$
Ш	Affine: $G = V \rtimes G_0 \leqslant AGL(V)$, $G_0 \leqslant GL(V)$ irreducible
IV	Product-type: $G \leq H \wr P$, H primitive type I or II, $P \leq S_k$
V	Twisted wreath product

Almost simple groups

Let $G \leq \text{Sym}(\Omega)$ be an **almost simple** primitive group with socle T, so $T \leq G \leq \text{Aut}(T)$

Say *G* is **standard** if one of the following holds:

- $T = A_n$ and Ω is an orbit of subsets or partitions of $\{1, \ldots, n\}$
- T = Cl(V) is a classical group and Ω is an orbit of subspaces of V

Theorem

Pyber's conjecture holds for almost simple groups.

- Benbenishty, 2005: Standard groups (with explicit constant)
- Liebeck & Shalev, 1999: There is a constant c such that b(G) ≤ c for all non-standard G (c = 7 is optimal)

Diagonal groups

Let $G \leq \text{Sym}(\Omega)$ be a primitive **diagonal-type** group of degree *n*, so

$$T^k \leqslant G \leqslant T^k.(\operatorname{Out}(T) \times P)$$

where $k \ge 2$, T is a nonabelian simple group, and $P \le S_k$ is the group induced by the conjugation action of G on the k factors of T^k .

Theorem (Fawcett, 2013)

Pyber's conjecture holds for diagonal groups:

$$b(G) \leqslant \left\lceil \frac{\log |G|}{\log n} \right\rceil + 2$$

In fact, b(G) = 2 if $P \neq A_k, S_k$.

Affine groups

Let $G = V \rtimes G_0 \leq AGL(V)$ be a primitive affine group, so $V = (\mathbb{F}_p)^d$ and $G_0 \leq GL(V)$ is irreducible.

Seress, 1996: G_0 soluble \Rightarrow $b(G) \leq 4$ Gluck & Magaard, 1998: $p \nmid |G_0|$ \Rightarrow $b(G) \leq 95$ Halasi & Podoski, 2014: $p \nmid |G_0|$ \Rightarrow $b(G) \leq 3$

Theorem (Liebeck & Shalev, 2002)

Pyber's conjecture holds (with an explicit constant) for all affine groups $G = V \rtimes G_0$ such that $G_0 \leq GL(V)$ is primitive (as a linear group).

Pyber's conjecture: The remaining cases

To complete the proof, we need to handle the following cases:

- (A) $G = V \rtimes G_0 \leq AGL(V)$ insoluble, where $V = (\mathbb{F}_p)^d$, $G_0 \leq GL(V)$ is imprimitive and p divides $|G_0|$
- (B) G is a product-type group
- (C) G is a twisted wreath product

Our main theorem deals with cases (B) and (C):

Theorem (B & Seress, 2013)

Pyber's conjecture holds for all non-affine groups.

Product-type groups

Let $H \leq \text{Sym}(\Gamma)$ be a primitive group.

Fix $k \ge 2$ and set

$$W = H \wr S_k = H^k \rtimes S_k = \{(h_1, \ldots, h_k)\pi : h_i \in H, \pi \in S_k\}$$

Product action: Combine the natural actions of H^k and S_k on $\Omega = \Gamma^k$:

$$(\gamma_1, \ldots, \gamma_k)^{(h_1, \ldots, h_k)\pi} = \left((\gamma_{1^{\pi^{-1}}})^{h_{1^{\pi^{-1}}}}, \ldots, (\gamma_{k^{\pi^{-1}}})^{h_{k^{\pi^{-1}}}} \right)$$

This defines a faithful, primitive action of W on Ω .

Product-type groups

Let $H \leq \text{Sym}(\Gamma)$ be a primitive **almost simple** or **diagonal** group.

Set $W = H \wr S_k$, $\Omega = \Gamma^k$ and view $W \leq \text{Sym}(\Omega)$ via the product action.

Let A = Soc(H) and B = Soc(W), so $B = A^k$.

A subgroup $G \leqslant W \leqslant \mathsf{Sym}(\Omega)$ is a primitive **product-type** group if

- $A^k \leq G$; and
- G induces a transitive group $P \leq S_k$ on the k factors of A^k .

In particular,

$$\operatorname{Soc}(G) = A^k \leqslant G \leqslant H \wr P$$

The Key Lemma

Let $G \leq \text{Sym}(X)$ be a finite permutation group and let $\rho = (X_1, \dots, X_m)$ be an *m*-partition of *X*.

Define $G_{\rho} = \bigcap_{i=1}^{m} G_{\{X_i\}}$: the intersection of the setwise stabilisers of the X_i .

Note: If m = 2 then $G_{\rho} = G_{\{X_1\}}$ is just the setwise stabiliser of X_1

Key Lemma

There is a constant c with the following property:

If $G \leq \text{Sym}(X)$ is a transitive permutation group of degree k then there exist 2-partitions $\{\rho_1, \ldots, \rho_\ell\}$ of X such that

$$igcap_{i=1}^\ell {{\mathcal{G}}_{{
ho}_i}} = 1 \;\; {
m and} \;\; \ell \leqslant c \left({1 + rac{{\log \left| {{\mathcal{G}}}
ight|}}{k}}
ight)$$

Key Lemma

There is a constant c with the following property:

If $G \leq \text{Sym}(X)$ is a transitive permutation group of degree k then there exist 2-partitions $\{\rho_1, \ldots, \rho_\ell\}$ of X such that

$$igcap_{i=1}^\ell {\mathit G}_{
ho_i} = 1 \;\; {
m and} \;\; \ell \leqslant c \left(1 + rac{\log |{\mathit G}|}{k}
ight)$$

This is essentially **best possible**:

Example. If $G = S_k$ then at least $\lceil \log k \rceil > \frac{\log |G|}{k}$ distinct 2-partitions are required, e.g. if k = 8 take

$$\begin{aligned} \rho_1 &= (\{1,2,3,4\},\{5,6,7,8\})\\ \rho_2 &= (\{1,2,5,6\},\{3,4,7,8\})\\ \rho_3 &= (\{1,3,5,7\},\{2,4,6,8\}) \end{aligned}$$

Applying the Key Lemma

Let $G \leq \text{Sym}(\Omega)$ be a primitive **product-type** group, where $\Omega = \Gamma^k$,

$$T^k \leqslant G \leqslant H \wr P = H^k \rtimes P$$

and $H \leq \text{Sym}(\Gamma)$ is an **almost simple** primitive group with socle T. Recall that $P \leq S_k$ is transitive and G acts on Ω via

$$(\gamma_1,\ldots,\gamma_k)^{(h_1,\ldots,h_k)\pi} = \left(\left(\gamma_{1^{\pi^{-1}}}\right)^{h_{1^{\pi^{-1}}}},\ldots,\left(\gamma_{k^{\pi^{-1}}}\right)^{h_{k^{\pi^{-1}}}} \right)$$

Applying the Key Lemma

Let $G \leq \operatorname{Sym}(\Omega)$ be a primitive **product-type** group, where $\Omega = \Gamma^k$,

$$T^k \leqslant G \leqslant H \wr P = H^k \rtimes P$$

and $H \leq \text{Sym}(\Gamma)$ is an **almost simple** primitive group with socle T.

Let
$$\{\gamma_1, \dots, \gamma_b\} \subseteq \Gamma$$
 be a base for H with $b = b(H)$.
For $1 \leq i \leq b$ set $\alpha_i = (\gamma_i, \dots, \gamma_i) \in \Omega$.
If $g = (h_1, \dots, h_k)\pi \in G$ fixes each α_i then
 $(\gamma_i, \dots, \gamma_i) = (\gamma_i, \dots, \gamma_i)^g = ((\gamma_i)^{h_1\pi^{-1}}, \dots, (\gamma_i)^{h_k\pi^{-1}})$

so h_j fixes γ_i for all i and all j. Therefore $g = (1, \ldots, 1)\pi$.

Since $P \leq S_k$ is transitive, let $\{\rho_1, \ldots, \rho_\ell\}$ be 2-partitions of X = [1, k] provided by the **Key Lemma**, where

$$\ell \leqslant c_1 \left(1 + \frac{\log |P|}{k} \right)$$

for some constant c_1 . Set $r = \lfloor \log |\Gamma| \rfloor$ and assume $\ell \ge r$.

Set Y = {ρ₁,..., ρ_r} and let σ = (σ₁,..., σ_s) be the common refinement of the partitions in Y.

i.e., if $\rho_i = (A_i, B_i)$, $1 \le i \le r$, then the σ_j are the nonempty subsets in the collection

$$\{C_1 \cap C_2 \cap \cdots \cap C_r : C_i \in \{A_i, B_i\}, 1 \leq i \leq r\}$$

- By construction, σ is an s-partition of X, s ≤ 2^r ≤ |Γ| and each σ_j is contained in one of the two parts of each 2-partition in Y.
- Note: $\pi \in S_k$ fixes $\sigma \implies \pi$ fixes each $\rho_i \in Y$

An example. k = 8, r = 2

$$\rho_1 = (\{1, 3, 6\}, \{2, 4, 5, 7, 8\}) = (A_1, B_1)$$

$$\rho_2 = (\{4, 6, 7, 8\}, \{1, 2, 3, 5\}) = (A_2, B_2)$$

$$\sigma = (A_1 \cap A_2, A_1 \cap B_2, B_1 \cap A_2, B_1 \cap B_2)$$

= ({6}, {1, 3}, {4, 7, 8}, {2, 5})

$$\pi \in S_8$$
 fixes $\sigma \implies \pi$ fixes ρ_1 and ρ_2

Since $P \leq S_k$ is transitive, let $\{\rho_1, \ldots, \rho_\ell\}$ be 2-partitions of X = [1, k] provided by the **Key Lemma**, where

$$\ell \leqslant c_1 \left(1 + rac{\log |P|}{k}
ight)$$

for some constant c_1 . Set $r = \lfloor \log |\Gamma| \rfloor$ and assume $\ell \ge r$.

- Y = {ρ₁,..., ρ_r}, σ = (σ₁,..., σ_s), s ≤ 2^r ≤ |Γ| and each σ_j is contained in one of the two parts of each 2-partition in Y.
- Choose distinct γ₁,..., γ_s ∈ Γ and define β ∈ Ω so that all the coordinates in β corresponding to points in σ_i are equal to γ_i.

e.g. if
$$k = 8$$
 and $\sigma = (\{1, 3, 4\}, \{2, 7\}, \{5, 6, 8\})$, then $s = 3$ and

$$\beta = (\gamma_1, \gamma_2, \gamma_1, \gamma_1, \gamma_3, \gamma_3, \gamma_2, \gamma_3) \in \Gamma^8 = \Omega$$

Note. $\pi \in S_8$ fixes $\beta \implies \pi$ fixes $\sigma \implies \pi$ fixes each $\rho_i \in Y$

Since $P \leq S_k$ is transitive, let $\{\rho_1, \ldots, \rho_\ell\}$ be 2-partitions of X = [1, k] provided by the **Key Lemma**, where

$$\ell \leqslant c_1 \left(1 + rac{\log |P|}{k}
ight)$$

for some constant c_1 . Set $r = \lfloor \log |\Gamma| \rfloor$ and assume $\ell \ge r$.

- Y = {ρ₁,..., ρ_r}, σ = (σ₁,..., σ_s), s ≤ 2^r ≤ |Γ| and each σ_j is contained in one of the two parts of each 2-partition in Y.
- Choose distinct γ₁,..., γ_s ∈ Γ and define β ∈ Ω so that all the coordinates in β corresponding to points in σ_i are equal to γ_i.

$$g = (1, \dots, 1)\pi \in G$$
 fixes $\beta \implies \pi$ fixes $\sigma \implies \pi$ fixes each $\rho_i \in Y$

In this way, we obtain $\{\beta_1, \ldots, \beta_{\lceil \ell/r \rceil}\} \subseteq \Omega$ so that if $g = (1, \ldots, 1)\pi \in G$ fixes each β_i then π fixes $\rho_1, \ldots, \rho_\ell$, so $\pi = 1$ and thus g = 1.

We now have a base $\{\alpha_1, \ldots, \alpha_b, \beta_1, \ldots, \beta_{\lceil \ell/r \rceil}\}$ for *G*, where

$$\ell \leqslant c_1\left(1+rac{\log|P|}{k}
ight), \ \ r=\lfloor\log|\Gamma|
floor, \ \ b=b(H)\leqslant c_2rac{\log|H|}{\log|\Gamma|}$$

for constants c_1 , c_2 (via Pyber for almost simple groups).

Note that $|H| \leq |\operatorname{Aut}(T)| \leq |T|^2$ (*H* is almost simple with socle *T*), so

$$|G| \ge |T|^k |P| \ge \left(|H|^k |P| \right)^{\frac{1}{2}}$$

$$\begin{split} b(G) \leqslant \lceil \ell/r \rceil + b \leqslant \left\lceil c_1 \frac{1}{\lfloor \log |\Gamma| \rfloor} + c_1 \frac{\log |P|}{k \lfloor \log |\Gamma| \rfloor} \right\rceil + c_2 \frac{\log |H|}{\log |\Gamma|} \\ \leqslant c_3 \frac{\log |P|}{\log |\Omega|} + c_4 \frac{\log |H|^k}{\log |\Omega|} \\ \leqslant c_5 \frac{\log |G|}{\log |\Omega|} \end{split}$$

Proof of the Key Lemma

Key Lemma

There is a constant c with the following property:

If $G \leq \text{Sym}(\Delta)$ is a transitive permutation group of degree k then there exist 2-partitions $\{\rho_1, \ldots, \rho_\ell\}$ of Δ such that

$$igcap_{i=1}^\ell G_{
ho_i} = 1 \; \; ext{and} \; \; \ell \leqslant c \left(1 + rac{\log |G|}{k}
ight)$$

Distinguishing number

The **distinguishing number** D(G) of a permutation group $G \leq \text{Sym}(\Delta)$ is the minimal *m* such that Δ admits an *m*-partition with trivial stabiliser.

Examples:

•
$$D(G) = 1 \iff G = 1$$

• $D(G)=2\iff G$ has a regular orbit on the power set of Δ

•
$$D(S_k) = k$$
 and $D(A_k) = k - 1$

Let G be a primitive group of degree k, with $G \neq A_k, S_k$.

Cameron, Neumann & Saxl, 1984: D(G) = 2 if $k \gg 0$

Seress, 1997: D(G) = 2 if k > 32

Dolfi, 2000: $D(G) \leq 4$ for all k

Key Lemma: The primitive case

Let $G \leq \text{Sym}(\Delta)$ be a **primitive** group of degree *k*.

Case 1. If $G \neq A_k$, S_k then $D(G) \leq 4$ by **Dolfi**, so let (X_1, X_2, X_3, X_4) be a distinguishing partition of Δ . Then the stabiliser of the 2-partitions

$$(X_1 \cup X_2, X_3 \cup X_4), \ (X_1 \cup X_3, X_2 \cup X_4)$$

is trivial.

Case 2. If $G = A_k$ or S_k then $\lceil \log k \rceil < 2\left(1 + \frac{\log|G|}{k}\right)$ 2-partitions are sufficient, e.g. if k = 8 then take $(\{1, 2, 3, 4\}, \{5, 6, 7, 8\}), (\{1, 2, 5, 6\}, \{3, 4, 7, 8\}), (\{1, 3, 5, 7\}, \{2, 4, 6, 8\})$

The imprimitive case

Let $G \leq \text{Sym}(\Delta)$ be **imprimitive**, where $\Delta = [1, k]$.

Fix a **structure tree** for *G*. This is a rooted tree *T*, with levels $T_0 = \{\Delta\}$ (the **root**), T_1, \ldots, T_{s-1} and $T_s = \{\{x\} : x \in \Delta\}$ (the **leaves**).

Example: $G = S_4 \wr S_3$, $\Delta = [1, 12]$:

Structure trees

Fix a **structure tree** for *G*. This is a rooted tree *T*, with levels $T_0 = \{\Delta\}$ (the **root**), T_1, \ldots, T_{s-1} and $T_s = \{\{x\} : x \in \Delta\}$ (the **leaves**).

- The vertices on each fixed level of T correspond to subsets in a G-invariant partition of Δ
- The action of G on Δ extends naturally to an action on T
- If $x \in T_{i-1}$ is a non-leaf vertex with children $\Delta(x) \subseteq T_i$ then
 - $\Delta(x)$ is a partition of x
 - G_x, the setwise stabiliser of x in G, acts primitively on Δ(x); the induced group is denoted by G(x) ≤ Sym(Δ(x))
- Level T_i is large if $|\Delta(x)| \ge 7$ and $G(x) = Alt(\Delta(x))$ or $Sym(\Delta(x))$ for some (hence all) $x \in T_{i-1}$

The Key Lemma: G imprimitive, no large levels

Key Lemma

There is a constant c with the following property:

If $G \leq \text{Sym}(\Delta)$ is a transitive permutation group of degree k then there exist 2-partitions $\{\rho_1, \ldots, \rho_\ell\}$ of Δ such that

$$igcap_{i=1}^\ell G_{
ho_i} = 1 \;\; ext{and} \;\; \ell \leqslant c \left(1 + rac{\log |G|}{k}
ight)$$

Theorem. If $G \leq \text{Sym}(\Delta)$ is imprimitive with a structure tree T with no large levels, then the Key Lemma holds with $\ell = 6$.

G imprimitive, no large levels

 $G \leq \text{Sym}(\Delta)$ is imprimitive with a structure tree T with **no large levels**.

Let $x \in T$ be a non-leaf vertex with children $\Delta(x)$.

Then $G(x) \leq \text{Sym}(\Delta(x))$ is primitive and $D(G(x)) \leq 6$ by **Dolfi**, so there exist three 2-partitions

$$\Delta(x) = \Delta_j(x) \cup \Delta_j(x)', \ 1 \leqslant j \leqslant 3$$

such that the intersection of their stabilisers in G(x) is trivial.

We inductively define three 3-colourings of the vertices of T, denoted F_j : $T \to \mathbb{F}_3$, $1 \leq j \leq 3$.

Set $F_j(T_0) = 0$. For $x \in T_j$ and $y \in \Delta(x)$ we define

$$F_j(y) = \begin{cases} F_j(x) & \text{if } y \in \Delta_j(x) \\ F_j(x) + 1 & \text{if } y \in \Delta_j(x)' \end{cases}$$

An example. Fix $j \in \{1, 2, 3\}$

An example. Fix $j \in \{1, 2, 3\}$

An example. Fix $j \in \{1, 2, 3\}$

Claim. If $g \in G$ fixes each F_i -colouring of T, then g = 1.

Let $x = T_0$ be the root vertex. Then g stabilises the 2-partitions

$$\Delta(x) = \Delta_j(x) \cup \Delta_j(x)', \ j = 1, 2, 3$$

so g fixes T_1 pointwise.

Let $y \in T_1$. Then $g \in G_y$ stabilises the 2-partitions

 $\Delta(y) = \Delta_j(y) \cup \Delta_j(y)', \ j = 1, 2, 3$

so g fixes $\Delta(y)$ pointwise. Therefore g fixes T_2 pointwise.

By induction on i = 0, 1, ..., s, g fixes $T_0 \cup T_1 \cup \cdots \cup T_i$ pointwise, so g fixes $T_s = \Delta$ pointwise and thus g = 1.

Claim. If $g \in G$ fixes each F_i -colouring of $T_s = \Delta$, then g = 1.

Each F_j -colouring of T can be reconstructed from the corresponding colouring of the leaves.

By induction on i = s, s - 1, ..., 0, $g \in G$ fixes the F_j -colouring of $T_i \cup T_{i+1} \cup \cdots \cup T_s$.

An example. Fix $j \in \{1, 2, 3\}$

An example. Fix $j \in \{1, 2, 3\}$

An example. Fix $j \in \{1, 2, 3\}$

Claim. If $g \in G$ fixes each F_i -colouring of $T_s = \Delta$ then g = 1.

Each F_j -colouring of T can be reconstructed from the corresponding colouring of the leaves.

By induction on i = s, s - 1, ..., 0, g fixes each F_j -colouring of $T_i \cup T_{i+1} \cup \cdots \cup T_s$.

Therefore, g fixes all three F_j -colourings of T, so g = 1.

The final step!

G-stabiliser of F_j -colouring of $\Delta = G$ -stabiliser of a 3-partition of Δ = $G_{\rho_1} \cap G_{\rho_2}$, where ρ_i is a 2-partition of Δ

Theorem. There are 2-partitions $\{\rho_1, \ldots, \rho_6\}$ of Δ such that

$$igcap_{i=1}^6 \mathit{G}_{
ho_i} = 1$$

Concluding remarks

- A similar, but more complicated, argument via tree colourings applies if T has large levels.
- We can argue by induction on the number of large levels the base case (a unique large level) is the most difficult.
- For product-type groups G, the constant c such that

$$b(G) \leqslant c \frac{\log |G|}{\log n}$$

is undetermined.

• A proof of Pyber's conjecture?