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Abstract. Let G be a finite primitive permutation group on a set Ω with nontrivial point
stabilizer Gα. We say that G is extremely primitive if Gα acts primitively on each of its
orbits in Ω \ {α}. These groups arise naturally in several different contexts and their study
can be traced back to work of Manning in the 1920s. In this paper, we determine the almost
simple extremely primitive groups with socle an exceptional group of Lie type. By combining
this result with earlier work of Burness, Praeger and Seress, this completes the classification
of the almost simple extremely primitive groups. Moreover, in view of results by Mann,
Praeger and Seress, our main theorem gives a complete classification of all finite extremely
primitive groups, up to finitely many affine exceptions (and it is conjectured that there
are no exceptions). Along the way, we also establish several new results on base sizes for
primitive actions of exceptional groups, which may be of independent interest.
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1. Introduction

Let G 6 Sym(Ω) be a finite primitive permutation group with point stabilizer H = Gα 6= 1.
We say that G is extremely primitive if H acts primitively on each of its orbits in Ω \ {α}
(this term was coined by Mann, Praeger and Seress in [65]). Equivalently, G is extremely
primitive if and only if H ∩Hx is a maximal subgroup of H for all x ∈ G \H. For example,
the natural action of G = PGL2(q) on the projective line over Fq is extremely primitive (here
G is 2-transitive and H is a Borel subgroup). These groups arise naturally in several different
contexts, including the construction of some of the sporadic simple groups (in particular J2

and HS) and the study of permutation groups with restricted movement (see [68]).

By a theorem of Manning [66, Corollary I, p.821] from 1927, if G is extremely primitive
then H acts faithfully on each of its orbits in Ω \ {α}. In particular, H ∩Hx is a core-free
maximal subgroup of H for all x ∈ G \H. In turn, this implies that H is itself a primitive
permutation group on each of its nontrivial orbits and thus the O’Nan-Scott Theorem imposes
strong restrictions on the structure of H. In particular, H has at most two minimal normal
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subgroups, and the socle of H (denoted by soc(H)) is a direct product of isomorphic simple
groups.

Recall that G is almost simple if G0 6 G 6 Aut(G0) for some nonabelian simple group
G0, which is the unique minimal normal subgroup of G. Also recall that G is affine if Ω has
the structure of a vector space over a prime field Fp and G acts by affine transformations. A
major step towards the classification of the extremely primitive groups is a theorem of Mann,
Praeger and Seress [65], which states that each extremely primitive group is either almost
simple or of affine type. Furthermore, they classify the affine examples up to the possibility
of finitely many extremely primitive groups of the form G = V :H, where V = Fd2 and
H 6 GL(V ) is irreducible and almost simple (as discussed below, it is conjectured that there
are no additional examples). In later work [19, 20], Burness, Praeger and Seress determined all
the extremely primitive almost simple groups with socle an alternating, classical or sporadic
group.

In this paper, we complete the picture by determining the extremely primitive almost
simple groups with socle an exceptional group of Lie type. Note that in the statement of
Theorem 1, we exclude the Ree groups with socle 2G2(3)′ ∼= L2(8).

Theorem 1. Let G 6 Sym(Ω) be an almost simple group with stabilizer H and socle an
exceptional group of Lie type. Then G is extremely primitive if and only if (G,H) = (G2(4), J2)
or (G2(4).2, J2.2).

By combining Theorem 1 with the results in [19, 20], we can now complete the classification
of the almost simple extremely primitive groups.

Theorem 2. Let G 6 Sym(Ω) be an almost simple group with stabilizer H and socle G0.
Then G is extremely primitive if and only if (G,H) is one of the cases in Table 1.

Remark 1. Let us make some comments on the statement of Theorem 2.

(i) In view of the isomorphisms

L2(4) ∼= L2(5) ∼= Alt5, L2(9) ∼= Alt6

we assume q > 7 and q 6= 9 in the fifth and sixth rows of Table 1 with G0 = L2(q).
Similarly, we assume G0 6= L4(2),L3(2), 2G2(3)′ since L4(2) ∼= Alt8, L3(2) ∼= L2(7)
and 2G2(3)′ ∼= L2(8).

(ii) In the fifth row of the table, P1 denotes a Borel subgroup of G.

(iii) In the final column we describe the extremely primitive groups with socle G0 and
H ∩ G0 as given in the second column (if no conditions are recorded, then every
almost simple group with socle G0 is extremely primitive).

(iv) In the third column we record the rank of G, which is the number of orbits of H on Ω
(so the almost simple 2-primitive groups have rank 2). In the special case G = G2(4).α
arising in Theorem 1, we have

|G : H| = 1 + 100 + 315

and the stabilizers for the nontrivial orbits of H are the maximal subgroups U3(3).α
and 21+4:Alt5.α of H = J2.α.

(v) In the eighth row, G0 = U4(3) and (G,H) = (G0.2
2,L3(4).22) or (G0.2,L3(4).2). More

precisely, G = G0.〈x, y〉 or G0.〈y〉, where x is an involutory diagonal automorphism
(class 2B in the notation of [26]) and y is an involutory graph automorphism with
centralizer of type O−4 (3) (class 2F).

(vi) In the ninth row, G0 = L3(4) and (G,H) = (G0.2
2,Alt6.2

2) or (G0.2,Alt6.2), where in
the latter case, G = G0.〈x〉 and x is an involutory graph or graph-field automorphism
(classes 2B or 2D).
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G0 H ∩G0 Rank Conditions

Altn (Symn/2 o Sym2) ∩G0
1
4(n+ 2) n ≡ 2 (mod 4)

Altn Altn−1 2 G = Symn or Altn
Alt6 L2(5) 2 G = Sym6 or Alt6

Alt5 D10 2
L2(q) P1 2
L2(q) D2(q+1)

1
2q G = G0, q + 1 is a Fermat prime

Spn(2) O±n (2) 2 n > 6
U4(3) L3(4) 3 See Remark 1(v)
L3(4) Alt6 3 See Remark 1(vi)
L2(11) Alt5 2 G = G0

G2(4) J2 3
M11 Sym6 2
M11 L2(11) 2
M12 M11 2 G = G0

M22 L3(4) 2
M23 M22 2
M24 M23 2
J2 U3(3) 3
HS M22 3
HS U3(5) 2 G = G0

Suz G2(4) 3
McL U4(3) 3
Ru 2F4(2) 3
Co2 U6(2) 3
Co2 McL 6
Co3 McL 2

Table 1. The extremely primitive almost simple groups

(vii) It is worth noting the following unrefinable chain of subgroups of Conway’s sporadic
group Co3:

Co3 > McL.2 > U4(3).2 > L3(4).2 > PGL2(9) > 32:8

For each inclusion K > H in this chain, K is extremely primitive on K/H.

(viii) Let us also highlight the remarkable rank 6 example that arises when G = Co2 and
H = McL. Here

|G : H| = 47104 = 1 + 275 + 2025 + 7128 + 15400 + 22275

and the respective stabilizers for the nontrivial orbits of H are U4(3), M22, U3(5),
34:M10 and 24:Alt7, each of which is a maximal subgroup of H.

Let G 6 Sym(Ω) be a finite primitive permutation group and let e(G) > 0 be the largest
integer k with the property that for every `-set ∆ ⊆ Ω with 1 6 ` 6 k, the pointwise stabilizer
G∆ is nontrivial and acts primitively on its orbits in Ω\∆. Note that G is extremely primitive
if and only if e(G) > 1. Suppose G = V :H is affine and e(G) > 3, where V = Fdp. Then
Hv1,v2,v3 is a maximal subgroup of Hv1,v2 for all triples of distinct nonzero vectors in V . By
setting v3 = λv1 if p > 2 and v3 = v1 +v2 if p = 2, where 1 6= λ ∈ F×p , we get Hv1,v2,v3 = Hv1,v2

and so there are no affine groups with e(G) > 3. By inspecting the almost simple groups in
Table 1, we obtain the following corollary.

Corollary 3. Let G be a finite primitive group of degree n with e(G) > 3. Then G is
4-transitive and one of the following holds:
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G0 H ∩G0 Conditions
Alt6 (Sym3 o Sym2) ∩G0

Alt5 Alt4

Alt5 D10

L2(q) P1

L2(q) D2(q+1) G = G0, q + 1 is a Fermat prime

Table 2. The extremely primitive almost simple groups with solvable point stabilizer

(i) G ∼= Symn and e(G) = n− 2.

(ii) G ∼= Altn, n > 6 and e(G) = n− 3.

(iii) (G,n) = (M12, 12) or (M24, 24) and e(G) = 3.

By combining Theorem 2 with the main results from [65] on affine groups, we obtain the
following theorem. Note that in part (ii)(a), a prime divisor r of pd − 1 is a primitive prime
divisor if r does not divide pi− 1 for all i = 1, . . . , d− 1 (in other words, the order of p mod r
is d). Also recall that a primitive group is simply primitive if it is not 2-transitive.

Theorem 4. Let G 6 Sym(Ω) be a finite extremely primitive group with point stabilizer H.
Then either

(i) G is almost simple and (G,H) is one of the cases in Table 1; or

(ii) G = V :H 6 AGLd(p) is affine, p is a prime and one of the following holds:

(a) H = Zr.Ze, where e divides d and r is a primitive prime divisor of pd − 1.

(b) p = 2 and H = SLd(2) with d > 3, or H = Spd(2) with d > 4.

(c) p = 2 and (d,H) = (4,Alt6), (4,Alt7), (6,U3(3)) or (6,U3(3).2).

(d) p = 2 and (d,H) is one of the following:

(10,M12) (10,M22) (10,M22.2) (11,M23)
(11,M24) (22,Co3) (24,Co1) (2k,Alt2k+1)
(2k,Sym2k+1) (2`,Alt2`+1) (2`,Sym2`+1) (2`,Ω±2`(2))
(2`,O±2`(2)) (8,L2(17)) (8, Sp6(2))

where k > 2 and ` > 3.

(e) p = 2, H is almost simple and G is simply primitive.

Moreover, every group in parts (i) and (ii)(a,b,c,d) is extremely primitive.

As an immediate corollary we get the following result, which shows that if G 6 Sym(Ω) is
extremely primitive, then in almost every case Gα acts as a primitive group of almost simple
or affine type on each of its orbits in Ω \ {α} (the exceptions arise in part (iii), where Gα
acts as a product-type primitive group).

Corollary 5. Let G 6 Sym(Ω) be a finite extremely primitive group with point stabilizer H.
Then one of the following holds:

(i) H is almost simple.

(ii) H is solvable and either

(a) G is almost simple with socle G0 and (G,H) is recorded in Table 2; or

(b) G 6 AGLd(p) is affine and H = Zr.Ze, where e divides d and r is a primitive
prime divisor of pd − 1.

(iii) G = Symn or Altn, n ≡ 2 (mod 4), n > 10 and H = (Symn/2 o Sym2) ∩G.

By Theorem 4, in order to complete the classification of extremely primitive groups, it
remains to handle the affine groups G = V :H arising in part (ii)(e), where H 6 GL(V ) is
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almost simple and V = Fd2. Let M be the set of maximal subgroups of H, and for M ∈M,
let fix(M) be the space of vectors in V fixed by M . By [65, Lemma 4.1], we have∑

M∈M
(|fix(M)| − 1) 6 2d − 1,

with equality if and only if G is extremely primitive. Since dim fix(M) 6 d/2 for each M ∈M,

it follows that G is not extremely primitive if |M| < 2d/2. In this way, upper bounds on
|M|, combined with lower bounds on the dimensions of irreducible modules for H, play an
important role in the analysis. In particular, a theorem of Liebeck and Shalev [58] implies

that |M| < |H|8/5 for all sufficiently large almost simple groups H and this is a key ingredient
in the proof that there are at most finitely many extremely primitive affine groups arising in
part (ii)(e) of Theorem 4.

A well known conjecture of G.E. Wall from 1961 asserts that |M| < |H|. Wall’s conjecture
was originally formulated for all finite groups, but counterexamples have recently been
constructed, see [62]. However, the conjecture has been established for all sufficiently large
alternating and symmetric groups (see [58]) and a theorem of Liebeck, Martin and Shalev

[49] implies that |M| < |H|1+o(1) for all almost simple groups H of Lie type. If one assumes
Wall’s conjecture for almost simple groups, then [65, Theorem 4.8] identifies a very short and
explicit list of affine groups that can arise in part (ii)(e) of Theorem 4 (see [65, Table 2]). In
each case, H is an almost simple group of Lie type (and defined over the field F2, with just
one exception) and it is conjectured in [65] that none of these groups are extremely primitive.
In other words, the list of extremely primitive groups in parts (i) and (ii)(a,b,c,d) of Theorem
4 is conjectured to be complete. See Remark 2 below for some additional comments on the
cases in [65, Table 2].

Let G 6 Sym(Ω) be a finite primitive permutation group with stabilizer H = Gα. There
are several different methods for showing that G is not extremely primitive. As mentioned
previously, Manning’s result [66] implies that if G is extremely primitive, then H acts faithfully
and primitively on each of its nontrivial orbits and this imposes strong restrictions on the socle
of H, via the O’Nan-Scott Theorem (see Lemma 2.1, for example). If the socle is compatible
with extreme primitivity, then it may be the case that the rank of G and the indices of the
maximal subgroups of H are incompatible (for instance, see Lemma 2.3). In other situations,
it may be possible to identify an explicit element x ∈ G such that H∩Hx < H is non-maximal
(see Lemma 2.4, for example).

Recall that a subset B of Ω is a base for G if the pointwise stabilizer of B in G is trivial.
The base size of G, denoted b(G,H), is then the minimal size of a base for G. If b(G,H) = 2,
then this implies that there exists x ∈ G such that H ∩Hx = 1, which is maximal in H if and
only if H has prime order. Since no maximal subgroup of an almost simple group has prime
order, the base-two property rules out extreme primitivity in this situation. This criterion,
combined with a probabilistic approach for bounding the base size (see Lemma 2.7), provides
a powerful technique for showing that a given group is not extremely primitive.

There is a substantial literature on bases for almost simple primitive groups, see [9, 10,
15, 17, 18], for example. In particular, there has been significant interest in determining the
primitive permutation groups with a base of size 2, which is a far-reaching project initiated
by Jan Saxl in the 1990s. This remains an open problem, although there has been a lot of
progress in recent years. In order to prove Theorem 1, we will establish several new base
results for primitive groups with socle an exceptional group of Lie type. These results make
an important contribution to ongoing efforts to determine all the base-two almost simple
groups and they significantly strengthen some of the results presented in [17], where the
general bound b(G,H) 6 6 is established. We anticipate that Propositions 4.2 and 5.5, as well
as Theorem 7.1, will be of independent interest and applicable to other problems (see [11, 13]
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for some immediate applications). A systematic study of bases for almost simple exceptional
groups will be the subject of a future paper.

Remark 2. The base-two problem has also been studied for primitive groups of affine type.
Here G = V :H, where H 6 GL(V ) is irreducible, and in this setting we have b(G,H) = 2 if
and only if H has a regular orbit on the module V . In particular, determining if G admits
a base of size 2 is a very natural problem in the representation theory of finite groups. For
example, it plays an important role in the solution to the famous k(GV ) problem [69], which
in turn proves part of a conjecture of Brauer on defect groups of blocks [7].

In recent work, Lee [46, 47, 48] has conducted an in-depth study of base sizes for affine
groups of the form G = V :H, where H is an almost simple group of Lie type. In particular, as
a corollary of her much more detailed results, she is able to eliminate some of the extremely
primitive candidates in [65, Table 2]. More precisely, if G = V :H with V = Fd2 then Lee
proves that b(G,H) = 2 in each of the following cases (d, soc(H)) listed in [65, Table 2]:

(40,PSp4(9)), (40,L5(2)), (48,Ω±8 (2)), (100,Sp10(2)), (126,L9(2)),

together with the cases d =
(
k
3

)
and H = Lk(2) with 10 6 k 6 14. For the remaining groups,

either the precise base size is undetermined, or it is known to be at least 3.

By adopting a different approach, we prove in [22] that none of the groups recorded in [65,
Table 2] are extremely primitive. In particular, this reduces the classification of the affine
extremely primitive groups to Wall’s conjecture for almost simple groups.

Notation. Let G be a finite group and let n be a positive integer. Our group theoretic
notation is standard. In particular, we will write Zn, or just n, for a cyclic group of order n
and Gn will denote the direct product of n copies of G. An unspecified extension of G by a
group H will be denoted by G.H. If X is a subset of G, then in(X) is the number of elements
of order n in X. We adopt the standard notation for simple groups from [36]. The Fitting
subgroup of G will be denoted F (G) and the socle of G is soc(G). For positive integers a
and b, we write (a, b) for the greatest common divisor of a and b. Further notation will be
introduced as and when needed in the main text.

Organisation. In Section 2 we record some preliminary results, which will be needed in the
proof of Theorem 1. This includes a discussion of some general techniques for proving that a
given primitive group is not extremely primitive. We also present several results on conjugacy
classes in almost simple exceptional groups of Lie type, which will be applied repeatedly later
in the paper. In Sections 3 and 4 we prove Theorem 1 in the cases where a point stabilizer is
a maximal parabolic or maximal rank subgroup of G, respectively. It is worth noting that the
latter subgroups require considerably more effort and the proof of Theorem 4.1 spans almost
30 pages. In Sections 5, 6 and 7, we complete the proof of Theorem 1 for the groups with
socle E8(q), E7(q), Eε6(q), F4(q) or G2(q). Here we organise our analysis in accordance with a
key theorem of Liebeck and Seitz on the subgroup structure of exceptional groups (Theorem
5.1), which partitions the remaining possibilities for Gα into several families. Finally, we
complete the proof in Section 8, where the remaining twisted groups are handled.

Acknowledgements. The authors thank David Craven, Martin Liebeck, Alastair Litterick
and Jay Taylor for helpful conversations regarding the content of this paper. They also thank
the Isaac Newton Institute for Mathematical Sciences for support and hospitality during
the programme Groups, Representations and Applications: New perspectives, when some of
the work on this paper was undertaken. This work was supported by: EPSRC grant number
EP/R014604/1.
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2. Preliminaries

2.1. Extremely primitive groups. Let G 6 Sym(Ω) be a finite primitive permutation
group with point stabilizer H = Gα. In this section, we record three results which can be
used to show that G is not extremely primitive.

By a theorem of Guralnick [33, Theorem 3], H acts faithfully on at least one of its orbits
in Ω \ {α}. Moreover, if we assume G is extremely primitive then Manning’s theorem [66,
Corollary I, p.821] implies that H acts faithfully and primitively on all of its orbits in Ω \ {α}.
In particular, if G is extremely primitive then we can view H itself as a primitive permutation
group and this allows us to apply the O’Nan-Scott Theorem to impose strong restrictions on
the structure of H.

Lemma 2.1. Suppose one of the following holds:

(i) Z(H) 6= 1;

(ii) F (H) is not elementary abelian;

(iii) F (H) = Zdp is elementary abelian and pd does not divide |Ω| − 1;

(iv) F (H) = Zdp is elementary abelian and H/F (H) is not isomorphic to an irreducible
subgroup of GLd(p);

(v) soc(H) is not a direct product of isomorphic simple groups.

Then G is not extremely primitive.

Proof. As noted above, if G is extremely primitive then H is a primitive permutation group
on all of its orbits in Ω\{a} and by applying the O’Nan-Scott Theorem we deduce that either

(a) F (H) = 1 and soc(H) is a direct product of isomorphic nonabelian simple groups; or

(b) H = F (H)K is an affine group, where K 6 GLd(p) is irreducible and soc(H) =
F (H) = Zdp acts regularly on each H-orbit in Ω \ {α}.

The result follows (also see [19, Lemma 2.2]). �

Remark 2.2. Suppose G is extremely primitive with F (H) 6= 1. Then as in case (b) in the
proof of Lemma 2.1, we have H = F (H)K with soc(H) = F (H) = Zdp and K 6 GLd(p).
Since F (H) acts regularly on the H-orbits in Ω \ {α}, every nontrivial element in F (H) has
a unique fixed point on Ω and we deduce that F (H) ∩Kg = 1 for all g ∈ G. We thank an
anonymous referee for making this observation.

The next result records an elementary observation which will be useful when we can
compute the rank r of G (that is, the number of orbits of H on Ω) and we know the indices
of all the core-free maximal subgroups of H. For example, if the character tables of G and
H are available and we can compute the fusion of H-classes in G (using the GAP Character
Table Library [8], for example), then we can use the Orbit Counting Lemma to compute r.
See the proofs of Lemmas 4.13, 4.20, 5.4, 7.5 and 7.6, for example.

Lemma 2.3. Suppose G has rank r and let {M1, . . . ,Mk} be representatives of the H-classes
of core-free maximal subgroups of H. Set ni = |H : Mi| for i = 1, . . . , k. Suppose there is no
k-tuple of non-negative integers [a1, . . . , ak] with

∑
i ai = r − 1 and

∑
i aini = |Ω| − 1. Then

G is not extremely primitive.

Proof. Since G has rank r, there exist βi ∈ Ω such that

Ω = {α} ∪ βH1 ∪ · · · ∪ βHr−1
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is a disjoint union of H-orbits. If G is extremely primitive, then each stabilizer Hβj is a
maximal core-free subgroup of H, whence

|Ω| = 1 +

r−1∑
j=1

|βHj | = 1 +

r−1∑
j=1

|H : Hβj | = 1 +

k∑
i=1

aini

for some k-tuple [a1, . . . , ak] of non-negative integers with
∑

i ai = r−1. The result follows. �

The next lemma is a key tool in the proof of Theorem 1.

Lemma 2.4. Let G = G0.A be an almost simple group with socle G0 and let H = H0.A be
a maximal subgroup of G with H0 = H ∩ G0. Let K be a proper A-stable subgroup of H0

and let M be the set of maximal overgroups of K in H0. Assume that each of the following
conditions are satisfied:

(i) H0 is a maximal subgroup of G0;

(ii) Each M ∈M is A-stable;

(iii) There exists g ∈ NG0(K) such that Mg 66 H0 for all M ∈M.

Then H ∩Hg−1
is a non-maximal subgroup of H and thus the action of G on G/H is not

extremely primitive.

Proof. Let L be a maximal subgroup of H containing K. If L contains H0 then L/H0 is
maximal in H/H0 = A and thus L = H0.B with B < A maximal. On the other hand, if
L does not contain H0 then H = H0L and we deduce that L = (H0 ∩ L).A. Then since
K 6 H0 ∩L, the maximality of L in H implies that L = M.A for some M ∈M (here we are
using (ii)).

Let g ∈ NG0(K) be an element satisfying the condition in (iii). Seeking a contradiction,

suppose H ∩Hg−1
is a maximal subgroup of H. From the above description of the maximal

overgroups of H containing K, it follows that either (M.A)g or (H0.B)g must be contained in
H for some M ∈M or maximal subgroup B < A. If (M.A)g < H then Mg < H ∩G0 = H0

and this contradicts (iii). Similarly, if (H0.B)g < H then 〈H0, H
g
0 〉 6 H, but 〈H0, H

g
0 〉 = G0

since H0 is a maximal subgroup of G0 and g 6∈ H0 (by (i) and (iii)). In both cases we reach a
contradiction and this completes the proof of the lemma. �

The following example demonstrates how we will apply Lemma 2.4.

Example 2.5. Suppose G = E8(q) and H = Ω+
16(q) with q even, so G = G0 and H = H0.

Set K = Ω+
8 (q)2 < H and observe that M = NH(K) = K.22 is the unique maximal overgroup

of K in H. Since L = K.(Sym3 × 2) is a maximal subgroup of G (see [50, Table 5.1]), it
follows that NG(K) = L. Now M is not normal in L, so there exists g ∈ NG(K) such that
Mg 6= M . Since M is the unique maximal overgroup of K in H, it follows that Mg 66 H and

thus Lemma 2.4 implies that H ∩Hg−1
is non-maximal in H. We refer the reader to Lemma

4.6, where the general case with G0 = E8(q) and H of type D8(q) is handled.

2.2. Base-two groups. Recall that the base size of G, denoted by b(G,H), is the smallest
size of a subset B ⊆ Ω such that

⋂
α∈B Gα = 1. In particular, b(G,H) = 2 if and only if there

exists an element x ∈ G such that H ∩Hx = 1.

Since no maximal subgroup of an almost simple group has prime order, we obtain the
following result.

Lemma 2.6. If G is almost simple and b(G,H) = 2, then G is not extremely primitive.

As discussed in Section 1, there is an extensive literature on bases for almost simple primitive
groups and there has been a special interest in determining the groups with b(G,H) = 2. For
the exceptional groups of Lie type, the main references are [10, 17]. In particular, the main
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theorem of [17] states that b(G,H) 6 6 if G is any almost simple primitive group with socle
of exceptional type. This is a key step in the proof of an influential conjecture of Cameron on
bases for so-called non-standard almost simple primitive groups (see [17] and the references
therein).

Probabilistic methods play a key role in the proof of Cameron’s base size conjecture. This
approach arises from an elementary observation due to Liebeck and Shalev (see the proof of
Theorem 1.3 in [59]). Fix a positive integer c and notice that a c-tuple of points in Ω is not a
base for G if and only if there exists an element x ∈ G of prime order fixing each element in
the tuple. Now the probability that a given element x ∈ G fixes a uniformly random element
in Ω is given by the expression

fpr(x,G/H) =
|CΩ(x)|
|Ω|

=
|xG ∩H|
|xG|

,

which is the fixed point ratio of x (here CΩ(x) is the set of fixed points of x on Ω). It follows
easily that if Q(G, c) is the probability that a randomly chosen c-tuple in Ω is not a base then

Q(G, c) 6
∑
x∈P

fpr(x,G/H)c,

where P is the set of elements of prime order in G. In particular, if this upper bound is less
than 1, then b(G,H) 6 c and thus upper bounds on fixed point ratios can be used to bound
the base size. For exceptional groups of Lie type, which are the main focus of this paper, we
refer the reader to [44] for a systematic study of fixed point ratios in this setting.

As a special case, we record the following lemma.

Lemma 2.7. Let x1, . . . , xk be representatives of the G-classes of elements of prime order
in H and set

Q(G,H) =

k∑
i=1

|xGi | ·
(
|xGi ∩H|
|xGi |

)2

. (1)

If Q(G,H) < 1 then b(G,H) = 2.

The next result is [9, Lemma 2.1], which is a useful tool for bounding Q(G,H).

Lemma 2.8. Suppose x1, . . . , xm represent distinct G-classes such that
∑

i |xGi ∩H| 6 A
and |xGi | > B for all i. Then

m∑
i=1

|xGi | ·
(
|xGi ∩H|
|xGi |

)2

6 A2/B.

Remark 2.9. We have now introduced several methods for showing that a given permutation
group G with point stabilizer H = Gα is not extremely primitive. Let us briefly summarise
how we will apply these techniques in the proof of Theorem 1.

(i) First we will seek to apply Lemma 2.1, noting that if the structure of H is incompatible,
then it can be quickly eliminated. The remaining groups will then be partitioned
into two collections, according to the order of H. If |H| is small, which will typically

mean |H| � |G|1/2, then it is often possible to force b(G,H) = 2 via Lemma 2.7
and a careful analysis of the conjugacy classes of elements of prime order in H (in
particular, we are interested in the corresponding G-classes of these elements).

(ii) For the remaining groups, it may be possible to apply Lemma 2.3 in some special cases;
typically, this will depend on whether or not we can access the relevant character
tables in [8]. But in general, our main aim will be to identify a subgroup K of H0

with the desired properties in Lemma 2.4. To do this, it will often be convenient to
work first with the ambient algebraic groups and then descend to the relevant finite
groups by taking the fixed points of a suitable Steinberg endomorphism.
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x1 Long root element
x2 Unipotent element of order p, not a long root element

(nor a short root element if (Ḡ, p) = (F4, 2) or (G2, 3))
x3 Semisimple involution
x4 Semisimple element of odd prime order
x5 Prime order element in G \ Inndiag(G0)

Table 3. The elements xi ∈ G in Proposition 2.11

(iii) In order to handle some special cases where the underlying field Fq is small, we will
sometimes use computational methods. See Section 2.4 for further details.

2.3. Conjugacy classes. Let G be an almost simple group with socle G0, an exceptional
group of Lie type over Fq, where q = pf with p prime. Write G0 = (Ḡσ)′, where Ḡ is a
simple algebraic group of adjoint type over the algebraic closure F̄p and σ is an appropriate
Steinberg endomorphism of Ḡ. Recall that Ḡσ = Inndiag(G0) is the group of inner-diagonal
automorphisms of G0.

In order to effectively apply the base-two criterion discussed in Section 2.2, we will need
detailed information on the centralizers and conjugacy classes of elements of prime order in
G. Here there is an extensive literature to draw upon and our primary sources will be [57] for
an in-depth treatment of unipotent classes and [61] for information on semisimple classes.
The centralizers of prime order graph, field and graph-field automorphisms of exceptional
groups are described in [43, Proposition 1.1]. We refer the reader to [14, Chapter 3] for a
convenient source of information on conjugacy classes in the finite classical groups.

Remark 2.10. The terminology we adopt for automorphisms in this paper is fairly stan-
dard, although there are differences in the literature. In particular, we will refer to graph
automorphisms of F4(q) and G2(q) when p = 2 and 3, respectively. This is consistent with
[24], for example, but not [32], where the term graph-field automorphism is preferred.

The next result gives lower bounds on the sizes of conjugacy classes in G, according to
the type of elements in the class. Note that in Table 4, we set α = (q − 1)/q, β = (2, q − 1),
γ = (3, q − 1) and δ = (3, q + 1).

Proposition 2.11. Let G be an almost simple group with socle G0, an exceptional group of
Lie type over Fq, where q = pf with p prime. Let xi ∈ G be an element of prime order, as
described in Table 3. Then |xGi | > `i, where the `i are given in Table 4.

Proof. This is an entirely straightforward computation, using the available information on
conjugacy classes and centralizers in [57, 61] and [43, Proposition 1.1].

For example, suppose Ḡσ = G0 = F4(q) and q is odd, so

|G0| = q24(q2 − 1)(q6 − 1)(q8 − 1)(q12 − 1).

If x ∈ G0 is a long root element, then x is contained in the unipotent class labelled A1 in [57,
Table 22.2.4] and we read off

|xG| = |G0|
q15|Sp6(q)|

= (q4 + 1)(q12 − 1) > q16 = `1.

The next smallest unipotent class is labelled Ã1 in Ḡ (these are the short root elements);
since p is odd, this Ḡ-class splits into two Ḡσ-classes and we have

|xG| = |G0|
2q15|SLε4(q)|

=
1

2
q3(q3 + ε)(q4 + 1)(q12 − 1) >

1

2
(q − 1)q21 = `2.
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G0 `1 `2 `3 `4 `5

E8(q) q58 q92 q112 αq114 q124

E7(q) q34 q52 α
2 q

54 αq54 1
β q

133/2

E6(q) q22 q32 q32 q32 α
γ q

26

2E6(q) αq22 αq32 αq32 αq32 1
δ q

26

F4(q) q16 α
2 q

22 q16 αq30 q26

G2(q) αq6 αq8 q8 αq6 q7

3D4(q) αq10 q16 q16 αq18 q14

2F4(q), q > 23 αq11 αq14 − αq18 q52/3

2G2(q), q > 33 αq4 α
2 q

5 αq4 1
2q

6 q14/3

2B2(q) αq3 − − 1
2q

4 q10/3

Table 4. The lower bounds |xGi | > `i in Proposition 2.11

Now assume x ∈ G0 is a semisimple involution. There are two classes of involutions in G0,
with CḠ(x) = A1C3 or B4, and we see that |xG| is minimal when CḠ(x) = B4 ([32, Table
4.5.1] is an excellent source of information on semisimple involutions). Therefore,

|xG| > |G0|
|SO9(q)|

= q8(q8 + q4 + 1) > q16 = `3.

If x ∈ G0 is a semisimple element of odd order then by inspecting [61] we deduce that |xG| is
minimal when CḠ(x) = B3T1 or C3T1 (here T1 denotes a 1-dimensional torus). This yields

|xG| > |G0|
|SO7(q)|(q + 1)

> (q − 1)q29 = `4.

Finally, if x ∈ G \ G0 has prime order r, then x is a field automorphism, q = qr0 and
CG0(x) = F4(q0), so |xG| is minimal when r = 2 and we get

|xG| > |G0|
|F4(q1/2)|

= q12(q + 1)(q3 + 1)(q4 + 1)(q6 + 1) > q26 = `5.

The other groups are handled in a similar fashion and we omit the details. �

In almost every case, we see that |xG| is minimal when x is a long root element (or a short
root element when (Ḡ, p) = (F4, 2) or (G2, 3)). Therefore, it will be important to know when
certain maximal subgroups of G contain such elements. With this in mind, we present the
following result for algebraic groups, which is a simplified version of [43, Proposition 1.13].

Proposition 2.12. Let Ḡ be a simple algebraic group, let M̄ be a connected reductive subgroup
of Ḡ and assume u ∈ NḠ(M̄) is a long root element.

(i) If u ∈ M̄ and M̄ is semisimple, then u is a root element in one of the simple factors
of M̄ .

(ii) If u 6∈ M̄ , then p = 2 and M̄ = X̄Ȳ is a commuting product such that u centralizes
X̄, and Ȳ is either a simple factor of type Dn or a 1-dimensional torus.

In the special case where M̄ is a maximal torus of Ḡ, we get the following corollary (this
is based on an observation in the proof of [44, Lemma 4.3]).

Corollary 2.13. Let Ḡ be a simple algebraic group and let σ be a Steinberg endomorphism
of Ḡ. Let G = Ḡσ and let H = NG(T̄σ), where T̄ is a σ-stable maximal torus of Ḡ. If x ∈ H
is a root element in G, then p = 2 and

|xG ∩H| 6 |Σ+(Ḡ)| |T̄σ|,
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where Σ+(Ḡ) is the set of positive roots in the root system of Ḡ.

Proof. By Proposition 2.12(ii), if w ∈ NḠ(T̄ ) is a root element, then p = 2 and w centralizes
a subtorus in T̄ of codimension 1. In particular, w corresponds to a reflection in the Weyl
group W (Ḡ) = NḠ(T̄ )/T̄ and the result follows since there are precisely |Σ+(Ḡ)| reflections
in W (Ḡ). �

The following result is [44, Proposition 1.3].

Proposition 2.14. Let G0 = (Ḡσ)′ be a finite simple group of Lie type and let N = |Σ+(Ḡ)|
be the number of positive roots in the root system of Ḡ. Set

N2 =
1

α
(dim Ḡ−N), N3 =

1

α
(dim Ḡ− 2

3
N),

where α = 2 if G0 = 2F4(q), 2G2(q) or 2B2(q), otherwise α = 1.

(i) For r ∈ {2, 3}, we have ir(Aut(G0)) < 2(q + 1)qNr−1.

(ii) The number of unipotent elements in Ḡσ is equal to q2N/α.

2.4. Computational methods. As previously remarked, it is feasible to use computational
methods to handle certain groups defined over small fields and these computations can be
implemented in Magma [4] or GAP [31]. Here we briefly outline the main techniques we will
use, referring the reader to [21] for a more detailed discussion, which includes the relevant
code we used to obtain the results.

2.4.1. Permutation representations. In some cases, we can work with a suitable permutation
representation of G in Magma and we can construct H as a subgroup of G. Then by
random search, we can seek an element x ∈ G such that H ∩Hx is non-maximal in H (or
H∩Hx = 1 if we wish to show that b(G,H) = 2). Typically, we will use the Magma command
AutomorphismGroupSimpleGroup to construct Aut(G0) as a permutation group and we then
identify G as a subgroup of Aut(G0). We can then construct H via the MaximalSubgroups

command, or by a direct construction if needed. For example, we may have H = NG(CG(x))
for some element x ∈ G, which provides a way to construct H directly.

2.4.2. Character tables. In order to effectively apply Lemma 2.3, we need to know the rank
of G (or a suitable bound on the rank). If the character tables of G and H are available in
the GAP Character Table Library [8] then we may be able to use GAP [31] to compute the
fusion map from H-classes to G-classes via the command FusionConjugacyClasses. If this
is possible, then we can calculate |xG ∩H| for each x ∈ H, which yields

|CΩ(x)| = |x
G ∩H|
|xG|

· |G : H|.

(If the fusion map is not stored, then it may still be possible to proceed in the same way by
using the command PossibleClassFusions.) We can then calculate the rank r of G since

r =
1

|H|
∑
x∈H
|CΩ(x)|

by the Orbit Counting Lemma. Finally, it may be feasible to determine the indices of the
maximal subgroups of H, for example by working with a suitable permutation representation
and the Magma command MaximalSubgroups. Typically, H is almost simple and the relevant
information on maximal subgroups may also be available in the Web Atlas [78], for example.
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2.4.3. Lie type computations. In Magma, there are sophisticated in-built functions for working
with groups of Lie type in terms of their associated Lie structures, such as their root subgroups
and Weyl group, etc. Therefore, if H can be defined in terms of this data (for example, if
H = H̄σ and H̄ is a σ-stable subsystem subgroup of Ḡ), then it may be possible to construct
H as a subgroup of an appropriate group of Lie type via the GroupOfLieType command (in
practice, it may be easier to construct H as a subgroup of a larger group of Lie type which
contains G). We can then obtain detailed information on the conjugacy classes of H and
the action of class representatives on certain modules for G0, such as the adjoint module.
In turn, this will allow us to estimate |xG ∩ H| and |xG| for all elements x ∈ H of prime
order and we can use these estimates to derive an upper bound on the function Q(G,H) in
(1). For example, if x ∈ H is unipotent, then we can often use the Jordan form of x on the
adjoint module for G0 to determine the Ḡ-class of x via [40]. If the bound we obtain gives
Q(G,H) < 1, then b(G,H) = 2 by Lemma 2.7 and G is not extremely primitive.

2.4.4. Small groups. To close this preliminary section, it is convenient to use computational
methods to establish Theorem 1 for some small groups.

Theorem 2.15. Let G be an almost simple primitive group with socle G0 and point stabilizer
H, where G0 is one of

2B2(8), 2B2(32), 2F4(2)′, 3D4(2), G2(2)′, G2(3), G2(4), G2(5). (2)

Then G is extremely primitive if and only if (G,H) = (G2(4), J2) or (G2(4).2, J2.2).

Proof. This is an entirely straightforward Magma [4] computation, working with a suitable
permutation representation of G (see [21, Theorem 2.1] for further details). �

Remark 2.16. Suppose G is one of the groups in Theorem 2.15 and let b = b(G,H) denote
the base size of G. If G0 6= G2(2)′ then b is recorded in [17, Tables 11 and 12]. For completeness,
let us record that if G0 = G2(2)′ ∼= U3(3) then b 6 3, with equality if and only if H is one of

31+2:8.α, GU2(3).α, 42:Sym3.α, L2(7).α

where α = |G : G0|. In each case, this is an easy Magma computation.

3. Parabolic subgroups

Let G be an almost simple primitive permutation group with socle G0 and point stabilizer
H, where G0 is a simple exceptional group of Lie type over Fq and q = pf with p a prime. In
this section, we begin the proof of Theorem 1 by handling the groups where H is a maximal
parabolic subgroup.

We begin with a preliminary lemma. The following result is presumably well known, but
we include a proof because we were unable to find one in the literature. Note that we are not
assuming P is a maximal parabolic subgroup of G0 (although the subgroups that arise in
parts (i) and (ii) are maximal and they are labelled in the usual manner).

Lemma 3.1. Let P be a parabolic subgroup of G0. Then the unipotent radical of P is abelian
if and only if (G0, P ) is one of the following:

(i) G0 = E6(q) and P = P1 or P6.

(ii) G0 = E7(q) and P = P7.

Proof. Let Q be the unipotent radical of P . To begin with, let us assume G0 is not one of
the following groups:

F4(q) (p = 2), G2(q) (p = 2, 3), 2F4(q), 2G2(q), 2B2(q). (3)

Let r be the untwisted Lie rank of G0 and fix a set of simple roots α1, . . . , αr for the
corresponding root system, labelled as in [5]. By [2, Theorems 2 and 3], the nilpotency
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class of Q, which we denote by c(Q), is independent of the field and it can be calculated as
follows. First recall that the conjugacy classes of parabolic subgroups of G0 are in bijective
correspondence with the subsets of [r] = {1, . . . , r}; under this correspondence, the maximal
parabolic subgroups line up with subsets of size r − 1, while the Borel subgroups correspond
to the empty set. Now, if P corresponds to the subset I = {i1, . . . , ik}, then [2] gives
c(Q) =

∑
i∈[r]\I ci, where α0 =

∑r
i=1 ciαi is the highest root for G0. It is now a routine

calculation with the root system of G0 to show that the only cases with c(Q) = 1 are the
maximal parabolic subgroups in the statement of the lemma.

To complete the proof, let us consider the groups in (3). First assume G0 = F4(q) (with
p = 2) or G2(q) (with p = 2, 3). These groups are called special in [2] due to the existence of
degeneracies in Chevalley’s commutator relations. However, a straightforward calculation with
these relations shows that if P is maximal then Q is nonabelian. For example, if G0 = F4(q)
and P = P1 (with p = 2) then u = xα1(1) and v = xα1+3α2+4α3+2α4(1) are contained in
Q and we have [u, v] = xα0(1), where Xα = {xα(c) : c ∈ Fq} is the root subgroup of G0

corresponding to the root α. The result now follows because the unipotent radical of any
non-maximal parabolic subgroup contains the unipotent radical of a maximal parabolic
subgroup.

Similarly, for G0 = 2F4(q) it suffices to check that Q is nonabelian when P is maximal.
Generators and relations for these subgroups are given in [72, (2.2) and (2.3)] and the desired
conclusion follows immediately. Finally, we note that the parabolic subgroups of 2G2(q) and
2B2(q) are Borel subgroups and so in these cases Q is a Sylow p-subgroup of G0. These Sylow
subgroups are nonabelian by [76, Main Theorem (2)] and [74, Section 13], respectively. �

Theorem 3.2. If H is a parabolic subgroup of G, then G is not extremely primitive.

Proof. Let H0 = QL be a Levi decomposition of H0 = H ∩G0, so F (H) = Q is the Fitting
subgroup of H. In view of Lemma 2.1(ii), we may as well assume Q is elementary abelian, in
which case we can apply Lemma 3.1.

If G0 = E6(q) and H is a P1 or P6 parabolic then

|F (H)| = q16, |Ω| = |G0 : H0| = (q8 + q4 + 1)(q6 + q3 + 1)(q2 + q + 1),

and similarly if G0 = E7(q) and H is a P7-parabolic then

|F (H)| = q27, |Ω| = |G0 : H0| =
(q14 − 1)(q9 + 1)(q5 + 1)

q − 1
.

In both cases, we see that |F (H)| does not divide |Ω| − 1, so Lemma 2.1(iii) implies that G is
not extremely primitive.

Alternatively, we can appeal to Remark 2.2, noting that both L and F (H) = Q contain
long root elements, which are conjugate in G. �

4. Maximal rank subgroups

Let G0 = (Ḡσ)′ be a simple exceptional group of Lie type over Fq, where Ḡ is a simple
algebraic group of adjoint type and σ is an appropriate Steinberg endomorphism of Ḡ. In
this section, we prove Theorem 1 in the cases where H = NG(H̄σ) and H̄ is a σ-stable
non-parabolic maximal rank subgroup of Ḡ (in particular, the connected component H̄0

contains a σ-stable maximal torus of Ḡ). The possibilities for H are determined in [50] (see
[50, Tables 5.1 and 5.2]) and there are two subcases to consider, according to whether or not
H is the normalizer of a maximal torus. Throughout this section, we will continue to exclude
the groups in (2).

Our main result is the following.

Theorem 4.1. If H is a maximal rank subgroup of G, then G is not extremely primitive.
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G0 Type of H

E8(q) Aε4(q)2, A−4 (q2), D4(q)2, D4(q2), 3D4(q)2, 3D4(q2)

Aε2(q)4, A−2 (q2)2, A−2 (q4), A1(q)8

E7(q) A1(q7), A1(q)7

Eε6(q) Aε2(q)3, A2(q2)A−ε2 (q), Aε2(q3)

F4(q) Aε2(q)2, C2(q)2 (p = 2), C2(q2) (p = 2)
2F4(q) A−2 (q), 2B2(q)2, C2(q)

Table 5. Some maximal rank subgroups H with b(G,H) = 2

Recall that b(G,H) denotes the base size of G and the condition b(G,H) = 2 is equivalent
to the existence of an element x ∈ G with H ∩Hx = 1. In particular, if b(G,H) = 2 then G
is not extremely primitive (see Lemma 2.6). In proving Theorem 4.1, we will establish the
following result on base-two groups, which may be of independent interest. In particular, this
result significantly strengthens various bounds on b(G,H) presented in [17]. (Note that in the
second column of Table 5 we record the type of H, which gives an approximate description of
the structure of H.)

Proposition 4.2. Let G 6 Sym(Ω) be an almost simple primitive group with point stabilizer
H and socle G0, a simple exceptional group of Lie type over Fq. Suppose

(i) H is the normalizer of a maximal torus of G; or

(ii) (G,H) is one of the maximal rank cases recorded in Table 5.

Then b(G,H) = 2 and the probability that two randomly chosen points in Ω form a base for
G tends to 1 as q tends to infinity.

In order to prove Proposition 4.2, we will apply the probabilistic approach explained in
Section 2.2. More precisely, in view of Lemma 2.7, we will aim to show that Q(G,H) < 1,
where

Q(G,H) =
k∑
i=1

|xGi | ·
(
|xGi ∩H|
|xGi |

)2

and x1, . . . , xk are representatives for the G-classes of elements of prime order. Of course, if
xGi does not meet H, then the contribution to Q(G,H) from xGi is zero, so we are interested
in the elements of prime order in H. To estimate Q(G,H) effectively, we will apply Lemma
2.8, using information on the conjugacy classes of elements of prime order in both H and
G. In particular, the lower bounds in Proposition 2.11 will be applied repeatedly. In some
cases, we will need more detailed information from [57] (for unipotent elements) and [61] (for
semisimple elements). Finally, in order to establish the asymptotic statement in Proposition
4.2, it suffices to show that Q(G,H) tends to 0 as q tends to infinity. In every case, we will
derive an explicit upper bound on Q(G,H) as a function of q and the desired asymptotic
property will follow immediately.

4.1. G0 = E8(q).

Lemma 4.3. If G0 = E8(q) and H is the normalizer of a maximal torus, then b(G,H) = 2.

Proof. Let W (Ḡ) = 2.O+
8 (2) be the Weyl group of Ḡ = E8 and note that the possibilities for

H are recorded in [50, Table 5.2]. If x ∈ G is a long root element, then Proposition 2.11 gives
|xG| > q58 = b1 and Corollary 2.13 implies that |xG ∩H| 6 120(q + 1)8 = a1. For all other
nontrivial elements we have |xG| > q92 = b2 and we note that

|H| 6 (q + 1)8|W (Ḡ)|. log2 q = a2.
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By applying Lemma 2.8, we deduce that

Q(G,H) < a2
1/b1 + a2

2/b2 < q−1 (4)

and the result follows via Lemma 2.7. �

Lemma 4.4. Suppose G0 = E8(q) and H is of type

Aε4(q)2, A−4 (q2), Aε2(q)4, A−2 (q2)2, A−2 (q4), A1(q)8.

Then b(G,H) = 2.

Proof. In each case, the precise structure of H0 = H ∩G0 is presented in [50, Table 5.1].

First assume H is of type A1(q)8. If x ∈ G is a long root element, then |xG| > q58 = b1
and Proposition 2.12 implies that |xG ∩H| = 8(q2 − 1) = a1. Otherwise, |xG| > q92 = b2 and

|H| 6 (q(q2 − 1))8|AGL3(2)|. log2 q = a2.

These bounds imply that (4) holds and the result follows. An entirely similar argument
applies when H is of type Aε2(q)4 and we omit the details.

Next assume H is of type A−2 (q2)2 or A−2 (q4). By considering the structure of H0 and
its embedding in H̄ = A4

2.GL2(3), it follows via Proposition 2.12 that H contains no long
root elements of G0. Therefore, |xG| > q92 = b1 for all nontrivial x ∈ H and we observe that
|H| < 8 log2 q.q

32 = a1. This gives Q(G,H) < a2
1/b1 < q−1.

Finally, let us assume H is of type A−4 (q2) or Aε4(q)2, so H̄0 = A2
4 and H̄ = H̄0.4. The

total contribution to Q(G,H) from elements x ∈ G with |xG| > q112 = b1 is less than a2
1/b1,

where a1 = 4 log2 q.q
48 is an upper bound on |H|. So it remains to consider the contribution

from the elements with |xG| 6 q112, which implies that x is a unipotent element in one of the
classes labelled A1 and A2

1 (see [57, 61]).

Let V be the adjoint module for Ḡ. By considering the composition factors of the restriction
of V to H̄0 (see [75, Table 5], for example), we calculate that if p = 2 then each involution
in H̄ \ H̄0 has Jordan form (J120

2 , J8
1 ) on V and by inspecting [40, Table 9] we deduce that

they are contained in the class labelled A4
1 in [57, Table 22.2.1]. In particular, the condition

|xG| 6 q112 implies that xG ∩H ⊆ H̄0.

Suppose H is of type A−4 (q2). By considering the embedding of H0 in G0, we deduce that
H does not contain any long root elements of G0, so we may assume x is in the A2

1 class
and thus |xG| > q92 = b2. Here |xG ∩H| coincides with the number of long root elements in
U5(q2) (we noted above that H̄ \ H̄0 contains no elements in the A2

1 class), so

|xG ∩H| = (q2 − 1)(q4 + 1)(q10 + 1) < 4q16 = a2

and we conclude that (4) holds.

Finally, suppose H is of type Aε4(q)2. By applying Proposition 2.12, we deduce that if
x ∈ G is a long root element, then

|xG ∩H| 6 2(q + 1)(q2 + 1)(q5 − 1) = a3

and |xG| > q58 = b3. Now assume x ∈ G is a unipotent element in the A2
1 class. Suppose

y ∈ Lε5(q) has Jordan form (J2
2 , J1) on the natural module and let z ∈ Lε5(q) be a long root

element (so z has Jordan form (J2, J
3
1 )). Then by appealing to [41, Section 4.17], we calculate

that

|xG ∩H| = 2|yLε5(q)|+ |zLε5(q)|2 = 2

(
|SLε5(q)|
q8|GLε2(q)|

)
+

(
|SLε5(q)|
q7|GLε3(q)|

)2

< a2

and thus

Q(G,H) < a2
1/b1 + a2

2/b2 + a2
3/b3 < q−1

as required. �
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Lemma 4.5. Suppose G0 = E8(q) and H is of type

D4(q)2, D4(q2), 3D4(q)2, 3D4(q2).

Then b(G,H) = 2.

Proof. Here H̄ = H̄0.(2× Sym3) and H̄0 = D2
4. The precise structure of H0 is presented in

[50, Table 5.1] and in each case, one checks that

|H| < 12q56 log2 q = a1.

Therefore, the contribution to Q(G,H) from elements x ∈ G with |xG| > 1
2q

124 = b1 is less

than a2
1/b1. For the remainder, let x ∈ H be an element of prime order r with |xG| 6 b1. Note

that the bound on |xG| implies that x ∈ G0 (see Proposition 2.11).

Suppose x ∈ H0 is a long root element of G0, so |xG| > q58 = b2. By considering Proposition
2.12 and the embedding of H0, we see that H is of type D4(q)2 or 3D4(q)2. Since there are fewer
than q10 long root elements in both PΩ+

8 (q) and 3D4(q), it follows that |xG ∩H| < 2q10 = a2.
For the remainder, we may assume q92 < |xG| 6 b1.

Next suppose r ∈ {2, 3}. By inspecting each possibility for H0 in turn and applying [44,
Proposition 1.3], we deduce that

ir(H0) 6 4(q + 1)2q38 = a3.

For example, suppose H is of type D4(q)2, so [50, Table 5.1] gives

H0 = d2.PΩ+
8 (q)2.d2.(Sym3 × 2)

with d = (2, q − 1). Let Z be the normal subgroup of order d2. Then

i3(H0) = i3(H0/Z) 6 i3(Aut(PΩ+
8 (q)) o Sym2)

and by applying Proposition 2.14(i) we deduce that

i3(H0) 6 (1 + i3(Aut(PΩ+
8 (q))))2 6 (2(q + 1)q19)2 = 4(q + 1)2q38.

Similarly,

i2(H0) 6 |Z| · (1 + i2(Aut(PΩ+
8 (q)) o Sym2))

6 |Z| · (1 + (1 + i2(Aut(PΩ+
8 (q))))2 + |Aut(PΩ+

8 (q))|)
< 4

(
4(q + 1)2q30 + 6 log2 q.q

28
)

and the desired bound follows. The other cases are very similar. We conclude that the
combined contribution to Q(G,H) from elements x ∈ G of order 2 and 3 with |xG| > q92 = b3
is less than 2a2

3/b3.

Now assume r > 5, so ir(H0) = ir(L), where L = PΩ+
8 (q)2, PΩ+

8 (q2), 3D4(q)2 and 3D4(q2)
in each of the respective cases. If r 6= p then |xG| > 1

2q
114 = b4 and |L| < q56 = a4. Now

assume r = p. If x is not in the class A2
1, then |xG| > q112 = b5 and we note that L contains

fewer than q48 = a5 elements of order p (see Proposition 2.14(ii)).

Finally, suppose x is a unipotent element in the A2
1 class, so |xG| > q92 = b6. Let V be the

adjoint module for Ḡ and note that x has Jordan form (J14
3 , J64

2 , J78
1 ) on V (see [40, Table 9]).

By considering the restriction of V to H̄0 = D2
4 (see [75, Table 5]), we deduce that x ∈ H̄0 is

of the form (u, u′), (v, 1) or (1, v), where u, u′ ∈ D4 are long root elements and v ∈ D4 is in
the class labelled A2

1 (that is, v has Jordan form (J3, J
5
1 ) on the natural module for D4). See

[16, p.2327] for further details.

If L = PΩ+
8 (q2) or 3D4(q2), it follows that |xG ∩ H| = |zL|, where z ∈ L is a long

root element, and we deduce that |xG ∩ H| < 2q20 = a6. Similarly, if L = 3D4(q)2 then

|xG ∩H| = |z3D4(q)|2, where z ∈ 3D4(q) is a long root element, and the same bound holds.
Finally, suppose L = PΩ+

8 (q)2. Here

|xG ∩H| = 2|yPΩ+
8 (q)|+ |zPΩ+

8 (q)|2 < a6
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where y ∈ PΩ+
8 (q) is a unipotent element in the A2

1 class of D4 and z ∈ PΩ+
8 (q) is a long root

element.

By bringing the above estimates together, we conclude that

Q(G,H) <

6∑
i=1

a2
i /bi + a2

3/b3 < q−1

for all q > 3. In addition, the given bound is less than 1 when q = 2. �

Lemma 4.6. Suppose G0 = E8(q) and H is of type

D8(q), A1(q)E7(q), Aε8(q), Aε2(q)Eε6(q).

Then G is not extremely primitive.

Proof. Write G = G0.A, where A is a group of field automorphisms of G0. Set d = (2, q − 1).

First assume H is of type A1(q)E7(q), so H0 = d.(L2(q)× E7(q)).d (see [50, Table 5.1]).
If q is odd then H is the centralizer of an involution, so Z(H) 6= 1 and G is not extremely
primitive by Lemma 2.1(i). On the other hand, if q is even then soc(H) is not a direct product
of isomorphic simple groups (indeed, either q = 2 and soc(H) = 3 × E7(2), or q > 4 and
soc(H) = L2(q)×E7(q)), so extreme primitivity is ruled out by Lemma 2.1(v). A very similar
argument shows that G is not extremely primitive if H is of type Aε2(q)Eε6(q).

Next assume H is of type D8(q), so H0 = d.PΩ+
16(q).d. In view of Lemma 2.1(i), we may

assume q is even, so H0 = Ω+
16(q) and H = H0.A. Let K = Ω+

8 (q)2 < H0 and observe that
M = NH0(K) = K.22 is the unique maximal overgroup of K in H0. In addition, we note that
NG0(K) = K.(Sym3 × 2), which is a maximal subgroup of G0 (see [50, Table 5.1]). Clearly,
M is not a normal subgroup of NG0(K) and so there exists g ∈ NG0(K) which does not
normalize M . Finally, since M is the unique maximal overgroup of K in H0, it follows that
Mg 66 H0 and we conclude by applying Lemma 2.4, noting that K and M are both A-stable.

Finally, let us assume H is of type Aε8(q), so H0 = h.Lε9(q).e.2, where e = (3, q − ε) and
h = (9, q − ε)/e. In view of Lemma 2.1, we may assume that h = 1.

Fix a set of simple roots α1, . . . , α8 for Ḡ, labelled in the usual way (see [5]), and let Xα be
the root subgroup of Ḡ corresponding to the root α. We may assume that H̄ = H̄0.2, where

H̄0 = 〈X±α1 , X±α3 , X±α4 , X±α5 , X±α6 , X±α7 , X±α8 , X±α0〉

is of type A8 and α0 is the highest root. Let P̄ = Q̄L̄ be the parabolic subgroup of H̄0

corresponding to the simple roots α4 and α7 with Levi factor L̄ = A3
2T2. Note that L̄ is

contained in a maximal rank subgroup J̄ of H̄0 of type A4
2 (indeed, as noted in [52, Table 2],

we have CḠ(A2)0 = E6 and CE6(A2)0 = A2
2). The subgroup Z(L̄)0 = T2 centralizes K̄

and is therefore a maximal torus in the fourth A2 factor of J̄ , which we denote by M̄ . So
CḠ(K̄)0 = M̄ and NM̄ (Z(L̄)0) = T2.Sym3. A straightforward calculation in the Weyl group of
H̄0 shows that NH̄0(L̄) = L̄.Sym3, where Sym3 acts naturally on the factors of K̄ = L̄′ = A3

2

and it acts on Z(L̄)0 in the same way as the Weyl group of M̄ . By working in the Weyl
group of Ḡ we see that NḠ(L̄) = L̄.(Sym3 × Sym3 × 2), where the first Sym3 factor naturally
permutes the A2 factors, the second acts on Z(L̄)0 as before and the central involution acts
as a graph automorphism on each A2 factor and inverts Z(L̄)0. In particular, NH̄0(L̄)/L̄ is
isomorphic to a diagonal subgroup of Sym3 × Sym3.

We now have a maximal rank subgroup L̄ with NH̄0(L̄)/L̄ ∼= Sym3 and we note that H̄ and
L̄ are σ-stable. As explained in [50, Section 1], we may compose the Steinberg endormorphism
σ of Ḡ with the inner automorphism of Ḡ corresponding to the lift of an element in NH̄0(L̄)/L̄.
By a slight abuse of notation, we will write σ to denote this composition. Then by choosing
the element in NH̄0(L̄)/L̄ appropriately, we will obtain the two different possibilities for H0

by taking the fixed points in H̄ of the modified map σ. We consider the cases ε = + and
ε = − separately.
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First assume ε = +. Here we take σ to be the product of the standard Frobenius morphism
of Ḡ with an inner automorphism corresponding to the lift of an element of order 3 in
NH̄0(L̄)/L̄. Set K = (K̄σ)′ = L3(q3) < H0. By inspecting [6, Tables 8.54 and 8.55], we see
that K is contained in a unique maximal subgroup of H0, namely

S = NH0(K) = (Zq2+q+1 × L3(q3)).3.e.2

(recall that we may assume h = 1). It follows that CH0(K) = CS(K) = Zq2+q+1, which

we know from above is a maximal torus of M̄σ = SL3(q) 6 CG0(K). Therefore, we may
choose g ∈ M̄σ so that it does not normalize CH0(K). It follows that g does not normalize S
because otherwise CS(K)g = CSg(K

g) = CS(K), which contradicts our choice of g. Therefore,
Sg 66 H0. Since K and S are A-stable, we can now conclude by applying Lemma 2.4.

Finally, let us assume ε = −. Let σ be the product of the standard Frobenius morphism
with the lift of an involution in NH̄0(L̄)/L̄. Set K = L̄σ. Then by considering [6, Tables 8.56
and 8.57], we deduce that S = NH0(K) = K.(Sym3 × 2) is the unique maximal overgroup of
K in H0. As noted above, we have NḠ(L̄) = L̄.(Sym3×Sym3× 2) and thus S < R 6 NG0(K)
with

R = K.(Sym3 × Sym3 × 2).

Since S/K is not normal in R/K, there exists g ∈ R which does not normalize S and we now
conclude as above, via Lemma 2.4. �

4.2. G0 = E7(q).

Lemma 4.7. If G0 = E7(q) and H is the normalizer of a maximal torus, then b(G,H) = 2.

Proof. Let W (Ḡ) = Sp6(2)× 2 be the Weyl group of Ḡ. If x ∈ G is a long root element, then
|xG| > q34 = b1 and Corollary 2.13 implies that |xG ∩H| 6 63(q + 1)7 = a1. For all other
nontrivial elements we have |xG| > q52 = b2 (see Proposition 2.11) and we note that

|H| 6 (q + 1)7.|W (Ḡ)|. log2 q = a2.

For q > 3 we deduce that Q(G,H) < a2
1/b1 + a2

2/b2 < q−1.

Finally, let us assume q = 2, so G = E7(2) and H = 37.W (Ḡ). Here Lemma 2.1(iv) implies
that G is not extremely primitive, but we need to work harder to show that b(G,H) = 2.
Using Magma [4], we can construct H as a subgroup of E7(4) and we can then determine
the Jordan form of each element x ∈ H of prime order r on the adjoint module V for Ḡ (see
[21, Proposition 2.2] for further details on this computation). For r = 2, we inspect [40, Table
8] to determine the G0-class of x. Similarly, if r is odd then dimCḠ(x) = dimCV (x) and by
inspecting [3, Table 2] we can read off the G0-class of x (note that if r = 3 and x is in one
of the classes labelled 3C or 3D in [3, Table 2], then dimCḠ(x) = 49 in both cases, so the
eigenvalues on V do not allow us to distinguish between these classes). The results are as
follows (here we label the involution classes as in [57, Table 22.2.2]):

A1 189 3A 56 5A 3919104
A2

1 8505 3B 6174 7C 151165440

(A3
1)(1) 8505 3C or 3D 1392372

(A3
1)(2) 127575 3E 3992352

A4
1 583929

So for example, if x ∈ G is an involution in the class labelled A4
1, then |xG ∩H| = 583929. It

is now entirely straightforward to check that Q(G,H) < 1 and thus b(G,H) = 2. �

Lemma 4.8. If G0 = E7(q) and H is of type A1(q)7 or A1(q7), then b(G,H) = 2.
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Proof. First assume H is of type A1(q)7. If x ∈ G is a long root element, then by applying
Proposition 2.12 we deduce that |xG ∩H| = 7(q2 − 1) = a1 and we have |xG| > q34 = b1.
Otherwise, |xG| > q52 = b2 and we note that

|H| 6 (q(q2 − 1))7.|L3(2)|. log2 q < q30 = a2.

Therefore, Q(G,H) < a2
1/b1 + a2

2/b2 < q−1 and thus b(G,H) = 2.

Now assume H is of type A1(q7), so |H| 6 7q7(q14 − 1). log2 q = a1. Here H does not
contain any long root elements of G0, so |xG| > q52 = b1 for all nontrivial x ∈ H and we get
Q(G,H) < a2

1/b1 < q−1. �

Lemma 4.9. Suppose G0 = E7(q) and H is of type

A1(q)D6(q), Aε2(q)Aε5(q), D4(q)A1(q)3, 3D4(q)A1(q3), Eε6(q).(q − ε).

Then G is not extremely primitive.

Proof. Set H0 = H ∩G0 and note that the structure of NL(H0) is recorded in [50, Table 5.1],
where L = Inndiag(G0). Set d = (2, q − 1).

First assume H is of type A1(q)D6(q), so H0 = d.(L2(q)× PΩ+
12(q)). If q is odd then H is

the centralizer of an involution, so Z(H) 6= 1 and thus G is not extremely primitive by Lemma
2.1(i). On the other hand, if q is even then soc(H) is not a direct product of isomorphic simple
groups, so Lemma 2.1(v) implies that G is not extremely primitive. Very similar reasoning
rules out extreme primitivity when H is of type Aε2(q)Aε5(q), D4(q)A1(q)3 and 3D4(q)A1(q3).

Finally, let us assume H is of type Eε6(q).(q − ε), so

H0 = e.(Eε6(q)× (q − ε)/de).e.2

with e = (3, q− ε). If e = 3 then F (H) = Z3 and we apply Lemma 2.1(iv). For the remainder,
we may assume e = 1. If q > 4 is even then H0 = (Eε6(q) × (q − ε)).2 and soc(H) is not a
direct product of isomorphic simple groups, hence G is not extremely primitive by Lemma
2.1(v). The same argument applies if (ε, q) = (−, 2). Similarly, if q is odd then we may assume
(ε, q) = (+, 3). Note that if G = E7(3).2 then H = (E6(3)× 2).2 and the structure of soc(H)
is incompatible with extreme primitivity.

To complete the proof, we may assume ε = +, q ∈ {2, 3} and G = G0, in which case
H = 〈E6(q), τ〉 = Aut(E6(q)), where τ is an involutory graph automorphism of S = soc(H)
with K = CS(τ) = F4(q). Now K is a maximal subgroup of S and M = {M,S} is the set of
maximal overgroups of K in H, where M = K × 〈τ〉. By considering the embedding of S in
G, we observe that K centralizes a subgroup L ∼= L2(q) of G. In particular, K × L < G and
we see that τ ∈ L.

Since H = NG0(S) it follows that τ is the only nontrivial element of L which normalizes S
and hence the only nontrivial element normalizing H. Since 〈τ〉 is non-normal in L, it follows
that there exists g ∈ L which centralizes K but does not normalize M nor S. We can now
apply Lemma 2.4 to conclude that G is not extremely primitive. �

In order to complete the proof of Theorem 4.1 for G0 = E7(q), we may assume H is of
type Aε7(q).

Lemma 4.10. If G0 = E7(q) and H is of type Aε7(q), then G is not extremely primitive.

Proof. First let us record that the structure of NḠσ(H0) given in [50, Table 5.1] is incorrect.
The correct structure is

NḠσ(H0) = h.Lε8(q).g.2,

where h = (4, q− ε)/d and g = (8, q− ε)/h. Therefore, by appealing to Lemma 2.1(iv), we may
assume that q 6≡ ε (mod 4) for the remainder of the proof. Write G = G0.A and H = H0.A,
where A is a group of automorphisms of G0.
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Fix a set of simple roots α1, . . . , α7 for Ḡ, labelled in the usual way (see [5]). For each root
α, let Xα be the corresponding root subgroup of Ḡ and note that

H̄0 = 〈X±α0 , X±α1 , X±α3 , X±α4 , X±α5 , X±α6 , X±α7〉
is of type A7, where α0 is the highest root. Let P̄ = Q̄L̄ be the standard P4 maximal parabolic
subgroup of H̄0 with Levi factor L̄ = A2

3T1. Then NH̄0(L̄) = L̄.2, where the outer involution
swaps the two A3 factors and inverts the T1 torus (as can be calculated in the Weyl group
of H̄0). Let K̄ = L̄′ = A2

3 and note that K̄.2 < NH̄0(L̄). It is straightforward to check that
CH̄0(K̄)0 = Z(L̄)0 = T1.

By inspecting [52, Table 2], we see that A3A1 is the connected centralizer in Ḡ of the
first A3 factor of K̄ and it follows that M̄ = CḠ(K̄)0 is of type A1 and contains Z(L̄)0 as a
maximal torus. In fact, since 〈X±α2〉 clearly centralizes K̄, we have M̄ = 〈X±α2〉. Now

L̄ = A2
3T1 < A2

3A1 < D6A1 < Ḡ,

where D6A1 is a maximal subsystem subgroup of Ḡ, and the Weyl group of D6 contains an
involution swapping the two A3 factors of K̄. So NḠ(L̄)/L̄ has a subgroup Z2×Z2 = 〈a〉×〈b〉,
where a swaps the two A3 factors and b inverts the torus Z(L̄)0. The diagonal subgroup
Z2 = 〈ab〉 is contained in the Weyl group of H̄0.

The case q = 2 requires special attention and it will be handled at the end of the proof. So
for now, let us assume q > 3.

First assume ε = +, so q 6≡ 1 (mod 4). Here we replace the standard Frobenius morphism
σ of Ḡ defining G0 by the product of σ and the inner automorphism of Ḡ induced by the
lift of an outer involution in K̄.2 which swaps the two A3 factors. We will abuse notation
by writing σ for this modified map. Then (Ḡσ)′ = G0, NḠσ(H0) = (H̄.2)σ = L8(q).d.2 and

K̄σ = d.L4(q2).d. Set K = (K̄σ)′ = d.L4(q2) < H0 = L8(q).2.

By inspecting [6, Tables 8.44 and 8.45], we see that K is contained in a unique maximal
subgroup of H0, namely its normalizer

L = (L̄.2)σ = ((q + 1) ◦K).d.22 = d.((q + 1)/d× L4(q2)).d.22.

Since q > 3, we can choose an element g ∈ M̄σ = SL2(q) 6 CG0(K) that does not normalize
the non-normal subgroup (Z(L̄)0)σ = CH0(K) = Zq+1 of M̄σ. Suppose Lg is contained in
H0. Then K = Kg is contained in Lg, which is a maximal subgroup of H0, so L = Lg and
thus g normalizes L. But CH0(K) = CL(K) and so g also normalizes CH0(K), which is a
contradiction. Therefore, Lg 66 H0 and the desired result now follows by applying Lemma 2.4,
noting that K and L are A-stable.

Next suppose ε = − and let us continue to assume q > 3. Recall that q 6≡ 3 (mod 4). In
this case, we replace the standard Frobenius morphism σ by the product of σ with a lift of
the longest element of the Weyl group of Ḡ (we will continue to write σ for the modified
map). Define K = (K̄σ)′ = d.U4(q)2 < H0. By inspecting [6, Tables 8.46 and 8.47], we see
that

L = NH0(K) = ((q + 1) ◦K).d.22 = d.((q + 1)/d×U4(q)2.d).22

is the unique maximal overgroup of K in H0. Since q > 3, it follows that (Z(L̄)0)σ =
CH0(K) = Zq+1 is a non-normal subgroup of M̄σ = SL2(q) 6 CG0(K), so there exists g ∈ M̄σ

which does not normalize CH0(X). We now complete the argument as we did in the ε = +
case above.

To complete the proof of the lemma, we may assume q = 2 and thus G = G0. For ε = +
we take σ to be the standard Frobenius morphism, and we take the product of this with a
lift of the following Weyl group element

w = (1, 6)(2)(3, 5)(7, 126) . . . ∈W (Ḡ) (5)

when ε = −. Here we are expressing w as a permutation of the set of roots of Ḡ, where our
labelling is consistent with Magma (we only give part of the permutation, but this is enough
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to uniquely determine it). Set

K = K̄σ =

{
SL4(2)× SL4(2) if ε = +
SL4(4) if ε = −.

Clearly, M = NH0(K) = K.2 is a maximal overgroup of K in H0. By inspecting [6], we see
that every other maximal overgroup of K is a parabolic subgroup of the form 216:K.

We claim that K is contained in precisely two maximal parabolic subgroups of H0. Clearly,
we can take the fixed points under σ of the standard maximal parabolic subgroup of H̄0

containing K̄, as well as the opposite parabolic subgroup, so there are at least two such
subgroups. Let P be a maximal parabolic subgroup of H0 and suppose K 6 P ∩ P h for

some h ∈ H0. Then K,Kh−1
< P and [64, Proposition 26.1(b)] implies that K and Kh−1

are P -conjugate. So Kx = Kh−1
for some x ∈ P and thus xh ∈ NH0(K) = K.2. If xh ∈ K

then P h = P . On the other hand, if xh 6∈ K then P xh 6= P since NH0(P ) = P . But for each
y in the coset Kxh we have P y = P xh and thus K is contained in precisely two maximal
parabolic subgroups of H0 as claimed.

In view of the claim, let us write M = {M,M1,M2} where M1 and M2 are the maximal
parabolic subgroups of H0 containing K. To complete the proof, we will exhibit an element
g ∈ NG0(K) such that none of the subgroups Mg,Mg

1 ,M
g
2 are contained in H0. The result

will then follow from Lemma 2.4.

By considering the above set up at the algebraic group level, we see that CG0(K) contains
M̄σ = SL2(2) ∼= Sym3. In addition, we note that σ induces a standard Frobenius morphism
on M̄ since the Weyl group element w in (5) fixes the roots α2 and −α2. Therefore, we may
choose g = xα2(1)x−α2(1) ∈ M̄σ. Since g has order 3, it does not commute with the involution
nα2 ∈ M̄σ (here nα2 is the standard lift of the fundamental reflection in W (Ḡ) corresponding
to α2). The lift of the involution in NH̄0(K̄)/K̄ ∼= Sym2 is the product of nα2 , which inverts
a maximal torus of M̄ , and an involution that swaps the two A3 factors of K̄. Therefore, g
does not normalize K̄.2 and so it does not normalize M = K.2. In particular, Mg 66 H0.

Finally, we need to consider M1 and M2. They are the fixed points under σ of the standard
maximal parabolic subgroups of H̄0 containing K̄. In particular, the unipotent radicals of
M1 and M2 contain x1 = xα4(1) and x2 = x−α4(1), respectively (since both elements are
σ-stable). A straightforward calculation shows that xg1 = xα2+α4(1) and xg2 is the product
of x2 with x−(α2+α4)(1). Therefore, if Mg

1 6 H0 then xα2+α4(1) ∈ H0. Similarly, if Mg
2 6 H0

then x−(α2+α4)(1) ∈ H0. However, x±(α2+α4)(1)nα4 = x±α2(1) and thus x±(α2+α4)(1) is not

even contained in H̄0. This implies that Mg
i 66 H0 for i = 1, 2 and the proof of the lemma is

complete. �

4.3. G0 = Eε6(q).

Lemma 4.11. If G0 = Eε6(q) and H is the normalizer of a maximal torus, then b(G,H) = 2.

Proof. Set H0 = H ∩G0 and note that the structure of NL(H0) is recorded in [50, Table 5.2],
where L = Inndiag(G0). Let W (Ḡ) = O−6 (2) be the Weyl group of Ḡ.

Let x ∈ G be an element of prime order. If x is a long root element, then |xG| > (q−1)q21 =
b1 and Corollary 2.13 implies that |xG ∩H| 6 36(q+ 1)6 = a1. If x is not a long root element,
nor an involutory graph automorphism with CḠ(x) = F4, then |xG| > (q − 1)q31 = b2 and we
have

|H| 6 (q + 1)6|W (Ḡ)|.2 log2 q = a2.

Finally, suppose x is an F4-type graph automorphism, so |xG| > 1
3(q − 1)q25 = b3. Since

W (Ḡ) is centralized by a graph automorphism, it follows that

|xG ∩H| 6 (q + 1)6i2(W (Ḡ)× 2) = 3567(q + 1)6 = a3

and we conclude that Q(G,H) <
∑3

i=1 a
2
i /bi < q−1 for all q > 5.
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To complete the proof, we may assume q 6 4. First let us consider the case where

NL(H0) = (q2 + εq + 1)3.31+2.SL2(3),

so (q, ε) 6= (2,−) (see [50, Table 5.2]). By arguing as in the previous paragraph, we see that
the contribution to Q(G,H) from all elements other than F4-type graph automorphisms is
less than a2

1/b1 + a2
2/b2, where b1 and b2 are defined as above, a1 = 36(q2 − εq + 1)3 and

a2 = (q2 + εq + 1)333|SL2(3)|.2 log2 q

is an upper bound on |H|. Now assume x is a graph automorphism with CḠ(x) = F4. Here
|xG| > b3 as above and we have

|xG ∩H| 6 (q2 + εq + 1)333.i2(SL2(3)× 2) = 81(q2 + εq + 1)3 = a3.

This gives Q(G,H) <
∑3

i=1 a
2
i /bi < 1 for q > 3.

Suppose (q, ε) = (2,+), so G0 = E6(2) and H0 = 73:31+2.SL2(3). To handle this case,
we view Ḡ.2 < E7 and we use Magma to construct H0.2 as a subgroup of E7(8) (see [21,
Example 1.11]). In this way, we calculate that i2(H) 6 847 = a1. Since |xG| > 241 = b2 for
all x ∈ G of odd prime order (see [17, Table 9]), it follows that

Q(G,H) < a2
1/b1 + a2

2/b2 < 1,

where b1 = 221 and a2 = 2|H0|.
For the remainder of the proof, we may assume ε = − and NL(H0) = (q + 1)6.W (Ḡ) with

q 6 4 (according to [50, Table 5.2], the condition q 6 4 implies that ε = −). First assume
q = 2, so either G = G0.3 and H = 36.W (Ḡ), or G = G0.Sym3 and H = 36.(W (Ḡ)× 2) (see
[50, Table 5.2]). To get started, let us assume G = G0.3. As explained in [21, Proposition
2.2], we can use Magma to construct H as a subgroup of E6(4) and we then compute the
action of each element x ∈ H of prime order r on the adjoint module V for Ḡ. More precisely,
if r = 2 we compute the Jordan form of x on V and we inspect [40, Table 6] to determine
the G0-class of x (in the table below, we use the labelling of unipotent classes in [57, Table
22.2.3]). For r ∈ {3, 5} we compute dimCV (x) = dimCḠ(x) and this allows us to identify
the structure of CḠ(x)0. The results we obtain are summarised in the following table:

r = 2 r = 3 r = 5
A1 108 D5T1 54 A3T3 419904
A2

1 2430 A5T1 2232
A3

1 18225 D4T2 47610
A4A1T1 39312
A3

2 144800

In each case, it is easy to determine a lower bound on |xG| and the desired bound Q(G,H) < 1
quickly follows. For example, one checks that the contribution from elements of order 3 is
less than

∑5
i=1 a

2
i /bi, where

a1 = 54, a2 = 2232, a3 = 47610, a4 = 39312, a5 = 144800,

b1 = 231, b2 = 241, b3 = 245, b4 = 244, b5 = 252.

To complete the analysis of this case, let us now assume G = G0.Sym3 and x ∈ G is an
involutory graph automorphism. Since the algebraic group E7 contains a subgroup E6.2, we
can use Magma to construct H as a subgroup of E7(4) (once again, see [21]) and we find
that there are 5 conjugacy classes of involutions in H \H0; the size of each class and the
Jordan form of a representative on the adjoint module L(E7) for E7 are as follows:

(J53
2 , J27

1 ): 405

(J63
2 , J7

1 ): 729 + 8748 + 14580 + 21870 = 45927

If CḠ(x) = F4, then [45, Table 7] indicates that x is contained in the E7-class labelled
(A3

1)′′ in [40], whence x has Jordan form (J53
2 , J27

1 ) on L(E7) (see [40, Table 8]). Similarly, if
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CḠ(x) 6= F4 then x has Jordan form (J63
2 , J7

1 ). It follows that the contribution to Q(G,H)
from involutory graph automorphisms is less than a2

1/b1 + a2
2/b2 < 0.02, where

a1 = 405, b1 =
1

3
225, a2 = 45927, b2 =

1

3
241.

By combining this with the above estimates, we conclude that Q(G,H) < 1 and the result
follows.

Next assume q = 3. Here G = G0 and H = 46.W (Ḡ), or G = G0.2 and H = 46.(W (Ḡ)× 2).
First assume G = G0. Here we construct H as a subgroup of E6(9) (see [21]) and by
considering the action of H on the adjoint module for Ḡ we obtain the following results:

r = 2 r = 3 r = 5
D5T1 5211 A2 3840 A3T3 1327104
A1A5 60516 A2

2 122880
A2

2A1 327680

The desired bound Q(G,H) < 1 quickly follows.

Now assume G = G0.2. Here we construct H as a subgroup of E7(9) (see [21] again for the
details) and we deduce that i2(H \H0) = 147520. Moreover, by calculating the eigenvalues of
the involutions in H \H0 on the adjoint module for E7, we see that 720 have a 79-dimensional
1-eigenspace and the remainder have a 63-dimensional 1-eigenspace. If x ∈ H is such an
involution, then we may view x as a semisimple involution in E7 via the embedding E6.2 < E7

and we recall that the connected component of the centralizer of an involution in E7 is one of
A1D6, A7 or E6T1 (see [43, Proposition 1.2]). Since F4 is not contained in A1D6 or A7, it
follows that if CḠ(x) = F4 then CE7(x)0 = E6T1 and thus |xG ∩H| = 720 = a1. On the other
hand, if CḠ(x) 6= F4 then |xG ∩H| = 146800 = a2. Therefore, the combined contribution to
Q(G,H) from graph automorphisms is less than a2

1/b1 + a2
2/b2 < 10−6, where b1 = 1

2326 and

b2 = 1
2342. It is now easy to check that Q(G,H) < 1 and the result follows.

Finally, let us assume q = 4, so either G = G0 and H = 56.W (Ḡ), or G = G0.2 and
H = 56.(W (Ḡ) × 2), or G = G0.4 and H = 56.W (Ḡ).4. First assume G = G0. Here we
construct H as a subgroup of E6(16) and as before we study the action of H on the adjoint
module for Ḡ (as usual, see [21] for the details). If x ∈ G is a long root element, then
|xG| > 1

2422 = b1 and we find that |xG ∩H| = 180 = a1. On the other hand, if x is not a

long root element then Proposition 2.11 gives |xG| > 3.431 = b2 and we set a2 = |H|. Now
assume G 6= G0. Since every element of prime order in G0.4 is contained in G0.2, we may
assume that G = G0.2. We now construct H as a subgroup of E7(16) and we find that
i2(H \H0) = 365500 = a3. Since |xG| > 1

2426 = b3 for all involutory graph automorphisms

x ∈ G, we conclude that Q(G,H) <
∑3

i=1 a
2
i /bi < 1 and thus b(G,H) = 2. �

Lemma 4.12. Suppose G0 = Eε6(q) and H is of type Aε2(q)3, A2(q2)A−ε2 (q) or Aε2(q3). Then
b(G,H) = 2.

Proof. Here H̄ = A3
2.Sym3, where Sym3 = 〈a, b〉 and the action of a and b on H̄0 = A3

2 is
given by

a : (x1, x2, x3) 7→ (x3, x1, x2), b : (x1, x2, x3) 7→ (xτ2 , x
τ
1 , x

τ
3) (6)

where xi denotes an arbitrary element in the ith A2 factor of H̄0 and τ is an involutory graph
automorphism of A2 (in terms of matrices, we may view τ as the inverse-transpose map
y 7→ y−T ). Let V = L(Ḡ) be the adjoint module for Ḡ and let V27 be one of the 27-dimensional
minimal modules. As noted in [75, Table 3], we have

V ↓H̄0 = L(H̄0)⊕ (W ⊗W ⊗W )⊕ (W ∗ ⊗W ∗ ⊗W ∗) (7)

and

V27↓H̄0 = (W ⊗W ∗ ⊗ 0)⊕ (W ∗ ⊗ 0⊗W )⊕ (0⊗W ⊗W ∗)
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where W is the natural module for A2, W ∗ its dual and 0 the trivial module. Before we begin
the main analysis, it will be useful to record some preliminary observations concerning the
embedding of H̄ in Ḡ.

Suppose x ∈ H̄ has order p. If x ∈ H̄0 then the Ḡ-class of x is determined in [41, Section 4.9].
The nontrivial unipotent classes in A2 are labelled A1 and A2, which gives a corresponding
labelling of the classes in H̄0. It turns out that the Ḡ-class containing a given H̄0-class inherits
the same label, with the exception of the regular H̄0-class labelled A3

2 (the latter is contained
in the Ḡ-class D4(a1) if p 6= 3 and A2

2A1 if p = 3).

Now assume x ∈ H̄ \ H̄0 has order p, so p = 2 or 3. Suppose p = 3 and note that x is
H̄-conjugate to a. Now (6) indicates that x cyclically permutes the three A2 factors of H̄,
whence x has Jordan form (J9

3 ) on V27. By inspecting [40, Table 5], it follows that x is in one
of the Ḡ-classes A2

2 or A2
2A1. Visibly, x centralizes a diagonally embedded A2 subgroup of

H̄0 and so by considering the possibilities for CḠ(x)0 (see [57, Table 22.1.3]) we conclude
that x is in the A2

2 class.

Now assume p = 2 and x = (x1, x2, x3)b ∈ H̄ has order 2, so x2 = xT1 and x3 = xT3 . Since
every invertible symmetric matrix is congruent to the identity matrix, it is easy to see that x
is H̄0-conjugate to b, so there is a unique H̄-class of involutions in H̄ \ H̄0. Note that

CH̄0(b) = {(x1, x2, x3) ∈ H̄0 : x2 = xτ1 , x3 = xτ3}

and thus CH̄0(b)0 is of type A2A1. Now b has Jordan form (J8
2 )⊕ (J3

2 , J
2
1 ) on L(H̄0) and it

interchanges the two 27-dimensional summands in (7), so b has Jordan form (J38
2 , J2

1 ) on V .
By inspecting [40, Table 6], we conclude that every involution in H̄ \ H̄0 is contained in the
class labelled A3

1.

Next we turn to the semisimple elements in H̄. Suppose x ∈ H̄0 has prime order r 6= p.
By working with the decomposition in (7), it is easy to compute the eigenvalues of x on V ,
which allows us to read off dimCV (x) = dimCḠ(x). For example, if x = (x1, x2, x3) ∈ H̄0

has order 2, where x1 = x2 6= 1 and x3 = 1 then the dimension of the 1-eigenspace of x on
L(H̄0) is equal to dimCH̄0(x) = 4 + 4 + 8 = 16 and we calculate that x acts as (−I12, I15)
on the two 27-dimensional summands in (7). Therefore, dimCḠ(x) = 16 + 30 = 46 and thus
CḠ(x)0 = D5T1. Now assume x ∈ H̄ \ H̄0, so r ∈ {2, 3}. If r = 2 then x is H̄-conjugate to b
and we calculate that x acts as (−I40, I38) on V , so CḠ(x)0 = A5A1. Similarly, if r = 3 then
x is conjugate to a and we have dimCḠ(x) = 30, so CḠ(x)0 = D4T2.

Finally, let γ be an involutory graph automorphism of Ḡ. Then the normalizer of H̄ in
Ḡ.2 = Ḡ.〈γ〉 is H̄.2 = H̄0.(Sym3 × 2), where Sym3 acts naturally on the three factors of H̄0

and a generator c for the cyclic group of order 2 acts as a simultaneous graph automorphism
on all three factors. There are three classes of involutions in H̄.2 \ H̄, represented by c, bc and
(1, 1, t)bc, where t ∈ A2 is an involution. Here bc acts as a transposition on the three factors of
H̄0, swapping the first two and centralizing the third. Working with (7), we calculate that bc
has Jordan form (J26

2 , J26
1 ) or (−I26, I52) on V , according to the parity of p, and we deduce

that CḠ(bc) = F4. On the other hand, if x = c or (1, 1, t)bc then x has Jordan form (J36
2 , J6

1 )
or (−I42, I36) and we see that CḠ(x) 6= F4.

Case 1. H is of type Aε2(q)3.

We are now ready to begin the proof of the lemma. First assume H is of type Aε2(q)3, so

H0 = e.Lε3(q)3.e.Sym3 and K = NL(H0) = e.Lε3(q)3.e2.Sym3,

where e = (3, q− ε) and L = Inndiag(G0) = G0.e. We proceed by estimating the contribution
to Q(G,H) from the different types of elements of prime order in G.

First we consider the contribution from unipotent elements. Suppose p = 2 and let x ∈ H
be a unipotent involution. Both SLε3(q) and Lε3(q) contain (q2 − 1)(q2 + εq + 1) < 2q4

involutions, which form a single conjugacy class, and we recall from above that every
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involution in H̄ \ H̄0 is contained in the class labelled A3
1. If x is in the G0-class labelled

A1 then |xG ∩H| < 3.2q4 = a1 and |xG| > (q − 1)q21 = b1. Similarly, if x is in the A2
1 class,

then |xG ∩H| < 3.(2q4)2 = 12q8 = a2 and |xG| > (q − 1)q31 = b2. Finally, if x is in the class
labelled A3

1, then

|xG ∩H| < (2q4)3 + 3 · |SLε3(q)|3

|SLε3(q)||SL2(q)|
< 8q12 + 6q13 = a3, |xG| > (q − 1)q39 = b3

and thus the unipotent contribution when p = 2 is less than
∑3

i=1 a
2
i /bi.

Now assume p > 3. As above, the contribution to Q(G,H) from elements in the classes

labelled A1, A2
1 and A3

1 is less than
∑3

i=1 a
2
i /bi. Now |xG| > 1

4q
42 = b4 for all other nontrivial

elements of order p in G0 (see [57, Table 22.2.3]) and using Proposition 2.14(ii) we note that

ip(e.L
ε
3(q)3.e) = ip(L

ε
3(q)3) < q18 = a4.

In addition, if p = 3 then there are elements of order p in H̄ \ H̄0 which transitively permute
the factors of H̄0. As explained above, such an element x is in the Ḡ-class labelled A2

2, so
|xG| > 1

6q
48 = b5 and we note that there are at most 2|SLε3(q)|2 < 2q16 = a5 of these elements

in H0.

We conclude that the unipotent contribution is less than
∑5

i=1 a
2
i /bi < q−4 + q−5 for all p.

Next let us turn to the contribution to Q(G,H) from semisimple elements. Let x ∈ H
be a semisimple element of prime order r. First assume r = 2, so CḠ(x)0 = A5A1 or D5T1.
Recall that the involutions in H̄ \ H̄0 are of type A5A1 and note that both SLε3(q) and Lε3(q)
contain q2(q2 + εq + 1) < 2q4 involutions, which form a single class. By considering the
decomposition in (7), we can calculate dimCV (x) for each involution x ∈ H and this allows
us to determine the G0-class of x. In this way, we deduce that if x is of type D5T1 then
|xG ∩H| < 3.(2q4)2 = 12q8 = a6 and |xG| > (q − 1)q31 = b6, whereas

|xG ∩H| < 3.2q4 + (2q4)3 + 3 · |SLε3(q)|3

|SLε3(q)||SL2(q)|
< 6q4 + 8q12 + 6q13 = a7

and |xG| > (q − 1)q39 = b7 if x is of type A5A1. It follows that the contribution to Q(G,H)
from semisimple involutions is less than a2

6/b6 + a2
7/b7 < q−9.

Next assume r = 3, so p 6= 3. First assume e = 3, so we have H0 = 3.Lε3(q)3.3.Sym3 and
K = 3.Lε3(q)3.32.Sym3. Let x ∈ K be a semisimple element of order 3, whence

CḠ(x)0 = A5T1, D4T2, A3
2, D5T1 or A1A4T1

(see [32, Table 4.7.1]) and we recall that CḠ(x)0 = D4T2 if x ∈ H̄ \ H̄0. Let Z be the normal
subgroup of K of order 3, so

K/Z = Lε3(q)3.32.Sym3 < PGLε3(q)3.Sym3

and
i3(K) < |Z| · (1 + i3(PGLε3(q) o Z3)).

By applying Proposition 2.14(i), we deduce that

1 + i3(PGLε3(q) o Z3) 6 (i3(Aut(Lε3(q))) + 1)3 + 2|PGLε3(q)|2 < 8(q + 1)3q15 + 2q16

and thus i3(K) < 24(q + 1)3q15 + 6q16. If q = 2 then ε = − and we can use Magma to
construct K as a subgroup of E6(4) (see [21, Lemma 2.3]); in this way, we calculate that
i3(K) = 492074. Set

a8 =

{
24(q + 1)3q15 + 6q16 if q > 2,
492074 if q = 2.

If dimxḠ > 42 then |xG| > 1
6q

48 = b8 and the contribution to Q(G,H) from these elements

is less than a2
8/b8.

Now assume dimxḠ 6 42, so x ∈ H̄0 and we have CḠ(x)0 = D5T1 or A5T1. By considering
(7), one can check that CḠ(x)0 = D5T1 if and only if Zx ∈ PGLε3(q)3 is of the form (x1, x2, 1)
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(up to permutations of the coordinates), where x1 ∈ PGLε3(q) is conjugate to the image
modulo scalars of a diagonal matrix diag(1, 1, ω) ∈ GLε3(q) with ω a primitive cube root of
unity (so x1 ∈ PGLε3(q) \ Lε3(q) is a diagonal automorphism) and x2 is conjugate to x−1

1 . Now
|xG| > (q − 1)q31 = b9 and there are at most

3! ·
(
|SLε3(q)|
|GLε2(q)|

)2

< 24q8 = a9

such elements in K. Now assume CḠ(x)0 = A5T1, so |xG| > (q − 1)q41 = b10. Here we find
that CḠ(x)0 = A5T1 if and only if Zx ∈ PGLε3(q)3 is one of the following, up to permutations:

(a) (x1, 1, 1), where x1 is conjugate to the image of diag(1, ω, ω2) ∈ GLε3(q); or

(b) (x1, x2, x3), where x1 and x2 are conjugate to the image of diag(1, 1, ω) and x3 is
conjugate to x−1

1 .

Therefore, there are at most

3 · |SLε3(q)|
|GLε1(q)|2

+ 3 · 2 ·
(
|SLε3(q)|
|GLε2(q)|

)3

< 12q6 + 48q12 = a10

such elements in K.

Bringing these estimates together, we conclude that if e = 3, then the contribution to
Q(G,H) from semisimple elements of order 3 is less than

∑10
i=8 a

2
i /bi < q−4.

Now assume e = 1, so H0 = Lε3(q)3.Sym3 and we note that Lε3(q) contains q3(q3 + ε) < 2q6

elements of order 3, which form a single class (note that these elements are regular). The
possibilities for CḠ(x)0 are A5T1, A3

2 and D4T2. By working with (7) we calculate that if
CḠ(x)0 = A5T1 then |xG ∩H| < 3.2q6 = 6q6 and |xG| > (q− 1)q41. Similarly, if CḠ(x)0 = A3

2

then |xG ∩H| < (2q6)3 = 8q18 and |xG| > 1
6q

54. And for CḠ(x)0 = D4T2 we get

|xG ∩H| < 3.(2q6)2 + 2|SLε3(q)|2 < 12q12 + 2q16, |xG| > 1

6
q48.

From the above estimates, it is straightforward to check that the combined contribution to
Q(G,H) from semisimple elements of order 3 is less than q−4 for all q.

To complete the analysis of semisimple elements, let us assume r > 5. If dimxḠ > 50
then |xG| > (q − 1)q49 = b11 and there are clearly fewer than q24 = a11 such elements

in H. Now assume dimxḠ < 50, so CḠ(x)0 = D5T1, A5T1 or D4T2. Since r > 5 we have
x ∈ H̄0, say x = (x1, x2, x3), and by working with the decomposition in (7) we deduce that
dimCḠ(x) 6 36. Therefore, CḠ(x)0 = A5T1 or D4T2 and thus |xG| > (q− 1)q41 = b12. If each
xi is nontrivial then we calculate that dimCḠ(x) 6 24, which is a contradiction. Therefore,
there are fewer than 3|SLε3(q)|+ 3|SLε3(q)|2 < 3q8(q8 + 1) = a12 such elements in H and we
conclude that the entire contribution to Q(G,H) from semisimple elements of order at least
5 is less than a2

11/b11 + a2
12/b12 < q−1 + q−4.

Finally, let us assume x ∈ G is a field, graph or graph-field automorphism of G0. First
assume x is a field or graph-field automorphism of order r, so q = qr0. If r > 3 then
|xG| > 1

6q
52 = b13 and we note that there are fewer than log2 q.6q

24 = a13 such elements in
H. Now assume r = 2, so ε = + and it is convenient to use the bound

fpr(x,G/H) <
|H̄ : H̄0| · q24

(q1/2 − 1)6q9|xG0 |
< 36q−24(q1/2 − 1)−6,

which is explained in the proof of [44, Lemma 6.1]. Since |xG| < 2q39, it follows that the
contribution to Q(G,H) from field and graph-field automorphisms is less than

η
(
a2

13/b13

)
+ 2 · 2q39 ·

(
36q−24(q1/2 − 1)−6

)2
< 4ηq−1 + µq−2,

where η = 1 if q = pf and f is divisible by an odd prime, otherwise η = 0, and similarly µ = 1
if q is a square, otherwise µ = 0.
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Now assume x ∈ G is an involutory graph automorphism. As explained earlier, if CḠ(x) 6= F4

then either x induces a graph automorphism on each A2 factor of H̄0, or it swaps two of the
factors and acts nontrivially on the third. Therefore, |xG| > 1

6q
42 = b14 and there are at most(

|SLε3(q)|
|SL2(q)|

)3

+ 3|SLε3(q)| · (q2 − 1)(q2 + εq + 1) < 2q15 = a14

such elements in H. On the other hand, if CḠ(x) = F4 then |xG| > 1
6q

26 = b15 and x acts as

a transposition on the factors of H̄0, centralizing the fixed factor, whence H contains at most
3|SLε3(q)| < 3q8 = a15 such elements. Therefore, the contribution to Q(G,H) from graph
automorphisms is less than a2

14/b14 + a2
15/b15 < q−4.

Bringing together all of the above bounds, we conclude that

Q(G,H) < (1 + 4η)q−1 + µq−2 + 4q−4 + q−5 + q−9 < 1

and the result follows.

Case 2. H is of type A2(q2)A−ε2 (q).

As before, set L = Inndiag(G0) and observe that

K = NL(H0) = g.(L3(q2)× L−ε3 (q)).h.2,

where g = (3, q + ε) and h = (3, q2 − 1). In particular, note that if e = (3, q − ε) = 3 then
H0 = (L3(q2) × L−ε3 (q)).2. Let us also observe that there is a unique class of involutions
in K \ (g.(L3(q2) × L−ε3 (q)).h), which acts on L3(q2) × L−ε3 (q) by inducing a graph-field
automorphism on the first factor and a graph automorphism on the second. This corresponds
to the involution b ∈ H̄ discussed earlier (see (6)).

First assume p = 2 and x ∈ G0 is an involution. If x is in the class labelled A1, then
|xG| > (q− 1)q21 = b1 and |xG ∩H| = i2(L−ε3 (q)) < 2q4 = a1. Similarly, if x is in the A2

1 class
then |xG ∩H| = i2(L3(q2)) < 2q8 = a2 and |xG| > (q − 1)q31 = b2. Now assume x is in the
class labelled A3

1, so |xG| > (q − 1)q39 = b3. Here we get

|xG ∩H| 6 i2(L3(q2)) · i2(L−ε3 (q)) +
|SL3(q2)|
|SU3(q)|

· |SL−ε3 (q)|
|SL2(q)|

< 4q13 = a3.

By arguing as in Case 1, we see that the unipotent contribution to Q(G,H) for any p is less

than
∑4

i=1 a
2
i /bi < q−4 + q−5, where a4 = q18 and b4 = 1

4q
42.

Next assume x ∈ G is a semisimple element of prime order r. Suppose r = 2, so CḠ(x)0 =
D5T1 or A5A1. If x is a D5T1 involution, then |xG ∩ H| = i2(L3(q2)) < 2q8 = a5 and
|xG| > (q − 1)q31 = b5. Similarly, if x is an A5A1 involution then |xG| > (q − 1)q39 = b6 and
we see that

|xG ∩H| 6 i2(L−ε3 (q)) + i2(L3(q2)) · i2(L−ε3 (q)) +
|SL3(q2)|
|SU3(q)|

· |SL−ε3 (q)|
|SL2(q)|

< 4q13 = a6.

Now suppose r = 3. Let Z be the normal subgroup of K of order g = (3, q + ε), so K/Z is
a subgroup of (PGL3(q2)× PGL−ε3 (q)).2 and thus

i3(K) < |Z| · (1 + i3(PGL3(q2)× PGL−ε3 (q))).

For q ∈ {2, 3} we compute

i3(PGL3(q2)× PGL−ε3 (q)) 6

{
387420488 if q = 3
391472 if q = 2

and by applying Proposition 2.14(i) we deduce that

a7 =

 12(q + 1)(q2 + 1)q15 if q > 3
387420489 if q = 3
1174419 if q = 2
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is an upper bound on i3(K). If dimxḠ > 42 then |xG| > (q − 1)q41 = b7 and so the

contribution to Q(G,H) from these elements is less than a2
7/b7. Now assume dimxḠ < 42, so

CḠ(x)0 = D5T1 is the only option and thus |xG| > (q − 1)q31 = b8. By arguing as in Case
1, we see that there are at most |Z| · i3(PGL3(q2)) < 6(q2 + 1)q10 such elements in H. Set
a8 = 6(q2 + 1)q10 if q > 2 and a8 = 3 · i3(PGL3(4)) = 14496 if q = 2.

Now assume r > 5 and note that ir(K) = ir(L3(q2)×L−ε3 (q)). As in Case 1, if dimxḠ > 50
then |xG| > (q − 1)q49 = b9 and H contains fewer than q24 such elements. In fact, for q = 2
we calculate that L3(q2)× L−ε3 (q) contains at most 290352 elements of prime order at least 5,

so we set a9 = q24 if q > 2 and a9 = 290352 if q = 2. By arguing as before, if dimxḠ < 50
then |xG| > (q − 1)q41 = b10 and there are fewer than |SLε3(q2)|+ |SL−ε3 (q)| < q16 = a10 such
elements in H.

Putting all of the above estimates together, we conclude that the contribution to Q(G,H)

from semisimple elements is less than
∑10

i=5 a
2
i /bi < q−1 + q−2.

Finally, let us assume x is a field, graph or graph-field automorphism. By repeating the
argument in Case 1, we see that the contribution from field and graph-field automorphisms
is less than 4ηq−1 + µq−2, where η and µ are defined as in Case 1. Now assume x is an
involutory graph automorphism. Recall that if CḠ(x) = F4 then |xG| > 1

6q
26 = b11 and x acts

on the factors of H̄0 by swapping the first two and centralizing the third. Given the structure
of H0, this implies that x induces a field automorphism on the L3(q2) factor and thus

|xG ∩H| 6 |SL3(q2)|
|SL3(q)|

< q8 = a11.

Similarly, if CḠ(x) 6= F4 then |xG| > 1
6q

42 = b12 and x either induces graph automorphisms

on both L3(q2) and L−ε3 (q), or it acts as a field automorphism on L3(q2) and as an involutory
inner automorphism on L−ε3 (q). It follows that

|xG ∩H| 6 |SL3(q2)|
|SL2(q2)|

· |SL−ε3 (q)|
|SL2(q)|

+
|SL3(q2)|
|SL3(q)|

· (q2 − 1)(q2 − εq + 1) < 2q15 = a12

and thus the total contribution to Q(G,H) from graph automorphisms is less than a2
11/b11 +

a2
12/b12 < q−6.

In conclusion, the above estimates show that

Q(G,H) < (1 + 4η)q−1 + (1 + µ)q−2 + q−4 + q−5 + q−6

and one checks that this upper bound is always less than 1.

Case 3. H is of type Aε2(q3).

To complete the proof, we may assume H is of type Aε2(q3), so H0 = Lε3(q3).3 and

K = NL(H0) = Lε3(q3).(e× 3) 6 PGLε3(q3).3

where L = Inndiag(G0) and e = (3, q − ε) as before. Note that H0 contains an element of
order 3, which acts as a field automorphism on soc(H0) = Lε3(q3); this corresponds to the
element a ∈ H̄, which transitively permutes the three factors of H̄0 (see (6)).

First assume x ∈ H is a unipotent element of G. If x is a long root element in Lε3(q3) then
x is contained in the A3

1 class of G0, so |xG| > (q − 1)q39 = b1 and

|xG ∩H| = |SLε3(q3)|
q9(q3 − ε)

< 2q12 = a1.

If p > 3 and x ∈ Lε3(q3) is regular, then [41, Section 4.9] implies that x is contained in the
Ḡ-class labelled A2

2A1 (if p = 3) or D4(a1) (if p > 3). Similarly, if p = 3 and x ∈ H0 is a field
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automorphism of order 3, then x is in the class A2
2. In both cases, |xG| > 1

6q
48 = b2 and there

are fewer than

ip(L
ε
3(q3)) + 2 · |SLε3(q3)|

|SLε3(q)|
< 2q18 = a2

such elements in H. Therefore, the unipotent contribution to Q(G,H) is less than a2
1/b1 +

a2
2/b2 < q−7.

Next assume x ∈ H is a semisimple element of prime order r. If r = 2 then |xG ∩H| =
i2(Lε3(q3)) < 2q12 = a3 and CḠ(x)0 = A5A1, so |xG| > (q − 1)q39 = b3. Now suppose r = 3.
By considering the structure of K and the action of H̄0 on the adjoint module for Ḡ (see (7)),
it is easy to see that CḠ(x)0 6= D5T1, so |xG| > (q − 1)q41 = b4 and by applying Proposition
2.14(i) we deduce that

i3(K) 6 i3(Aut(Lε3(q3))) < 2(q3 + 1)q15 = a4.

Similarly, if r > 5 then dimxḠ > 50, so |xG| > (q − 1)q49 = b5 and we note that |Lε3(q3)| <
q24 = a5. Therefore, the contribution to Q(G,H) from semisimple elements is less than∑5

i=3 a
2
i /bi < q−1 + q−2.

Finally, let us assume x ∈ G is a field, graph or graph-field automorphism. Suppose x is a
field automorphism of prime order r, so q = qr0 and we may assume r 6= 3 since every element
in H of order 3 is contained in K. If r = 2 then ε = + and x acts as an involutory field
automorphism on L3(q3), so |xG| > 1

6q
39 = b6 and

|xG ∩H| 6 |SL3(q3)|
|SL3(q3/2)|

< 2q12 = a6.

If r > 5 then |xG| > 1
6q

312/5 = b7 and we note that |H| < 6 log2 q.q
24 = a7. Next assume

x ∈ G is an involutory graph-field automorphism, so ε = + and q = q2
0. Here |xG| > 1

6q
39 = b8

and x induces a graph-field automorphism on L3(q3), so |xG ∩H| < 2q12 = a8. Finally, if x is
an involutory graph automorphism then x acts as a graph automorphism on L3(q3), so

|xG ∩H| 6 |SLε3(q3)|
|SL2(q3)|

< 2q15 = a9.

In terms of the ambient algebraic groups, x must act as a simultaneous graph automorphism
on the three factors of H̄0 (since Lε3(q3) is not normalized by a graph automorphism that
also induces a nontrivial permutation of the factors of H̄0). Therefore, CḠ(x) 6= F4 and
thus |xG| > 1

6q
42 = b9. It follows that the contribution to Q(G,H) from field, graph and

graph-field automorphisms is less than
∑9

i=6 a
2
i /bi < q−5.

To conclude, it follows that

Q(G,H) <
9∑
i=1

a2
i /bi < q−1 + q−2 + q−5 + q−7

and the proof of the lemma is complete. �

Lemma 4.13. Suppose G0 = Eε6(q) and H is of type

A1(q)Aε5(q), D4(q).(q − ε)2, 3D4(q).(q2 + εq + 1), Dε
5(q).(q − ε).

Then G is not extremely primitive.

Proof. Write H0 = H ∩G0 and L = Inndiag(G0). The structure of NL(H0) is presented in
[50, Table 5.1].

First assume H is of type A1(q)Aε5(q), so H0 = d.(L2(q)× Lε6(q)).d, where d = (2, q− 1). If
q is odd then Z(H) 6= 1, whereas soc(H) is not a direct product of isomorphic simple groups
if q is even. Therefore, G is not extremely primitive by Lemma 2.1. Similar reasoning handles
the cases where H is of type D4(q).(q − ε)2 or 3D4(q).(q2 + εq + 1).
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Finally, let us assume H is of type Dε
5(q).(q − ε), so

H0 = h.(PΩε
10(q)× (q − ε)/eh).h

with e = (3, q− ε) and h = (4, q− ε). If q is odd then F (H) = Zh 6= 1 and G is not extremely
primitive by Lemma 2.1(iv). So for the remainder of the proof we may assume q is even and
thus H0 = Ωε

10(q)× (q − ε)/e. If (q, ε) 6= (2,−), (2,+), (4,+) then the structure of soc(H) is
incompatible with extreme primitivity, so it remains to consider the three special cases.

First assume (q, ε) = (2,−). If G contains Inndiag(G0) then soc(H) is incompatible, so
assume otherwise, in which case (G,H) = (2E6(2),Ω−10(2)) or (2E6(2).2,O−10(2)). Let r be the
rank of G on Ω = G/H. In both cases, the character tables of G and H are available in the
GAP Character Table Library [8]. For G = G0, the fusion map from H-classes to G-classes
is also stored and this allows us to compute the number of fixed points of each x ∈ H on
Ω = G/H. In turn, we deduce that r = 13 via the Orbit Counting Lemma. On the other hand,
if G = G0.2 then there are two possible fusion maps and they both give r = 12. With the aid
of Magma, we can determine the indices n1, . . . , nk of a set of representatives of the H-classes
of core-free maximal subgroups of H and then it is routine to rule out extreme primitivity via
Lemma 2.3. For example, if G = 2E6(2).2 and H = O−10(2) then ni 6 |H : M12.2| = 263208960
and one checks that 1 + 11.263208960 < |G : H|. We refer the reader to [21, Lemma 2.4] for
further details on the GAP and Magma computations used in this case.

Next assume (q, ε) = (2,+), so G = Aut(E6(2)) = E6(2).2 and H = O+
10(2) (as noted in

[50, Table 5.1], if ε = + then H is maximal only if G contains a graph automorphism). We can
handle this case in a similar fashion. Working with the character tables of G0 and H0 = Ω+

10(2)
in [8], we calculate that G0 has rank 35 and thus G has rank at most 35 (the character table
of G is not available in [8] and we have not computed the exact rank of G). Let M be a
core-free maximal subgroup of G. Then using Magma, we find that |H : M | is maximal when
M = O+

6 (2)×O+
4 (2), giving |H : M | 6 16189440. But 1 + 34.16189440 < |G : H|, so G is not

extremely primitive by Lemma 2.3.

Finally, let us turn to the case (q, ε) = (4,+). Here we may assume G contains a graph
automorphism (so that H is maximal) but does not contain Inndiag(G0) (so that the structure
of soc(H) is compatible with extreme primitivity). Therefore, (G,H) = (E6(4).2,O+

10(4)) or
(E6(4).22,O+

10(4).2).

Fix a set of simple roots α1, . . . , α6 for Ḡ and let Xα = {xα(c) : c ∈ F4} be the root
subgroup of G0 corresponding to the root α. By replacing H by a suitable conjugate, we may
assume that

H0 = 〈X±α1 , X±α2 , X±α3 , X±α4 , X±α5〉 = Ω+
10(4).

Let g ∈ G0 \H0 be the involution xα6(1). By applying Chevalley’s commutator relations (see
[24, Theorem 5.2.2]), we see that g centralizes Xα for all α ∈ {±α1,±α2,±α3,±α4,−α5}
and thus g centralizes the subgroup K = 410:SL5(4) < H0. By inspecting [6, Table 8.66], we
see that the only maximal subgroup of H0.2 = O+

10(4) containing K is H0 itself (note that
the maximal parabolic subgroup 410:GL5(4) of H0 does not extend to a maximal subgroup
of H0.2). Similarly, the only maximal subgroups of O+

10(4).2 = H0.2
2 containing K are the

three index-two subgroups of the form H0.2.

Suppose H ∩ Hg is a maximal subgroup of H. Then since g normalizes K, we have
K 6 H ∩Hg < H and thus H ∩Hg = H0 (if G = G0.2) or H0.2 (if G = G0.2

2). Since g is an
involution, it normalizes H ∩Hg and so it must also normalize the characteristic subgroup
H0. But from the explicit description of H0 above in terms of root subgroups, it is easy to
see that g does not normalize H0 and so we have reached a contradiction. We conclude that
H ∩Hg is non-maximal in H and the proof is complete. �

Remark 4.14. In the proof of the previous lemma, we applied Lemma 2.3 to handle the case
(G,H) = (E6(2).2,O+

10(2)). It is worth noting that this case can also be treated by making
minor modifications to the argument we used for (q, ε) = (4,+).
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4.4. G0 = F4(q).

Lemma 4.15. If G0 = F4(q) and H is the normalizer of a maximal torus, then b(G,H) = 2.

Proof. Let W (Ḡ) = O+
4 (3) be the Weyl group of Ḡ and note that q is even and G contains

graph automorphisms (see [50, Table 5.2]). It will be useful to note that if x ∈ G has prime
order, and x is not a long or short root element, then |xG| > q22 (minimal if x is an involution

in the class labelled (Ã1)2).

If x ∈ G is a long (or short) root element, then |xG| > q16 = b1 and Corollary 2.13 gives
|xG ∩ H| 6 24(q + 1)4 = a1. As noted above, for all other nontrivial elements we have
|xG| > q22 and we observe that

|H| 6 (q + 1)4.|W (Ḡ)|.2 log2 q = a2.

This yields Q(G,H) < a2
1/b1 + a2

2/b2, which is less than 1 for q > 8 (it is also less than q−1

for q > 8). Therefore, to complete the proof we may assume q ∈ {2, 4}.
Suppose q = 2, soG = F4(2).2 andH = 72:(3×2.Sym4). HereH0 = H∩G0 = 72:(3×SL2(3))

has a unique involution, so by [23, Corollary 4.4] we see that there are precisely 49 involutions
in H0 and they are all contained in the largest G0-class of involutions (this is the class labelled

A1Ã1). Therefore, |xG| > 226 = b1 for all x ∈ H of prime order and thus Q(G,H) < a2
1/b1 < 1,

where a1 = |H|. In particular, b(G,H) = 2.

Now assume q = 4, so G = F4(4).2 or F4(4).4. Up to conjugacy, there are 5 possibilities for
H0 and we will inspect each case in turn. If H0 = (42 ± 4 + 1)2:(3× SL2(3)) then by arguing
as above we see that |xG| > 426 = b1 and the result follows since Q(G,H) < a2

1/b1 < 1 with
a1 = 4|H0|. The case H0 = 241:12 is entirely similar. Next assume H0 = 172:(4 ◦ GL2(3)).
If x ∈ G is not a root element, then |xG| > 422 = b1 and the contribution from these
elements is less than a2

1/b1, where a1 = 4|H0|. On the other hand, if x is a root element,
then |xG| > 416 = b2 and we have the trivial bound |xG ∩ H| 6 |H0| = a2. This gives
Q(G,H) < a2

1/b1 + a2
2/b2 < 1 as required.

Finally, let us assume H0 = 54:W (Ḡ). As in the previous case, the contribution from
non-long root elements is less than a2

1/b1, where a1 = 4|H0| and b1 = 422. Now assume x is a
root element, so |xG| > 416 = b2. Here we can use Magma to construct H0 as a subgroup
of F4(16) (see [21, Proposition 2.2]) and this allows us to compute the Jordan form of each
involution in H0 on the adjoint module for Ḡ. By inspecting [40, Table 4], we deduce that
|xG ∩H| = 120 = a2. Therefore, Q(G,H) < a2

1/b1 + a2
2/b2 < 1 and thus b(G,H) = 2. �

Lemma 4.16. If G0 = F4(q) and H is of type Aε2(q)2, then b(G,H) = 2.

Proof. Here H̄0 = A2Ã2, where the first factor is generated by long root subgroups and the
second by short root subgroups. Set e = (3, q − ε) and observe that

H0 = (SLε3(q) ◦ SLε3(q)).e.2 = e.Lε3(q)2.e.2,

where the outer involution acts as a graph automorphism on both copies of SLε3(q). Let
V = L(Ḡ) be the adjoint module for Ḡ and note that

V ↓A2Ã2 = L(A2Ã2)⊕ (W ⊗ S2(W ∗))⊕ (W ∗ ⊗ S2(W )), (8)

where W is the natural module for A2, W its dual and S2(W ) is the symmetric-square of W
(see [75, Table 2]).

Let x ∈ H be an element of prime order r. To begin with, let us assume r = p = 2. Note
that if x ∈ H̄0 then the Ḡ-class and H̄0-class of x have the same label (see [41, Section 4.7]).
If x acts as a graph automorphism on the two SLε3(q) factors, then x has Jordan form (J6

2 , J
4
1 )

on L(A2Ã2) and it interchanges the two 18-dimensional summands in (8). Therefore, x has
Jordan form (J24

2 , J4
1 ) on V and by inspecting [40, Table 4] we deduce that x is in the Ḡ-class

labelled A1Ã1. Putting this together, it follows that if x is a long or short root element, then
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|xG| > q16 = b1 and there are 2 · i2(Lε3(q)) < 3q4 = a1 such elements in H. On the other hand,

if x is in the class labelled A1Ã1 then |xG| > q28 = b2 and H contains

i2(Lε3(q))2 +

(
|SLε3(q)|
|SL2(q)|

)2

= (q + ε)2(q3 − ε)2 + q4(q3 − ε)2 < 2q10 = a2

such elements (no involution in H is contained in the class labelled (Ã1)2).

Next assume r = p > 2. If dimxḠ > 30 then |xG| > 1
4q

30 = b3 and we note that H0

contains q12 = a3 unipotent elements (see Proposition 2.14(ii)). Now assume dimxḠ < 30, so

x is contained in one of the G0-classes labelled A1, Ã1 or A1Ã1. As in the previous paragraph,
the contribution to Q(G,H) from these elements is less than a2

1/b1 + a2
2/b2.

Now let us turn to semisimple elements. Suppose x ∈ H is a semisimple element of prime
order r. First assume r = 2, so CḠ(x) = A1C3 or B4. If x acts as a graph automorphism on

both SLε3(q) factors, then x has Jordan form (−I10, I6) on L(A2Ã2) and it swaps the two
18-dimensional summands in (8), so dimCV (x) = 24 and thus CḠ(x) = A1C3. Now assume
x = (x1, x2) ∈ H̄0. If either x2 = 1, or x1 and x2 are both nontrivial, then CḠ(x) = A1C3.
On the other hand, if x1 = 1 then CḠ(x) = B4. We conclude that if x is a B4-type involution,
then |xG| > q16 = b4 and |xG ∩H| = i2(Lε3(q)) < 2q4 = a4. Similarly, if CḠ(x) = A1C3 then
|xG| > q28 = b5 and

|xG ∩H| 6 i2(Lε3(q)) + i2(Lε3(q))2 +

(
|SLε3(q)|
|SL2(q)|

)2

< 2q10 = a5.

Now assume r > 3. If dimxḠ > 36 then |xG| > 1
2q

36 = b6 and we note that there are

fewer than q16 = a6 such elements in H. So we may assume dimxḠ < 36, in which case
CḠ(x) = B3T1 or C3T1 and |xG| > (q − 1)q29 = b7 = b8. Let us also observe that r divides
|Z(CG0(x))| = q ± 1.

Suppose r = 3 and let Z be the normal subgroup of H0 of order e. Then by applying
Proposition 2.14(i) we deduce that

i3(H0) < |Z| · (1 + i3(PGLε3(q)2)) 6 12(q + 1)2q10.

In fact, one checks that i3(PGLε3(2)2) 6 6560 and thus i3(H0) 6 19683 when q = 2. It

follows that the contribution to Q(G,H) from elements x ∈ G of order 3 with dimxḠ < 36
is less than a2

7/b7, where a7 = 12(q + 1)2q10 if q > 4 and a7 = 19683 if q = 2. Now assume
r > 5 (and CḠ(x) = B3T1 or C3T1). An easy calculation using (8) shows that an element
x = (x1, x2) ∈ H̄0 of order r has the appropriate centralizer in Ḡ if and only if x1 or x2 is
trivial. Therefore, there are fewer than 2|Lε3(q)| < 2q8 = a8 such elements in H.

To complete the proof, let us assume p = 2 and x is an involutory graph automorphism,
so |xG| > q26 = b9. In terms of the ambient algebraic groups, x interchanges the two A2

factors of H̄0, so there are two classes of involutions in H̄.2 \ H̄, represented by x and yx,
where y ∈ H̄ acts as a simultaneous graph automorphism on both factors. Now CH̄0(x) and
CH̄0(yx) are both isomorphic to A2 and we deduce that |xG ∩H| 6 2|SLε3(q)| < 2q8 = a9.

We conclude that Q(G,H) <
∑9

i=1 a
2
i /bi and it is routine to verify that this upper bound

is less than 1 for all q > 2 (and it tends to zero as q tends to infinity). �

Remark 4.17. It is worth noting that the cases with q = 2 in Lemma 4.16 can also be
handled using Magma. We refer the reader to [21, Lemma 2.5] for the details.

Lemma 4.18. If G0 = F4(q) and H is of type C2(q)2, then b(G,H) = 2.

Proof. Here p = 2, G contains a graph automorphism and

H0 = Sp4(q) o Sym2 < Sp8(q) < G0.



34 TIMOTHY C. BURNESS AND ADAM R. THOMAS

1 b1 a2 c2

1 1 Ã1 Ã1 (Ã1)2

b1 A1 (Ã1)2 A1Ã1 A1Ã1

a2 A1 A1Ã1 (Ã1)2 A1Ã1

c2 (Ã1)2 A1Ã1 A1Ã1 A1Ã1

Table 6. The involutions in Sp4(q)2 < F4(q), p = 2

In particular, H0 is a non-maximal subgroup of G0. Set H̄0 = B2
2 < B4 < Ḡ and let W be the

4-dimensional natural module for B2, with ρ : B2 → GL(W ) the corresponding representation.
Let τ be the standard graph automorphism of B2 and let W τ be the B2-module W afforded
by the representation ρτ . Then by inspecting [75, Table 2] we see that the restriction of the
adjoint module V = L(Ḡ) to H̄0 has the form

V ↓B2
2 = L(B2

2)⊕ (W ⊗W )⊕ (W τ ⊗W τ ) (9)

The case q = 2 can be checked using Magma (see [21, Lemma 2.5]) and so we may assume
q > 4. Our goal is to show that Q(G,H) < 1.

Let x ∈ H be an element of prime order r. First assume x ∈ H0 and r = 2. Recall that
Sp4(q) has three classes of involutions, labelled b1, a2 and c2 in [1]. It is straightforward to
determine the Sp8(q)-class of each involution in Sp4(q)2 and then the G0-class can be read off
from [43, p.373] (also see [41, Section 4.4]). For example, if x = (x1, x2) ∈ Sp4(q)2, where x1

is of type a2 and x2 is of type b1, then x is a b3 involution in Sp8(q) and is therefore contained

in the G0-class labelled A1Ã1. For the reader’s convenience, the G0-class of each involution in
Sp4(q)2 is recorded in Table 6. Similarly, if x ∈ H0 interchanges the two copies of Sp4(q) then

x embeds in Sp8(q) as an a4-type involution and thus x is in the G0-class labelled (Ã1)2.

To summarise, if x ∈ G0 is a long or short root element, then |xG| > q16 = b1 and there

are precisely 4(q4 − 1) = a1 such elements in H. Similarly, if x is in the G0-class (Ã1)2 then
|xG| > q22 = b2 and we have

|xG ∩H| = 2|cSp4(q)
2 |+ |bSp4(q)

1 |2 + |Sp4(q)| < q6(q4 + 2q2 + 2) = a2.

Finally, if x is in the A1Ã1 class then |xG| > q28 = b3 and |xG ∩H| < q8(q4 + 4q2 + 2) = a3.

Next assume x ∈ H0 has order r > 3, so |xG| > (q − 1)q29 = b4. Since

i3(Sp4(q)) 6 2 · |Sp4(q)|
|GL2(q)|

= 2q3(q + 1)(q2 + 1)

it follows that

i3(H0) = i3(Sp4(q)2) 6 (2q3(q + 1)(q2 + 1) + 1)2 − 1 < 5q12 = a4

and thus the contribution to Q(G,H) from semisimple elements of order 3 is less than a2
4/b4.

Now assume x ∈ Sp4(q)2 has prime order r > 5. If dimxḠ > 42 then |xG| > 1
2q

42 = b5 and

we note that there are fewer than |Sp4(q)|2 < q20 = a5 semisimple elements in H. Therefore,

to complete the analysis for semisimple elements, we may assume r > 5 and dimxḠ < 42, in
which case

CḠ(x) = B2T2, A2A1T1, B3T1 or C3T1. (10)

In order to work with the decomposition in (9), it will be useful to observe that the action
of τ on semisimple elements of B2 is as follows (up to conjugacy, and with respect to the
natural module):

τ : diag(λ, µ, µ−1, λ−1) 7→ diag(λµ, λ−1µ, λµ−1, λ−1µ−1). (11)
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Let i > 1 be minimal such that r divides qi − 1, so i ∈ {1, 2, 4}. First let us consider

the contribution to Q(G,H) from the elements with i = 4 and dimxḠ < 42. Note that
CḠ(x) = B2T2 is the only option since r divides q2 + 1 and thus dimZ(CḠ(x)) > 2. In
particular, |xG| > 1

2q
40 = b6. Write x = (x1, x2) ∈ Sp4(q)2. Using (11) and the decomposition

in (9), we deduce that dimCV (x) = 12 if and only if x1 and x2 are Sp4(q)-conjugate, or if
xj = 1 for some j. If π denotes the set of primes s > 5 dividing q2 + 1, then |π| < 2 log2 q
and we deduce that there are at most

2|Sp4(q)|+
∑
r∈π

1

4
(r − 1) ·

(
|Sp4(q)|
q2 + 1

)2

< 2q10 +
1

2
log2 q.q

10(q2 − 1)4 = a6

such elements in H. Therefore, the contribution to Q(G,H) from these elements is less than
a2

6/b6.

Now assume i ∈ {1, 2} and dimxḠ < 42. As above, write x = (x1, x2) ∈ Sp4(q)2 and let
us assume CḠ(x) = B3T1 or C3T1. By considering the various possibilities for x1 and x2

we deduce that dimCV (x) = 22 if and only if x1 is non-regular and x2 is either trivial or
conjugate to x1 (or vice versa). Therefore, if α denotes the number of such elements in H,
then

α 6
∑
r∈π

1

2
(r − 1) ·

((
2
|Sp4(q)|
|GL2(q)|

)2

+ 4
|Sp4(q)|
|GL2(q)|

)
,

where π is the set of primes s > 5 dividing q2 − 1. If q = 4, then π = {5} and the above
bound yields α 6 236792320. Now assume q > 8. Since r 6 q + 1, it follows that

α < 2 log2 q.q(4q
6(q + 1)2(q2 + 1)2 + 4q3(q + 1)(q2 + 1)). (12)

Now |xG| > (q− 1)q29 = b7 and so the contribution to Q(G,H) from the semisimple elements
x ∈ H with r > 5 and CḠ(x) = B3T1 or C3T1 is less than a2

7/b7, where a7 = 236792320 if
q = 4 and a7 is the upper bound on α in (12) if q > 8.

Finally, let us assume i ∈ {1, 2} and CḠ(x) = B2T2 or A2A1T1, so |xG| > 1
2q

40 = b8. First
observe that Sp4(q) contains at most

1

2
(r − 1) · 2 |Sp4(q)|

|GL2(q)|
< 2(r − 1)q6

non-regular semisimple elements of order r. Therefore, there are fewer than 4(r − 1)2q12

elements in Sp4(q)2 of order r of the form (x1, x2), where neither x1 nor x2 is regular. Since
r divides q2 − 1, there are less than 8 log2 q.q

14 semisimple elements of this form in H.

Now assume x = (x1, x2) ∈ Sp4(q)2 has order r and x1 is regular. By considering (9),
we deduce that dimCḠ(x) = 12 if and only if one of the following holds, where ∼ denotes
B2-conjugacy:

(a) x2 is either trivial or conjugate to x1;

(b) x1 ∼ diag(λ, λ2, λ−2, λ−1) and x2 ∼ diag(λ, 1, 1, λ−1) or diag(λ, λ, λ−1, λ−1) for some
primitive rth root of unity λ (with r = 5 in the latter case).

Let α and β the total number of elements in H satisfying the conditions in (a) and (b),
respectively (allowing for the conditions on x1 and x2 to be interchanged) and let π be the
set of primes s > 5 dividing q2 − 1. Then

α 6 2|Sp4(q)|+
∑
r∈π

(1
2(r − 1)

2

)(
|Sp4(q)|
(q − 1)2

)2

< 2q10 + 2 log2 q.
1

8
q2.(2q8)2 = 2q10 + log2 q.q

18

and

β 6
∑
r∈π

1

2
(r − 1) · 2 · |Sp4(q)|

(q − 1)2
· 2 |Sp4(q)|
|GL2(q)|

< 16 log2 q.q
15.
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By combining the above estimates, we conclude that H contains fewer than

a8 = 2q10 + log2 q.q
14(q4 + 16q + 8)

semisimple elements of prime order r > 5 with i ∈ {1, 2} and CḠ(x) = B2T2 or A2A1T1.

To complete the proof of the lemma, we need to estimate the contribution to Q(G,H)
from field and graph automorphisms. First assume x ∈ H is a field automorphism of order r,

so q = qr0 and |xG| > 1
2q

52(1−r−1). If r is odd then x acts on Sp4(q)2 as a field automorphism
on both factors, so H contains

(r − 1) ·
(
|Sp4(q)|
|Sp4(q1/r)|

)2

< 4(r − 1)q20(1−r−1)

such elements. Since |H| < 4 log2 q.q
20, we see that the contribution from odd order field

automorphisms is less than
∑11

i=9 a
2
i /bi, where

a9 = 8q40/3, b9 =
1

2
q104/3, a10 = 16q16, b10 =

1

2
q208/5, a11 = 4 log2 q.q

20, b11 =
1

2
q312/7.

Now assume r = 2, so |xG| > q26 = b12 and there are two H0-classes of involutions in the
coset H0x. It follows that

|xG ∩H| =
(
|Sp4(q)|
|Sp4(q1/2)|

)2

+ |Sp4(q)| < 5q10 = a12.

Finally, suppose x is an involutory graph automorphism of G0, so |xG| > q26 = b13 and
q = 22m+1 with m > 1. Now x induces a graph automorphism on both Sp4(q) factors and we
note that there are two classes of involutions in H0x. In particular,

|xG ∩H| =
(
|Sp4(q)|
|2B2(q)|

)2

+ |Sp4(q)| < 5q10 = a13.

Bringing the above estimates together, we conclude that

Q(G,H) <
13∑
i=1

a2
i /bi < 1

for all q > 4 (and the upper bound tends to 0 as q tends to infinity). The result follows. �

Lemma 4.19. If G0 = F4(q) and H is of type C2(q2), then b(G,H) = 2.

Proof. Here p = 2, H0 = Sp4(q2).2 < Sp8(q) < G0 and G contains graph automorphisms.
Note that

(H0)′ = Sp4(q2) = {(x, xϕ) : x ∈ Sp4(q2)} < H̄0 = B2
2 , (13)

where ϕ is an involutory field automorphism of Sp4(q2). In particular, the outer involution in
H0, which acts as a field automorphism on Sp4(q2), corresponds to an involution in H̄ that
interchanges the two B2 factors of H̄0. The case q = 2 can be checked using Magma (see [21,
Lemma 2.5] for the details of this computation) and so we may assume q > 4.

Let x ∈ H be an element of prime order r. First assume r = 2 and x ∈ H0. There are three
classes of involutions in Sp4(q2) and it is easy to determine the corresponding class in Sp8(q),
which in turn allows us to identify the G0-class of x (see [43, p.373], for example). Using the
notation from [1], we find that the b1-involutions in Sp4(q2) are contained in the Sp8(q)-class

labelled c2, which is contained in the G0-class (Ã1)2. Similarly, the a2-type involutions in

Sp4(q2) are also in the (Ã1)2 class, while the c2 involutions are in the class A1Ã1. In addition,
the involutory field automorphisms in H0 embed in Sp8(q) as a4-type involutions, so they are

contained in the G0-class (Ã1)2.
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In conclusion, if x is an involution in the class (Ã1)2, then |xG| > q22 = b1 and

|xG ∩H| = 2(q8 − 1) +
|Sp4(q2)|
|Sp4(q)|

< 2q10 = a1.

And for x in the class A1Ã1 we have |xG ∩H| < q12 = a2 and |xG| > q28 = b2.

Next assume x ∈ G0 has order r > 3, so |xG| > (q − 1)q29 = b3. Since

i3(H0) 6 2
|Sp4(q2)|
|GL2(q2)|

= 2q6(q2 + 1)(q4 + 1) = a3,

it follows that the contribution to Q(G,H) from semisimple elements of order 3 is less than

a2
3/b3. Now assume r > 5. If dimxḠ > 42 then |xG| > 1

2q
42 = b4 and there are fewer than

q20 = a4 semisimple elements in H, so the contribution from these elements is less than
a2

4/b4 = 2q−2.

To complete the analysis of semisimple elements, we may assume r > 5 and dimxḠ < 42,
so the possibilities for CḠ(x) are listed in (10). In terms of the embedding of Sp4(q2) in H̄0

(see (13)), we may write x = (x1, x2) ∈ H̄0, where up to conjugacy we have

x1 = diag(λ, µ, µ−1, λ−1), x2 = xϕ1 = diag(λq, µq, µ−q, λ−q).

By expressing x in this form, we can use (9) to determine the dimension of the 1-eigenspace
of x on the adjoint module V = L(Ḡ). Note that r divides q8 − 1.

Suppose CḠ(x) = B3T1 or C3T1. By considering (9) and the various possibilities for x1

and x2, we deduce that x1 and x2 must be Sp4(q2)-conjugate and non-regular, so r divides
q2 − 1. Let π be the set of primes s > 5 dividing q2 − 1 and note that |xG| > (q − 1)q29 = b5.
Then H contains at most∑

r∈π

1

2
(r − 1) · 2 |Sp4(q2)|

|GL2(q2)|
< f(q).q6(q2 + 1)(q4 + 1) = a5

such elements, where f(q) = 2 log2 q.q
2 if q > 8 and f(4) = 4 (note that π = {5} if q = 4).

Now assume CḠ(x) = B2T2 or A2A1T1, so |xG| > 1
2q

40 = b6. Suppose x ∈ Sp4(q2) is

regular. If r divides q4 + 1 then by considering the possibilities for |Z(CG0(x))| we deduce
that CḠ(x) = T4, which is a contradiction. Now assume r divides q4 − 1. If x1 and x2

are not Sp4(q2)-conjugate, then by considering the 1-eigenspace of x on V we deduce that

dimxḠ > 42. On the other hand, if x1 and x2 are conjugate (which is always the case if r
divides q2− 1) then dimCḠ(x) = 12. Therefore, if π is the set of primes s > 5 dividing q4− 1,
then there are at most∑
r∈π

(1
2(r − 1)

2

)
|Sp4(q2)|
(q2 − 1)2

< 4 log2 q.
1

8
q2.q8(q2 + 1)2(q4 + 1) =

1

2
log2 q.q

10(q2 + 1)2(q4 + 1)

such elements in H. Finally, by arguing as in the previous paragraph, we calculate that there
are fewer than 2a5 non-regular semisimple elements in Sp4(q2) of order r, where r > 5 is a
prime divisor of q4 − 1. We conclude that there are less than

1

2
log2 q.q

10(q2 + 1)2(q4 + 1) + 2a5 = a6

semisimple elements x ∈ H of prime order r > 5 with CḠ(x) = B2T2 or A2A1T1.

Now suppose x ∈ G is a field automorphism of prime order r, so q = qr0. If r = 2 and
L = 〈G0, x〉, then every involution in NL(H0) = Sp4(q2).4 is contained in H0, so we may
assume r is odd. Since x induces a field automorphism of order r on Sp4(q2), we see that the

contribution to Q(G,H) from field automorphisms is less than
∑9

i=7 a
2
i /bi, where

a7 = 4q40/3, b7 =
1

2
q104/3, a8 = 8q16, b8 =

1

2
q208/5, a9 = 4 log2 q.q

20, b9 =
1

2
q312/7.
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Finally, suppose x ∈ G is an involutory graph automorphism, so q = 22m+1 with m > 1.
As noted above for involutory field automorphisms, if G = G0.2 then every involution in
H = H0.2 = Sp4(q2).4 is contained in H0 (note that Out(Sp4(q2)) is cyclic). In particular,
there is no contribution to Q(G,H) from graph automorphisms.

In view of the above estimates, we conclude that

Q(G,H) <

9∑
i=1

a2
i /bi

and one checks that this bound is sufficient. �

Lemma 4.20. Suppose G0 = F4(q) and H is of type

A1(q)C3(q) (p 6= 2), B4(q), D4(q), 3D4(q).

Then G is not extremely primitive.

Proof. If H is of type A1(q)C3(q) (with q odd) then H is the centralizer of an involution, so
Z(H) 6= 1 and G is not extremely primitive by Lemma 2.1(i).

In the three remaining cases, the maximality of H implies that G does not contain any
graph automorphisms (see [50, Table 5.1]). In other words, we may assume that G = G0.A
and H = H0.A, where A is a group of field automorphisms of G0.

Suppose H is of type B4(q), so H0 = d.Ω9(q) with d = (2, q − 1) and we may assume
q is even (otherwise Z(H) 6= 1). To handle this case, we will appeal to Lemma 2.4. Let
K = Ω+

8 (q) < H0. By inspecting [6, Tables 8.58 and 8.59], for example, it is easy to see that
M = NH0(K) = K.2 is the only maximal overgroup of K in H0. Since M is a non-normal
subgroup of NG0(K) = K.Sym3 (see [50, Table 5.1]), we may choose g ∈ NG0(K) such that
Mg 6= M . If Mg 6 H0 then K = Kg < Mg and thus M = Mg since M is the unique maximal
overgroup of K in H0, which is a contradiction. Therefore, Mg 66 H0 and the result follows
by applying Lemma 2.4 (noting that K and M are both A-stable).

Now assume H is of type D4(q), so H0 = d2.PΩ+
8 (q).Sym3 and once again we may assume

q is even. Consider the subgroup K̄ = B3 < H̄0 = D4 and set

K = K̄σ = Sp6(q) < S = (H̄0)σ = Ω+
8 (q) < H0.

Let M be the set of maximal overgroups of K in H0. By inspecting [6, Table 8.50] we see
that NH0(K) = K × Z2 and CH0(K) = Z2. In particular, each M ∈ M is of the form S.2
(three such groups) or S.3. Note that K and each subgroup in M is A-stable. By inspecting
[52, Table 2] we see that CḠ(K̄)0 = A1 and thus CG0(K) > SL2(q). Therefore, we can
choose g ∈ CG0(K) \ CH0(K). Then g normalizes K, but it does not normalize S (since
H0 = NG0(S)), so Mg 66 H0 for all M ∈M. Now apply Lemma 2.4.

Finally, let us assume H is of type 3D4(q), so H0 = 3D4(q).3. Write H0 = S.〈τ〉, where
S = 3D4(q) and τ is a triality graph automorphism of S with CS(τ) = G2(q) = K. Note that
M = NH0(K) = K × 〈τ〉 and S are the only maximal overgroups of K in H0. Let us also
observe that K and M are A-stable.

We claim that

CH0(K) = 〈τ〉 < PGL2(q) 6 CG0(K).

To see this, first observe that K = K̄σ for a σ-stable subgroup K̄ = CḠ(τ) of type G2, which
contains long root subgroups of Ḡ. So by [52, Table 3], CḠ(K̄)0 = J̄ is of type A1. In addition,
note that if p 6= 2 then J̄ × K̄ is a maximal subgroup of Ḡ by [56, Theorem 1] and thus J̄
must be of adjoint type. It remains to prove that τ ∈ J̄ , since then τ will be contained in
J̄σ ∼= PGL2(q). Suppose this is not the case. Then τ must centralize J̄ and so it centralizes
J̄ × K̄. As noted above, if p 6= 2 then J̄ × K̄ is maximal, so this is not possible. On the other
hand, if p = 2 then [32, Table 4.7.1] implies that CḠ(τ) = B3T1, C3T1 or A2Ã2. But once
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again we reach a contradiction since none of these groups contain a subgroup of type A1G2.
This justifies the claim.

Suppose q > 3. Then 〈τ〉 is non-normal in PGL2(q), so we can choose g ∈ CG0(K)\CH0(K)
that does not normalize Z(M) = 〈τ〉. In particular, g does not normalize M . If Mg 6 H0

then K = Kg < Mg 6 H0 and thus M = Mg, which is a contradiction. Similarly, if Sg 6 H0

then S = Sg and thus g ∈ NG0(S) = H0. But we have g ∈ CG0(K) \ CH0(K), so once again
we have reached a contradiction. Therefore, Mg 66 H0 and Sg 66 H0, so Lemma 2.4 implies
that G is not extremely primitive.

To complete the proof, let us assume q = 2. The character tables of G and H are available
in the GAP Character Table Library [8] and we calculate that G has rank 7 (there are four
possible fusion maps from H-classes to G-classes, but this does not affect the computation
of the rank; see [21, Lemma 2.6] for the details). In addition, the indices of the core-free
maximal subgroups of H are as follows:

{n1, . . . , n9} = {4064256, 978432, 179712, 163072, 89856, 69888, 17472, 2457, 819}.
Now |G : H| = 5222400 and it is routine to check that there is no tuple [a1, . . . , a9] of
non-negative integers such that

∑
i ai = 6 and 1 +

∑
i aini = |G : H|. Therefore, G is not

extremely primitive by Lemma 2.3. �

4.5. G0 = G2(q).

Lemma 4.21. If G0 = G2(q) and H is the normalizer of a maximal torus, then b(G,H) = 2.

Proof. Here p = 3, q > 9 and G contains graph automorphisms (see [50, Table 5.2]). By
Corollary 2.13, there are no root elements in H, so |xG| > q3(q + 1)(q3 − 1) = b1 for all
x ∈ H of prime order (see [57, 61]) and we note that |H| 6 12(q+ 1)2.2 log3 q = a1. Therefore,
Q(G,H) < a2

1/b1 and this upper bound is less than 1 if q > 9 (and it is less than q−1 for
q > 81).

To complete the proof, we may assume q = 9. Here |xG| > q3(q + 1)(q3 + 1) for all x ∈ H
of prime order (minimal if x is an involutory field automorphism) and by arguing as above we
reduce to the cases where H0 = (q±1)2.D12. If x ∈ H is not an involutory field automorphism,
then |xG| > (q6 − 1)(q2 − 1) = b1 and we note that |H| 6 (q + 1)2.12.4 = a1. Now assume x
is an involutory field automorphism, so |xG| = q3(q + 1)(q3 + 1) = b2 and there are at most
|H0x| 6 (q + 1)2.12 = a2 such elements in H. Therefore, Q(G,H) < a2

1/b1 + a2
2/b2 < 1 and

the result follows. �

Lemma 4.22. If G0 = G2(q) and H is of type A1(q)2, then G is not extremely primitive.

Proof. If q is odd then H is the centralizer of an involution, so Z(H) 6= 1 and G is not
extremely primitive by Lemma 2.1(i). For the remainder, let us assume q is even. Write
G = G0.A and H = H0.A, where A = 〈ϕ〉 and ϕ is either trivial or a field automorphism.

Let α1, α2 be simple roots for G0 with α1 short, α2 long and let Xα = {xα(c) : c ∈ Fq} be
the root subgroup corresponding to the root α. Then up to conjugacy, we may assume that

H0 = 〈X±(3α1+2α2), X±α1〉 = L2(q)× L2(q).

Set g = xα2(1)xα1+α2(1)x−α2(1) ∈ G2(2) 6 G0. By [12, Theorem A.1], we have H0 ∩Hg
0 = 1

and thus b(G0, H0) = 2. Moreover, since g ∈ G2(2) 6 CG(ϕ) it follows that H ∩Hg = 〈ϕ〉.
Clearly, this is not a maximal subgroup of H and thus G is not extremely primitive. �

Lemma 4.23. If G0 = G2(q) and H is of type Aε2(q), then G is not extremely primitive.

Proof. Here H0 = SLε3(q).2 and the maximality of H implies that G = G0.A and H = H0.A,
where A is a group of field automorphisms (see [50, Table 5.1]). In view of Theorem 2.15, we
may assume that q > 7. If q ≡ ε (mod 3) then F (H) = Z3 and extreme primitivity is ruled
out by Lemma 2.1(iv), so we may assume that (3, q − ε) = 1. Let S = soc(H0) = SLε3(q).
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By inspecting [6, Tables 8.3 and 8.5], we see that H0 has a maximal subgroup M = GLε2(q).2.
Set

K = SL2(q) < L = GLε2(q) < M

and let M be the set of maximal overgroups of K in H0. Note that NH0(K) = M . We claim
thatM = {M,S}. Plainly S ∈M and using [6] it is clear that every other subgroup inM is

a conjugate of M . Suppose K is contained in Mh for some h ∈ H0. Then K,Kh−1
6M , but

K is the only subgroup of M isomorphic to SL2(q), so K = Kh−1
and thus h ∈ NH0(K) = M .

Therefore, M = Mh and this justifies the claim. Note that K, M and S are all A-stable. In
addition, let us observe that CS(K) = CL(K) = Z(L) = Zq−ε is a characteristic subgroup of
CH0(K) = CM (K) = Zq−ε.2 and M .

We claim that CS(K) < SL2(q) < G0. Firstly, we note that L = L̄σ for a σ-stable subgroup
L̄ < Ḡ of type A1T1 and so K = (L̄′)σ. By inspecting [52, Table 2], we see that CḠ(L̄′)0 = J̄ ,
where J̄ is a subgroup of type A1, whence T1 = Z(L̄) < J̄ and CS(K) = Z(L̄)σ < J̄σ = SL2(q),
as required.

By the claim, it follows that CL(K) is a non-normal subgroup of CG0(K). Therefore, we
may choose an element g ∈ CG0(K) which does not normalize CL(K). Suppose Mg 6 H0.
Then K = Kg < Mg 6 H0 and thus M = Mg (since M and S are the only maximal
overgroups of K in H0). But CL(K) = Z(L) is a characteristic subgroup of M , so this would
imply that g normalizes CL(K), which is a contradiction. Similarly, if Sg 6 H0 then Sg = S
and thus CS(K)g = CS(K). But CS(K) = CL(K) and g does not normalize CL(K), so once
again we have reached a contradiction. We conclude that Mg 66 H0 and Sg 66 H0, so the
desired result follows from Lemma 2.4. �

4.6. G0 = 3D4(q).

Lemma 4.24. If G0 = 3D4(q) and H is the normalizer of a maximal torus, then b(G,H) = 2.

Proof. The possibilities for H are described in [50, Table 5.2] and in each case we observe
that H0 = S.N , where S is a torus of odd order and N has a unique involution. If q = 2 then
we refer the reader to [17, Table 12]. For the remainder, we may assume q > 3.

Suppose H0 contains a long root element x. Then p = 2 by Corollary 2.13, so x is an
involution. But [23, Corollary 4.4] implies that every involution in H0 is contained in the
largest class of involutions in G0 and it follows that there are no long root elements in H0.
Therefore, Proposition 2.11 gives |xG| > q14 = b1 for all x ∈ H of prime order and we note
that

|H| 6 (q2 + q + 1)2.|SL2(3)|.3 log2 q = a1.

This gives Q(G,H) < a2
1/b1, which is less than 1 if q > 7 (and it is less than q−1 for q > 11).

Now assume q ∈ {3, 4, 5}. If H0 = (q4 − q2 + 1):4, then we can replace a1 in the previous
bound by 3 log2 q.|H0| and this is sufficient. Next suppose H0 = (q2 − q + 1)2:SL2(3). If q = 5
then |H| 6 212.|SL2(3)|.3 = a1 and we get Q(G,H) < a2

1/b1 < 1 with b1 = 514. If q ∈ {3, 4}
then H = NG(L), where L is a Sylow (q2 − q + 1)-subgroup of G0, and we can use Magma
to show that b(G,H) = 2. Finally, the case H0 = (q2 + q + 1)2:SL2(3) can be handled in a
similar fashion, noting that H = NG(L) for a Sylow r-subgroup of G0 with r = 13, 7 and
31 when q = 3, 4 and 5, respectively. We refer the reader to [21, Lemmas 2.7 an 2.8] for the
details of these Magma computations. �

Lemma 4.25. Suppose G0 = 3D4(q) and H is of type A1(q)A1(q3) or Aε2(q).(q2 + εq + 1).
Then G is not extremely primitive.

Proof. In view of Theorem 2.15, we may assume q > 3. First assume H is of type A1(q)A1(q3),
so H0 = d.(L2(q)× L2(q3)).d with d = (2, q − 1). If q is odd then H is the centralizer of an
involution, so Z(H) 6= 1 and G is not extremely primitive. On the other hand, if q is even
then the structure of soc(H) is incompatible with extreme primitivity. Similarly, if H is of
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type Aε2(q).(q2 + εq + 1), then H0 = (SLε3(q) ◦ (q2 + εq + 1)).h.2 with h = (q2 + εq + 1, 3) and
the result follows since soc(H) is not a direct product of isomorphic simple groups. �

4.7. G0 = 2F4(q)′.

Lemma 4.26. If G0 = 2F4(q)′ and H is the normalizer of a maximal torus, then b(G,H) = 2.

Proof. If q = 2 then the result follows from [17, Table 12], so we may assume q > 8. By
inspecting [50, Table 5.2], we see that

|H| 6 (q +
√

2q + 1)2.|4 ◦GL2(3)|.2 log2 q = a1.

Now |xG| > (q − 1)q10 = b1 for all x ∈ G of prime order, so Q(G,H) < a2
1/b1 and one checks

that this upper bound is less than 1 for all q > 8 (in addition, it is less than q−1 for all
q > 32). �

Lemma 4.27. If G0 = 2F4(q)′ and H is of type A−2 (q), then b(G,H) = 2.

Proof. Here H0 = SU3(q).2 or PGU3(q).2. In view of Remark 2.16, we may assume q > 8.
Let x ∈ H be an element of prime order r.

First assume r = 2, so x ∈ H0 and |CH0(x)| is divisible by 3. In the notation of [71, Table
II], it follows that each involution in H0 is G0-conjugate to u2, whence |xG| > (q− 1)q13 = b1
and

|xG ∩H| = i2(H) =
|SU3(q)|
q3(q + 1)2

+
|SU3(q)|
|SL2(q)|

< 2q5 = a1.

Similarly, if x ∈ H0 has order 3 then |xG| > (q − 1)q17 = b2 and since G0 has a unique class
of elements of order 3, it follows that

|xG ∩H| = i3(H0) 6 i3(PGU3(q)) < 2(q + 1)q5 = a2.

If x ∈ H0 has order r > 5 then |xG| > 1
2q

20 = b3 (minimal if x is conjugate to the element

denoted t9 in [71, Table IV]) and we record the bound |SU3(q)| < q8 = a3.

Finally, suppose x ∈ H is a field automorphism of order r. If r = 3 then |xG| > 1
2q

52/3 = b4
and H contains fewer than

2 · |SU3(q)|
|SU3(q1/3)|

< 4q16/3 = a4

such elements. For r > 5, |xG| > 1
2q

104/5 = b5 and we note that |H| < 2 log2 q.q
8 = a5.

We conclude that Q(G,H) <
∑5

i=1 a
2
i /bi < q−1 and the result follows. �

Lemma 4.28. If G0 = 2F4(q)′ and H is of type C2(q), then b(G,H) = 2.

Proof. Here H0 = Sp4(q).2, where the outer involution acts as a graph automorphism on
Sp4(q). For q = 2, we refer the reader to [17, Table 12]. For the remainder, let us assume
q > 8.

It will be convenient to view H0 as a subgroup of F4(q). Then in terms of the ambient
algebraic groups, we have

B2 = {(x, xτ ) : x ∈ B2} < B2
2 < B4 < F4, (14)

where τ is an involutory graph automorphism of B2. Let V be the adjoint module for Ḡ and
note that the restriction of V to B2

2 is given in (9).

Let x ∈ H be an element of prime order r. First assume r = 2, so x ∈ H0. If x acts
as a graph automorphism on Sp4(q), then CSp4(q)(x) = 2B2(q) and we deduce that x is
G0-conjugate to u1 (see [71, Table II]). Similarly, if x is a long or short root element in Sp4(q),
then x is conjugate to u2. Now assume x ∈ Sp4(q) is a c2-type involution, in the notation of
[1]. From the embedding B2 < B4 in (14), we see that x is in the B4-class labelled c4, and
by considering the fusion of B4-classes of involutions in F4 (see [43, p.373], for example), we
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deduce that x is in the F4-class labelled A1Ã1. It follows that x is G0-conjugate to u1 (the

involutions in 2F4(q) conjugate to u2 are contained in the F4-class (Ã1)2). To summarise: if x
is G0-conjugate to u1, then

|xG ∩H| = |Sp4(q)|
|2B2(q)|

< q5 = a1, |xG| > (q − 1)q10 = b1,

whereas

|xG ∩H| = 2(q4 − 1) + (q2 − 1)(q4 − 1) < 2q6 = a2, |xG| > (q − 1)q13 = b2

if x is conjugate to u2.

Next assume x ∈ H0 has order 3. Here |xG| > (q − 1)q17 = b3 and

|xG ∩H| = i3(H0) = 2q3(q2 + 1)(q − 1) < 2q6 = a3.

Now suppose x ∈ H0 has order r > 5, so [71, Table IV] indicates that CḠ(x) = B2T2,

A1Ã1T2 or T4. It will be useful to recall the action of τ on semisimple elements of B2 in (11).

If x is not regular in Sp4(q) then by working with the decomposition in (9), we calculate
that dimCV (x) = 12 and thus dimCḠ(x) = 12. For example, if r divides q − 1 and x =
diag(1, 1, ω, ω−1) ∈ Sp4(q), then xτ = diag(ω, ω, ω−1, ω−1) and we find that x has an 8-
dimensional 1-eigenspace on L(B2B2) and a 4-dimensional 1-eigenspace on W ⊗W , where W
is the natural 4-dimensional module for B2. Furthermore, xτ acts on W τ as diag(1, 1, ω2, ω−2)
and thus dimCW τ⊗W τ (x) = 0, giving dimCV (x) = 12 as claimed. It follows that CḠ(x) =
B2T2 and by inspecting the relevant tables in [70, 71] we deduce that |xG| > 1

2q
20 = b4 (note

that x is of type t1, t7 or t9 in [71, Table IV]). Similarly, we find that CḠ(x) = B2T2 if r = 5
(note that 5 divides q2 + 1, so every element of order 5 is regular). Since r must divide q2 − 1
if x is non-regular, it follows that there are at most

|Sp4(q)|
q2 + 1

+
∑
r∈π

1

2
(r − 1) · 2 · |Sp4(q)|

|GL2(q)|
< q8 + 8 log2 q.q

7 = a4

semisimple elements in H0 with CḠ(x) = B2T2, where π is the set of primes s > 5 dividing
q2 − 1.

Now assume x ∈ H0 is a regular semisimple element with r > 7. Then by considering
(9), we deduce that dimCḠ(x) 6 8 and thus CḠ(x) = A1Ã1T2 or T4. This implies that
|xG| > 1

2q
22 = b5 and we note that |Sp4(q)| < q10 = a5.

Finally, let us assume x ∈ G is a field automorphism of prime order r, so q = qr0, r > 3

and x acts as a field automorphism on Sp4(q). If r = 3 then |xG| > 1
2q

52/3 = b6 and there are

fewer than 2|Sp4(q) : Sp4(q1/3)| < 4q20/3 = a6 such elements in H. Similarly, if r = 5 then

|xG| > 1
2q

104/5 = b7 and H contains fewer than 8q8 = a7 such elements. For r > 7 we have

|xG| > 1
2q

156/7 = b8 and we note that |H| < 2 log2 q.q
10 = a8.

Bringing together the above bounds, we conclude that Q(G,H) <
∑8

i=1 a
2
i /bi < 1 and the

result follows. �

Lemma 4.29. If G0 = 2F4(q)′ and H is of type 2B2(q)2, then b(G,H) = 2.

Proof. Here H0 = 2B2(q) o Sym2 and q > 8 (see [50, Table 5.1]). As in the previous case, it
will be useful to view H0 as a subgroup of F4(q) via B2

2 < B4 < F4. Let x ∈ H be an element
of prime order r and let V = L(Ḡ) be the adjoint module for Ḡ = F4.

First assume r = 2, so x ∈ H0 and we note that 2B2(q) contains (q2 + 1)(q− 1) involutions,
which form a single conjugacy class. If x interchanges the two 2B2(q) factors, then CH0(x)
contains 2B2(q) and thus x is G0-conjugate to u1 in the notation of [71, Table II]. Similarly,
each involution in 2B2(q)2 of the form (x1, 1) or (1, x1) is of type u1. However, if x = (x1, x2) ∈
2B2(q)2 and each xi is an involution, then x is a c4-type involution in B4 (since each xi is a
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c2-type involution in B2) and thus x is in the Ḡ-class labelled A1Ã1. In particular, we deduce
that x is G0-conjugate to u2. It follows that if x is of type u1, then

|xG ∩H| = 2(q2 + 1)(q − 1) + |2B2(q)| < q5 = a1, |xG| > (q − 1)q10 = b1

and for x of type of u2 we get |xG ∩H| < q6 = a2 and |xG| > (q − 1)q13 = b2.

Next assume x ∈ H0 and r > 5 (observe that H0 does not contain any elements of order
3). Write x = (x1, x2) ∈ 2B2(q)2 and note that if xi 6= 1 then xi is a regular element of
B2 (since xi ∈ CB2(τ), this follows from (11)). If x2 = 1 then using (9) we deduce that
dimCV (x) = 12, so CḠ(x) = B2T2. Similarly, if x1 and x2 are conjugate, then CḠ(x) = B2T2.

On the other hand, if the xi are nontrivial and non-conjugate, then CḠ(x) = A1Ã1T2 or T4,
so |xG| > 1

2q
22 = b3 and we note that |2B2(q)2| < q10 = a3.

Now assume CḠ(x) = B2T2, so x is of type t1, t7 or t9 with respect to the notation in [71,
Table IV], where |CG0(ti)| = q2(q2 + 1)(q − 1)fi(q) and

f1(q) = q − 1, f7(q) = q −
√

2q + 1, f9(q) = q +
√

2q + 1.

In particular, |xG| > q20 if x is of type t1 or t7, whereas |xG| > 1
2q

20 if x is of type t9. Let

us also observe that if y ∈ 2B2(q) has order r, then |C2B2(q)(y)| = q − 1 or q ±
√

2q + 1

(see [74]). Moreover, there are 1
2(q − 2) distinct 2B2(q)-classes of semisimple elements with

centralizer of order q − 1, and 1
4(q ±

√
2q) classes with a centralizer of order q ±

√
2q + 1.

By Lagrange’s theorem, it follows that if x = (x1, x2) ∈ 2B2(q)2 and the xi are conjugate
elements of order r, then x is of type t1 if |C2B2(q)(xi)| = q − 1. Similarly, x is of type t7 if

|C2B2(q)(xi)| = q −
√

2q + 1, and type t9 if |C2B2(q)(xi)| = q +
√

2q + 1. Therefore, if x is of

type t1 then |xG| > q20 = b4 and there are at most

2|2B2(q)|+ 1

2
(q − 2) · (q2(q2 + 1))2 = a4

such elements in H0. Similarly, if x is of type t7 then |xG| > q20 = b5 and H0 contains no
more than

2|2B2(q)|+ 1

4
(q −

√
2q) · (q2(q − 1)(q +

√
2q + 1))2 = a5

such elements. Finally, if x is of type t9 then |xG| > 1
2q

20 = b6 and there are at most

2|2B2(q)|+ 1

4
(q +

√
2q) · (q2(q − 1)(q −

√
2q + 1))2 = a6

such elements in H0.

Finally, suppose x ∈ G is a field automorphism of prime order r, so q = qr0, r > 3 and

x acts as a field automorphism on both 2B2(q) factors. If r = 3 then |xG| > 1
2q

52/3 = b7
and there are at most 2|2B2(q) : 2B2(q1/3)|2 < 8q20/3 = a7 such elements in H. Similarly, if

r = 5 then |xG| > 1
2q

104/5 = b8 and H contains fewer than 16q8 = a8 such elements. Finally,

|xG| > 1
2q

156/7 = b9 if r > 7 and we note that |H| < 2 log2 q.q
10 = a9.

We conclude that

Q(G,H) <

9∑
i=1

a2
i /bi < 1

and the result follows. �

4.8. G0 = 2G2(q)′ or 2B2(q).

Lemma 4.30. Suppose G0 = 2G2(q)′ or 2B2(q) and H is the normalizer of a maximal torus.
Then b(G,H) = 2.

Proof. See [17, Lemmas 4.37 and 4.39]. In both cases, it is easy to check that the upper
bound on Q(G,H) given in [17] tends to 0 as q tends to infinity. �
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Lemma 4.31. If G0 = 2G2(q)′ and H is of type 2×L2(q), then G is not extremely primitive.

Proof. Here q > 3 and H is the centralizer of an involution, so Z(H) 6= 1 and G is not
extremely primitive by Lemma 2.1(i). �

We have now completed the proof of Theorem 4.1 and Proposition 4.2.

5. Lower rank subgroups

At this point, we have now established Theorem 1 in the cases where H contains a maximal
torus of G0 and we will now consider the remaining possibilities for H. It will be convenient
to postpone the analysis of the twisted groups 2B2(q), 2G2(q), 2F4(q) and 3D4(q) to Section
8, so in the next three sections we will assume

G0 ∈ {E8(q), E7(q), Eε6(q), F4(q), G2(q)′}, (15)

where q = pf with p a prime.

For G0 = G2(q)′, the maximal subgroups of G have been determined up to conjugacy by
Cooperstein [27] (for p = 2) and Kleidman [34] (for p 6= 2). In the remaining cases, there is a
complete description of the maximal subgroups when G0 = F4(2), E6(2), 2E6(2) or E7(2);
see [67], [37], [26, 77] and [3], respectively.

To proceed in the general case, we will apply the following fundamental result (see [51,
Theorem 2]), which partitions the remaining maximal subgroups into various types.

Theorem 5.1. Let G be an almost simple group with socle G0 = (Ḡσ)′ as in (15). Let H be
a maximal subgroup of G with G = HG0 and assume H does not contain a maximal torus of
G0. Set H0 = H ∩G0. Then one of the following holds:

(I) H = NG(H̄σ), where H̄ is a maximal closed σ-stable positive dimensional subgroup of
G (not parabolic nor maximal rank);

(II) H is of the same type as G (possibly twisted) over a subfield of Fq;
(III) H is an exotic local subgroup (determined in [25]);

(IV) G0 = E8(q), p > 7 and H0 = (Alt5 ×Alt6).22;

(V) H is almost simple, and not of type (I) or (II).

In view of this result, for the remainder of the paper we will refer to Type I and Type II
subgroups of G, etc. We direct the reader to Theorem 7.2 for more detailed information on
Type V subgroups.

We begin by handling the subgroups of Type III and IV, which are easily eliminated.

Theorem 5.2. If H is a Type III or IV subgroup of G, then G is not extremely primitive.

Proof. In view of Lemma 2.1 (specifically, parts (ii) and (v)), we may assume that one of the
following holds, where H0 = H ∩G0:

(a) G0 = G2(q), H0 = 23.SL3(2), q = p > 3;

(b) G0 = F4(q), H0 = 33.SL3(3), p > 5;

(c) G0 = E8(q), H0 = 53.SL3(5), p 6= 2, 5.

First consider case (a). For q ∈ {3, 5}, we appeal to Theorem 2.15 (note that b(G,H) = 3
when q = 3). Now assume q > 7, so G = G2(q) and H = 23.SL3(2). We claim that b(G,H) = 2.
For q = 7 we use Magma to construct G as a permutation group of degree 19608 and we
construct H = NG(L) by identifying an appropriate elementary abelian subgroup L of order
8 in a Sylow 2-subgroup of G. It is then routine to find an element g ∈ G by random search
such that H ∩Hg = 1 (see [21, Lemma 2.9] for more details). Now assume q > 11 and let
x ∈ H be an element of prime order r, so r ∈ {2, 3, 7} and we note that i2(H) = 91 = a1,
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G0 soc(H0)
E8(q) L2(q) (3 classes, p > 23, 29, 31),Ω5(q) (p > 5)
E7(q) L2(q) (2 classes, p > 17, 19),Lε3(q) (p > 5),L2(q)2 (p > 5), 3D4(q) (p > 3)
Eε6(q) L±3 (q) (p > 5), G2(q) (p 6= 7),PSp8(q) (p > 3), F4(q),
F4(q) L2(q) (p > 13), G2(q) (p = 7)
G2(q) L2(q) (p > 7)

Table 7. Type I subgroups with a compatible socle

i3(H) = 224 = a2 and i7(H) = 384 = a3. If r = 2 then |xG| = q4(q4 + q2 + 1) = b1 and
similarly |xG| > q3(q3 − 1) = b2 if r = 3 and |xG| > 1

2q
10 = b3 if r = 7. Therefore,

Q(G,H) <
3∑
i=1

a2
i /bi < q−1

and the result follows.

In cases (b) and (c) we also claim that b(G,H) = 2. For example, in (c) we note that
|H| 6 log2 q.5

3|SL3(5)| = a1 and |xG| > q58 = b1 for all nontrivial x ∈ G, which yields
Q(G,H) < a2

1/b1 < q−1. Case (b) is entirely similar, noting that |xG| > q16 for all nontrivial
x ∈ G (see Proposition 2.11). �

For the remainder of this section, we will focus on the subgroups arising in part (I) of
Theorem 5.1. Following [55, Theorem 8], we partition these subgroups into three cases:

(a) G0 = E7(q), p > 3 and H̄σ = (22 × PΩ+
8 (q).22).Sym3 or 3D4(q).3;

(b) G0 = E8(q), p > 7 and H̄σ = PGL2(q)× Sym5; (16)

(c) (G0, soc(H0)) is one of the cases listed in [55, Table 3].

Our main theorem is the following.

Theorem 5.3. If H is a Type I subgroup of G, then G is not extremely primitive.

Suppose G is extremely primitive and H is a Type I subgroup of G. By Lemma 2.1(v),
the socle of H is a direct product of isomorphic simple groups. Therefore, by considering the
groups in (a) and (b) above, together with the cases in [55, Table 3], we deduce that the only
subgroups of this type are the ones listed in Table 7.

First we handle two special cases with G0 = Eε6(q).

Lemma 5.4. Suppose G0 = Eε6(q) and soc(H) = F4(q) or PSp8(q). Then G is not extremely
primitive.

Proof. Set H0 = H ∩G0 and first assume soc(H) = F4(q), so H0 = F4(q) is the centralizer
in G0 of a graph automorphism. Note that Inndiag(G0) ∩G = G0 by the maximality of H
in G. In addition, if G contains a graph automorphism, then soc(H) is not a direct product
of isomorphic simple groups and thus G is not extremely primitive by Lemma 2.1(v). Write
G = G0.A and H = H0.A. Set e = (3, q − ε).

The action of the quasisimple group e.G0 on the set of cosets of F4(q) is studied in some
detail by Lawther in [39] and he computes all the subdegrees (see [39, Table 1] for ε = + and
[39, Table 3] for ε = −). In both cases, there is a subdegree s(q) = q4(q8 − 1)(q12 − 1). This
is also a subdegree for the action of G0, so there exists g ∈ G0 such that

|H0 ∩Hg
0 | = |H0|/s(q) = q20(q2 − 1)(q6 − 1).

Suppose G is extremely primitive, so M = H ∩ Hg is a maximal subgroup of H such
that |M ∩ H0| = |H0 ∩ Hg

0 |. First we observe that M is non-parabolic since |H0 ∩ Hg
0 | is
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indivisible by q24. Then since |M | > q22, it follows that M is one of the subgroups listed
in [17, Lemma 4.23]. But none of these subgroups have order divisible by q20, so we have
reached a contradiction and we conclude that G is not extremely primitive.

To complete the proof, we may assume p is odd and soc(H) = PSp8(q). As in the
previous case, H0 = PGSp8(q) = PSp8(q).2 is the centralizer in G0 of an involutory graph
automorphism and we may assume that Inndiag(G0) ∩G0 = G0 and G does not contain any
graph automorphisms. Once again, write G = G0.A and H = H0.A.

Set H̄ = C4 < Ḡ = E6 and let L̄ be a Levi subgroup of H̄ of type A3T1. Then NH̄(L̄) = L̄.2
and the outer involution induces a graph automorphism on K̄ = L̄′ = A3 and inverts the
torus Z(L̄)0 = T1. It is straightforward to check that CH̄(K̄) = Z(L̄)0. We claim that K̄.2 is a
subgroup of a maximal subsystem subgroup A1A5 of Ḡ. By inspecting [53, Table 8.3], we see
that Ḡ has two conjugacy classes of A3 subgroups, both of which are contained in a maximal
subsystem subgroup A1A5. The subgroups in the two classes differ in the structure of their
connected centralizers in Ḡ, which is either A1 or A2

1T1. By considering the composition
factors of the A3 subgroups on the adjoint module for Ḡ (see [53, Table 8.3]), we deduce that
CḠ(K̄)0 = J̄ is of type A1. It follows that K̄ is contained in the A5 factor of a subsystem
subgroup A1A5, with K̄ acting irreducibly on the natural module for A5. In particular,
K̄.2 < A5 < A1A5 and CḠ(K̄.2)0 = J̄ , which contains Z(L̄)0 as a maximal torus.

As usual, in order to descend from the algebraic groups discussed above to the corresponding
finite groups we will take the fixed points of an appropriate Steinberg endomorphism σ.
Specifically, we define σ to be the product of the standard Frobenius map and a lift of the
central involution in the Weyl group of H̄. Referring to the subgroups introduced above,
we may assume that H̄, L̄, K̄ and J̄ are all σ-stable. Then (Ḡσ)′ = G0, H̄σ = H0 and
K̄σ = h.U4(q).h, where h = (4, q + 1)/2. Set K = (K̄σ)′ = h.U4(q). By considering [6, Tables
8.48 and 8.49], we deduce that

M = NH0(K) = h.((q + 1)/2h×K).22.2

is the unique maximal overgroup of K in H0.

Now CH0(K) = (Z(L̄)0)σ = Zq+1 is contained in the subgroup J = J̄σ = SL2(q) of CG0(K).
Since CH0(K) is non-normal in J , we can choose g ∈ J which does not normalize CH0(K).
If Mg 6 H0 then Mg is a maximal subgroup of H0 containing K, so Mg = M and thus
g normalizes CM (K) = CH0(K), which is a contradiction. Therefore, Mg 66 H0 and we
complete the proof by applying Lemma 2.4, noting that both K and M are A-stable. �

In each of the remaining cases, we claim that b(G,H) = 2.

Proposition 5.5. If (G,H) is one of the cases in Table 7 and (G0, soc(H)) 6= (Eε6(q), F4(q)),
(Eε6(q),PSp8(q)), then b(G,H) = 2.

We will prove Proposition 5.5 in a sequence of lemmas.

Lemma 5.6. If G0 = E7(q) and soc(H) = 3D4(q), then b(G,H) = 2.

Proof. Here p > 3 and H0 = H ∩ G0 = 3D4(q).3. We proceed by estimating the various
contributions to Q(G,H) from elements of prime order.

Let x ∈ H0 be an element of prime order r. If r = 2 then |xG ∩H| = q8(q8 + q4 + 1) = a1

and |xG| > 1
2(q − 1)q53 = b1 (note that H0 has a unique conjugacy class of involutions).

Similarly, if x is unipotent then x is not a long root element of G0 (see the proof of [16,
Proposition 5.12]), so |xG| > q52 = b2 and we note that H0 contains fewer than q24 = a2

elements of order p (see Proposition 2.14(ii)).

Next assume x ∈ H0 and r 6= 2, p. If r = 3 then |xG| > (q − 1)q53 = b3 and Proposition
2.14(i) gives i3(H0) < 2(q + 1)q19 = a3. Similarly, if r > 5 and CḠ(x)0 6= E6T1, then
|xG| > 1

2q
66 = b3 and we note that |3D4(q)| < q28 = a3. Now assume CḠ(x)0 = E6T1, so
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|xG| > 1
2q

54 = b4. We claim that x is not a regular element of 3D4(q), so there are fewer than

q25 = a4 such elements in H0. Suppose x is regular and let V = L(Ḡ) be the adjoint module
for Ḡ. Let λ1, . . . , λ4 be fundamental dominant weights for H̄0 = D4, labelled in the usual
manner. As noted in [75, Table 4], we have

V ↓H̄0 = L(H̄0)⊕ V (2λ1)⊕ V (2λ3)⊕ V (2λ4),

where V (2λi) is an irreducible module for H̄0 with highest weight 2λi. Now V (2λi) is
the unique nontrivial composition factor of S2(V (λi)) and by considering the action of a
regular semisimple element on this latter module we deduce that dimCV (2λi)(x) 6 5. Since
dimCL(H̄0)(x) = 4, it follows that dimCḠ(x) = dimCV (x) 6 19 and the claim follows.

Finally, suppose x ∈ G is a field automorphism. Then |xG| > 1
2q

133/2 = b5 and we note

that |H| < 3 log3 q.q
28 = a5. We conclude that

Q(G,H) <

5∑
i=1

a2
i /bi < q−1 (17)

as required. �

Lemma 5.7. If G0 = F4(q) and soc(H) = G2(q), then b(G,H) = 2.

Proof. Here p = 7, H0 = G2(q) and we proceed as in the proof of the previous lemma. To get
started, let x ∈ H0 be an element of prime order r. First assume r = 7, so x is unipotent. The
G-class of x is determined in [41, Section 5.2] and we deduce that |xG| > q28 = b1 (minimal if

x is contained in the class labelled A1Ã1), so the contribution to Q(G,H) is less than a2
1/b1,

where a1 = q12 is the total number of unipotent elements in H0 (see Proposition 2.14(ii)). If
r 6= 2, 7 then Proposition 2.11 gives |xG| > (q − 1)q29 = b2 and we note that |H0| < q14 = a2.

Now assume r = 2, so |xG ∩ H| = q4(q4 + q2 + 1) = a3 since H0 has a unique class of
involutions. There are two classes of involutions in G0 and we claim that CḠ(x) = A1C3 rather
than B4. To see this, let V26 be the minimal module for Ḡ. By considering the restriction
of V26 to CG2(x) = A1Ã1, one checks that x has trace 2 on V (see [75, Section 6.6]) and
thus CḠ(x) = A1C3 as claimed (as noted in [54, Proposition 1.2], the involutions y ∈ Ḡ with
CḠ(y) = B4 have trace −6 on V26). Therefore, |xG| > q28 = b3.

Finally, let us assume x ∈ G is a field automorphism of order r. If r = 2 then |xG| >
1
2q

26 = b4 and |xG ∩H| = |G2(q) : G2(q1/2)| < 2q7 = a4. On the other hand, if r > 3 then

|xG| > 1
2q

34 = b5 and we note that |H| < log7 q.q
14 = a5.

By bringing these estimates together, we conclude that (17) holds and the result follows. �

Lemma 5.8. If (G0, soc(H)) = (Eε6(q), G2(q)) or (G2(q),L2(q)), then b(G,H) = 2.

Proof. First assume G0 = G2(q) and soc(H) = L2(q), in which case p > 7. If x ∈ H0 has order
3 then |xG| > q3(q3 − 1) = b1 and we record that i3(H0) 6 q(q+ 1) = a1. As explained in [41,
Section 5.1], the elements of order p in H0 are regular in G. Therefore, if x ∈ H has prime
order and x is not a semisimple element of order 3, then |xG| > q3(q+1)(q3 +1) = b2 (minimal
if x is an involutory field automorphism) and we note that |H| 6 q(q2 − 1). log7 q = a2. This

gives Q(G,H) < a2
1/b1 + a2

2/b2 < q−1/2 and we are done.

Finally, let us assume G0 = Eε6(q) and soc(H) = G2(q). From [41, Section 5.5], we see
that H does not contain any long root elements of G0. Let x ∈ H be an element of prime
order r. If r > 3 then |xG| > (q − 1)q31 = b1 and we note that |H| < 2 log2 q.q

14 = a1. On
the other hand, if r = 2 then |xG| > 1

3(q − 1)q25 = b2 and Proposition 2.14(i) implies that

i2(H) 6 i2(Aut(G2(q))) < 2(q + 1)q7 = a2. Therefore, Q(G,H) < a2
1/b1 + a2

2/b2 < q−1/2 and
the result follows. �

We are now in a position to complete the proof of Proposition 5.5.
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Proof of Proposition 5.5. In each of the remaining cases we find that the trivial bound
Q(G,H) < a2

1/b1 is sufficient, where a1 = |Aut(soc(H))| is an upper bound on |H| and b1 is
the size of the smallest nontrivial conjugacy class in G, which can be read off from Proposition
2.11. For example, if G0 = Eε6(q) and soc(H) = L±3 (q), then p > 5 and the bounds

|H| 6 |Aut(L±3 (q))| < 2 log5 q.q
8 = a1, |xG| > (q − 1)q21 = b1

are sufficient. �

6. Subfield subgroups

In this section, we prove Theorem 1 when H is one of the subgroups in part (II) of
Theorem 5.1. In particular, G0 is one of the groups in (15) and H is either a subfield subgroup

corresponding to a maximal subfield of Fq, or H is a twisted subgroup of type 2E6(q1/2)
or 2F4(q) with G0 = E6(q) or F4(q) (for q = 22m+1), respectively. The remaining subfield
subgroups will be handled in Section 8.

Our main result is the following.

Theorem 6.1. If H is a Type II subgroup of G, then G is not extremely primitive.

We partition the proof of Theorem 6.1 into a sequence of lemmas.

Lemma 6.2. The conclusion to Theorem 6.1 holds when G0 = G2(q) and H is of type
G2(q0).

Proof. Here H0 = G2(q0) and q = qk0 , where k is a prime. For k odd, we claim that b(G,H) = 2,
so G is not extremely primitive by Lemma 2.6.

First assume k > 5. If x ∈ G0 is either a long root element (or a short root element when
p = 3) or a semisimple element of order 3 with CḠ(x) = A2, then |xG| > (q − 1)q5 = b1
and we note that H contains fewer than 2q6

0 6 2q6/5 = a1 such elements. For all other
nontrivial elements x ∈ G we have |xG| > q7 = b2 and thus Q(G,H) < a2

1/b1 + a2
2/b2, where

a2 = 2 log2 q.q
14/5 is an upper bound on |H|. One checks that the given upper bound on

Q(G,H) is always less than 1 (and it tends to zero as q tends to infinity).

A more detailed analysis is required when k = 3. Let x ∈ G0 be an element of prime
order r and first assume r = 2. If p 6= 2 then G0 and H0 both have a unique conjugacy class
of involutions and we get |xG ∩ H| < 2q8/3 = a1 and |xG| > q8 = b1. Similarly, if p = 2
and x is a long root element, then |xG ∩H| < q2 = a2 and |xG| > (q − 1)q5 = b2, whereas

|xG ∩H| < q8/3 = a3 and |xG| > (q − 1)q7 = b3 if x is a short root element.

Next assume r = p > 3. As above, the contribution from long root elements is less than
a2

2/b2. Similarly, short root elements contribute at most a2
2/b2 if p = 3 and at most a2

3/b3 if
p > 5. Since a2

3/b3 < a2
2/b2, it follows that the combined contribution from long and short

root elements is less than 2a2
2/b2 for all p. If p = 3 and x is in the class labelled (Ã1)3 in [57,

Table 22.2.6] then |xG ∩H| < a3 and |xG| > b3. For all other unipotent elements, we have
|xG| > 1

7q
10 = b4 and we note that H0 contains precisely q4 = a4 unipotent elements (see

Proposition 2.14(ii)).

Now assume x ∈ G0 is semisimple with r > 3. If r = 3 and CḠ(x) = A2 then |xG ∩H| <
2q2 = a5 and |xG| > (q − 1)q5 = b5. In every other case, |xG| > (q − 1)q9 = b6 and we note

that |H0| < q14/3 = a6.

To complete the analysis for k = 3, we may assume x is a field or graph automorphism of G0.
Suppose x is a field automorphism of order r, so q = qr1. If r = 2 then |xG| > q7 = b7 and there

are fewer than 2q7/3 = a7 such elements in H. Similarly, if r > 5 then |xG| > 1
2q

56/5 = b8
and we note that |H| < 2 log2 q.q

14/3 = a8. If r = 3 then |xG| > 1
2q

28/3 = b9 and we
may assume x centralizes H0, so there are precisely 2(i3(H0) + 1) such elements in H. By

applying Proposition 2.14(i), we deduce that 2(i3(H0) + 1) 6 4(q1/3 + 1)q3 = a9. Finally, if
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x is an involutory graph-field automorphism of G0 then x acts as an involutory graph-field
automorphism on H0, whence |xG ∩H| < 2q7/3 = a10 and |xG| > q7 = b10.

Bringing the above bounds together, we conclude that

Q(G,H) < a2
2/b2 +

10∑
i=1

a2
i /bi

and one checks that this bound is sufficient.

Finally, let us assume k = 2. In [38], Lawther calculates the subdegrees for G0 and by
inspecting [38, Tables 2-4] we find that H0 has an orbit of length 1

2q
2(q6 − 1)(q2 − 1). In

particular, there exists g ∈ G0 such that |H0 ∩ Hg
0 | = 2q4. By inspecting [6, Tables 8.30,

8.41 and 8.42], we see that H does not have a maximal subgroup M with |M ∩H0| = 2q4.
Therefore, H ∩Hg is a non-maximal subgroup of H and we conclude that G is not extremely
primitive. �

Lemma 6.3. The conclusion to Theorem 6.1 holds when G0 = G2(q) and H is of type
2G2(q).

Proof. Here p = 3 and H0 = 2G2(q). The subdegrees for the action of G0 are recorded in [38,
Table 1] and we see that H0 has an orbit of length (q3 + 1)(q − 1). Therefore, there exists an
element g ∈ G0 such that |H0 ∩Hg

0 | = q3. By inspecting [6, Table 8.43], we deduce that there
is no maximal subgroup M of H with |M ∩H0| = q3. The result follows. �

Now let us turn to the remaining subfield subgroups that we are handling in this section,
so one of the following holds:

(a) G0 = L(q) and H0 is of type L(q0), where L ∈ {F4, E
ε
6, E7, E8} and q = qk0 with k a

prime.

(b) G0 = E6(q), q = q2
0 and H0 is of type 2E6(q0).

(c) G0 = F4(q), q = 22m+1 and H0 = 2F4(q).

First let us consider the cases in (a). As before, let Ḡ be the ambient simple algebraic
group and fix a Steinberg endomorphism ψ of Ḡ such that soc(H0) = (Ḡψ)′ and G0 = (Ḡψk)′.
Here ψ = στ , where σ is a standard Frobenius morphism corresponding to the map λ 7→ λq0

on Fq and either τ = 1, or G0 = 2E6(q), k is odd and τ is an involutory graph automorphism
of Ḡ.

Remark 6.4. Let us record that H0 is simple, unless one of the following holds:

(i) G0 = Eε6(q), k = 3 and q ≡ ε (mod 3), in which case H0 = Inndiag(Eε6(q0)).

(ii) G0 = E7(q), k = 2 and q is odd, in which case H0 = Inndiag(E7(q0)).

Set X̄ = 〈X±α0〉 and Ȳ = CḠ(X̄)0, where α0 is the highest root of Ḡ. Then M̄ = X̄Ȳ is a
maximal rank subgroup of Ḡ of type A1C3, A1A5, A1D6 or A1E7 for Ḡ = F4, E6, E7 or E8,
respectively. Since X̄ is ψ-stable, it follows that M̄ is ψ-stable and by taking fixed points we
get

M̄ψ =


d.(L2(q0)× PSp6(q0)).d if Ḡ = F4

d.(L2(q0)× Lε6(q0)).de if Ḡ = E6

d.(L2(q0)× PΩ+
12(q0)).d if Ḡ = E7

d.(L2(q0)× E7(q0)).d if Ḡ = E8,

where d = (2, q − 1) and e = (3, q − ε). By inspecting [50, Table 5.1], it follows that M̄ψ is a
maximal subgroup of Ḡψ, unless (Ḡ, p) = (F4, 2), in which case M̄ψ < Sp8(q0) < Ḡψ. Set

M =

{
Sp8(q0) if (Ḡ, p) = (F4, 2)
M̄ψ ∩H0 otherwise
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and Y = (Ȳψ)′, so that SL2(q0) ◦ Y is a subgroup of M . We also set K = T ◦ Y , where
T = Zq0+1 is a maximal torus of SL2(q0).

Lemma 6.5. The only maximal overgroup of K in H0 is M . In addition, if (Ḡ, p) = (F4, 2)
then M̄ψ is the unique maximal overgroup of K in M .

Proof. By construction, K is contained in M , which in turn is a maximal subgroup of H0 by
[50]. By inspection, we observe that K is not contained in a parabolic subgroup of H0.

Suppose K is contained in a non-parabolic maximal subgroup J of H0. If H0 = E8(q0) then

|J | > |K| > q88
0 and thus [17, Lemma 4.2] implies that J is of type E8(q

1/2
0 ), A1(q0)E7(q0)

or D8(q0) and we immediately deduce that J must be H0-conjugate to M . A very similar
argument applies if H0 = E7(q0) or Eε6(q0), using [17, Lemmas 4.6 and 4.13]. For H0 = F4(q0)
with q0 > 3 we appeal to [10, Lemma 3.15], noting that |J | > q17

0 , and we use [67] for q0 = 2.
Note that if H0 = F4(q0) and q0 is even, then H0 has two classes of subgroups isomorphic to
Sp8(q0), but K is only contained in conjugates of M . To see this, first note that the subgroups
in the other class are of the form L̄ψ, where L̄ is of type B4. Let V = V26 be the irreducible
26-dimensional module for Ḡ = F4 with highest weight λ4 (in terms of the usual labelling).
By [75, Chapter 12, Table 2], K acts on V with composition factors of dimension 14, 6, 6
and this is incompatible with the action of L̄, which has composition factors of dimension
16, 8, 1, 1.

Next we claim that K is contained in a unique conjugate of M . If (Ḡ, p) 6= (F4, 2) then
Y is normal in M , which in turn is a maximal subgroup of H0, so M = NH0(Y ). Since
NH0(K) 6 NH0(Y ), we quickly deduce that K is contained in a unique conjugate of M .

Indeed, suppose K < Mg, so K,Kg−1
< M . Then since M contains a unique class of

subgroups H0-conjugate to K we have K = Kmg for some m ∈M . But mg ∈ NH0(K) 6M
and thus g ∈M .

Finally, let us assume that (Ḡ, p) = (F4, 2), so

K = Zq0+1 × Sp6(q0) < M̄ψ = SL2(q0)× Sp6(q0) < M = Sp8(q0) < H0 = F4(q0).

We claim that NH0(K) 6 M̄ψ and the H0-class of K does not split in either M̄ψ or M .
Then by repeating the argument in the previous paragraph, we deduce that M is the unique
maximal overgroup of K in H0, and M̄ψ is the unique maximal overgroup of K in M , which
completes the proof of the lemma.

To prove the claim, we first show that M contains a unique class of subgroups isomorphic
to K and that NM (K) = K.2. To do this, we use [6, Tables 8.48 and 8.49] to check that any
maximal subgroup of M containing a subgroup isomorphic to K is necessarily conjugate to
M̄ψ. It follows that NM (K) must be contained in a conjugate of M̄ψ and since NM̄ψ

(K) = K.2

we conclude that NM (K) = K.2 6 M̄ψ. Moreover, it is clear that M̄ψ contains a unique class
of subgroups isomorphic to K, so it follows that the H0-class of K does not split in M nor in
M̄ψ. Finally, let us consider NH0(K). Since this is a proper subgroup of H0 containing K, it
is therefore contained in a conjugate of M . So NH0(K) = NMg(K) for some g ∈ H0 and we
deduce that

NH0(K) = NM (Kg−1
)g = (Kg−1

.2)g = K.2 = NM̄ψ
(K) 6 M̄ψ.

This justifies the claim and the proof of the lemma is complete. �

Proposition 6.6. The conclusion to Theorem 6.1 holds if G0 = F4(q), Eε6(q), E7(q) or E8(q)
and H is of type F4(q0), Eε6(q0), E7(q0) or E8(q0), respectively.

Proof. Write G = G0.A, H = H0.A and let us adopt the notation introduced above.

Suppose there exists g ∈ NG0(K) that does not normalize M . Then Mg 66 H0 and the result
now follows via Lemma 2.4, unless (Ḡ, p) = (F4, 2) and G contains graph automorphisms
(indeed, we may assume K and M are A-stable in all the other cases). Let us assume we are
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in the latter situation, so K = Zq0+1 × Y with Y = Sp6(q0). Suppose H ∩Hg is a maximal
subgroup of H. We claim that H ∩Hg = H0.B for some maximal subgroup B of A. Now A
contains a graph automorphism τ such that Y and Y τ are non-conjugate subgroups of H0, so
〈Y, Y τ 〉 = H0 and thus H0 is the only A-stable subgroup of H0 containing K. This justifies
the claim. Therefore, Hg contains H0 and Hg

0 . But H0 and Hg
0 generate G0 since they are

both maximal subgroups of G0 and g does not normalize H0 (this follows from Lemma 6.5;
if g normalizes H0 then it must also normalize the unique maximal overgroup of K in H0,
which is M). This is absurd since Hg does not contain G0. So we have reached a contradiction
and we conclude that H ∩Hg is not maximal in H, whence G is not extremely primitive.

In view of the above remarks, in order to prove the proposition it suffices to show that
there exists g ∈ NG0(K) with M 6= Mg. To do this, take an element g ∈ X̄ψk = SL2(q)

that centralizes T = Zq0+1 but does not normalize X̄ψ = SL2(q0). Such an element g exists

because the centralizer of T in X̄ψk is a cyclic torus of order qk0 − (−1)k which is clearly not

a subgroup of NX̄
ψk

(X̄ψ) = X̄ψ.a (where a ∈ {1, 2}).

Since g ∈ X̄, it follows that g centralizes Y and K = T ◦ Y . In addition, since X̄ψ ◦ Y is
characteristic in M̄ψ ∩H0, it follows that g does not normalize M̄ψ ∩H0. If (Ḡ, p) 6= (F4, 2)
then M̄ψ ∩H0 = M and we have proved the claim. So suppose that (Ḡ, p) = (F4, 2). Then
Lemma 6.5 shows that M̄ψ is the unique maximal overgroup of K in M . Therefore, if g
normalizes M then it must also normalize the unique maximal overgroup of K in M . But we
have just observed that g does not normalize M̄ψ ∩H0 = M̄ψ and this completes the proof of
the proposition. �

Finally, we handle the twisted maximal subgroups that arise when G0 = E6(q) or F4(q)
(with p = 2 in the latter case).

Proposition 6.7. The conclusion to Theorem 6.1 holds if G0 = E6(q) or F4(q) and H is of

type 2E6(q1/2) or 2F4(q), respectively.

Proof. First assume G0 = E6(q), where q = q2
0. Set ψ = στ , where σ is a standard Frobenius

morphism of Ḡ = E6 and τ is a graph automorphism such that (Ḡψ)′ = soc(H0) = 2E6(q0)
and (Ḡψ2)′ = G0.

Set M̄ = X̄Ȳ = A1A5, where X̄ = 〈X±α0〉 and Ȳ = CḠ(X̄)0. Then M̄ is ψ-stable and [50]
implies that

M = M̄ψ ∩H0 = (SL2(q0) ◦ d.U6(q0)).d = d.(L2(q0)×U6(q0)).d

is a maximal subgroup of H0, where d = (2, q − 1). Set K = Zq0+1 ◦U6(q0) < M . By arguing
as in the proof of Lemma 6.5, we deduce that M is the unique maximal overgroup of K in
H0. Similarly, by repeating the argument in the proof of Proposition 6.6, we see that there
exists g ∈ NG0(K) such that M 6= Mg and we conclude that G is not extremely primitive by
applying Lemma 2.4.

Finally, let us assume G0 = F4(q) and H0 = 2F4(q), where q = 22m+1 and m > 0. Let
Ḡ = F4 and set ψ = στ , where σ is the standard Frobenius morphism of Ḡ corresponding to
the map λ 7→ λ2m on Fq and τ is the standard graph automorphism of Ḡ, which interchanges
long root and short root subgroups. Then G0 = Ḡψ2 and H0 = Ḡψ.

The case q = 2 can be handled in Magma (see [21, Lemma 2.10]). More precisely, we
construct H0 < G0 as permutation groups and we use random search to find an element
g ∈ G0 such that H0 ∩ Hg

0 = 1. Therefore, b(G0, H0) = 2 and more generally we have
|H ∩ Hg| 6 2. In particular, H ∩ Hg is not a maximal subgroup of H and thus G is not
extremely primitive. For the remainder, we will assume q > 8.

Fix a set of simple roots α1, α2, α3, α4 for Ḡ = F4 and consider the following roots

β1 = α1 + α2 + α3 β2 = α2 + 2α3 + 2α4

β3 = α1 + 2α2 + 3α3 + 2α4 β4 = 2α1 + 3α2 + 4α3 + 2α4 = α0
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where β1, β3 are short and β2, β4 are long. Note that ψ acts on root elements as follows

xβ1(c) 7→ xβ2(c2m+1
), xβ2(c) 7→ xβ1(c2m), xβ3(c) 7→ xβ4(c2m+1

), xβ4(c) 7→ xβ3(c2m)

for all c ∈ F̄2. Let P̄ = P1,4 be the standard parabolic subgroup of Ḡ with L̄′ = 〈X±α2 , X±α3〉
of type B2, where L̄ is a Levi factor of P̄ . Then CḠ(L̄′)0 = 〈X±β1 , X±β2 , X±β3 , X±β4〉 = B2.

Consider the maximal subgroup M = 2B2(q) o Sym2 of H0 (see [63]) and set

K = 2B2(q)× Zq−1 < M.

By choosing M appropriately, we may assume that K is a Levi subgroup of the maximal
parabolic P = P̄ψ of H0. LetM be the set of maximal overgroups of K in H0. We claim that
M = {M,P, P op}, where P op = (P̄ op)ψ is the opposite parabolic subgroup to P .

Firstly, by inspecting [63] we deduce that each subgroup inM is conjugate to M or P . Let
X be the 2B2(q) factor in K and set N = 2B2(q)× 2B2(q) < M . Now N 6 NH0(X) since X
is normal in N , but M is clearly the unique maximal overgroup of N in H0, and X is not
normal in M , so NH0(X) = N and we deduce that NH0(K) 6 N . By [74, Proposition 3], the
normalizer of the torus Zq−1 <

2B2(q) is a dihedral group D2(q−1) and so

NH0(K) = NN (K) = K.2 = 2B2(q)×D2(q−1).

Since NH0(K) = K.2 < M , it follows that M is the only H0-conjugate of M containing K.
Now let us turn to the conjugates of P in M. Here we proceed as in the proof of Lemma
4.10 (see the argument for the case q = 2), noting that if K 6 P ∩ P h for some h ∈ H0, then

K and Kh−1
are P -conjugate (this follows from [64, Proposition 26.1(b)]).

By the claim, each subgroup in M contains x1 = xβ3(1)xβ4(1) or x2 = x−β3(1)x−β4(1).

The subgroupK is contained in a Levi subgroup Sp4(q)×Z2
q−1 of the parabolic subgroup P̄ψ2

of G0, where Z2
q−1 = 〈hβ1(c), hβ2(c′) : c, c′ ∈ F×q 〉 in terms of the standard Lie notation. Since

X < Sp4(q) it follows that Z2
q−1 6 NG0(K). Fix 1 6= c ∈ F×q and set g = hβ3(c) ∈ NG0(K) so

xg1 = xβ3(c2)xβ4(c2) (here we are using the fact that q > 8). Now

ψ(xβ3(c2)xβ4(c2)) = xβ4((c2)2m+1
)xβ3((c2)2m) = xβ3(c2m+1

)xβ4(c2m+2
)

and thus xg1 is not fixed by ψ. In particular, xg1 6∈ H0. An entirely similar calculation shows
that ψ(xg2) 6= xg2. Therefore, for each J ∈M we have Jg 66 H0. Finally, since K and the three
subgroups in M are stable under all automorphisms of G0, the desired conclusion follows
from Lemma 2.4. �

7. Almost simple subgroups

In this section, we complete the proof of Theorem 1 for the groups with socle G0 as in
(15). To do this, it remains to handle the subgroups of Type V in Theorem 5.1. Our main
result is the following (we have been unable to determine the exact base size in (ii)).

Theorem 7.1. If H is a Type V subgroup of G, then G is not extremely primitive. Moreover,
b(G,H) = 2 unless one of the following holds:

(i) G0 = 2E6(2), S = Fi22 and b(G,H) = 3;

(ii) G0 = F4(2), S = L4(3) and b(G,H) 6 3.

The following theorem, which is part of [55, Theorem 8], describes the possibilities for the
socle of a Type V subgroup (note that the value of u(E8(q)) in part (ii)(c) is taken from [42]).
In the statement, if X is a simple group of Lie type then rk(X) is the (untwisted) Lie rank of
X. In addition, Lie(p) denotes the set of finite simple groups of Lie type defined over fields of
characteristic p.
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Theorem 7.2. Let G be an almost simple group with socle G0, a simple exceptional group
of Lie type over Fq, where q = pf with p a prime. Assume G0 is one of the groups in (15)
and let H be a maximal almost simple subgroup of G as in part (V) of Theorem 5.1, with
socle S. Then one of the following holds:

(i) S 6∈ Lie(p) and the possibilities for S are described in [54];

(ii) S = H(q0) ∈ Lie(p), rk(S) 6 1
2rk(G0) and one of the following holds:

(a) q0 6 9;

(b) S = Lε3(16);

(c) S = L2(q0), 2B2(q0) or 2G2(q0), where q0 6 (2, q− 1)u(G0) and u(G0) is defined
in the following table.

G0 G2(q) F4(q) Eε
6(q) E7(q) E8(q)

u(G0) 12 68 124 388 1312

More recently, the list of possibilities for S in parts (i) and (ii) of Theorem 7.2 has been
significantly refined. For the so-called non-generic subgroups arising in (i), we refer the reader
to Litterick [60] and Craven [28]. For instance, the main theorem of [28] states that S = Altn
only if n = 6 or 7. Craven has also made substantial progress in eliminating many generic
subgroups in (ii). Indeed, by combining the main results of [29, 30], we get the following
theorem.

Theorem 7.3 (Craven). Let G be an almost simple group with socle G0, a simple exceptional
group of Lie type over Fq, where q = pf with p a prime. Assume G0 is one of the groups in
(15) and let H be a maximal almost simple subgroup of G as in part (V) of Theorem 5.1,
with socle S ∈ Lie(p). Then one of the following holds:

(i) G0 = E8(q) and either S = L2(q0) with q0 6 (2, q − 1)u(G0), or

S ∈ {Lε3(3),Lε3(4),U3(8),PSp4(2)′,U4(2), 2B2(8)};
(ii) G0 = E7(q) and S = L2(q0) with q0 ∈ {7, 8, 25}.

We begin the proof of Theorem 7.1 by handling the groups with socle G0 = G2(q).

Proposition 7.4. The conclusion to Theorem 7.1 holds when G0 = G2(q).

Proof. In view of Theorem 2.15 (and Remark 2.16), we may assume q > 7. By inspecting
[27, 34] (also see [6, Tables 8.30, 8.41 and 8.42]), we observe that there are four cases to
consider (in each case S 6∈ Lie(p)):

(a) S = L2(13) and either q = p ≡ 1, 3, 4, 9, 10, 12 (mod 13), or q = p2 and p ≡
2, 5, 6, 7, 8, 11 (mod 13);

(b) S = L2(8) and either q = p ≡ 1, 8 (mod 9), or q = p3 and p ≡ 2, 4, 5, 7 (mod 9);

(c) G = G2(q), H = U3(3):2 = G2(2) and q = p > 7;

(d) G = G2(11) and H = J1.

In all four cases, we claim that b(G,H) = 2.

In (a) and (b), we have |H| 6 |PGL2(13)| = 2184 = a1 and |xG| > q3(q3 − 1) = b1
for all nontrivial x ∈ G. Moreover, the given conditions imply that q > 17 and thus
Q(G,H) < a2

1/b1 < 1 (in addition, this upper bound is less than q−1 if q > 23).

Next consider (c), so |H| = 12096. Let x ∈ H be an element of prime order r and note
that r ∈ {2, 3, 7}. Let us also observe that

i2(H) = 315 = a1, i3(H) = 728 = a2, i7(H) = 1728 = a3.

If r = 2 then G has a unique conjugacy class of elements of order r and we have |xG| =
q4(q4 + q2 + 1) = b1. Similarly, if r = 3 then |xG| > q3(q3 − 1) = b2 and for r = 7 and q > 11
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we get |xG| > q5(q3 − 1)(q2 − q + 1) = b3. Putting these estimates together, we deduce that

Q(G,H) <
∑3

i=1 a
2
i /bi, which is less than 1 if q > 11 (and it is less than q−1 if q > 17).

To complete the proof in case (c), we may assume q = 7. Here we need to be more careful
when estimating the contributions to Q(G,H) from elements of order 3 and 7. To do this, let
V be the minimal 7-dimensional module for G over F7 and observe that H acts irreducibly
on V (see [34, Theorem A], for example). With the aid of Magma [4], we can compute the
action of each x ∈ H on V (we refer the reader to [21, Lemma 2.11] for the details of these
computations). If x has order 7, then we find that x has Jordan form (J7) on V and thus x is
a regular unipotent element in G (see [40, Table 1]). Therefore, the contribution to Q(G,H)
from elements of order 7 is precisely a2

2/b2, where a2 = 1728 and b2 = 74(72 − 1)(76 − 1).

Finally, suppose x ∈ H has order 3 and note that both H and G have two conjugacy
classes of elements of order 3. We will write 3A and 3B to denote the two H-classes (they have
sizes 56 = a3 and 672 = a4, respectively). We find that 3A-elements and 3B-elements have
Jordan form (I1, ωI3, ω

2I3) and (I3, ωI2, ω
2I2) on V , respectively, where ω ∈ F7 is a primitive

cube root of unity. In particular, we see that the two classes are not fused in G. Moreover, we
deduce that if x ∈ H is a 3A-element then CG(x) = SL3(7), so |xG| = 73(73 +1) = b3, whereas
|xG| = 75(76 − 1)/6 = b4 for the elements in 3B. Setting a1 = 315 and b1 = 74(74 + 72 + 1) as
before, we conclude that

Q(G,H) =
4∑
i=1

a2
i /bi =

4649

103243
< 1.

Finally, let us turn to case (d). Suppose x ∈ H has prime order r, so r ∈ {2, 3, 5, 7, 11, 19}
and we note that

i2(H) = 1463 = a1, i3(H) = 5852 = a2, i5(H) = 9704 = a3,

i7(H) = 25080 = a4, i11(H) = 27720 = a5, i19(H) = 27720 = a6.

If r = 2 then |xG| = 114(114 + 112 + 1) = b1. Similarly, if r ∈ {5, 7, 19} then CḠ(x) = A1T1

or T2 and thus |xG| > 115(113 − 1)(112 − 11 + 1) = b3 = b4 = b6.

Now assume r ∈ {3, 11}. Let V be the minimal module for G over F11 and note that H
acts irreducibly on V . Using Magma, we can compute the action of x on V (see [21, Lemma
2.11]). If r = 3 then x has Jordan form (I3, ωI2, ω

2I2) on V ⊗ F̄11, so CḠ(x) 6= A2 and thus
|xG| = 115(113 − 1)(112 − 11 + 1) = b2. Finally, if r = 11 then x has Jordan form (J7) on V ,
so x is a regular unipotent element in G and |xG| = 114(112 − 1)(116 − 1) = b5.

We conclude that

Q(G,H) <

6∑
i=1

a2
i /bi < 1

and the proof of the proposition is complete. �

Next we consider the two special cases highlighted in the statement of Theorem 7.1.

Lemma 7.5. The conclusion to Theorem 7.1 holds if G0 = 2E6(2) and S = Fi22.

Proof. Here (G,H) = (2E6(2),Fi22) or (2E6(2).2,Fi22.2). In both cases, we observe that

log |G|
log |G : H|

> 2

which implies that b(G,H) > 3 (in fact, we have b(G,H) = 3, as noted in the proof of [17,
Proposition 4.21]).

First assume G = 2E6(2) and H = Fi22. Set Ω = G/H. The character tables of G and H
are available in the GAP Character Table Library [8], together with the corresponding fusion
map from H-classes to G-classes. This allows us to compute |CΩ(x)| for each x ∈ H, where
CΩ(x) is the set of fixed points of x on Ω. In this way, via the Orbit Counting Lemma, we
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deduce that H has 8 orbits on Ω (see [21, Lemma 2.12] for the details of this computation).
Let d1, . . . , d7 be the lengths of the nontrivial H-orbits, ordered so that di 6 di+1 for each i.

Seeking a contradiction, suppose G is extremely primitive. Then each di must be the index
of a maximal subgroup of H = Fi22 and by inspecting the Web-Atlas [78] we deduce that
each di is one of the following:

3510, 14080, 61776, 142155, 694980, 1216215, 1647360,

3592512, 3648645, 12812800, 17791488, 679311360.

Since
1 + 6·17791488 + 679311360 < |Ω|

it follows that d6 = d7 = 679311360. But 1 + 2 ·679311360 > |Ω| and we have reached a
contradiction.

The case G = 2E6(2).2 with H = Fi22.2 is entirely similar. Once again, by computing fixed
points, we find that H has 8 orbits on Ω = G/H and by inspecting [78] we deduce that if G
is extremely primitive then the length of each nontrivial H-orbit is one of

3510, 61776, 142155, 694980, 1216215, 1647360, 3612614,

3648645, 5125120, 12812800, 15206400, 17791488.

But 1 + 7·17791488 < |Ω|, so G is not extremely primitive. �

Lemma 7.6. The conclusion to Theorem 7.1 holds if G0 = F4(2) and S = L4(3).

Proof. First assume G = F4(2), so H = L4(3).2 (see [67]). The character tables of G and H
are available in the GAP Character Table Library [8]. Although the precise fusion of H-classes
in G is not available in [8], we can use PossibleClassFusions to compute

fpr(x,G/H) =
|xG ∩H|
|xG|

for all x ∈ G of prime order (there are two possible fusion maps and they both give the
same fixed point ratios). This allows us to compute Q(G,H) precisely and we find that
Q(G,H) > 1 (indeed, just the contribution from involutions is greater than 1). If x1, . . . , xk
are representatives of the G-classes of elements of prime order, then

k∑
i=1

|xGi | · fpr(xi, G/H)3 < 1

and thus b(G,H) 6 3 by [18, Corollary 2.4]. Since log |G| < 2 log |G/H|, we cannot rule out
b(G,H) = 2 and we have been unable to determine the exact base size in this case.

To show that G is not extremely primitive, we can argue as in the proof of the previous
lemma. By applying the Orbit Counting Lemma, we deduce that H has 94 orbits on G/H.
However, if M is a core-free maximal subgroup of H then |H : M | 6 10530 and we have
1 + 93·10530 < |G : H|. We conclude that G is not extremely primitive. (See [21, Lemma
2.13] for further details on the computation.)

The case G = F4(2).2, H = L4(3).22 is entirely similar and we omit the details (here H
has 66 orbits on G/H). �

Lemma 7.7. The conclusion to Theorem 7.1 holds when G0 = E7(2), Eε6(2) or F4(2).

Proof. By inspecting [3, 37, 67, 77], we see that (G0, S) = (2E6(2),Ω7(3)), (2E6(2),Fi22)
or (F4(2),L4(3)). The latter two cases were handled in Lemma 7.5 and 7.6, so we may
assume that G0 = 2E6(2) and S = Ω7(3), so by [77] we have (G,H) = (2E6(2),Ω7(3)) or
(2E6(2).2, SO7(3)). In both cases, by proceeding as in the proof of Lemma 7.6 we can compute
Q(G,H) precisely and we deduce that Q(G,H) < 1 (see [21, Lemma 2.14]). Therefore,
b(G,H) = 2. �
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S Ḡ
M11 E6 (p = 3, 5), E8 (p = 3, 11)
M12 E6 (p = 5)
M22 E7 (p = 5)
J1 E6 (p = 11)
J2 E6 (p = 2), E7 (p = 2)
J3 E6(p = 2), E8 (p = 2)
Ru E7 (p = 5)
Fi22 E6 (p = 2)
HS E7 (p = 5)
Th E8 (p = 3)

Table 8. The possibilities for Ḡ and S, where S is sporadic

For the remainder of this section, we will assume

G0 ∈ {E8(q), E7(q), Eε6(q), F4(q)} \ {E7(2), Eε6(2), F4(2)}. (18)

We partition the remainder of the proof of Theorem 7.1 into two parts, according to the cases
S 6∈ Lie(p) and S ∈ Lie(p). Before launching into the details, let us record the following result
on long root elements, which will be useful in the subsequent analysis.

Proposition 7.8. Suppose p > 2 and let H be a Type V subgroup of G. Then H does not
contain a long root element of G.

Proof. This follows immediately from [52, Corollary 6.2]. Indeed, if x ∈ H is a long root
element of G, then x2 ∈ H is also a long root element and thus [52, Corollary 6.2] implies
that H 6 NG(H̄σ) < G, where H̄ is a σ-stable positive dimensional maximal closed subgroup
of Ḡ. But this is incompatible with the definition of a Type V subgroup. �

Remark 7.9. For p = 2, it is worth noting that the conclusion to Proposition 7.8 is false in
general. For example, G = 2E6(2) has a maximal subgroup H = Fi22 (this case was handled
in Lemma 7.5) and we find that the 2A-involutions in H embed in G as long root elements.

7.1. Non-generic subgroups. In this section we handle the non-generic subgroups arising
in part (i) of Theorem 7.2, where S 6∈ Lie(p).

Lemma 7.10. The conclusion to Theorem 7.1 holds if S = Altn.

Proof. By the main theorem of [28], we may assume n ∈ {6, 7}, so |H| is at most 7! = a1 and
we note that |xG| > q16 = b1 for all nontrivial x ∈ G. This gives Q(G,H) < a2

1/b1, which is
less than 1 for all q > 3 (and it is less than q−1 for q > 4). Finally, if q = 2 then G = E8(2) is
the only option (see [28, Theorem 1]) and |xG| > 258 for all 1 6= x ∈ G. The result follows as
before. �

Lemma 7.11. The conclusion to Theorem 7.1 holds if S is a sporadic simple group.

Proof. The possibilities for G0 and S are recorded in [54, Table 10.2], which is further refined
in [60, Theorem 8] to give the list of cases recorded in Table 8. Recall that we may assume
G0 is one of the groups in (18). In each case, we claim that b(G,H) = 2.

The cases with S ∈ {M11,M12,M22, J1,Ru,HS} are very straightforward; we have |H| 6
|Aut(S)| = a1 and by applying Proposition 2.11 we deduce that |xG| > f(q) = b1 for all
x ∈ G of prime order, where f(q) = q34 if S = M22, Ru or HS, otherwise f(q) = (q − 1)q21.
One checks that this gives Q(G,H) < a2

1/b1 < q−1 for all q satisfying the restrictions on p in
Table 8. The case S = Th is also straightforward. Here Ḡ = E8 and p = 3, so Proposition 7.8
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2A 3510 A1 3A 3294720 A5T1

2B 1216215 A2
1 3B 25625600 A3

2

2C 36486450 A3
1 3C 461260800 D4T2

2D 61776 τ 3D 3690086400 A3
2

2E 19459440 τ ′

2F 22239360 τ ′

Table 9. Elements of order 2 and 3 in Fi22.2 < E6(4).2

implies that there are no long root elements in H. In particular, if x ∈ H has prime order,
then |xG| > q92 = b1 and we deduce that Q(G,H) < a2

1/b1 < q−1, where a1 = |S|.
If S = J2 then the same argument reduces the problem to the cases G0 = Eε6(2), E7(2), but

by inspecting [3, 37, 77] we see that none of these groups have a maximal subgroup with socle
J2. Similarly, if S = J3 then we may assume G0 = Eε6(4). Let x ∈ G be an element of prime
order r. If r = 2 then |xG| > (4− 1)421 = b1 and we note that i2(H) 6 i2(S.2) = 46683 = a1.
On the other hand, if r > 2 then |xG| > (4 − 1)431 = b2. Setting a2 = |S|, it follows that
Q(G,H) < a2

1/b1 + a2
2/b2 < 1.

Finally, let us assume S = Fi22. Here Ḡ = E6, p = 2 and we may assume q > 4. Let
x ∈ G be an element of prime order r. If r = 2 then |xG| > (q − 1)q21 = b1 and we note that
i2(H) 6 i2(Fi22.2) = 79466751 = a1. For r > 2 we have |xG| > (q − 1)q31 = b2 and it follows
that Q(G,H) < a2

1/b1 + a2
2/b2, where a2 = |S|. This yields Q(G,H) < q−1 if q > 8.

The case q = 4 requires special attention. First observe that |2E6(4)| is indivisible by 11,
so G0 = E6(4) is the only option. Let V be the adjoint module for G0 and note that S acts
irreducibly on V (see [60, p.27]). In fact, V is the unique 78-dimensional irreducible module
for S.2 (over F4) and we can use Magma to compute the action on V of a set of conjugacy
class representatives in H (see [21, Lemma 2.11] for the details).

Let x ∈ H be an element of prime order r. First assume r ∈ {2, 3}. If r = 2 and x ∈ S,
then we compute the Jordan form of x on V and we identify xG by inspecting [40, Table
6]. There are 3 classes of involutions in S.2 \ S and we note that G0.2 has two classes of
involutory graph automorphisms, represented by τ and τ ′, where CG0(τ) = F4(4). As in
previous cases, we can identify the corresponding G-class of each involution in S.2 \ S by
computing the Jordan form on V . Indeed, if x has Jordan form (J26

2 , J26
1 ) then x is conjugate

to τ , whereas the graph automorphisms in the other class have Jordan form (J36
2 , J6

1 ) on
V . Finally, if r = 3 then dimCV (x) = dimCḠ(x) and this uniquely determines CḠ(x). The
results are summarised in Table 9. (Here we use the notation from [26] for the classes in
Fi22.2, while the unipotent classes in G0 are labelled as in [57]. For elements of order 3, we
give the structure of CḠ(x)0.)

In each case, it is easy to determine a lower bound on |xG| and we deduce that the

contribution to Q(G,H) from elements of order 2 or 3 is less than
∑8

i=1 a
2
i /bi, where

a1 = 3510, a2 = 1216215, a3 = 36486450, a4 = 61776,

a5 = 41698800, a6 = 3294720, a7 = 3715712000, a8 = 461260800

and

b1 = 3.421, b2 = 3.431, b3 =
1

2
440, b4 =

1

6
426, b5 = b6 =

1

6
442, b7 =

1

6
454, b8 =

1

6
448.
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Finally, if r > 5 then we find that dimCV (x) = dimCḠ(x) 6 18 and thus |xG| > 1
6460 = b9.

By setting a9 = |S|, we conclude that

Q(G,H) <
9∑
i=1

a2
i /bi < 1

and thus b(G,H) = 2. �

Lemma 7.12. The conclusion to Theorem 7.1 holds if S 6∈ Lie(p) is a simple group of Lie
type.

Proof. The possibilities for S are recorded in [54, Tables 10.3 and 10.4] and we may assume
G0 is one of the groups in (18). In each case, set

a1 = i2(Aut(S)), a2 = |Aut(S)|, b1 =

{
`1 if p = 2
min{`3, `5} if p > 2

, b2 =

{
`4 if p = 2
`2 if p > 2

where the `i are defined in Table 4. Then by applying Propositions 2.11 and 7.8, we deduce
that

Q(G,H) < a2
1/b1 + a2

2/b2.

It is routine to check that this upper bound is less than 1 unless (G0, S) is one of the following:

(F4(3), 3D4(2)), (F4(5), 3D4(2)), (Eε6(3), 3D4(2)), (Eε6(3), 2F4(2)′), (Eε6(4),Ω7(3)).

First assume (G0, S) = (F4(5), 3D4(2)). Here b1 = 516 and since |H| is indivisible by 5 we
can take b2 = `4 = 4.529 as a lower bound on |xG| for all x ∈ H of odd prime order. One
checks that a2

1/b1 + a2
2/b2 < 1.

Next assume G0 = Eε6(3) and S = 3D4(2) or 2F4(2)′. Let x ∈ H be an element of prime
order r. If r = 2 then |xG| > 2.325 = b1. Similarly, if r = 3 then |xG| > 2.331 = b2 since
H does not contain long root elements by Proposition 7.8. Now assume r > 5. Since r
divides |Z(CG0(x))| it follows that CḠ(x)0 6= D5T1 or A5T1, whence |xG| > 1

6348 = b3 and we
conclude that

Q(G,H) <

3∑
i=1

a2
i /bi < 1,

where a1 = i2(Aut(S)), a2 = i3(Aut(S)) and a3 = |Aut(S)|.
Now assume (G0, S) = (F4(3), 3D4(2)), so G = F4(3) and H = 3D4(2) or 3D4(2).3. Here

we proceed as we did in the proof of Lemma 7.11 for the case S = Fi22 with G0 = E6(4). First,
with the aid of Magma, we observe that 3D4(2).3 has a unique 52-dimensional irreducible
module V over F3, which we may identify with the adjoint module for G0 (as noted in [60,
Table 6.36], S acts irreducibly on V ). Suppose x ∈ 3D4(2).3 has prime order r. If r = 3,
then we can compute the Jordan form of x on V and use [40, Table 4] to determine the
Ḡ-class of x up to one of two possibilities. Similarly, if r ∈ {2, 7, 13} then we can compute
dimCV (x) = dimCḠ(x), which yields a lower bound on |xG|. See [21, Lemma 2.11] for further
details on the computation.

For example, suppose r = 3 and x is in the H-class labelled 3A in [26], so |xH | = 139776.
Then we calculate that x has Jordan form (J15

3 , J7
1 ) on V , which implies that x is either in the

Ḡ-class labelled A2 or Ã2. In particular, |xG| > 1
4330. Similarly, if r = 7 then dimCV (x) = 10

and we deduce that |xG| > 1
2342.

In this way, by considering each H-class of prime order elements in turn, we obtain an
upper bound on Q(G,H) which allows us to conclude that Q(G,H) < 1. We leave the reader
to check this details.

Finally, let us assume (G0, S) = (Eε6(4),Ω7(3)). By Lagrange’s Theorem, we see that ε = +
is the only possibility. Now SO7(3) has a unique 78-dimensional irreducible module V over
F4, which we identify with the adjoint module for G0. We can now proceed as in the previous
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case, using Magma to compute dimCV (x) for each x ∈ H of prime order (see [21, Lemma
2.11]). As before, this information translates into a lower bound on |xG| and this allows us to
determine an upper bound on Q(G,H). In this way, one checks that Q(G,H) < 1 and the
result follows. �

7.2. Generic subgroups. To complete the proof of Theorem 7.1, we may assume G0 is
one of the groups in (18) and S is in Lie(p), as in part (ii) of Theorem 7.2. In view of
Craven’s theorem (see Theorem 7.3), there are very few possibilities for G0 and S and it is a
straightforward exercise to verify Theorem 7.1 in these cases.

Lemma 7.13. The conclusion to Theorem 7.1 holds if S ∈ Lie(p).

Proof. By Theorem 7.3, we have G0 = E8(q) or E7(q). First assume G0 = E8(q). By inspecting
the possibilities for S in Theorem 7.3 and by applying Proposition 2.14, we deduce that

i2(Aut(S)) 6 2s(s+ 1) = a1, |Aut(S)| 6 |Aut(L2(37))| = a2,

where s = 2621. Setting b1 = q58 and b2 = q92, we deduce that Q(G,H) < a2
1/b1 + a2

2/b2 < 1
and thus b(G,H) = 2. Similarly, if G0 = E7(q) then |Aut(S)| 6 31200 = a1 and we have
|xG| > q34 = b1 for all nontrivial x ∈ G, whence Q(G,H) < a2

1/b1 < 1 and the result
follows. �

This completes the proof of Theorem 7.1.

8. Twisted groups

In this final section of the paper, we complete the proof of Theorem 1 by handling the
remaining almost simple primitive groups with socle

G0 ∈ {3D4(q), 2F4(q)′, 2G2(q)′ (q > 27), 2B2(q)}. (19)

Our main result is the following.

Theorem 8.1. If G0 is one of the groups in (19), then G is not extremely primitive.

Let G be an almost simple primitive group with point stabilizer H and socle G0 as in (19).
Recall that we handled the special cases

G0 ∈ {2B2(8), 2B2(32), 2F4(2)′, 3D4(2)}
in Theorem 2.15, so for the remainder of this section we will assume G0 is not one of these
groups. Furthermore, in view of Theorems 3.2 and 4.1, we may assume that H is neither a
parabolic nor a maximal rank subgroup of G. Then by inspecting [63] and [6, Tables 8.16,
8.43 and 8.51], it follows that either

(a) H is a subfield subgroup; or

(b) G0 = 3D4(q) and H0 = H ∩G0 is either G2(q) or PGLε3(q) with q ≡ ε (mod 3).

First we handle the subfield subgroups in (a).

Lemma 8.2. If G0 = 3D4(q) and H is a subfield subgroup, then G is not extremely primitive.

Proof. We proceed as in the proof of Proposition 6.6. Write q = qk0 , where k 6= 3 is a prime
and set Ḡ = D4. Fix a Steinberg endomorphism ψ = στ of Ḡ, where σ is a standard Frobenius
morphism of Ḡ corresponding to the map λ 7→ λq0 on Fq and τ is the standard triality graph
automorphism of Ḡ. Then H0 = Ḡψ = 3D4(q0) and G0 = Ḡψk = 3D4(q).

Let α0 be the highest root in the root system of Ḡ and let Xα be the root subgroup of Ḡ
corresponding to the root α. Consider the ψ-stable maximal rank subgroup M̄ = X̄Ȳ of Ḡ,
where X̄ = 〈X±α0〉 and Ȳ = CḠ(X̄)0. Then M̄ is of type A4

1 and we set

M = M̄ψ = (SL2(q0) ◦ Y ).d = d.(L2(q0)× L2(q3
0)).d,
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where Y = (Ȳψ)′ and d = (2, q−1). By [50], M is a maximal subgroup of H0 and we focus our
attention on the subgroup K = T ◦ Y 6M , where T = Zq0+1 is a maximal torus of SL2(q0).

Then by arguing as in the proof of Lemma 6.5, using [35] for information on the maximal
subgroups of H0, we deduce that M is the unique maximal overgroup of K in H0. Writing
G = G0.A and H = H0.A, we can now repeat the argument in the proof of Proposition 6.6
to show that G is not extremely primitive, noting that K and M are A-stable. �

Lemma 8.3. Suppose G0 ∈ {2F4(q), 2G2(q), 2B2(q)} and H is a subfield subgroup of G. Then
b(G,H) = 2.

Proof. In view of [17, Propositions 4.38 and 4.40], we may assume G0 = 2F4(q). Let H be a
subfield subgroup of G with H0 = H ∩G0 = 2F4(q0), where q = qk0 for some odd prime k.

First assume k > 5, so q > 32. If x ∈ G0 is an involution of type u1 in the notation of [71,
Table II], then

|xG ∩H| = (q3
0 + 1)(q2

0 − 1)(q6
0 + 1) < q11/5 = a1, |xG| > (q − 1)q10 = b1.

For all other nontrivial elements in G, we have |xG| > (q − 1)q13 = b2 and we note that

|H| < log2 q.q
26/5 = a2. It follows that Q(G,H) < a2

1/b1 + a2
2/b2 and one checks that this

upper bound is less than q−1 for all q > 32.

Now suppose k = 3. Let x ∈ G be an element of prime order r. First assume r = 2, so x is
conjugate to u1 or u2 in the notation of [71]. As above, if x = u1 then |xG ∩H| < q11/3 = a1

and |xG| > (q − 1)q10 = b1. Similarly, if x = u2 then |xG ∩ H| < q14/3 = a2 and |xG| >
(q − 1)q13 = b2. Next assume x is semisimple. Both H0 and G0 have a unique conjugacy
class of elements of order 3 (represented by the element t4 in [71, Table IV]) and we get
|xG ∩H| < q6 = a3 and |xG| > (q − 1)q17 = b3. For r > 5, we have |xG| > 1

3q
20 = b4 and we

note that |H0| < q26/3 = a4. Finally, suppose x ∈ G is a field automorphism. If r = 3 then

|xG| > 1
2q

52/3 = b5 and we observe that H contains precisely 2(i3(2F4(q0)) + 1) < 2q6 = a5

field automorphisms of order 3. And for r > 5, we get |xG| > 1
2q

104/5 = b6 and we note that

|H| < log2 q.q
26/3 = a6. We conclude that

Q(G,H) <

6∑
i=1

a2
i /bi < q−1

and the result follows. �

Finally, let us turn to the two remaining cases with G0 = 3D4(q).

Lemma 8.4. If G0 = 3D4(q) and H0 = G2(q), then G is not extremely primitive.

Proof. Here H0 is the centralizer in G0 of a triality graph automorphism. Therefore, if G
contains a graph automorphism then soc(H) will be a direct product of non-isomorphic
simple groups and thus G is not extremely primitive by Lemma 2.1(v). This allows us to
assume that G = G0.A and H = H0.A, where A is a group of field automorphisms.

Through the work of Cooperstein [27] and Kleidman [34], the maximal subgroups of H0

are known for all q. In particular, we note that H0 has a maximal subgroup M = K.2, where
K = SL3(q) and the outer involution acts as a graph automorphism on K. Clearly, M is the
unique maximal overgroup of K in H0. By inspecting [35], we see that

NG0(K) = NG0(L) = (K ◦ L).(3, q2 + q + 1).2

is a maximal subgroup of G0, where L = Zq2+q+1. Here the outer involution induces a

graph automorphism on K and inverts L. Write L = 〈g〉 and note that L = 〈g−2〉 and
g ∈ CG0(K). Seeking a contradiction, suppose g normalizes M and choose an element
x ∈ M \K. Then gx = g−1, so [g, x] = g−2 ∈ M and thus L < K = M ′ since L has odd
order. But K ∩ L = Z(K) = Z(3,q−1) and so we have reached a contradiction. Therefore, g
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does not normalize M and the result now follows from Lemma 2.4, noting that K and M are
both A-stable. �

Lemma 8.5. If G0 = 3D4(q) and H0 = PGLε3(q), where q ≡ ε (mod 3), then b(G,H) = 2.

Proof. Here H0 = CG0(τ), where τ is a triality graph automorphism of G0. Since q 6= 3 and we
handled the case q = 2 in Theorem 2.15, we may assume q > 4. We claim that Q(G,H) < 1.

Let x ∈ H be an element of prime order r and write q = pf with p prime. Let U and V
be the natural modules for H0 and Ḡ = D4, respectively, where Ḡ is the ambient simple
algebraic group. Note that the embedding of H0 in G0 arises from the embedding of H0 in
PΩ+

8 (q3) through the action of H0 on its adjoint module. In particular, we can work with the
adjoint representation to determine the Jordan form on V for each x ∈ H0.

First assume x ∈ H0 and r = p. If p = 2 then H0 has a unique class of involutions and we
calculate that x has Jordan form (J4

2 ) on V , so x is contained in the G0-class labelled 3A1 in
[73, Section 0.5]. In particular,

|xG ∩H| = i2(H0) = (q + ε)(q3 − ε) = a1, |xG| = q2(q6 − 1)(q8 + q4 + 1) = b1.

Now assume p 6= 2 (so p > 5). If x has Jordan form (J2, J1) on U , then x acts on V as
(J3, J

2
2 , J1), which implies that x is in the G0-class 3A1. Similarly, if x has Jordan form (J3)

on U , then it acts as (J5, J3) on V , which places x in the G0-class labelled D4(a1). In both
cases, this allows us to compute |xG ∩H| and |xG| precisely and we conclude that the total
contribution to Q(G,H) from unipotent elements is at most a2

1/b1 + a2
2/b2, where

a2 = q(q2 − 1)(q3 − ε), b2 = q6(q2 − 1)(q6 − 1)(q8 + q4 + 1).

Next assume x ∈ H0 is semisimple. If r = 2 then

|xG ∩H| = i2(H0) = q2(q2 + εq + 1) = a3, |xG| = i2(G0) = q8(q8 + q4 + 1) = b3.

If r > 2, then |xG| > (q − 1)q17 = b4 and we note that |H0| < q8 = a4.

Next suppose x ∈ G is a graph automorphism. Here |xG| > q14 = b5 and the total number
of graph automorphisms in H is equal to

2(i3(PGLε3(q)) + 1) = 4q2(q4 + 2q2 + 3εq + 2) + 2 = a5.

Finally, suppose x ∈ G is a field automorphism of order r. If r = 2, then

|xG ∩H| 6 |PGU3(q)|
|SL2(q)|

= q2(q3 + 1) = a6, |xG| >
1

2
q14 = b6.

Similarly, if r > 3 then |xG| > 1
2q

56/3 = b7 and we note that H contains fewer than

log2 q.q
8 = a7 field automorphisms of G0.

Putting these estimates together, we conclude that

Q(G,H) <

7∑
i=1

a2
i /bi,

which is less than 1 for all q > 4 (and it is less than q−1 for q > 11). �

This completes the proof of Theorem 8.1. By combining this result with Theorems 2.15,
3.2, 4.1, 5.2, 5.3, 6.1 and 7.1, we conclude that the proof of Theorem 1 is complete.
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