
Prime order derangements in primitive

permutation groups

Timothy C. Burness∗

School of Mathematics
University of Southampton
Southampton SO17 1BJ

UK

Michael Giudici†

School of Mathematics and Statistics
The University of Western Australia

35 Stirling Highway
Crawley, WA 6009

Australia

Robert A. Wilson‡

School of Mathematical Sciences
Queen Mary, University of London

Mile End Road
London E1 4NS

UK

May 4, 2011

Abstract

Let G be a transitive permutation group on a finite set Ω of size at least 2. An
element of G is a derangement if it has no fixed points on Ω. Let r be a prime divisor
of |Ω|. We say that G is r-elusive if it does not contain a derangement of order r, and
strongly r-elusive if it does not contain one of r-power order. In this note we determine
the r-elusive and strongly r-elusive primitive actions of almost simple groups with socle
an alternating or sporadic group.

1 Introduction

Let G be a transitive permutation group on a finite set Ω of size n ≥ 2 with point stabiliser
H. By the Orbit-Counting Lemma, G contains an element which acts fixed-point-freely on
Ω; such elements are called derangements. Equivalently, x ∈ G is a derangement if and
only if the conjugacy class of x in G fails to meet H. The existence of derangements has
interesting applications in other areas of mathematics, including number theory, algebraic
geometry and topology (see [16, 25], for example).

The study of derangements can be traced back to the early years of probability theory
in the 18th century. For example, in 1708 Montmort [20] established that the proportion of
derangements in the symmetric group Sn in its natural action on n points is given by the
formula
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so this proportion tends to e−1 as n tends to infinity. More generally, if δ(G) denotes the
proportion of derangements in a transitive group G of degree n then δ(G) ≥ 1/n, with equal-
ity if and only if G is sharply 2-transitive (see [7]). In recent work, Fulman and Guralnick
[11] prove that there is an absolute constant ε > 0 such that δ(G) > ε for any simple group
G, confirming a conjecture of Boston and Shalev.

In this paper we are interested in derangements of prime order. By a theorem of Fein,
Kantor and Schacher [10], our group G always contains a derangement of prime-power order,
but not all such groups contain one of prime order. Following [8], we call a transitive
permutation group elusive if it does not contain a derangement of prime order; elusive
permutation groups have been much studied in recent years, in a number of different contexts
(see [8, 14, 15, 33], for example). For instance, the 3-transitive action of the smallest Mathieu
group M11 on 12 points is elusive since M11 has a unique class of involutions, and also a
unique class of elements of order 3. Whereas the proof of the existence of a derangement
in a transitive permutation group is elementary, the extension in [10] to derangements of
prime-power order requires the full force of the Classification of Finite Simple Groups.

A broad class of elusive groups has been classified by Giudici. In [13] he proves that if G
is elusive on Ω and contains a transitive minimal normal subgroup then G = M11 oK acting
with its product action on Ω = ∆k for some k ≥ 1, where K is a transitive subgroup of Sk
and |∆| = 12. In particular, the aforementioned example of M11 on 12 points is the only
elusive primitive permutation group which is almost simple. The proof of this result relies
on the list of pairs (G,H) given in [18], where G is a simple group and H is a maximal
subgroup of G with the property that every prime dividing |G| also divides |H|.

The purpose of this paper is to initiate a more quantitative study of derangements of
prime order in primitive permutation groups. For example, if G is non-elusive then we
would like to determine the primes r for which there exists a derangement of order r. We
say that G is r-elusive if r is a prime dividing |Ω| and no derangement of order r exists.
In this terminology, G is elusive if and only if it is r-elusive for every prime divisor r of
|Ω|. The O’Nan-Scott Theorem essentially reduces the problem of determining the r-elusive
actions of primitive groups to the almost simple case, at which point we may appeal to the
Classification of Finite Simple Groups and use the wealth of information on the subgroup
structure and conjugacy classes of such groups.

In this paper we establish a reduction to the almost simple case (see Theorem 2.1) and
we explicitly determine the r-elusive primitive actions of almost simple groups with socle
an alternating or sporadic group. Not surprisingly, the situation for groups of Lie type is
more complicated. A detailed study of conjugacy classes and derangements of prime order
in classical groups is forthcoming in [5].

Theorem 1.1. Let G be an almost simple primitive permutation group on a set Ω such that
the socle of G is either an alternating or a sporadic group. Let r be a prime divisor of |Ω|.
Then either G contains a derangement of order r, or (G,Ω, r) is a known exception.

Corollary 1.2. Let r be the largest prime divisor of |Ω|. Then either G contains a derange-
ment of order r, or r = 3, G = M11 and |Ω| = 12.

Remark 1.3. For alternating groups, the exceptions referred to in Theorem 1.1 are given
explicitly in the statements of Propositions 3.4 – 3.8. Similarly, we refer the reader to Tables
5 and 7 for the list of r-elusive primitive actions of the Baby Monster and Monster groups,
respectively, while the exceptions for the other sporadic groups are recorded in Table 2.

For each primitive action of the Baby Monster we also determine the specific conjugacy
classes of derangements of prime order (see Table 6). Similarly, for the Monster, Table
8 is complete except for the case H = 112:(5 × 2A5), where we are unable to determine
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the precise fusion of 3-elements. Here H has a unique class of elements of order 3, which
fuse to the Monster class 3B or 3C. A complete list of the conjugacy classes of maximal
subgroups of the Monster is not presently available; to date, some 43 classes have been
identified, and it is known that any additional maximal subgroup is almost simple with socle
L2(13),L2(41),U3(4),U3(8) or Sz(8). Some additional difficulties arise in the analysis of
these remaining possibilities and we only provide partial information on the derangements
in these cases (see Table 10).

We can extend our analysis to derangements of prime-power order. Let r be a prime
divisor of |Ω|. We say that G is strongly r-elusive if it does not contain a derangement of
r-power order. By the main theorem of [10], if G is transitive then there exists a prime
divisor r such that G is not strongly r-elusive. In this paper we determine the strongly
r-elusive primitive actions of almost simple groups with an alternating or sporadic socle.

Theorem 1.4. Let G be an almost simple primitive permutation group on a set Ω such that
the socle of G is either an alternating or a sporadic group. Let r be a prime divisor of |Ω|.
Then either G contains a derangement of r-power order, or (G,Ω, r) is a known exception.

Remark 1.5. If the socle of G is an alternating group then the strongly r-elusive examples
referred to in Theorem 1.4 are recorded in Proposition 3.9, while the examples with a sporadic
socle are listed in Table 11.

In [10], Fein, Kantor and Schacher were motivated by an interesting number-theoretic
application. Let L ⊃ K be fields and let B(L/K) denote the relative Brauer group of
L/K; this is the subgroup of the Brauer group of K containing the Brauer classes of finite
dimensional central simple K-algebras which are split over L. The main theorem of [10] on
the existence of derangements of prime-power order is equivalent to the fact that B(L/K)
is infinite for any nontrivial extension of global fields (i.e. a number field, or an algebraic
function field in one variable over a finite field).

As explained in [10, Section 3], there is a reduction to the case where L/K is separable,
and by a further reduction we may assume L = K(α). Let E be a Galois closure of L/K, let
Ω be the set of roots in E of the minimal polynomial of α over K, and set G = Gal(E/K).
Then G acts transitively on Ω and [10, Corollary 3] states that B(L/K) is infinite if and only
if G contains a derangement of prime-power order. More precisely, if r is a prime divisor of
|Ω| then the r-torsion subgroup B(L/K)r of B(L/K) is finite if and only if G is strongly r-
elusive. Therefore, by considering the known exceptions in Theorem 1.4, we can identify the
primes r for which B(K(α)/K)r is finite in the case where the Galois group Gal(K(α)/K)
is almost simple with socle an alternating or sporadic group.

Let us make some remarks on the organisation of this paper. In Section 2 we start with
a reduction of the general problem to the almost simple case. Next, in Section 3 we prove
Theorems 1.1 and 1.4 in the case where the socle of G is an alternating group. Here our
analysis depends on whether or not the point stabiliser is primitive; if it is then we can apply
some classical results of Jordan, while in the remaining cases we argue directly via the explicit
action on subsets or partitions. Finally, in Section 4 we deal with the sporadic groups. If
G is not the Baby Monster or the Monster then we can obtain the relevant fusion maps
using GAP [12] and known character tables. The two remaining groups are dealt with in
Sections 4.2 and 4.3, respectively, where a more delicate analysis is required. We determine
the corresponding strongly r-elusive actions in Section 4.4.

Throughout this paper we use the standard Atlas notation, the only difference being
that we write PSpn(q) and PΩε

n(q) for simple symplectic and orthogonal groups respectively,
rather than Sn(q) and Oεn(q) adopted in the Atlas.
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2 A reduction theorem

Here we use the O’Nan-Scott Theorem to reduce the general problem of determining the
r-elusive actions of finite primitive groups to the almost simple case.

Theorem 2.1. Let G be a primitive permutation group on a finite set Ω, with socle T . Let
r be a prime dividing |Ω|. Then one of the following holds:

(i) G is almost simple;

(ii) T contains a derangement of order r;

(iii) G 6 H o Sk acting with its product action on Ω = ∆k for some k ≥ 2, where H 6
Sym(∆) is primitive, almost simple and the socle of H is r-elusive.

Proof. Let N be a minimal normal subgroup of G. Then N is transitive on Ω, and N ∼= Sk

for some simple group S and integer k ≥ 1. If N is regular then T contains a derangement of
order r. Therefore we may assume S is nonabelian and the point stabiliser Nα is non-trivial.

If k = 1 then G is almost simple and we are in case (i), so assume k ≥ 2. Since N is
minimal, G acts transitively on the set of k simple direct factors of N . Further, since N is
transitive we have G = GαN and thus Gα also acts transitively on the set of simple factors
of N . Therefore, there exists a non-trivial subgroup R of S such that for each coordinate i,
the projection πi(Nα) of Nα onto the ith simple factor of N is isomorphic to R. If R = S
then [24, p.328, Lemma] implies that there exists a partition P of {1, . . . , k} such that
Nα =

∏
P∈P DP , where DP

∼= S and πi(DP ) = S if i ∈ P and trivial otherwise. For each
P ∈ P let NP be a subgroup given by the direct product of |P | − 1 of the simple direct
factors of N corresponding to P . Then

∏
P∈P NP 6 N meets Nα trivially and has order |Ω|.

Therefore this subgroup is regular and (ii) follows.
Finally, suppose that R 6= S. Then [9, Theorem 4.6A] implies that we are in case (iii)

and S is the socle of H. If s ∈ S is a derangement of order r on ∆ then (s, 1, . . . , 1) ∈ T is
a derangement of order r on Ω.

We note that in case (iii) it is possible that G 6 H o Sk is r-elusive on ∆k when H 6
Sym(∆) contains a derangement of order r. For example, suppose that H is an almost simple
group with socle S such that H = 〈S, h〉, where S is 2-elusive on ∆ and h is a derangement
of order 2. (The existence of groups H satisfying these hypotheses will be demonstrated
in the next sections – see Proposition 4.4, for example.) Let G = 〈S4, (h, h, h, h)σ〉 6
H o S4, where σ = (1, 2, 3, 4) ∈ S4, and consider the product action of G on ∆4. There
are no derangements in S4 since S is 2-elusive on ∆. The involutions in G \ S4 have the
form (g1, g2, g

−1
1 , g−12 )(1, 3)(2, 4) for some g1, g2 ∈ H, and such an element fixes the points

(δ1, δ2, δ
g1
1 , δ

g2
2 ) ∈ ∆4. We conclude that G is 2-elusive.

3 Alternating groups

In this section we prove Theorems 1.1 and 1.4 in the case where the socle ofG is an alternating
group. We begin by considering derangements of prime order.

3.1 Prime order derangements

Theorem 3.1. Let G be an almost simple primitive permutation group on a set Ω such that
the socle of G is an alternating group An. Let r be a prime divisor of |Ω|. Then either G
contains a derangement of order r, or (G,Ω, r) is a known exception.
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The exceptions are recorded explicitly in Propositions 3.4 – 3.8 below. As an easy corol-
lary we obtain the following result (we postpone the proof to the end of this section).

Corollary 3.2. The following hold:

(i) G contains a derangement of order r, where r is the largest prime divisor of |Ω|.

(ii) If |Ω| is even then G is 2-elusive if and only if one of the following holds:

(a) Ω is the set of k-subsets of {1, . . . , n} where k is even, or n is odd, or G = An
and n/2 is odd;

(b) Ω is the set of partitions of {1, . . . , n} into b parts of size a, where a, b ≥ 2;

(c) Ω = G/H with (G,H) = (A5, D10), (PGL2(9), D20), (M10, 5:4) or (M10, 3
2:Q8).

(iii) If |Ω| is divisible by an odd prime then G contains a derangement of odd prime order.

For the rest of Section 3.1 we make the following global assumption.

Hypothesis 3.3. Let G be a primitive permutation group on a set Ω such that the socle of
G is An, for some n ≥ 5, and let H be the stabiliser in G of an element of Ω. Note that H
is a maximal subgroup of G and H 6= An. Let r be a prime divisor of |Ω|.

First we handle the three cases for which G is not isomorphic to An or Sn.

Proposition 3.4. Given Hypothesis 3.3, suppose G = Aut(A6), PGL2(9) or M10. Then ei-
ther G contains a derangement of order r, or r = 2 and (G,H) = (PGL2(9), D20), (M10, 5:4)
or (M10, 3

2:Q8).

Proof. Computation using Magma [2] or GAP [12].

For the remainder of this section we may assume G = An or Sn. The next proposition
deals with the case where H is primitive on {1, . . . , n}.

Proposition 3.5. Given Hypothesis 3.3, suppose G = An or Sn and H acts primitively on
{1, . . . , n}. Then G is r-elusive if and only if r = 2 and (G,H) = (A5, D10) or (A6,L2(5)).

Proof. First assume r is odd and let x ∈ G be an r-cycle. If r ≥ n−2 then r2 does not divide
|G|, so r does not divide |H| and thus x is a derangement. On the other hand, if r < n− 2
then a theorem of Jordan [17] (also [28, Theorem 13.9]) implies that H does not contain an
r-cycle, so once again we conclude that x is a derangement.

Now assume r = 2. By the above theorem of Jordan, H does not contain a transposition.
In particular, if G = Sn then every transposition in G is a derangement. Finally, suppose
G = An and let x ∈ G be a product of two disjoint transpositions. By a theorem of Manning
[19] (who attributes it to Jordan), the only primitive groups H of degree n with minimal
degree 4 (other than An or Sn) are

(n,H) = (5, 5:4), (5, D10), (6,PGL2(5)), (6,L2(5)), (7,L3(2)), (8,AGL3(2)).

The first and third examples are not contained in An, while |Ω| is odd in the last two cases.
We conclude that x has fixed points if and only if (n,H) = (5, D10) or (6,L2(5)).

Next we assume H is transitive but imprimitive on {1, . . . , n}, that is, Ω is the set of all
partitions of {1, . . . , n} into b parts of size a for suitable integers a, b ≥ 2.

Proposition 3.6. Given Hypothesis 3.3, suppose G = An or Sn, and Ω is the set of partitions
of {1, . . . , n} into b parts of size a with a, b ≥ 2. Let a ≡ ` (mod r) and b ≡ k (mod r) with
0 ≤ `, k < r. Then G is r-elusive if and only if r ≤ a and one of the following holds:
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(i) ` = 0;

(ii) k = 0 and ` = 1;

(iii) `, k 6= 0, k` < r and either b < r or (k + r)` ≤ ka+ r.

Proof. If r > a then r is odd and every r-cycle in G is a derangement. We also observe
that if r divides a then any x ∈ G of order r fixes a partition into parts of size a, where
each r-cycle of x is contained in a block of the relevant partition. For the remainder we may
assume r ≤ a and ` > 0.

Suppose first that r divides b. If ` > 1 then r is odd and there exists x ∈ G of order
r with precisely r fixed points on {1, . . . , n}. If x fixes an element of Ω then x must fix at
least r blocks; moreover, since a ≡ ` (mod r) it follows that x fixes at least ` points in each
fixed block. This contradicts ` > 1 as x only has r < r` fixed points. We conclude that x is
a derangement.

Next suppose r divides b and ` = 1. Let x ∈ G have order r. If x has no fixed points
on {1, . . . , n} then it fixes a partition in Ω by permuting the blocks in cycles of length r.
If x has sr fixed points with r ≤ sr ≤ b then x fixes a partition with sr fixed blocks, each
with precisely one fixed point. If x has sr fixed points with sr > b then x fixes a partition
partwise with at least one fixed point in each block. Thus if (k, `) = (0, 1) then all elements
of order r have fixed points on Ω.

Next we suppose that `, k 6= 0. If an element of Sn fixes an element of Ω it must fix at
least k blocks of the partition and at least ` points in each fixed block. Hence it must have
at least k` fixed points. If k` ≥ r then r is odd and so G contains permutations with at most
r − 1 fixed points, and these are fixed point free on Ω. For the remainder we may assume
k` < r. Note that n (mod r) = k` and so each element of order r in G has at least k` fixed
points.

First assume x ∈ G has order r and exactly k` fixed points. Then x fixes a partition by
acting semiregularly on b − k blocks and having ` fixed points in each of the remaining k
fixed blocks. Moreover, any element of order r with at most ka fixed points also fixes such a
partition. In particular, if b < r then all elements of order r have fixed points on Ω. Suppose
then that b > r and (k + r)` > ka + r. Then r is odd and G contains an element x with
precisely ka+ r fixed points. If x fixes a partition in Ω it would fix at least k + r blocks of
that partition and hence have at least (k+ r)` fixed points. As x only has ka+ r < (k+ r)`
fixed points, this is a contradiction and thus x is a derangement.

To complete the proof we may assume b > r and (k + r)` ≤ ka + r. Let x ∈ Sn be an
element of order r. It remains to show that x fixes an element of Ω. We have already observed
that this holds if x has at most ka fixed points, so we may assume x has α = (sr + k)a+ tr
fixed points for some s ≥ 0 and 0 ≤ t < a with (s, t) 6= (0, 0). When s = 0, the condition
(k + r)` ≤ ka+ r implies that x fixes a partition with k + r fixed blocks and at least ` fixed
points in each fixed block. Since r < a we have (a − `) ≥ r > ` and so a > 2`. Thus for
s > 0 we have sa > (s+ 1)`. It follows that ((s+ 1)r + k)` < α < ((s+ 1)r + k)a and so x
fixes a partition with (s+ 1)r+ k fixed blocks and at least ` fixed points in each fixed block.
This concludes the proof.

Remark 3.7. In the statement of Proposition 3.6, it is possible that a prime r ≤ a satisfying
one of the conditions (i) – (iii) does not actually divide |Ω|, in which case G clearly does not
contain a derangement of order r. For example, if a is a power of r then it is easy to see
that |Ω| is indivisible by r. Indeed, if a = rm and nr denotes the largest power of r dividing
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n then (n!)r = rα1 , ((a!)b)r = rα2 and (b!)r = rα3 , where

α1 =
∑
i≥1

⌊
ab

ri

⌋
= rm−1b+ rm−2b+ · · ·+ rb+ b+

⌊
b

r

⌋
+

⌊
b

r2

⌋
+ · · ·

α2 = b
∑
i≥1

⌊ a
ri

⌋
= b(rm−1 + rm−2 + · · ·+ r + 1)

α3 =
∑
i≥1

⌊
b

ri

⌋
.

Therefore |Ω|r = rα1−α2−α3 = 1, so |Ω| is indivisible by r.

To complete the proof of Theorem 3.1 it remains to deal with the case where H is
intransitive on {1, . . . , n}, that is, Ω is the set of k-element subsets of {1, . . . , n} with k < n/2.

Proposition 3.8. Given Hypothesis 3.3, suppose G = An or Sn, and Ω is the set of k-subsets
of {1, . . . , n} with 1 ≤ k < n/2. Let k ≡ j (mod r) and n ≡ i (mod r) with 0 ≤ i, j < r.

(i) If r is odd then G is r-elusive if and only if r ≤ k and i ≥ j.

(ii) G is 2-elusive if and only if k is even, or n is odd, or G = An and n/2 is odd.

Proof. Note that r divides n − t for some t = 0, . . . , k − 1. Assume first that r is odd and
r > k. Let x ∈ An be a product of (n− t)/r cycles of length r and t fixed points. Since t < k
and r > k it follows that x is a derangement.

Now suppose 2 < r ≤ k. If i < j then let x ∈ An be a product of (n − i)/r cycles of
length r and i fixed points. Then x is a derangement since any subset fixed setwise by x has
size s′r + i′ for some s′ ≤ (n− i)/r and i′ ≤ i < j. Conversely, suppose i ≥ j and let x ∈ G
be an element of order r, say x has ` cycles of length r and n − `r ≥ i ≥ j fixed points for
some integer `, 1 ≤ ` ≤ (n− i)/r. If `r ≥ k then x fixes the k-set consisting of (k − j)/r of
its r-cycles and j fixed points. If `r < k then x has at least n− k > k fixed points and hence
clearly fixes a k-set.

Finally, let us assume r = 2. Clearly, if k is even then any involution of Sn fixes a k-set.
Also note that if x ∈ Sn is an involution with at least one fixed point then x fixes a k-set for
any k. In particular, if n is odd then every involution has fixed points. Finally, suppose k
is odd and n is even. Let x ∈ Sn be the product of n/2 disjoint transpositions. Then x is a
derangement. Note that x ∈ An if and only if n/2 is even; if n/2 is odd then all involutions
of An fix a point and hence fix a k-set.

Proof of Corollary 3.2.

Let r be the largest prime divisor of |Ω| and consider (i). Note that Hypothesis 3.3 holds.
If H is primitive then the result follows at once from Proposition 3.5. Next suppose Ω is
the set of partitions of {1, . . . , n} into b parts of size a, where a, b ≥ 2. Since a, b ≤ n/2,
Bertrand’s Postulate implies that n/2 < r < n and the result follows from Proposition 3.6.
Finally, suppose Ω is the set of k-subsets of {1, . . . , n}, where 1 ≤ k < n/2. Since n ≥ 5,
a theorem of Sylvester [26] implies that

(
n
k

)
is divisible by an odd prime greater than k, so

r > k and the result follows from Proposition 3.8. This justifies (i). Parts (ii) and (iii) are
clear. Note that the action of A6 on the set of cosets of L2(5) is permutationally isomorphic
to the action of A6 on {1, . . . , 6}.
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3.2 Derangements of prime-power order

Here we prove Theorem 1.4 in the case where the socle of G is an alternating group An.

Proposition 3.9. Let G be an almost simple primitive permutation group on a set Ω such
that the socle of G is an alternating group An. Let r be a prime divisor of |Ω| and set
m = blogr nc. Then G is strongly r-elusive if and only if one of the following holds:

(i) (G,H, r) = (A5, D10, 2);

(ii) Ω is the set of partitions of {1, . . . , n} into b parts of size a, where either

(a) r = 2, G = An, a = 2m−1 + 1 and b = 2; or

(b) r is odd, a > rm, b ≥ 2 and a ≡ `i (mod ri) with 0 ≤ `i ≤ b(ri − 1)/bc, for all
1 ≤ i ≤ m.

(iii) r = 2, G = An, n = 2m + 1 and Ω is the set of 2m−1-subsets of {1, . . . , n}.

Proof. If G 6= An or Sn then we may assume r = 2 and (G,H) is one of the three cases
listed in Proposition 3.4; it is easy to check that none of these examples are strongly 2-
elusive. Similarly, if (G,H) = (A6,L2(5)) then G contains derangements of order 4, while
(G,H) = (A5, D10) is strongly 2-elusive. In view of Proposition 3.5, for the remainder we
may assume H is either transitive and imprimitive on {1, . . . , n}, or H is intransitive on
{1, . . . , n}.

First suppose Ω is the set of partitions of {1, . . . , n} into b parts of size a with a, b ≥ 2.
Note that if a is a power of r then |Ω| is indivisible by r, so we may assume otherwise (see
Remark 3.7). Suppose rm > a. Here an rm-cycle is a derangement, and G contains such
elements unless G = An and r = 2, so let us assume we are in this latter situation. If
2m−1 > a then the product of two 2m−1-cycles is a derangement in G, so we may assume
2m−1 < a < 2m, in which case b = 2. Now, if a 6= 2m−1 + 1 then the product of a 2m-cycle
and a transposition is a derangement. Suppose a = 2m−1 + 1 and let x ∈ G be an element
of 2-power order. If x has no fixed points on {1, . . . , n} then x fixes an element of Ω by
interchanging the two parts of the partition. On the other hand, if x has fixed points (with
respect to {1, . . . , n}) then all cycles of x have length at most 2m−1, and x fixes an element
of Ω by fixing the two parts of the partition. Therefore, G is strongly 2-elusive if we are in
case (ii)(a).

Now assume rm < a (so b < r and r is odd). Write n = amr
m+am−1r

m−1+· · ·+a1r+a0,
where 0 ≤ ai < r for all i, and let g ∈ G be an element with ai cycles of length ri for each
0 ≤ i ≤ m. Suppose the condition in (ii)(b) holds. Then each ai is a multiple of b and thus g
fixes a partition in Ω (fixing the blocks in the partition setwise). Consequently, every element
of r-power order fixes such a partition, so G is strongly r-elusive. Conversely, suppose that
the condition in (ii)(b) does not hold, and assume g fixes a partition α ∈ Ω. Since b < r,
it follows that the blocks comprising α are fixed setwise by g. Let k be maximal such that
`k > b(rk − 1)/bc. Then each ai with i > k is a multiple of b, while ak is indivisible by b.
Now working down from m, if am is divisible by b then the am cycles of g of length rm must
be evenly distributed amongst the b blocks in α. We continue distributing the ri-cycles of g
in this way until we come to the rk-cycles. At this stage there are (akr

k + · · ·+ a1r + a0)/b
points left in each block in α, so we can place at most bak/bc cycles of length rk in each of
the b blocks. However, bbak/bc < ak, so there is at least one rk-cycle left over. This is a
contradiction, and thus g is a derangement of r-power order.

Finally, let us assume Ω is the set of k-subsets of {1, . . . , n} with 1 ≤ k < n/2. Write
n = amr

m + am−1r
m−1 + · · · + a1r + a0 and k = bmr

m + bm−1r
m−1 + · · · + b1r + b0, where

0 ≤ ai, bi < r for all i. Let k ≡ ki (mod ri) and n ≡ ni (mod ri) with 0 ≤ ki, ni < ri for
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all i ≤ m. We claim that ki > ni for some i. To see this, suppose ki ≤ ni for all i ≤ m.
Then bi ≤ ai for all i ≤ m, and thus n − k =

∑
i≥0(ai − bi)ri with 0 ≤ ai − bi < r for all i.

Therefore ⌊ n
ri

⌋
=

m∑
j=i

ajr
j−i,

⌊
k

ri

⌋
=

m∑
j=i

bjr
j−i,

⌊
n− k
ri

⌋
=

m∑
j=i

(aj − bj)rj−i

so

|Ω|r =

(
n!

k!(n− k)!

)
r

= r`, where ` =
∑
i≥1

(⌊ n
ri

⌋
−
⌊
k

ri

⌋
−
⌊
n− k
ri

⌋)
= 0.

This justifies the claim.
Define g ∈ Sn as above. Let t ≤ m− 1 be maximal such that bt > at and assume g fixes

a k-subset α ∈ Ω. Suppose that the restriction of g to α comprises ci cycles of length ri for
t < i ≤ m. Then

k ≤ cmrm + · · ·+ ct+1r
t+1 + atr

t + · · ·+ a1r + a0 < bmr
m + · · ·+ bt+1r

t+1 + (at + 1)rt

and thus k < bmr
m + · · · + b1r + b0 = k, which is absurd. Therefore g is a derangement.

Now g lies in An if and only if r is odd, or r = 2 and
∑

i≥1 ai is even, so we may as
well assume G = An, r = 2 and

∑
i≥1 ai is odd. Let h ∈ G be an element consisting

of 2am + am−1 cycles of length 2m−1 and ai cycles of length 2i for each i ≤ m − 2. If
t < m − 1 then the same argument as for g shows that h is a derangement. Suppose
then that t = m − 1. Then n = 2m + am−22

m−2 + · · · + a12 + a0, and since k < n/2 we
have k = 2m−1 + bm−22

m−2 + · · · + 2b1 + b0. Suppose
∑

i≥1 ai ≥ 3, so as = 1 for some

2 ≤ s < m− 1. Let h′ ∈ G be a permutation with ai cycles of length 2i for all i 6= s, s− 1,
and with 2 + as−1 cycles of length 2s−1. Then h′ is a derangement as h′ contains a 2m-cycle
and n − 2m < 2m−1 ≤ k. Since k < n/2, it remains to consider the case where n = 2m + 1
and k = 2m−1. Here every element of An of 2-power order preserves a partition of {1, . . . , n}
into parts of size 2m−1, 2m−1 and 1, so every such element fixes a k-subset.

4 Sporadic groups

In this final section we deal with the 26 sporadic simple groups and we complete the proof
of Theorems 1.1 and 1.4.

Theorem 4.1. Let G be an almost simple primitive permutation group on a set Ω such that
the socle of G is a sporadic group. Let r be a prime divisor of |Ω|. Then either G contains
a derangement of order r, or (G,Ω, r) is a known exception. In addition, the cases where G
does not contain a derangement of r-power order are also known.

The r-elusive exceptions are recorded in Tables 5 and 7 for the Baby Monster and Mon-
ster, respectively, while the rest can be read off from Tables 2 – 4. The strongly r-elusive
examples are listed in Table 11. As an immediate corollary, we get the following result:

Corollary 4.2. Let G be an almost simple primitive permutation group on a set Ω such that
the socle of G is a sporadic group. Let r be the largest prime divisor of |Ω|. Then r is odd
and either G contains a derangement of order r, or r = 3, G = M11 and |Ω| = 12.

It is straightforward to extract additional results from Theorem 4.1. For example, one
can easily determine the examples for which there exists a derangement of order r for every
prime divisor r of |Ω|. Not surprisingly, most of the work in proving Theorem 4.1 involves
the Baby Monster B and the Monster M sporadic groups, which we consider separately in
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Sections 4.2 and 4.3, respectively. As advertised in the Introduction, for B and M we also
determine the specific conjugacy classes of derangements of prime order (see Tables 6 and
8).

In Sections 4.1 – 4.3 we focus on derangements of prime order. We use very similar
methods to determine the strongly r-elusive examples (see Section 4.4 for the details).

4.1 The non-monstrous groups

In this section we establish Theorem 1.1 for the sporadic groups, with the exception of the
monstrous groups B and M. Our main result is the following:

Proposition 4.3. Let G be a simple sporadic simple group, let H be a maximal subgroup
of G and let Ω = G/H. Assume G 6= B or M, and let r be a prime divisor of |Ω|. Then G
is r-elusive if and only if (G,H, r) is listed in Table 2. In particular, G is r-elusive only if
r ≤ 7.

Let us explain how to read off the r-elusive examples from Table 2. For each group G,
a collection of maximal subgroups is defined in Table 1, denoted by M(G). The numbers
appearing in the row of Table 2 corresponding to G refer to the ordered list of subgroups in
M(G). For example, suppose G = M11. Then G is 2-elusive if H = L2(11) or S5, and G is
3-elusive if H = L2(11), S5 or 2S4. For any other relevant prime r, G contains derangements
of order r.

Next suppose G = T.2 with T a sporadic simple group. Let H 6= T be a maximal
subgroup of G and set Ω = G/H and S = H ∩T . Let r be a prime divisor of |Ω| and assume
for now that S is a maximal subgroup of T . If r is odd then G is r-elusive if and only if T
is r-elusive with respect to the primitive action of T on T/S, so the examples which arise
are easily determined from Proposition 4.3. On the other hand, if G is 2-elusive then T is
2-elusive, but the converse does not always hold.

Proposition 4.4. Suppose G = T.2, S = H ∩T is maximal in T and T is 2-elusive on T/S.
Then G contains derangements of order 2 if and only if (G,H) is one of the cases listed in
Table 3.

Finally, we deal with the cases where H is a novelty subgroup of G, that is, S = H ∩ T
is not a maximal subgroup of T .

Proposition 4.5. Suppose G = T.2 and S = H ∩ T is not maximal in T . Let r be a prime
divisor of |Ω|. Then G is r-elusive if and only if (G,H, r) is one of the cases listed in Table
4.

It is convenient to prove Propositions 4.3 – 4.5 by computational methods, using GAP
[12]. In most cases, we may inspect the relevant character tables in the GAP Character Table
Library [4], and utilise the stored fusion data therein. This approach is effective unless G is
one of the following:

HS.2,He.2,Fi22.2,O
′N.2,Fi24,HN.2 (1)

In each of these cases the Web Atlas [32] provides an explicit faithful permutation represen-
tation of G on n(G) points, where n(G) is defined as follows:

G HS.2 He.2 Fi22.2 O′N.2 Fi24 HN.2

n(G) 100 2058 3510 245520 306936 1140000

For G = HS.2, He.2 or Fi22.2, we may then use the Magma command MaximalSubgroups
to obtain representatives of the conjugacy classes of maximal subgroups of G, and it is then
straightforward to determine the fusion of the relevant H-classes in G. In the remaining
cases, explicit generators for H are given in the Web Atlas [32] and we may proceed as
before. We leave the details to the reader.
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G M(G)

M11 L2(11), S5, 2S4
M12 A6.2

2, 2× S5, A4 × S3
M22 L3(4), A7, 2

4:S5, 2
3:L3(2),M10,L2(11)

M23 A8,M11

M24 M22:2,M12:2, 2
6:(L3(2)× S3)

HS U3(5):2,L3(4):21, S8, 2
4.S6, 4

3:L3(2), 4.24.S5, 2×A6.2
2, 5:4×A5

J2 3.A6.2, 2
2+4:(3× S3), A4 ×A5, A5 ×D10,L3(2):2, 52:D12

Co1 3.Suz:2, 21+8.Ω+
8 (2),U6(2):S3, (A4 ×G2(4)):2, 24+12.(S3 × 3.S6),

32.U4(3).D8, (A5 × J2):2, (A6 ×U3(3)).2, 33+4.2.(S4 × S4), A9 × S3,
(A7 × L2(7)):2, (D10 × (A5 ×A5).2).2, 53:(4×A5).2

Co2 U6(2):2, 21+8:Sp6(2),HS:2, (24 × 21+6).A8,U4(3):D8,
24+10.(S5 × S3), 31+4.21+4.S5

Co3 McL.2,HS,U4(3).22, 35:(2×M11),U3(5):S3, 3
1+4:4.S6,L3(4).D12,

2×M12, [2
10.33], S3 × L2(8):3, A4 × S5

McL U3(5), 31+4:2.S5, 3
4:M10, 2.A8,M11, 5

1+2:3:8
Suz G2(4), 3.U4(3):2, J2:2, 2

4+6:3.A6, (A4 × L3(4)):2,M12:2,
32+4:2.(A4 × 22).2, (A6 ×A5).2, (A6 × 32:4).2,L3(2):2

He Sp4(4):2, 22.L3(4).S3, 2
6:3.S6, 3.S7, 7

1+2:(3× S3), S4 × L3(2),
7:3× L3(2), 52:4.A4

HN A12, 2.HS.2,U3(8):3, 21+8.(A5 ×A5).2, (D10 ×U3(5)).2, 51+4.21+4.5.4,
26.U4(2), (A6 ×A6).D8, 2

3+2+6.(3× L3(2)),M12:2, 3
4:2.(A4 ×A4).4

Th 3D4(2):3, 25.L5(2), 21+8.A9,U3(8):6, (3×G2(3)):2, 3.32.3.(3× 32).32:2S4,
32.33.32.32:2S4, 3

5:2.S6, 5
1+2:4S4, 5

2:GL2(5), 72:(3× 2S4),L2(19):2,L3(3),
M10, 31:15, S5

Fi22 2.U6(2),Ω7(3),Ω+
8 (2):S3, 2

10:M22, 2
6:Sp6(2), (2× 21+8):(U4(2):2),

U4(3):2× S3, 25+8:(S3 ×A6), 3
1+6:23+4:32:2, S10,M12

Fi23 2.Fi22,PΩ+
8 (3):S3, 2

2.U6(2).2, Sp8(2),Ω7(3)× S3, 211.M23, 3
1+8.21+6.31+2.2S4,

S12, (2
2 × 21+8).(3×U4(2)).2, 26+8:(A7 × S3), Sp6(2)× S4

Fi′24 Fi23, 2.Fi22:2, (3× PΩ+
8 (3):3):2,Ω−10(2), 37.Ω7(3), 31+10:U5(2):2, 211.M24,

22.U6(2):S3, 2
1+12:31.U4(3).2, [313]:(L3(3)× 2), 32+4+8.(A5 × 2A4).2,

(A4 × Ω+
8 (2):3):2,He:2, 23+12.(L3(2)×A6), 2

6+8.(S3 ×A8), (G2(3)× 32:2).2,
(A9 ×A5):2,L2(8):3×A6, A7 × 7:6

J1 L2(11), 19:6, 11:10, D6 ×D10, 7:6
O′N L3(7):2, J1, 42.L3(4):21, (3

2:4×A6).2, 3
4:21+4.D10,L2(31), 43.L3(2),M11, A7

J3 L2(16):2,L2(19), 24:(3×A5),L2(17), (3×A6):22, 3
2+1+2:8, 22+4:(3× S3)

Ru (22 × Sz(8)):3, 23+8:L3(2),U3(5):2, 21+4+6.S5,L2(25).22, A8,L2(29),
52:4:S5, 3.A6.2

2, 51+2:[25],L2(13):2, A6.2
2, 5:4×A5

J4 210:L5(2), 23+12.(S5 × L3(2)),U3(11):2,M22:2, 111+2:(5× 2S4),L2(32):5,
L2(23):2, 37:12

Ly G2(5), 3.McL:2, 53.L3(5), 2.A11, 5
1+4:4.S6, 3

5:(2×M11), 3
2+4:2.A5.D8,

67:22, 37:18

Table 1: Some maximal subgroups of sporadic simple groups
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G r = 2 3 5 7

M11 1, 2 1, 2, 3
M12 1, 2, 3 3
M22 1, 2, 4, 5, 6 3, 4, 6
M23 1, 2
M24 1, 2 3
HS 1, 2, 3, 4, 7, 8 5, 6, 8
J2 1, 3, 4, 5, 6 2, 3
Co1 1, 4, 6, 7, 8, 9, 10, 11, 12, 13 1, 3, 5, 6, 8, 10 2, 7, 12
Co2 1, 3, 4, 5, 7 2, 4, 6
Co3 1, 2, 3, 4, 5, 6, 7, 8, 10, 11 5, 9, 10
McL 1, 2, 3, 5, 6 4
Suz 1, 2, 3, 5, 6, 7, 8, 9, 10 4, 9
He 1, 2, 4, 6, 8 5, 6, 7 2, 3, 4
HN 1, 2, 5, 6, 7, 8, 10, 11 1, 3, 4, 7, 8, 9, 10 5
Th 1, 4, 5, 6, 7, 8, 9, 10, 1, 3, 4, 5, 8 2, 3, 8, 12, 14, 15, 16 2, 3, 4, 5

11, 12, 13, 14, 16
Fi22 1, 2, 3, 5, 7, 9, 10 3, 7, 8 1, 2, 4, 5, 6, 7, 8, 11
Fi23 2, 4, 5, 7, 8, 11 1, 5, 9, 10, 11 3, 5, 6, 9, 10, 11
Fi′24 1, 2, 3, 4, 5, 6, 8, 10, 11, 3, 8, 9, 12, 16, 18 5, 6, 7, 8, 9, 11, 19

12, 13, 16, 17, 18, 19 14, 15, 18, 19
J1 1, 2, 3, 4, 5
O′N 1, 2, 4, 5, 6, 8, 9 1, 2, 3, 6, 7, 8, 9
J3 1, 2, 3, 4, 5, 6 3, 5, 7
Ru 1, 5, 9, 10, 11, 12, 13 1, 2, 3, 4, 5, 6, 7, 8, 13

11, 12, 13
J4 1, 3, 5, 7 1, 2, 3, 4, 5, 6, 7, 8
Ly 1, 3, 5, 6, 7, 8, 9 1, 4, 5 2, 4

Table 2: Some r-elusive simple sporadic groups

G H

M22.2 L3(4).2,L2(11).2
J2.2 (A5 ×D10).2, 5

2:(4× S3)
J3.2 L2(16).4
Suz.2 G2(4).2
He.2 Sp4(4):4, 52:4.S4
O′N.2 34:21+4.D10.2

Table 3: Some sporadic groups with involutory derangements
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G H r

He.2 (S5 × S5).2 2
Fi22.2 35:(2×U4(2):2) 2, 5
O′N.2 71+2:(3×D16) 2, 3

31:30 3
A6:2 2, 3
L2(7):2 2, 3

Table 4: Some r-elusive sporadic groups arising from novelties

4.2 The Baby Monster

Let G = B be the Baby Monster sporadic group and consider the action of G on Ω = G/H,
where H is a maximal subgroup of G. Let r be a prime divisor of |Ω| and observe that G
contains a derangement of order r if r2 does not divide |G|. It follows that G is r-elusive
only if r ≤ 7. Now G has a unique class of elements of order 7, so all such elements have
fixed points if |H| is divisible by 7. For r ≤ 5, the relevant classes in G are the following:

2A, 2B, 2C, 2D, 3A, 3B, 5A, 5B.

The classification of the maximal subgroups of the Baby Monster was completed in [29];
in total, there are 30 conjugacy classes of maximal subgroups, and they are listed in [29,
Table I]. The two main results in this section are the following:

Proposition 4.6. Let r be a prime divisor of |Ω| and |H|. Then G is r-elusive if and only
if r ≤ 7 and (H, r) is one of the cases listed in Table 5.

Proposition 4.7. Suppose G contains a derangement of prime order r ≤ 5, where r divides
|Ω| and |H|. Then the G-classes of derangements of order r are listed in Table 6.

First suppose H is one of the following subgroups:

2.2E6(2):2,Fi23,Th, S3 × Fi22:2,HN:2,PΩ+
8 (3):S4, 3

1+8.21+6.U4(2).2

5:4×HS:2, S4 × 2F4(2), S5 ×M22:2, 5
2:4S4 × S5,L2(31),L2(17):2

(2)

Then the character table of H (and of course G also) is available in the GAP Character Table
Library [4], together with precise fusion information. Similarly, the character tables of the
subgroups

(22 × F4(2)).2, (32:D8 ×U4(3).2.2).2, (S6 × L3(4):2).2,L2(49).23

are known. Indeed, the character tables of (22×F4(2)).2 and L2(49).23 are available directly
in the GAP Character Table Library, while the other character tables can be constructed
using the Magma implementation of the algorithm of Unger [27], and a suitable permutation
representation of the subgroup (see [6, Proposition 3.3]). The fusion of H-classes in G can
now be computed with the aid of GAP. In all of these cases, the desired results follow at
once from the relevant fusion maps. Finally, if H is one of the following 2-local subgroups

29+16.Sp8(2), 22+10+20.(M22:2× S3), [230].L5(2), [235].(S5 × L3(2))

then the character table of H is known and we can use character restriction to obtain precise
fusion information (see [6, Proposition 3.4]).

In view of [29, Table I], it remains to deal with the following 8 subgroups:

A =
{

L2(11):2,L3(3),M11, (S6 × S6).4, 51+4.21+4.A5.4, 5
3.L3(5), [311].(S4 × 2S4), 2

1+22.Co2
}
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H r

2.2E6(2):2 2, 3 HN:2 3, 7
21+22.Co2 3, 5, 7 PΩ+

8 (3):S4 2, 7
Fi23 7 31+8.21+6.U4(2).2 2
29+16.Sp8(2) 3, 5, 7 (32:D8 ×U4(3).2.2).2 2, 3, 7
Th 3 5:4×HS:2 2, 5, 7
(22 × F4(2)):2 2, 3 S4 × 2F4(2) 2, 3
22+10+20.(M22:2× S3) 3, 7 S5 ×M22:2 2, 3, 5, 7
[230].L5(2) 2, 3, 7 (S6 × L3(4):2).2 2, 3, 5, 7
S3 × Fi22:2 2, 3, 7 (S6 × S6).4 2, 3, 5
[235].(S5 × L3(2)) 3, 7 52:4S4 × S5 2, 3, 5

Table 5: The r-elusive actions of B

H r = 2 3 5

2.2E6(2):2 5B
Fi23 2C 5B
Th 2A, 2B, 2C 5A
(22 × F4(2)):2 5B
22+10+20.(M22:2× S3) 5B
[230].L5(2) 5A
S3 × Fi22:2 5B
[235].(S5 × L3(2)) 5B
HN:2 2A
PΩ+

8 (3):S4 5B
31+8.21+6.U4(2).2 5A
(32:D8 ×U4(3).2.2).2 5B
5:4×HS:2 3B
S4 × 2F4(2) 5B
[311].(S4 × 2S4) 2B
53.L3(5) 2A, 2B, 2C 3A
51+4.21+4.A5.4 2A 3A
L2(49).23 2A, 2B, 2C 3A 5A
L2(31) 2A, 2B, 2C 3A 5A
M11 2A, 2B, 2C 3A 5A
L3(3) 2A, 2B, 2C 3A
L2(17):2 2A, 2B, 2C 3A
L2(11):2 2A, 2B, 2C 3A 5A

Table 6: Some derangements of order r in B
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Lemma 4.8. Propositions 4.6 and 4.7 hold when H ∈ A.

Proof. Let π be the set of common prime divisors of |H| and |Ω|. If π = {r1, . . . , rm} then
set κ = [k1, . . . , km], where ki is the number of H-classes of elements of order ri.

First suppose H = L2(11):2, so π = {2, 3, 5} and κ = [2, 1, 2]. By [29, Section 4], H
contains 2D, 3B and 5B-elements. Using this, and computing possible fusions in GAP, we
deduce that all elements in H of order 2 are in 2D and all 5-elements are in 5B. Similarly,
if H = L3(3) then π = {2, 3}, κ = [1, 2] and H contains 2D-elements, but it does not meet
3A (see [29, Section 9]). For H = M11 we have π = {2, 3, 5}, κ = [1, 1, 1] and [29, Section 5]
reveals that H contains 2D, 3B and 5B-elements.

Next consider H = (S6 × S6).4. Here π = {2, 3, 5} and H is the unique subgroup of
index two in Aut(S6 × S6) = (S6 × S6).D8 which maps onto the cyclic subgroup of D8 of
order 4. The two S6 factors contain 5A-elements, since CG(5B) does not contain S6. Hence
they also contain 3A-elements. Also, [29] says there is a diagonal S6 which contains 3B and
5B elements. By looking at the subgroup D10 × S6.2 in D10 × L3(4).2.2 inside D10 × HS:2
we see that the involutions in S6.2 fuse to classes 2A, 2C and 2D in L3(4).22, which fuse
to classes 2A, 2C and 2D in HS:2. These correspond to elements of classes 10B, 10A and
10E respectively in the Baby Monster, which power to 2B, 2A and 2D. Finally, according
to [21, Table 4], the normaliser in the Monster of the A5 × A5 in here is 1

4(D8 × S5 × S5),
which means it contains some elements of order 4 which square to the central involution of
2.B. Therefore H contains 2C-elements.

Now suppose H = 51+4.21+4.A5.4, in which case π = {2, 3}. If x ∈ H has order 3 then x
centralises a 5B-element, so x is in class 3B and there are no 3A-elements in H. Similarly, if
x ∈ H has order 2, then x either centralises or inverts a 5B-element. In the former case it is
in class 2B or 2D, while in the latter case we count the dihedral groups using the structure
constants. We find that ξ(2A, 2A, 5B) = 0 and ξ(2C, 2C, 5B) 6= 0, so x can lie in class 2C
but cannot lie in class 2A. Thus of the involution classes only the 2A-class fails to meet H.

If H = 21+22.Co2 then π = {3, 5, 7}, H = CG(2B) and the character table of G indicates
that a 2B-element commutes with elements from all of the classes 3A, 3B, 5A, 5B, 7A and
7B. Therefore there are no derangements of order 3, 5 or 7 in this case.

Next we turn to H = 53.L3(5). Here π = {2, 3} and κ = [1, 1], so G clearly contains
derangements of order 2 and 3. Since L3(5) contains a unique class of involutions and a
unique class of elements of order 3, the same is true in 53.L3(5), and both classes can be
seen in the 5-element centraliser 53.52.SL2(5) = 51+4.SL2(5). In particular the elements of
order 3 commute with 5B-elements, so are in class 3B. Looking in the full 5-centraliser
51+4.21+4.A5 we see that the involutions have centraliser 5 × 21+4.A5 of order 9600, so
correspond to elements of class 10F in the Baby Monster, which power into class 2D.

Finally, let us assume H = [311].(S4× 2.S4). Here π = {2} and H is the normaliser of an
elementary abelian 32. This 32 group embeds in the Monster, where its normaliser is of shape
32+5+10.(M11 × 2S4), and we obtain the subgroup of the Baby Monster by centralising and
then factoring out an involution in the M11. In particular, H contains a subgroup S4×32:2S4,
in which the S4 factor contains elements of classes 2A and 2C in the Baby Monster. But
there is a unique conjugacy class of S4 of this type in the Baby Monster, and such an S4
has normaliser S4 × 2F4(2). Now the class fusion from 32:2S4 via L3(3) and 2F4(2) to F4(2)
reveals that the involutions are in F4(2)-class 2D. Now this class and all the diagonal classes
of involutions fuse to 2C or 2D in the Baby Monster.

4.3 The Monster

Let G = M be the Monster sporadic group, let H be a maximal subgroup of G and consider
the action of G on Ω = G/H. Let r be a prime divisor of |Ω| and note that G is r-elusive only

15



H r

2.B 2, 5, 11 (A5 ×A12):2 2, 5, 11
21+24.Co1 3, 5, 7, 11 53+3.(2× L3(5)) 2
3.Fi24 2, 3, 7, 11 (A6 ×A6 ×A6).(2× S4) 2, 3, 5
22.2E6(2):S3 2, 3, 11 (A5 ×U3(8):31):2 2, 3
210+16.Ω+

10(2) 5 52+2+4:(S3 ×GL2(5)) 2
22+11+22.(M24 × S3) 3, 11 (L3(2)× Sp4(4):2).2 2
31+12.2Suz.2 2, 5, 11 71+4:(3× 2S7) 3
25+10+20.(S3 × L5(2)) 3 (52:[24]×U3(5)).S3 2, 3, 5
S3 × Th 2, 3 (L2(11)×M12):2 2, 5
23+6+12+18.(L3(2)× 3S6) 3 (A7 × (A5 ×A5):2

2):2 2, 5
38.PΩ−8 (3).23 2 54:(3× 2L2(25)):22 5
(D10 ×HN).2 2, 5, 11 M11 ×A6.2

2 2, 5, 11
(32:2× PΩ+

8 (3)).S4 2, 3 (S5 × S5 × S5):S3 2, 3, 5
32+5+10.(M11 × 2S4) 2, 11 (L2(11)× L2(11)):4 2, 5
33+2+6+6:(L3(3)× SD16) 2 (72:(3× 2A4)× L2(7)).2 2, 3, 7
51+6:2J2:4 2 (13:6× L3(3)).2 2, 3, 13
(7:3×He):2 2, 3, 7 112:(5× 2A5) 5

Table 7: Some r-elusive actions of M

if r ≤ 13. Now G has a unique class of elements of order 11, so all such elements have fixed
points if 11 divides |H|. For r ∈ {2, 3, 5, 7, 13}, the relevant classes in G are the following:

2A, 2B, 3A, 3B, 3C, 5A, 5B, 7A, 7B, 13A, 13B

Recall that there are currently 43 known conjugacy classes of maximal subgroups of the
Monster, and any additional maximal subgroup is almost simple with socle L2(13), L2(41),
U3(4), U3(8) or Sz(8) (see [3, Section 1] and [22]). Let K be a set of representatives for the
known maximal subgroups of G and let U be the additional set of undetermined maximal
subgroups (up to conjugacy). For the primitive actions of the Monster corresponding to
subgroups in K we prove the following results:

Proposition 4.9. Let H ∈ K and let r be a prime divisor of |Ω| and |H|. Then G is
r-elusive if and only if r ≤ 13 and (H, r) is one of the cases listed in Table 7.

Proposition 4.10. Suppose G contains a derangement of prime order r ≤ 11, where H ∈ K
and r divides both |Ω| and |H|. Then the G-classes of derangements of order r are listed in
Table 8.

Remark 4.11. As remarked in the Introduction, Table 8 gives complete information on the
classes of derangements of prime order, except for the case H = 112:(5 × 2A5), where we
are unable to determine the precise fusion of 3-elements. Here H has a unique class of such
elements, which fuse to the Monster class 3B or 3C.

We begin by considering the 43 known conjugacy classes of maximal subgroups in K,
which are conveniently listed in the Web Atlas. It is helpful to partition K into 5 subsets,
Ki for 1 ≤ i ≤ 5 as given in Table 9, which we deal with in turn. We define π and κ as in
the proof of Lemma 4.8.

Lemma 4.12. Propositions 4.9 and 4.10 hold for H ∈ K1.
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H r = 2 3 5 7 13

2.B 3C 7B 13B
21+24.Co1 13A
3.Fi24 5B 13B
22.2E6(2):S3 5B 7B 13B
210+16.Ω+

10(2) 3C 7B
22+11+22.(M24 × S3) 5B 7B
31+12.2Suz.2 7A 13A
25+10+20.(S3 × L5(2)) 5A 7B
S3 × Th 5A 7B 13B
23+6+12+18.(L3(2)× 3S6) 5B 7B
38.PΩ−8 (3).23 5B 7B 13B
(D10 ×HN).2 3C 7B
(32:2× PΩ+

8 (3)).S4 5B 7B 13B
32+5+10.(M11 × 2S4) 5B
33+2+6+6:(L3(3)× SD16) 13B
51+6:2J2:4 3A 7A
(7:3×He):2 5B
(A5 ×A12):2 3C 7B
53+3.(2× L3(5)) 3A, 3C
(A5 ×U3(8):31):2 5B 7B
52+2+4:(S3 ×GL2(5)) 3A
(L3(2)× Sp4(4):2).2 3C 5B 7B
71+4:(3× 2S7) 2A 5A
(52:[24]×U3(5)).S3 7B
(L2(11)×M12):2 3C
(A7 × (A5 ×A5):2

2):2 3C 7B
54:(3× 2L2(25)):22 2A 3A 13A
72+1+2:GL2(7) 2A 3B
M11 ×A6.2

2 3C
(L2(11)× L2(11)):4 3C
132:2L2(13).4 2A 3A, 3B 7A
131+2:(3× 4S4) 2A 3A
L2(71) 2A 3A, 3C 5A 7A
L2(59) 2A 3A, 3C 5A
112:(5× 2A5) 2A 3A, ?
L2(29):2 2A 3A, 3C 5A 7A
72:SL2(7) 2A 3A, 3B 7A
L2(19):2 2A 3A, 3C 5A
41:40 2A 5A

Table 8: Some derangements of order r in M
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K1 2.B, 21+24.Co1, 3.Fi24, 2
2.2E6(2).S3, 131+2:(3× 4S4), 3

1+12.2Suz.2

K2 (A5 ×A12):2, (A6 ×A6 ×A6).(2× S4), (A5 ×U3(8):31):2, 5
2+2+4:(S3 ×GL2(5)),

(L3(2)× Sp4(4):2).2, (52:[24]×U3(5)).S3, (L2(11)×M12):2, (A7 × (A5 ×A5):2
2):2,

54:(3× 2L2(25)):22, 7
2+1+2:GL2(7),M11 ×A6.2

2, (S5 × S5 × S5):S3,
(L2(11)× L2(11)):4, 132:2L2(13).4, (72:(3× 2A4)× L2(7)).2, (13:6× L3(3)).2,

K3 41:40,L2(19):2, 72:SL2(7),L2(29):2, 112:(5× 2A5),L2(59),L2(71)

K4 71+4:(3× 2S7), 5
3+3.(2× L3(5)), (7:3×He):2, 51+6.2J2:4, 3

3+2+6+6:(L3(3)× SD16),
32+5+10:(M11 × 4S4), (3

2:2× PΩ+
8 (3)).S4, 3

8.PΩ−8 (3).23

K5 (D10 ×HN).2, 23+6+12+18.(L3(2)× 3S6), S3 × Th, 25+10+20.(S3 × L5(2)),
22+11+22.(M24 × S3), 210+16.Ω+

10(2)

Table 9: The Ki collections

Proof. The character table (and class fusions) of H = 31+12.2Suz.2 has been calculated by
Barraclough and Wilson (see [1, §4.1]), and the result quickly follows. In each of the other
cases, the character table of H is available in the GAP Character Table Library [4], together
with complete fusion information, and once again the result follows.

Lemma 4.13. Propositions 4.9 and 4.10 hold for H ∈ K2.

Proof. In each of these cases the Web Atlas [32] provides a faithful permutation represen-
tation of H (see [3] for more details) and using GAP we can construct the character table
of H and determine a short list of possibilities for the fusion of H-classes in G (via the
command PossibleClassFusions). This information is sufficient to completely determine the
relevant classes of derangements.

Lemma 4.14. Propositions 4.9 and 4.10 hold for H ∈ K3.

Proof. Here we proceed as in the proof of the previous lemma, but in these cases some
additional reasoning is required in order to determine the precise list of derangements.

First consider H = 41:40. Here π = {2, 5}, κ = [1, 4] and the possible fusion information
provided by GAP implies that all involutions are in 2B. Arguing as in [22], we see that all
5-elements are in 5B. (Note that in [21, §6] there is a purported, but incorrect, proof that
they are in 5A.) Similarly, if H = L2(19):2 then π = {2, 3, 5}, κ = [2, 1, 2] and we see that all
involutions are in 2B and all 3-elements are in 3B. According to [21, Table 5], all 5-elements
are in 5B.

Next suppose H = 72:SL2(7), so π = {2, 3, 7} and κ = [1, 1, 9]. By [30], all 7-elements
are in 7B. The involutions invert 7-elements, so are in 2B. Now it is shown in [21] that
the only 3-elements which properly normalise a 7B are in class 3C. If H = L2(29):2 then
π = {2, 3, 5, 7} and all involutions are in 2B, since they invert elements of order 15. According
to [21, Table 5], all 5-elements are in 5B, while [21, §6] indicates that all 3-elements are in
3B and all 7-elements are in 7B.

Now turn to H = L2(59). Here we have π = {2, 3, 5}, κ = [1, 1, 2] and by considering
the possible fusion maps we see that all involutions are in 2B. Further, according to [21,
Table 5], all 5-elements are in 5B, while all 3-elements are in 3B (see [21, §6]). Similarly, if
H = L2(71) then π = {2, 3, 5, 7}, κ = [1, 1, 2, 3] and the partial fusion information obtained

18



via the character table of H implies that all involutions are in 2B, and all 3-elements are in
3B. According to [21, Table 5], all 5-elements are in 5B, while all 7-elements are in 7B (see
[21, §6]).

Finally, let us assume H = 112:(5 × 2A5). Here π = {2, 3, 5}, κ = [1, 1, 14] and the
possible fusion maps indicate that all involutions are in 2B and there are no derangements
of order 5. We also deduce that the 3-elements are in 3B or 3C, but we are unable to
determine the precise fusion.

Lemma 4.15. Propositions 4.9 and 4.10 hold for H ∈ K4.

Proof. In each case, the Web Atlas [32] (see also [3]) provides an explicit faithful permutation
representation of H and we can use this to compute the number of conjugacy classes of order
r in H (or classes of subgroups of order r). In a few cases, we can also construct the character
table of H, but we were unable to compute possible class fusions.

First take H = 71+4:(3× 2S7), so π = {2, 3, 5} and κ = [2, 8, 1]. Since a 7B-element does
not commute with any 5A-element, the 2S7 contains 5B-elements and thus elements in 5A are
derangements. Now an involution which centralises or inverts a 7B-element must be in class
2B, so H has no 2A elements. The central 3 in 3× 2S7 is in 3C, since it properly normalises
a 7B-element. Finally, using the embedding of 2S7 in 21+8.A9 inside the Thompson group
we see that the 2S7 contains elements of both classes 3A and 3B, so G is 3-elusive.

Next suppose H = 53+3.(2 × L3(5)). Here π = {2, 3} and κ = [3, 1]. By considering
the maximal subgroup 53.L3(5) of B (see Section 4.2), we deduce that the 3-elements are in
B-class 3B and thus G-class 3B. Again using 53.L3(5) in B, the involutions are in B-class
2D as we saw above. Therefore H contains elements of M-class 2B, as well as the central
2A-element of 2× 53.L3(5).

If H = (7:3 × He):2 then π = {2, 3, 5, 7} and κ = [3, 8, 1, 9]. Here the elements of order
5 are 5A-elements, since they commute with the central 7A-element of H ′. By [30], H
contains both 7A and 7B elements. By looking at powers of elements of order 14 we see that
He already contains both 2A and 2B elements. In the inclusion of He in Fi24, the 3-elements
fuse to Fi24-classes 3C and 3E, which lift to all three M-classes 3A, 3B, 3C in 3.Fi24, so G
is 3-elusive.

Next we turn to H = 51+6.2J2:4, where π = {2, 3, 7} and κ = [4, 2, 1]. As stated in [23,
§2.2], the G-classes of elements of order 3 which commute with a 5B-element are 3B and
3C, so there are no 3A-elements in H. Since elements of both classes 2A and 2B commute
with a 5B-element, there are no derangements of order 2. The elements of order 7 which
commute with a 5B-element are in class 7B, so the 7A-elements are derangements.

Now assume H = 33+2+6+6:(L3(3) × SD16), so π = {2, 13} and κ = [5, 4]. We also
note that H contains a unique class of subgroups of order 13, so G contains derangements
of this order. Now H contains elements of order 104, which power to 13A-elements and
2A-elements. It also has the same Sylow 2-subgroup as H = 32+5+10:(M11 × 2S4), which
contains elements of order 44 powering to 2B elements. Therefore both of these subgroups
contain 2A and 2B elements. For the latter subgroup we have π = {2, 5, 11}, κ = [5, 1, 2]
and since the only class of 11:5 in the Monster which contains 5B-elements has centraliser
of order 5, it follows that H contains elements of 5A, so 5B-elements are derangements.

The penultimate subgroup in K4 is H = (32:2×PΩ+
8 (3)).S4. Here π = {2, 3, 5, 7, 13} and

κ = [7, 17, 1, 1, 2]. Using GAP, there is a unique fusion map for a subgroup PΩ+
8 (3) of the

Monster and we deduce that such a subgroup contains 3A, 3B, 5A, 7A and 13A elements.
Now the normaliser of a subgroup of order 13 in H is 32:2S4× 13:6, which contains elements
of classes 3C, 2A (centralising the 13-element) and 2B (inverting it), whence 5B, 7B and
13B are the only relevant derangements.
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Finally, let us assume H = 38.PΩ−8 (3).23, where we have π = {2, 5, 7, 13} and κ =
[3, 1, 1, 2]. The elements of orders 5 and 7 lie in subgroups (32:D8× 2.U4(3).2.2).2 inside the
double cover of the Baby Monster, so are in classes 5A and 7A respectively. Now PΩ−8 (3)
contains 2× L4(3), so the central involution in this must lift to a 2A element in H, and the
13-elements commute with this so are in class 13A. It also contains L2(81), whose involutions
lift to 2B-elements in H.

Lemma 4.16. Propositions 4.9 and 4.10 hold for H ∈ K5.

Proof. First consider H = (D10 × HN).2. Here π = {2, 3, 5, 7, 11} and using the Atlas
character table, we see that the subgroup HN of H contains 2A, 2B, 3A, 3B, 5A, 5B and
7A elements, but no 3C or 7B elements. The result follows.

Next suppose H = 23+6+12+18.(L3(2)×3S6), so π = {3, 5, 7} and H has a unique class of
subgroups of order 5 or 7. Since H contains 7 × 26.3S6 the 7-elements are in class 7A, and
thus the 5-elements are in class 5A. It now follows that H has the same Sylow 3-subgroup
as the maximal subgroup (7:3× He):2, so the proof of Lemma 4.15 indicates that there are
no derangements of order 3.

If H = S3 × Th then π = {2, 3, 5, 7, 13} and κ = [3, 7, 1, 1, 1]. Using the Atlas character
table, we deduce that every copy of Th in G contains 5B, 7A and 13A elements. It is
well-known that the S3 factor contains 2A-elements and 3C-elements. Hence Th contains
2B-elements. Fusion via the Baby Monster shows that Th also contains 3A and 3B elements,
so the relevant derangements here are 5A, 7B and 13B elements.

Now consider H = 25+10+20.(S3 × L5(2)). Here π = {3, 5, 7} and H has a unique class
of subgroups of order 5 or 7. The subgroup S3 × 25.L5(2) of H lies in S3 × Th, so contains
elements of class 3C, 5B and 7A. Moreover, its Sylow 3-subgroup lies in S3× 21+8.A8, from
which we see that it has only elements of Th-classes 3A and 3C. But these fuse to 3A and
3B respectively in G, so all three 3-classes are in H.

Similarly, if H = 22+11+22.(M24 × S3) then π = {3, 5, 7, 11} and H has a unique class of
subgroups of order 5 or 7. Since there is a subgroup 211.M24 of H inside 3Fi24 we see that
the 5-elements are in class 5A and the 7-elements are in class 7A. Moreover, H has the same
Sylow 3-subgroup as the maximal subgroups H = 23+6+12+18.(L3(2)×3S6) and (7:3×He):2,
so the above argument reveals that there are no derangements of order 3.

Finally, let us assume H = 210+16.Ω+
10(2). Here π = {3, 5, 7} and H has a unique class

of subgroups of order 7. The full Sylow 3-, 5-, and 7-subgroups of H lie in 210+16.Sp8(2)
which is inside 2.B, so we know that it contains elements from every Baby Monster class of
elements of order 3, 5, 7. Therefore it contains elements of Monster classes 3A, 3B, 5A, 5B
and 7A, but does not contain elements of classes 3C or 7B.

To complete the proof of Theorem 1.1, it remains to deal with the additional collection U
of undetermined maximal subgroups of the Monster. Some extra difficulties arise here and
consequently we only provide partial information on the classes of derangements.

Proposition 4.17. Let H ∈ U and let r be a prime divisor of |Ω| and |H|. Then G contains
a derangement of order r, unless possibly r = 3 and H has socle U3(8). In addition, some
partial information on the classes of derangements in G is recorded in Table 10.

Proof. Let H0 denote the socle of H. Then by [3, Section 1], as corrected in [22], H0 is one
of the five groups

L2(13),L2(41),U3(4),U3(8),Sz(8).

First assume H0 = L2(13), so π = {2, 3, 7, 13}. By calculating all possible class fusions
from the character table of H we deduce that all involutions in H are of type 2B. In addition,
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H0 r = 2 3 5 7 13

L2(13) 2A 3A, ? 7A ?
L2(41) 2A 3A, 3C 5A 7A
U3(4) 2A 3A, 3B 5A ?
U3(8) 2A ? 7B
Sz(8) 2A 3A, ? 5A ? ?

Table 10: Derangements for subgroups in U

we observe that there are derangements of order 3, 7 and 13; in fact, there are two classes
of derangements of order 3. Using [21] we get that the 7-elements are in class 7B, and the
3-elements in either 3B or 3C, but we are unable to determine the precise class here.

If H0 = L2(41), then the class fusion is determined in [22], and H contains elements in
classes 2B, 3B, 5B and 7B.

Next suppose H0 = U3(4). Here π = {2, 3, 5, 13} and as before we deduce that all
involutions are of type 2B, there are two classes of derangements of order 3, and a class
of derangements of order 13. From [21, Table 5] we see that the A5 in H cannot contain
5A-elements. From [21, Table 3] there is a unique conjugacy class of subgroups 5×A5 in the
Monster in which the A5 contains 5B-elements, and in this case the other class of 5-elements
also fuses to 5B. Hence H contains 5B-elements, but not 5A-elements. We also see from
the same source that the elements of order 3 are in class 3C. At this stage we are unable to
determine whether the 13-elements lie in 13A or 13B.

Now consider H0 = U3(8). Here π = {2, 3, 7} and the possible class fusion information
reveals that all involutions in H are of type 2B. Furthermore, using GAP we deduce that
H 6= U3(8).32, U3(8).32, U3(8).S3 or U3(8).(S3 × 3) (there are no possible class fusions in
each of these cases). According to [21], the subgroup 3 × L2(8) of H contains an L2(8) of
type (2B, 3B, 7A), which rules out the possibility that H = U3(8).33 since GAP tells us that
such a subgroup would contain 7B-elements. Therefore we have H0 6 H 6 U3(8):6 and all
7-elements lie in the Monster class 7A. The remaining elements of order 3 in H0 centralise
the L2(8), which contains 7A-elements, so are either 3A or 3C elements. We are unable to
determine this precisely.

Finally, let us assume H0 = Sz(8), so π = {2, 3, 5, 7, 13} (in fact, if H = H0 then 3 6∈ π
since |Sz(8)| is not divisible by 3). In the usual manner, using GAP we observe that all
involutions in H are of type 2B. Moreover, there are derangements of order r for all r ∈ π,
and all 3-elements in H (if there are any) lie in 3B or 3C, so there are at least two classes of
derangements of order 3, one of which is 3A. Finally, according to [21], H does not contain
5A-elements. We are unable at present to determine the precise fusion of elements of order
3, 5 and 7, as indicated in Table 10.

This completes the proof of Theorem 1.1.

4.4 Derangements of prime-power order

In this final section we complete the proof of Theorem 1.4. Let r be a prime divisor of |Ω|
and recall that G is said to be strongly r-elusive if it does not contain a derangement of
r-power order. If there are no elements of order r2 in G then the above analysis applies, so
we will assume otherwise. Our main result is the following:

Proposition 4.18. Let G be an almost simple sporadic group, let H be a maximal subgroup
of G and let Ω = G/H. Let r be a prime divisor of |Ω| and assume G contains elements of
order r2. Then G is strongly r-elusive if and only if (G,H, r) is listed in Table 11.
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G H r

M22 M10 2
M23 M11 2
M24 M12.2 2
J2 3.A6.2,L3(2):2 2
Co1 3.Suz:2,U6(2):S3, 3

2.U4(3).D8, A9 × S3 3
Co2 21+8:Sp6(2) 3
Co3 S3 × L2(8):3 3

McL.2,U4(3).22, 31+4:4.S6,L3(4).D12, 2×M12 2
McL U3(5), 31+4:2.S5, 3

4:M10,M11, 5
1+2:3:8 2

Suz (A4 × L3(4)):2 2
He Sp4(4):2, 22.L3(4).S3 2
HN A12,U3(8):3, 26.U4(2) 3

51+4.21+4.5.4, (A6 ×A6).D8, 3
4:2.(A4 ×A4).4 2

HN.2 S12,U3(8):6, 26.U4(2).2 3
Fi23 31+8.21+6.31+2.2S4 2
Fi′24 2.Fi22:2 2
Fi24 (2× 2.Fi22):2 2
J3 L2(17), (3×A6):22, 3

2+1+2:8 2
Ly 2.A11 3

G2(5), 51+4:4.S6, 3
5:(2×M11), 3

2+4:2.A5.D8 2
B Th 3

(22 × F4(2)):2 2
M 2.B 2, 5

(D10 ×HN).2 5
3.Fi24, S3 × Th 3

Table 11: Some strongly r-elusive actions of sporadic groups

Proof. First assume G 6= B,M. If G is not one of the groups in (1) then the character
tables of G and H are stored in the GAP Character Table Library [4], together with the
relevant fusion maps, so these cases are straightforward. For the 6 remaining non-monstrous
groups we proceed as before. First, using an explicit faithful permutation representation of G
provided in the Web Atlas [32], we construct G as a permutation group in Magma. Next we
construct the relevant maximal subgroups H of G (via the command MaximalSubgroups, or
by using explicit generators for H listed in the Web Atlas). For each relevant prime r we can
find representatives of the conjugacy classes in H containing elements of r-power order and it
is straightforward to determine the fusion of these H-classes in G (by considering the cycle-
structure of class representatives with respect to the underlying permutation representation
of G, for example).

Next suppose G = B. Here the relevant primes are 2, 3 and 5, and the G-classes of
interest are labeled as follows:

4A–4J, 8A–8N, 16A–16H, 32A–32D, 9A, 9B, 27A, 25A.

The relevant maximal subgroups are recorded in Table 5, and we consider each in turn. If H
is one of the subgroups listed in (2) then the fusion map on H-classes is stored in the GAP
Character Table Library and the result quickly follows. Similarly, if H = (22 × F4(2)):2,
(32:D8 × U4(3).2.2).2, (S6 × L3(4)):2 or [230].L5(2) then the character table of H is known
and we can compute class fusions using GAP. (More precisely, for H = (22 × F4(2)):2 we

22



calculate that there are 64 possible class fusion maps; in each case, H meets every G-class
of elements of 2-power order, so G is strongly 2-elusive.) In each of the remaining cases it is
easy to see that H does not contain any elements of order r`, where r` is the maximal order
of an r-element of G.

Finally, let us assume G = M. The relevant primes are 2, 3 and 5, and the G-classes of
interest are the following:

4A–4D, 8A–8F, 16A–16C, 32A, 32B, 9A, 9B, 27A, 27B, 25A.

Define the subgroup collections K and U as in Section 4.3. If H ∈ U then we may assume
r = 3 and H has socle U3(8). However, Aut(U3(8)) does not contain any elements of order
27, so G is not strongly 3-elusive. For the remainder, we may assume H ∈ K is one of the
cases listed in Table 7.

If H = 2.B, 3.Fi24 or 22.2E6(2):S3 then the corresponding fusion map is stored in the
GAP Character Table Library; we find that the action corresponding to H = 2.B is strongly
2- and 5-elusive, while G is strongly 3-elusive when H = 3.Fi24. Next suppose H = S3×Th,
so r = 2 or 3. Clearly, H does not contain any elements of order 32, so G is not strongly
2-elusive. Now H has 6 classes of elements of order 27; using GAP we calculate that there
are 2 possible fusion maps from S3 ×Th to G, and in each case 3 of the 6 classes containing
27-elements fuse to each of 27A and 27B in G. Therefore G contains no derangements of
order 27, so G is strongly 3-elusive.

Next consider H = (D10×HN).2, in which case the relevant primes are r = 2, 5. Now H
contains elements of order 25, so G is strongly 5-elusive (since there is a unique G-class of
such elements). However, H contains no elements of order 32, so G is not strongly 2-elusive.

Next suppose H = (32:2 × PΩ+
8 (3)).S4, so r = 2, 3. Here G is not strongly 2-elusive

because H does not contain elements of order 32, so assume r = 3. The Web Atlas provides
a faithful permutation representation of H on 3369 points and using this we calculate that
H has two classes of elements of order 27. Moreover, there exists x ∈ H of order 27 with
|CH(x)| = 162, so x is a 27A-element (since |CM(27A)| = 486 and |CM(27B)| = 243). Next
observe that all elements of 3-power order in H lie in a subgroup (32:2×PΩ+

8 (3)).S3, which
is a maximal subgroup of 3.Fi24, so we have a chain

(32:2× PΩ+
8 (3)).S3 < 3.Fi24 < G

of maximal subgroups. We have already observed that 3.Fi24 contains 27A- and 27B-elements
(indeed, (G, 3.Fi24) is strongly 3-elusive), so we need to determine the fusion of 27-elements
in (32:2 × PΩ+

8 (3)).S3 < 3.Fi24. If we consider the corresponding maximal subgroup S3 ×
PΩ+

8 (3):S3 < Fi24, then with the aid of Magma it is easy to check that all 27-elements
in S3 × PΩ+

8 (3):S3 are in the 27A-class of Fi24. Consequently, every 27-element in (32:2 ×
PΩ+

8 (3)).S3 is in the 27A-class of 3.Fi24 and we conclude that there are no 27B-elements in
H. In particular, G is not strongly 3-elusive.

All of the remaining subgroups are easy to deal with. In most of these cases, a per-
mutation representation of H is provided in the Web Atlas and using Magma it is easy to
compute the conjugacy classes of H. In this way we easily deduce that H does not contain
an element of order r`, where r` is defined as before, hence G is not strongly r-elusive.

This completes the proof of Theorem 1.4.
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