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Abstract

Let G be a finite group and let δ(G) be the number of prime order subgroups of G. We determine the
groups G with the property δ(G) > |G|/2− 1, extending earlier work of C. T. C. Wall, and we use
our classification to obtain new results on the generation of near-rings by units of prime order.
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1. Introduction

Let G be a finite group and let δ(G) be the number of prime order subgroups
of G. In this paper we determine the groups G with δ(G) > |G|/2− 1. As our
main theorem demonstrates (see Theorem 1 below), such a group has a rather sim-
ple structure which is easy to describe. In particular, we find that A5 is the only
nonsoluble group with this property, while δ(G) = |G|/2 if and only if G = Z2 or
S3×D8×E with exp(E)≤ 2 (where exp(E) denotes the exponent of E).

One of our main motivations comes from a theorem of C. T. C. Wall. In [18],
Wall classifies the finite groupsGwith the property i2(G) > |G|/2−1, where i2(G)
is the number of involutions in G. Since δ(G) ≥ i2(G), our main theorem is a
natural extension of Wall’s result.

Related problems have been investigated by various authors. For example,
Liebeck and MacHale [7] classify the finite groups in which more than half of the
elements are inverted by some automorphism of the group, extending earlier work
of Manning and Miller (see [8] and [9], for example). All such groups are soluble,
and the aforementioned theorem of Wall follows as a corollary. In fact, Potter [13]
has proved that the proportion of elements in a nonsoluble group which are inverted
by an automorphism is at most 4/15. For soluble groups, recent work of Hegarty
[4] attempts to bound this proportion in terms of the derived length of the group.
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In order to state our main theorem, we first need to define a collection of groups.
We say that a nontrivial finite group G belongs to the collection L if and only if G
is one of the following (up to isomorphism). Here E denotes an elementary abelian
2-group of order 2n (for some n ≥ 0) and D8 is the dihedral group of order 8. We
also remind the reader that a generalized dihedral group is a group of the form
D(A) = A〈τ〉= A.2, where A is abelian and τ acts by inversion.

(I) G= D(A) is a generalized dihedral group, where A is abelian;

(II) G= D8×D8×E;

(III) G = H(r)×E, where H(r) ∼= (D8× · · ·×D8)/Zr−12 is a central product of
r ≥ 1 copies of D8 so that

H(r) = 〈x1,y1, . . . ,xr,yr,z | x2i = y2i = z2 = 1, all pairs of generators
commute except [xi,yi] = z〉;

(IV) G = S(r)× E, where S(r) is the split extension of an elementary abelian
group of order 22r (r ≥ 1) by a cyclic group Z2 = 〈z〉 so that

S(r) = 〈x1,y1, . . . ,xr,yr,z | x2i = y2i = z2 = 1, all pairs of generators
commute except [z,xi] = xiyi〉;

(V) G= T (r) is the split extension of an elementary abelian group A of order 22r
(r ≥ 1) by a cyclic group Z3 = 〈z〉 so that

T (r) = 〈x1,y1, . . . ,xr,yr,z | x2i = y2i = z3 = 1, all pairs of generators
commute except [z,xi] = xiyi and [z,yi] = xi〉;

(VI) G is a group of exponent 3;

(VII) G= S3×D8×E;

(VIII) G= S3×S3;

(IX) G= S4;

(X) G= A5.

In this list, groups of type (I)–(IV) correspond respectively to the groups la-
belled I–IV by Wall (see [18, pp. 261–262]); these are precisely the finite groups
G with the property i2(G) > |G|/2−1. A group of type (VI) is nilpotent of class at
most three and we refer the reader to [17, Theorem 5.2.1] for additional informa-
tion on such groups. We also note that D(Z3) ∼= S3, D(Z4) = D8, T (1) ∼= A4 and
D(A)×E ∼= D(A×E), while D(E) ∼= E×Z2 is an elementary abelian 2-group.

It is not difficult to see that the only overlap between the classes (I)–(X) are
groups of the form D8×E with exp(E)≤ 2, which appear in (I) (with A= Z4×E),
(III) and (IV) (both with r = 1). We can now state our main theorem.
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THEOREM 1. Let G be a nontrivial finite group and let δ(G) be the number
of prime order subgroups of G. Then δ(G) > |G|/2− 1 if and only if G ∈ L. The
precise value of δ(G) for each G ∈ L is listed in Table 1.

Type of G |G| δ(G)
(I) D(A) 2|A| |G|/2+δ(A)
(II) D8×D8×E 2n+6 9|G|/16−1
(III) H(r)×E 22r+n+1 |G|/2+2n+r−1
(IV) S(r)×E 22r+n+1 |G|/2+2n+r−1
(V) T (r) 3.22r 2|G|/3−1
(VI) Exponent 3 3m (|G|−1)/2
(VII) S3×D8×E 3.2n+4 |G|/2
(VIII) S3×S3 36 19
(IX) S4 24 13
(X) A5 60 31

TABLE 1. Values of δ(G), G ∈ L

COROLLARY 1. Let G be a finite group. Then δ(G)≥ 3|G|/4 if and only if G
is an elementary abelian 2-group.

REMARK 1. In view of Corollary 2.5 below, we deduce that δ(G)≥ 3|G|/4 if
and only if i2(G)≥ 3|G|/4.

COROLLARY 2. Let G be a finite group with exp(G)≥ 3. Then δ(G) > 2|G|/3
if and only if G= D(A) and either A= Z4×E with exp(E) = 2, or exp(A) = 3.

The next corollary follows immediately from Theorem 1.

COROLLARY 3. Let G be a finite group. Then δ(G) = |G|/2 if and only if
G= Z2 or S3×D8×E with exp(E)≤ 2.

In the final section of this paper we describe an application of Theorem 1 to the
study of near-rings. Recall that a near-ring is a set R with two binary operations
+ and · such that (R,+) is a group (not necessarily abelian) and · satisfies a single
distributive law. For example, if G is a finite group then the set of functions from
G to G which fix the identity element has the structure of a near-ring with respect
to the operations ( f +g)(x) = f (x)g(x) and ( f ·g)(x) = f (g(x)), where x ∈G. We
write M0(G) to denote this particular near-ring associated to G.

There are several results in the literature concerning the generation ofM0(G) by
units (that is, bijections) of prescribed order. For example, in [15] it is shown that
M0(G) is generated by a unit of order two if and only if exp(G) ≥ 3 and G *= Z3.
Similarly, theM0(G) which can be generated by a unit of order 3 are determined in
[16]. Bounds on the proportion of units of arbitrary order which generate M0(G)
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are established in [10]; upper and lower bounds are given as functions of |G| and
i2(G). Roughly speaking, the proportion is high if and only if i2(G)/|G| is small.

The main theorem of [14] states that if p is a prime number then either M0(G)
is generated by a unit of order p, orG is an elementary abelian 2-group with |G| *≡ 1
mod p, orG belongs to a finite collection of groups. Moreover, this finite collection
can be defined in terms of δ and p, and we can use Theorem 1 to obtain various
results on the exceptional groups which arise. We refer the reader to Section 6 for
more details.

This paper is organised as follows. In Section 2 we record a number of useful
results which we will need in the proof of Theorem 1. Some of these results are
new and may be of independent interest. In particular, Lemma 2.16 provides a
sharp upper bound for the number of elements of order three in a finite nonsoluble
group. Next, in Section 3, we prove that G = A5 is the only nonabelian simple
group with δ(G) > |G|/2−1; we extend this result to all nonsoluble groups in the
following section. In Section 5 we assume G is soluble and we complete the proof
of Theorem 1 by establishing the nonexistence of a minimal counterexample. It is
worth noting that our proof uses the main theorem of [18]. Here we also establish
Corollaries 1 and 2, and justify the precise values of δ(G) listed in Table 1. The
aforementioned application to near-rings is discussed in Section 6.

Notation. Our group theoretic notation is standard. If G and H are groups then
G.H denotes an unspecified extension of G by H, while exp(G) is the exponent of
G. If m is a positive integer then Gm denotes the direct product of m copies of G.
We use Zn to denote the cyclic group of order n and write Dn for the dihedral group
of order n. We adopt the notation of [5] for groups of Lie type. In particular, we
write Ln(q) = L+

n (q) = PSLn(q), Un(q) = L−n (q) = PSUn(q), E+
6 (q) = E6(q) and

E−6 (q) = 2E6(q). If X is a subset of a finite group G and r is a positive integer then
ir(X) denotes the number of elements of order r in X . We sometimes write |g| for
the order of a group element g, while ,x- denotes the largest integer less than or
equal to the real number x.

Acknowledgements. The first author would like to thank the Department of Math-
ematics at the University of Auckland for its generous hospitality while this paper
was in preparation. We also thank Bob Guralnick for some interesting comments,
and we thank both referees for their careful reading and helpful remarks.

2. Preliminaries

Let G be a finite group and let δ(G) be the number of prime order subgroups
of G. If r is a positive integer and X is a subset of G then let ir(X) be the number
of elements of order r in X . Then

δ(G) = ∑
r∈π(G)

(r−1)−1ir(G), (1)
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where π(G) is the set of distinct prime divisors of |G|.

LEMMA 2.1. Let G be a finite group and let N be a normal subgroup of G.
Then

δ(G)≤ δ(N)+ |N| ·δ(G/N).

Proof. It suffices to show that ip(G)≤ ip(N)+ |N| · ip(G/N) for any prime pwhich
divides |G|. Suppose x ∈ G has order p, so either x ∈ N or Nx ∈ G/N has order p.
The desired bound follows since there are precisely ip(G/N) elements of order p
in G/N, and ip(Ny)≤ |N| for all y ∈ G\N.

COROLLARY 2.2. Let G be a finite group with a normal subgroup N such that
δ(G/N)≤ |G/N|/2−1. Then δ(G)≤ |G|/2−1.

Proof. This follows immediately from Lemma 2.1 since δ(N)≤ |N|−1.

LEMMA 2.3. Let G be a finite group such that 3+3i2(G)+ i3(G)≤ |G|. Then
δ(G)≤ |G|/2−1.

Proof. As in (1) we have

δ(G) = ∑
r∈π(G)

(r−1)−1ir(G) = i2(G)+
1
2
i3(G)+∑

r≥5
(r−1)−1ir(G)

≤ i2(G)+
1
2
i3(G)+

1
4
(|G|− i2(G)− i3(G)−1)

=
1
4
|G|+ 1

4
(3+3i2(G)+ i3(G))−1

and the result follows.

In view of Lemma 2.3, it will be useful to have upper bounds on the number of
elements of order two and three in various finite groups.

LEMMA 2.4. Let G be a finite group with an automorphism α such that S =
{x∈G : α(x) = x−1} has more than 3|G|/4 elements. Then G is abelian and S=G.

Proof. This is [18, Lemma 7].

COROLLARY 2.5. Let G be a finite group. Then i2(G)≥ 3|G|/4 if and only if
G is an elementary abelian 2-group.

Proof. Take α to be the identity automorphism in Lemma 2.4.

COROLLARY 2.6. Let G be a finite group, let N be a nonabelian normal sub-
group of G, and let x ∈ G\N be an involution. Then i2(Nx)≤ 3|N|/4.
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Proof. Let α ∈ Aut(N) be the automorphism induced by conjugation by x. Then
nx ∈ Nx is an involution if and only if α(n) = n−1, so Lemma 2.4 implies that
i2(Nx)≤ 3|N|/4 since N is nonabelian.

LEMMA 2.7. Let G be a finite group with an abelian subgroup N. Then i2(Nx)
divides |N| for any involution x ∈ G\N.

Proof. Let H be the set of elements n ∈ N such that nx is an involution. Then
H is a subgroup of N since N is abelian, so the result follows from Lagrange’s
Theorem.

LEMMA 2.8. Let G be a finite group with a subgroup N of odd order. Then
i2(Nx) divides |N| for any involution x ∈ G\N.

Proof. This follows from [3, Lemma 4.1(i), §10.4]. Indeed, we have i2(Nx) = |N :
CN(x)|.

LEMMA 2.9. Let G be a finite nonsoluble group. Then i2(G)≤ 4|G|/15−1.

Proof. This follows from the main theorem of [13].

LEMMA 2.10. Let G be a finite group with a normal subgroup N. If x ∈ G\N
has order r then ir(Nx) = ir(Ny) for all cosets Ny which are G/N-conjugate to Nx.

Proof. Suppose Ny is G/N-conjugate to Nx, so Ny = Nz−1xz for some z ∈ G.
Then the map ϕ : Nx→ Ny, defined by nx /→ z−1nxz, induces a bijection between
the subset of elements of order r in Nx and the corresponding subset of Ny.

LEMMA 2.11. Let G be a finite group with a normal subgroup N, where N is
an elementary abelian p-group. Then the following hold:

(i) If x ∈ G\N has order 2 then i2(Nx) = |N| if and only if x inverts N element-
wise, that is x−1nx= n−1 for all n ∈ N.

(ii) If x ∈CG(N)\N has prime order r *= p then ir(Nx) = 1.

(iii) If x ∈ G \N has prime order r then ir(Nx) = pd for some integer d. In
particular, if ir(Nx) < |N| then ir(Nx)≤ |N|/p.

Proof. Parts (i) and (ii) are trivial, so let us consider (iii). Suppose N has order pm.
We can view N as an m-dimensional vector space over Fp, so Aut(N) ∼= GLm(p).
Now conjugation by x induces an automorphism of N, so we can identify x with an
invertible Fp-linear map A : N→ N of order r.

Now nx ∈ Nx has order r if and only if n(I + A+ · · ·+ Ar−1) = 0, where I
denotes the identity linear map N→ N. If r *= p then basic linear algebra implies
that this condition holds if and only if n ∈ im(I − A), so ir(Nx) = pm−α where
α = dimCN(A). Similarly, if r = p then the condition n ∈ ker(I+A+ · · ·+Ar−1)
implies that ir(Nx) = pm−β, where β is the number of indecomposable blocks of
size p in the Jordan form of A on N.
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LEMMA 2.12. Let G be a finite group with an index-two subgroup N such that
i2(G\N) > |G|/3. Then N = N1×N2, where N1 ≤ Z(N) has odd order and N2 is
a 2-group.

Proof. Let a ∈ G \N be an involution and let Λ = {nia : 1 ≤ i ≤ m} be a set of
distinct involutions in the coset Na, where m> |G|/3= 2|N|/3. Fix j ∈ {1, . . . ,m}
and define Λ j = {nin ja : 1≤ i≤ m}. Note that |Λ∩Λ j| > |N|/3. Let x ∈ Λ∩Λ j,
so x= nkn ja for some k ∈ {1, . . . ,m}. Since x ∈ Λ we have x2 = 1 and we quickly
deduce that nk ∈CN(n j). Therefore, |CN(n j)|≥ |Λ∩Λ j| > |N|/3 and thus CN(n j)
has index at most 2 in N. In particular,CN(n j) is normal in N and it contains every
element of odd order in N. Moreover, if y ∈ N has odd order then n j ∈CN(y) for
all 1≤ j ≤ m, hence y ∈ Z(N) since m> 2|N|/3. Therefore, the set of elements of
odd order in N forms a central subgroup, N1 say, and it follows that N = N1×N2,
where N2 is a 2-group (possibly trivial).

The next lemma provides rather accurate bounds on i2(G), i3(G) and |G| in
the case where G is a simple group of Lie type. In view of the isomorphisms
G2(2)′ ∼= U3(3) and 2G2(3)′ ∼= L2(8), in Table 2 we regard G2(2)′ and 2G2(3)′ as
classical groups. In addition, we regard the Tits group 2F4(2)′ as a sporadic group
and it is therefore omitted from Table 2.

LEMMA 2.13. Let G be a finite simple group of Lie type over Fq. For r ∈ {2,3}
we have

ir(G)≤ ir(Aut(G)) < 2(1+q−1)q f (G,r),

where the values of f (G,r) are recorded in Table 2. In the table we also record a
lower bound |G| > g(G).

Proof. The upper bounds on ir(Aut(G)) are given in [6, Proposition 1.3]. If G
is classical then the lower bound on |G| follows from [1, Proposition 3.9], while
the corresponding bound for exceptional groups can be checked directly (using [6,
Lemma 1.2], for example).

To close this preliminary section we will establish an analogue of Lemma 2.9
for elements of order 3. First we require the following technical result.

LEMMA 2.14. Let G be a nonabelian finite simple group. Then the following
hold:

(i) If G *= L2(8) then 1+ i3(Aut(G))≤ 7|G|/20;

(ii) If G= L2(8) then 1+ i3(Aut(G)) = 225|G|/504;

(iii) |Out(G)|2 ≤ |G|/15.

In parts (i) and (iii), equality holds if and only if G= A5.
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G f (G,2) f (G,3) g(G)
L±n (q) (n2+n−2)/2 (2n2+n−3)/3 1

2(q+1)−1qn2−1

PSpn(q)′ (n2+2n)/4 (2n2+3n)/6 1
4q

(n2+n)/2

PΩ±
n (q) n2/4 (2n2−n)/6 1

8q
(n2−n)/2

Ωn(q) (n2−1)/4 (2n2−n−1)/6 1
4q

(n2−n)/2

E8(q) 128 168 1
2q
248

E7(q) 70 91 1
4q
133

E±
6 (q) 42 54 1

6q
78

F4(q) 28 36 1
2q
52

G2(q) 8 10 1
2q
14

3D4(q) 16 20 1
2q
28

2F4(q) 14 18 1
2q
26

2G2(q) 4 5 1
2q
7

2B2(q) 3 11/3 1
2q
5

TABLE 2. Bounds on i2(G), i3(G) and |G|

Proof. First consider (i). If G is a sporadic group then i3(Aut(G)) = i3(G) and
the character table of G is available in the GAP Character Table Library [2]. The
desired result quickly follows.

Next suppose G= An, where n≥ 5. Again, we have i3(Aut(G)) = i3(G) since
|Out(G)| is not divisible by 3. Now, if G = A5 then i3(G) = 20 and thus 1+
i3(Aut(G)) = 7|G|/20 in this case. Now assume n≥ 6. Then

i3(G) =
,n/3-

∑
k=1

n!
k!(n−3k)!3k ≤

(
1

3(n−3)! +
1
18

,n/3-

∑
k=2

1
(n−3k)!

)
n!

and we have
,n/3-

∑
k=2

1
(n−3k)! <

∞

∑
l=0

1
(3l)!

<
∞

∑
l=0

1
6l

=
6
5
. (2)

Therefore, for n≥ 6 we get

1+ i3(Aut(G))≤ 1+
1
18

(
1+

6
5

)
n!<

7
20

|G|

as required.
Finally, let us assume G is a group of Lie type over Fq, where q= p f and p is

prime. First suppose G= L2(q). Note that we may assume q≥ 7 since L2(2) and
L2(3) are not simple, while L2(4) ∼= L2(5) ∼= A5. Now i3(G) ≤ |GL2(q)|/(q−
1)2 = q(q+1) and any element x ∈Aut(G)\G of order 3 is a field automorphism.
Therefore

1+ i3(Aut(G))≤ 1+q(q+1)+2α
(

|PGL2(q)|
|PGL2(q1/3)|

)

= 1+q(q+1)+2α ·q2/3(q4/3+q2/3+1),
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where α = 1 if logp q is divisible by 3, otherwise α = 0. Since |G| = (2,q−
1)−1q(q2−1), where (2,q−1) denotes the highest common factor of 2 and q−1,
it is easy to check that 1+ i3(Aut(G)) < 7|G|/20 for all q≥ 7 with q *= 8. However,
if G= L2(8) then 1+ i3(Aut(G)) = 225 and (ii) follows.

Now assume G *= L2(q). Here we apply the bound on i3(Aut(G)) given in
Lemma 2.13. For example, suppose G = L±n (q), where n ≥ 3. In view of Lemma
2.13, it suffices to show that

1+2(1+q−1)q f (G,3) ≤ 7
20
g(G),

where the terms f (G,3) and g(G) are given in Table 2. The reader can check
that this bound holds unless (n,q) = (4,2), or n = 3 and q ≤ 13. These small
cases can be checked directly. The remaining groups of Lie type are handled in a
similar fashion and we leave the details to the reader. (Note that we may assume
q ≥ 3 if G = G2(q)′ since G2(2)′ ∼= U3(3). Similarly, we may assume q ≥ 27 if
G= 2G2(q), and q≥ 8 if G= 2B2(q).)

Now let us consider part (ii). If |Out(G)| ≤ 2 then |Out(G)|2 ≤ |G|/15, with
equality if and only if G= A5. Therefore we may assume |Out(G)| > 2. If G= A6
then |Out(G)|2 = 16< |G|/15, so we can assumeG is a group of Lie type. Suppose
G = L2(q), where q ≥ 7. Then |Out(G)| = (2,q−1) logp q and it is easy to check
that

((2,q−1) logp q)2 < (2,q−1)−1q(q2−1)/15

for all q ≥ 7. Next suppose G = L±n (q), where n ≥ 3. Here |Out(G)| = 2(n,q∓
1) logp q, so in view of Lemma 2.13 it suffices to show that

4(q+1)2(logp q)2 <
1
15
g(G),

where g(G) is defined in Table 2. One can verify that this bound holds unless
n = 3 and q ≤ 3; these cases can be checked directly. The other cases are entirely
similar and we omit the details (see [5, p. 170] for a convenient list of the orders
|Out(G)|).

REMARK 2.15. We note that if G= L2(8) then 1+ i3(G) = 57< 7|G|/20.

LEMMA 2.16. Let G be a nonsoluble finite group. Then i3(G)≤ 7|G|/20−1.

Proof. We proceed by induction on |G|. Seeking a contradiction, suppose

i3(G) >
7
20

|G|−1. (3)

Let L be the soluble radical of G. Now

i3(G)+1≤ |L| · i3(G/L)+ i3(L)+1≤ |L| · (i3(G/L)+1)
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and thus i3(G/L) > 7|G/L|/20−1. In particular, if L is nontrivial then the induc-
tive hypothesis implies that G/L is soluble, hence G is soluble, a contradiction.
Therefore, we may assume L is trivial.

Now let N be a minimal normal subgroup ofG. Since L is trivial, it follows that
N is nonsoluble, so N ∼= J× · · ·× J is a direct product of isomorphic nonabelian
simple groups, with t factors say. By Lemma 2.14(i) (and Remark 2.15), we have

i3(N) = (1+ i3(J))t −1≤
(
7
20

|J|
)t
−1≤ 7

20
|N|−1,

so (3) implies that there exists g ∈ G\N of order 3 such that i3(Ng) > 7|N|/20.
If g ∈CG(N) then again Lemma 2.14(i) and Remark 2.15 imply that

i3(Ng) = i3(N)+1≤
(
7
20

|J|
)t
≤ 7
20

|N|,

with equality if and only if N = A5. Therefore, we may assume that conjugation by
g induces a nontrivial automorphism of N, say ψg ∈ Aut(N).

Now i3(Ng) ≤ i3(Inn(N)ψg), where Inn(N)ψg is a coset of Inn(N) ∼= N in
Aut(N) = Aut(J) 3 St . Suppose ψg ∈ Aut(J)t . If J *= L2(8) then Lemma 2.14(i)
yields

i3(Ng)≤ i3(Aut(J)t) = (1+ i3(Aut(J)))t −1<

(
7
20

|J|
)t
≤ 7
20

|N|.

Similarly, if J = L2(8) then applying Lemma 2.14(ii) we get

i3(Ng) <

(
225
504

|J|
)t
≤ 7
20

|N|

for all t ≥ 2, while if t = 1 we have

i3(Ng)≤ 84<
7
20

|N|

since any coset of J in Aut(J) contains at most 84 elements of order 3 (equality if
the coset contains field automorphisms).

Now suppose ψg ∈ Aut(N)\Aut(J)t , so t ≥ 3 and ψg = (g1, . . . ,gt ;σ), where
gi ∈Aut(J) and σ∈ St has cycle-shape (3k,1t−3k) for some k≥ 1. Then by Lemma
2.14 we have

i3(Ng)≤ i3(Aut(J)tσ) = |Aut(J)|2k
(
i3(Aut(J)t−3k)+1

)

≤
(
1
15

|J|3
)k(

(i3(Aut(J))+1)t−3k−1+1
)

≤
(
1
15

|J|3
)k(225

504
|J|

)t−3k

<
7
20

|N|.
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We conclude that i3(Ng)≤ 7|N|/20 for all elements g∈G\N of order 3. This final
contradiction completes the proof of the lemma.

REMARK 2.17. It is easy to see that the above argument implies that if G is
nonsoluble then i3(G) = 7|G|/20−1 if and only ifG=A5×Bwith i3(B) = |B|−1.

3. Simple groups

In this section we prove

PROPOSITION 3.1. Let G be a finite simple group. Then one of the following
holds:

(i) G= Z2 and δ(G) = 1;

(ii) G= Z3 and δ(G) = 1;

(iii) G= A5 and δ(G) = 31;

(iv) δ(G)≤ |G|/2−1.

If G is an abelian simple group then G= Zp for some prime p, so δ(G) = 1 and
thus Z2 and Z3 are the only examples with δ(G) > |G|/2−1. Now suppose G is a
nonabelian finite simple group. We partition the analysis into a number of separate
lemmas, according to the type of G.

LEMMA 3.2. Let G be a sporadic simple group. Then δ(G)≤ |G|/2−1.

Proof. The character table of G is available in the GAP Character Table Library
[2] and it is straightforward to calculate δ(G) precisely.

LEMMA 3.3. Suppose G = An with n ≥ 5. Then either δ(G) ≤ |G|/2− 1, or
n= 5 and δ(G) = 31.

Proof. The case n= 5 can be checked directly, so let us assume n≥ 6. In view of
Lemma 2.3, it suffices to show that

3+3i2(G)+ i3(G)≤ |G|. (4)

We have

i2(G) =
,n/4-

∑
l=1

n!
(2l)!(n−4l)!22l ≤

(
1

8(n−4)! +
1
4!24

,n/4-

∑
l=2

1
(n−4l)!

)
n!

and

i3(G) =
,n/3-

∑
k=1

n!
k!(n−3k)!3k ≤

(
1

3(n−3)! +
1
18

,n/3-

∑
k=2

1
(n−3k)!

)
n!.
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Now
,n/4-

∑
l=2

1
(n−4l)! <

∞

∑
l=0

1
(4l)!

<
∞

∑
l=0

1
24l

=
24
23

and thus (2) implies that

3i2(G)+ i3(G) <

(
3

8(n−4)! +
1

3(n−3)! +
3
4!24

· 24
23

+
1
18

· 6
5

)
n!.

We conclude that (4) holds for all n≥ 6.

LEMMA 3.4. Let G= L2(q), where q≥ 7. Then δ(G)≤ |G|/2−1.

Proof. As before, it suffices to show that (4) holds. If q is even then

i2(G) = q2−1, i3(G)≤ |GL2(q)|
(q−1)2 = q(q+1), |G| = q(q2−1)

and thus (4) holds for all q≥ 8. Similarly, if q is odd then

i2(G)≤ |GL2(q)|
2(q−1)2 =

1
2
q(q+1), i3(G)≤ q(q+1), |G| = 1

2
q(q2−1)

and again (4) follows.

LEMMA 3.5. Suppose G = L±4 (2) or L±3 (q), where 3 ≤ q ≤ 7. Then δ(G) ≤
|G|/2−1.

Proof. Direct calculation, using GAP [2] for example.

To deal with the remaining simple groups of Lie type we apply the bounds in
Lemma 2.13. Indeed, one can check that if G *= L2(q) is a group of Lie type over
Fq, and G is not one of the cases listed in Lemma 3.5, then

3+3 ·2(1+q−1)q f (G,2) +2(1+q−1)q f (G,3) ≤ g(G)

where the terms f (G,2), f (G,3) and g(G) are given in Table 2. Therefore (4) holds
and we are done.

REMARK 3.6. It is interesting to consider the asymptotic behaviour of δ(G),
especially in the case whereG is a simple group. Here we expect that δ(G)/|G|→ 0
as |G|→ ∞; for example, explicit calculation suggests that δ(An)/|An| < 1/n for
all n≥ 8. This is clearly not true for nonsoluble groups in general. For instance, if
G= A5×E, where E is elementary abelian of order 2n, then

δ(G)/|G| = 4
15

+2−n−2.
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Let p(G) be the proportion of elements of prime order in a finite group G. It
would also be interesting to study the asymptotic behaviour of p(G) when G is
a simple group. We note that if G is a group of Lie type of bounded rank then
perhaps p(G) does not tend to zero. For example, if q is a Germain prime, that is a
prime of the form 2p+1 with p prime, then ip(PSL2(q)) ≈ |G|/2. However, it is
not known whether or not there are infinitely many such primes. The same applies
for primes of the form cp+1, where c≥ 4 is a fixed even integer.

4. Nonsoluble groups

In this section we use Proposition 3.1 to establish Theorem 1 for nonsoluble
groups. More precisely, we prove

PROPOSITION 4.1. Let G be a finite nonsoluble group. Then δ(G) > |G|/2−1
if and only if G= A5.

LEMMA 4.2. Let G be a finite group and let N be a maximal normal subgroup
of G such that G/N *∈ {Z2,Z3,A5}. Then δ(G)≤ |G|/2−1.

Proof. By Proposition 3.1 we have δ(G/N) ≤ |G/N|/2− 1, hence Corollary 2.2
yields δ(G)≤ |G|/2−1.

LEMMA 4.3. Let G be a nonsoluble group with a normal subgroup N such that
G/N ∼= Z2. Then δ(G)≤ |G|/2−1.

Proof. Since G and N are nonsoluble, Lemmas 2.9 and 2.16 imply that

i2(G)≤ 4
15

|G|−1, i3(G) = i3(N)≤ 7
20

|N|−1=
7
40

|G|−1,

whence 3+3i2(G)+ i3(G)≤ |G|−1 and the result follows from Lemma 2.3.

LEMMA 4.4. Let G be a nonsoluble group with a normal subgroup N such that
G/N ∼= Z3. Then δ(G)≤ |G|/2−1.

Proof. Here Lemmas 2.9 and 2.16 imply that

i2(G) = i2(N)≤ 4
15

|N|−1=
4
45

|G|−1, i3(G)≤ 7
20

|G|−1

and again we get 3+3i2(G)+ i3(G)≤ |G|.

LEMMA 4.5. Let G be a finite group with a nontrivial normal subgroup N such
that G/N ∼= A5. Then δ(G)≤ |G|/2−1.

13



Proof. As before, it suffices to show that 3+ 3i2(G) + i3(G) ≤ |G|. Note that
Lemma 2.16 implies that i3(G) ≤ 7|G|/20− 1. First suppose N is nonabelian.
Then Corollaries 2.5 and 2.6 give i2(N)≤ 3|N|/4−1 and i2(Nx)≤ 3|N|/4 for all
involutions x ∈ G\N. Therefore

i2(G)≤ i2(N)+ i2(G/N) · 3
4
|N|≤ 16 · 3

4
|N|−1=

1
5
|G|−1

and the result follows since

3+3i2(G)+ i3(G)≤ 3
5
|G|+ 7

20
|G|−1< |G|.

Now assume N is abelian. First consider the case where N is an elementary
abelian p-group. Let Nx = (1,2)(3,4) and Ny = (1,2,3) represent the unique
classes of elements of order 2 and 3 in G/N ∼= A5, with respective class sizes
15 and 20.

First suppose p > 2. If i2(Nx) = |N| then Lemma 2.10 indicates that every
involution inG\N inverts N elementwise, but this is not possible since x commutes
with an involution z ∈ G \N in the coset Nz = (1,3)(2,4), so xz centralizes N.
Therefore, i2(Nx) < |N|, hence i2(Nx)≤ |N|/3 (see Lemma 2.7) and thus

3+3i2(G)+ i3(G)≤ 3+3 ·15 · 1
3
|N|+ 7

20
|G|−1< |G|.

Next assume p = 2. If x ∈ CG(N) then y ∈ CG(N) (since every element of
order 3 in A5 is a product of two involutions), so i3(G) ≤ i3(A5) = 20 and the
result follows since i2(G) ≤ 16|N|− 1. On the other hand, if i2(Nx) < |N| then
i2(Nx)≤ |N|/2 by Lemma 2.7, so

3+3i2(G)+ i3(G)≤ 3+3 ·
(
|N|−1+15 · 1

2
|N|

)
+20|N| < |G|.

To deal with the general abelian case, let p be a prime which divides |N| and
let M = {np : n ∈ N}. Then M is a characteristic subgroup of N and N/M is an
elementary abelian p-group. Now (G/M)/(N/M) ∼= A5, so our earlier argument
yields δ(G/M)≤ |G/M|/2−1 and thus Corollary 2.2 gives δ(G)≤ |G|/2−1.

Now Proposition 4.1 follows from Lemmas 4.2 - 4.5.

5. Proof of Theorem 1

In this section we complete the proof of Theorem 1. In view of Proposition 4.1
and Lemma 4.2, we may assume that G is soluble and that any maximal normal
subgroup N ofG satisfiesG/N ∈ {Z2,Z3}. We will establish Theorem 1 by proving
the nonexistence of a minimal counterexample (see Propositions 5.9 and 5.10). To

14



do this, we require several preliminary lemmas which deal with various special
cases.

At the end of this section we also establish the precise values of δ(G) listed in
Table 1, and we prove Corollaries 1 and 2.

LEMMA 5.1. Let G be a finite soluble group with a nontrivial normal subgroup
N such that G/N ∼= S4. Then δ(G)≤ |G|/2−1.

Proof. Here G/N ∼= S4 has two classes of involutions, with representatives Nx1 =
(1,2), Nx2 = (1,2)(3,4) and respective class sizes 6 and 3. There is a unique class
of elements of order 3, with representative Ny= (1,2,3) and class size 8.

If N is nonabelian then Corollary 2.6 implies that i2(G\N)≤ 9 ·3|N|/4, hence

δ(G) = δ(N)+ i2(G\N)+
1
2
i3(G\N)≤ |N|−1+

27
4
|N|+4|N| < 1

2
|G|−1

since δ(N)≤ |N|−1 and i3(G\N)≤ 8|N|.
Next suppose N is an elementary abelian p-group. First assume p = 2. If

x1 ∈CG(N) then y ∈CG(N), so i3(G)≤ 8 and the trivial bound i2(G)≤ 10|N|−1
is sufficient since |G| ≥ 48. Otherwise, i2(Nx1) ≤ |N|/2 (see Lemma 2.7) and the
desired result follows since

i2(G)≤ |N|−1+6 · 1
2
|N|+3|N| = 7|N|−1, i3(G)≤ 8|N|

and δ(G) = i2(G)+ i3(G)/2.
Now assume p= 3. If x1 ∈CG(N) then x2,y∈CG(N) and the bounds i2(G)≤ 9

and i3(G) ≤ 9|N|− 1 are sufficient. Similarly, if x1 inverts N elementwise then
x2,y ∈CG(N) and the result follows since i2(G) ≤ 3+6|N| and i3(G) ≤ 9|N|−1.
Finally, if x1 neither centralizes N nor inverts N elementwise then i2(Nx1)≤ |N|/3
(see Lemma 2.7) and the bounds

i2(G)≤ 6 · 1
2
|N|+3|N| = 6|N|, i3(G)≤ 9|N|−1

are good enough. A very similar argument applies if p≥ 5 and we leave the details
to the reader.

To deal with the general abelian case, let p be a prime which divides |N| and set
M = {np : n ∈ N}. Then N/M is an elementary abelian p-group and the above ar-
gument yields δ(G/M)≤ |G/M|/2−1 since (G/M)/(N/M) ∼= S4. Now Corollary
2.2 yields δ(G)≤ |G|/2−1 as required.

LEMMA 5.2. Let G be a finite soluble group with a nontrivial normal subgroup
N such that G/N ∼= S3×S3. Then δ(G)≤ |G|/2−1.

Proof. The group G/N ∼= S3× S3 has three classes of involutions, with represen-
tatives Nx1 = ((1,2),1), Nx2 = (1,(1,2)), Nx3 = Nx1x2 and respective class sizes
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3,3 and 9. Similarly, there are three classes of elements of order 3, with representa-
tives Ny1 = ((1,2,3),1), Ny2 = (1,(1,2,3)), Ny3 = Ny1y2 and class sizes 2,2 and
4.

If N is nonabelian then Corollary 2.6 implies that i2(G \N) ≤ 15 · 3|N|/4, so
δ(G)≤ |G|/2−1 since δ(N)≤ |N|−1 and i3(G\N)≤ 8|N|.

Next supposeN is an elementary abelian p-group. First assume p= 2. Suppose
x3 ∈CG(N), so y3 ∈CG(N). If x1,x2 ∈CG(N) then y1,y2 ∈CG(N), hence i3(G)≤ 8
and the bound i2(G)≤ 16|N|−1 is good enough since |G|≥ 72. Similarly, if x1 ∈
CG(N) and x2 *∈ CG(N) then i2(G) ≤ 13|N|− 1+ 3|N|/2 (since i2(Nx2) ≤ |N|/2;
see Lemma 2.7), i3(G) ≤ 2|N|+ 6 and again the desired bound follows. On the
other hand, if x1 *∈CG(N) then i2(Nx1)≤ |N|/2 and the subsequent bounds

i2(G)≤ |N|−1+3 · 1
2
|N|+12|N|, i3(G)≤ 4|N|+4

suffice. Finally, if x3 *∈CG(N) then i2(Nx3)≤ |N|/2 and the result follows since

i2(G)≤ |N|−1+6|N|+9 · 1
2
|N|, i3(G)≤ 8|N|.

Now assume p = 3. Since i3(G) ≤ 9|N|− 1, it suffices to show that i2(G) ≤
13|N|. Suppose x3 inverts N elementwise. If x1 also inverts N then x2 does not
(since x3 *∈CG(N)), so Lemma 2.7 implies that i2(Nx2)≤ |N|/3 and thus

i2(G)≤ 9|N|+3|N|+3 · 1
3
|N| = 13|N|

as required. The same bound on i2(G) clearly holds if x1 does not invert N ele-
mentwise. Finally, if x3 does not invert N elementwise then i2(Nx3) ≤ |N|/3 and
thus

i2(G)≤ 9 · 1
3
|N|+6|N| = 9|N|.

An entirely similar argument applies when p≥ 5 and we omit the details.
The general abelian case now follows as in the proof of the previous lemma.

LEMMA 5.3. Let G be a finite soluble group with a nontrivial normal subgroup
N such that G/N ∼= S3×D8×E, where exp(E) ≤ 2. Then one of the following
holds:

(i) G ∼= S3×D8×F with exp(F)≤ 2;

(ii) δ(G)≤ |G|/2−1.

Proof. Here i2(G/N) = |G/N|/2− 1 and i3(G/N) = 2. If N is nonabelian then
Corollary 2.6 implies that i2(Nx)≤ 3|N|/4 for all involutions x ∈ G\N, hence

δ(G)≤ |N|−1+
(
1
2
|G/N|−1

)
· 3
4
|N|+ |N|≤ 1

2
|G|−1.
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Now assume N is abelian. Suppose there exists a noncentral involution Nx ∈ G/N
such that i2(Nx) < |N|. Then Lemma 2.7 implies that i2(Nx)≤ |N|/2, hence

i2(G\N)≤ 2 · 1
2
|N|+(|G/N|/2−3)|N| = 1

2
|G|−2|N|

and (ii) follows since i3(G \N) ≤ 2|N| and δ(N) ≤ |N|− 1. Therefore, we may
assume that all noncentral involutions Nx ∈ G/N satisfy i2(Nx) = |N|. Clearly
there exist distinct noncentral involutions Nx1, Nx2 such that Nx1x2 is also a non-
central involution, so x1x2 both inverts and centralizes N elementwise, hence N
is an elementary abelian 2-group. The noncentral involutions generate G/N, so
G ∼= (G/N)×N ∼= S3×D8× (E×N) and (i) holds.

LEMMA 5.4. Let G be a finite soluble group with a minimal normal subgroup
N such that G/N ∼= S3. Then one of the following holds:

(i) G ∼= D(A), where A is abelian and exp(A)≥ 3;

(ii) G ∼= S4;

(iii) δ(G)≤ |G|/2−1.

Proof. Here N is an elementary abelian p-group, of order pm say. Let Nx = (1,2)
and Ny = (1,2,3) represent the unique classes of elements of order 2 and 3 in
G/N ∼= S3, with respective class sizes 3 and 2.

First suppose p = 2. If x ∈ CG(N) then y ∈ CG(N) and it follows that G ∼=
N×S3 ∼=D(N×Z3), so (i) holds. Now assume x *∈CG(N). If i2(Nx)≤ |N|/4 then
i2(G) ≤ |N|−1+3|N|/4 and the bound i3(G) ≤ 2|N| is good enough. Therefore,
we may assume i2(Nx) = |N|/2. If i3(Ny) ≤ |N|/2, which must be the case if m
is odd (see the proof of Lemma 2.11(iii)), then the result follows since i2(G) =
5|N|/2−1 and i3(G)≤ |N|.

Therefore, we may assume m is even, i2(Nx) = |N|/2 and i3(Ny) = |N|. If
m ≥ 4 then the hypothesis i2(Nx) = |N|/2 implies that there exists a nontrivial
n ∈ N which is centralized by x and x′, where x′ ∈ G \N is an involution and xx′
has order 3. Then xx′ ∈ CG(n) and thus i3(Ny) < |N|, a contradiction. Finally, if
m= 2 then it is easy to see that G ∼= S4 and thus (ii) holds.

Next suppose p= 3. If x inverts N elementwise then y ∈CG(N) and it follows
that G ∼= D(N×Z3). Otherwise, i2(G)≤ 3|N|/3 and the bound i3(G)≤ |N|−1+
2|N| is sufficient.

An entirely similar argument applies when p≥ 5 and we omit the details.

In the next lemma we refer to the groups T (r) which are defined in the Intro-
duction (see collection (V) in the definition of L).

LEMMA 5.5. Let G be a finite group with a nontrivial normal elementary
abelian 2-subgroup N of index three. Then one of the following holds:
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(i) G ∼= T (r)×E and Z(G) ∼= E, where r ≥ 1 and exp(E)≤ 2;

(ii) G ∼= Z3×N.

In particular, either δ(G)≤ |G|/2−1, or G ∼= T (r) for some r ≥ 1.

Proof. Here G is a split extension of N by 〈x〉 = Z3, where |N| = 2n for some
n≥ 1. Let ψ ∈ GLn(2) be the automorphism of N induced by x. If ψ is trivial then
(ii) holds, so assume otherwise. Then ψ is GLn(2)-conjugate to a block-diagonal

matrix of the form [A, . . . ,A, In−2r] (r copies of A), where A=
(
0 1
1 1

)
and r≥ 1.

(Indeed, any element of order 3 in GLn(2) is conjugate to such a matrix.)
Fix a basis {u1,v1, . . . ,ur,vr,w1, . . . ,wn−2r} of N so that ψ = [A, . . . ,A, In−2r]

with respect to this basis. Then

G ∼= 〈u1,v1, . . . ,ur,vr,w1, . . . ,wn−2r,x | u2i = v2i = w2i = x3 = 1,
all pairs of generators commute except [x,ui] = uivi, [x,vi] = ui〉

and thus

G ∼= 〈u1,v1, . . . ,ur,vr,x〉×〈w1, . . . ,wn−2r〉 ∼= T (r)×E,

where r≥ 1 and exp(E)≤ 2. It is not difficult to see that Z(T (r)) is trivial, whence
Z(G) ∼= E as claimed.

The bound δ(G) ≤ |G|/2− 1 is clear in case (ii) so let us consider (i). Here
i2(T (r)) = |T (r)|/3−1 and i3(T (r)) = 2|T (r)|/3 (since δ(T (r)) = 2|T (r)|/3−1;
see Table 1), hence

δ(G) =
(
1
3

+
1
3|E|

)
|G|−1

and thus δ(G)≤ |G|/2−1 if and only if E is nontrivial.

LEMMA 5.6. Let G be a finite group with a nontrivial normal abelian 2-
subgroup N of index nine. Then δ(G)≤ |G|/2−1.

Proof. First observe that i2(G) = i2(N) ≤ |N|− 1. If G/N is cyclic then i3(G) ≤
3|N| so we may as well assume G/N ∼= Z3×Z3. Let Nxi denote the elements of
order 3 in G/N, 1≤ i≤ 8.

First suppose N is elementary abelian, of order 2n say. As observed in the proof
of the previous lemma, we have i3(Nxi) = 2n−αi , where |CN(xi)|= 2αi and each n−
αi is even (or zero). If xi ∈CG(N) for some i then i3(Nxi) = i3(Nx2i ) = 1, so i3(G)≤
6|N|+2 and the result follows. Now assume xi *∈CG(N) for all i. If i3(Nxi) = |N|
for all i thenG is a Frobenius group with kernel N and complement Z3×Z3, but this
is not possible since a Sylow p-subgroup of a Frobenius complement must be cyclic
for any odd prime p (see [3, Theorem 3.1(iv), §10.3], for example). Therefore,
i3(Nxk) = i3(Nx2k) < |N| for some k. In fact, if n is odd then i3(Nxi)≤ |N|/2 for all
i (since n−αi is even), hence i3(G)≤ 4|N| and we are done. Similarly, if n is even
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then the bound i3(Nxk) < |N| implies that i3(Nxk) ≤ |N|/4 and the result follows
since i3(G)≤ 2|N|/4+6|N|.

To deal with the general case, let M = {n2 : n ∈ N}. Then N/M is an elemen-
tary abelian 2-group and the above argument yields δ(G/M)≤ |G/M|/2−1 since
(G/M)/(N/M) ∼= Z3×Z3. The desired result now follows from Corollary 2.2.

LEMMA 5.7. Let G be a finite soluble group with a nontrivial normal subgroup
N of odd order such that G/N is a nontrivial 2-group. Then one of the following
holds:

(i) G ∼= D(A), where A is abelian and exp(A)≥ 3;

(ii) G ∼= S3×S3;

(iii) G ∼= S3×D8×E, where exp(E)≤ 2;

(iv) δ(G)≤ |G|/2−1.

Proof. Here G is a split extension of N by a nontrivial 2-subgroup K, and we have

δ(G) = i2(G)+δ(N). (5)

First suppose i2(Nx) < |N| for all x ∈ K. Then Lemma 2.8 implies that i2(Nx) ≤
|N|/3 and thus

i2(G)≤ i2(K) · 1
3
|N|≤ (|K|−1) · 1

3
|N| = 1

3
(|G|−|N|).

Now δ(N)≤ (|N|−1)/2 (maximal if exp(N) = 3), hence (5) yields

δ(G)≤ 1
3
(|G|−|N|)+

1
2
(|N|−1) =

(
1
3

+
1
6|K|

)
|G|− 1

2
≤ 5
12

|G|− 1
2

and thus (iv) holds since |G|≥ 6.
For the remainder we may assume there exists an involution x ∈ K such that

i2(Nx) = |N|, so N is abelian by Lemma 2.4. Now, if |K| = 2 then G ∼= D(N) and
(i) holds, so we may assume |K|≥ 4.

For now we will assume that CG(N) ≤ N. If x1,x2 ∈ K are distinct involu-
tions such that i2(Nx1) = i2(Nx2) = |N| then x1x2 ∈ CK(N) is nontrivial, but this
contradicts the hypothesis CG(N) ≤ N. Therefore, there is at most one involution
x ∈ K with i2(Nx) = |N|; for any other involution y ∈ K we have i2(Ny) ≤ |N|/3
by Lemma 2.8. This implies that

i2(G)≤ |N|+(i2(K)−1) · 1
3
|N|≤ 1

3
(|G|+ |N|)

since i2(K)≤ |K|−1, and thus (5) yields

δ(G)≤ 1
3
(|G|+ |N|)+

1
2
(|N|−1) =

(
1
3

+
5
6|K|

)
|G|− 1

2
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since δ(N)≤ (|N|−1)/2. In particular, (iv) holds if |K|≥ 8.
Next suppose |K|= 4 and let us continue to assumeCG(N)≤N. If K ∼= Z4 then

δ(G/N) = |G/N|/2− 1 and thus (iv) follows from Corollary 2.2. Therefore, we
may assume K is elementary abelian. Let x1,x2 and x3 be the distinct involutions in
K, where x3 = x1x2 and i2(Nx1) = |N|. For i= 2,3 let Qi be the set of elements n ∈
N such that nxi is an involution. Since N is abelian, each Qi is a subgroup of N, and
the hypothesis CG(N) ≤ N implies that Q2 and Q3 are nontrivial. More precisely,
we have N =Q2×Q3, Q2 =CN(x3) and Q3 =CN(x2), hence G ∼=D(Q2)×D(Q3)
and (5) implies that

δ(G)≤
(
3
8

+
1

4|Q2|
+

1
4|Q3|

)
|G|− 1

2
(6)

since δ(N) ≤ (|N|− 1)/2. If |Q2| ≥ 7 then one can check that (6) yields δ(G) ≤
|G|/2− 1 since |Q3| ≥ 3. By symmetry, the same is true if |Q3| ≥ 7, so we may
assume |Qi| ∈ {3,5} for i = 2,3. If |Q2| = |Q3| = 5 then (6) is good enough,
while i2(G) = 23 and δ(N) = 2 if |Q2| = 3 and |Q3| = 5 (or vice versa), hence
δ(G) = 5|G|/12. Finally, if |Q2| = |Q3| = 3 then G ∼= S3×S3 and (ii) holds.

To complete the proof of the lemma, let us now assumeCG(N) is not contained
in N. Then CG(N) = N×L, where L is a nontrivial normal 2-subgroup of G. If
G = N × L then the bound δ(G) ≤ |G|/2− 1 quickly follows, so let us assume
G *=N×L. Then G/L is a split extension of NL/L ∼=N by a nontrivial 2-subgroup
J/L ∼= G/NL, and we claim that

CG/L(NL/L)≤ NL/L.

To see this, suppose Lg ∈CG/L(NL/L). Then for each nontrivial n ∈ N there exists
l ∈ L such that g−1ng = ln, but l must be trivial since n has odd order, L is a 2-
group and [l,n] = 1. Hence Lg ∈ NL/L and the claim follows. In particular, we
may apply our earlier work to the factor group G/L.

Now, if |J/L|≥ 8 then our earlier analysis implies that δ(G/L)≤ |G/L|/2−1,
so (iv) holds by Corollary 2.2. Next suppose |J/L| = 4. As before, if J/L ∼= Z4
then our earlier work gives δ(G/L)≤ |G/L|/2−1 and again (iv) holds. Therefore,
we may assume J/L ∼= Z2×Z2. Once again, by our previous analysis, we reduce
to the case G/L ∼= S3× S3, so Lemma 5.2 implies that δ(G) ≤ |G|/2− 1 and we
are done.

Finally, let us assume |J/L| = 2, so G is a split extension ofCG(N) = N×L by
〈x〉 ∼= Z2, where x inverts N elementwise. LetH = L.〈x〉 and note thatH is a Sylow
2-subgroup of G. If H is elementary abelian then G ∼= N.〈x〉 × L ∼= D(N × L)
and (i) holds. For the remainder, let us assume H is not elementary abelian, so
i2(H)≤ 3|H|/4−1 by Corollary 2.5. Now, if L is elementary abelian then

i2(H \L) = i2(H)− i2(L)≤
3
4
|H|−1− (|L|−1) =

1
4
|H|

so
i2(G\ (N×L))≤ i2(H \L) · |G : NG(H)|≤ 1

4
|H| · |N| = 1

4
|G|
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and thus (5) yields

δ(G)≤ |L|−1+
1
4
|G|+ 1

2
(|N|−1) =

(
1
4

+
1
2|N| +

1
4|L|

)
|G|− 3

2
.

We conclude that δ(G)≤ 23|G|/48−3/2 since |N|≥ 3 and |L|≥ 4 (if |L|= 2 then
H = L.〈x〉 is elementary abelian, which is not the case).

For the remainder, we may assume H and L are not elementary abelian. If
i2(Lx) = |L| then L is abelian (see Lemma 2.4) and x inverts N×L elementwise,
hence G ∼= D(N× L) and (i) holds. Therefore, we may assume i2(Lx) < |L|, so
i2(Lx)≤ 3|L|/4 (see Lemma 2.4) and thus

i2(G\ (N×L))≤ |N| · 3
4
|L| = 3

8
|G|.

Since i2(L)≤ 3|L|/4−1 (see Corollary 2.5) and δ(N)≤ (|N|−1)/2, (5) gives

δ(G)≤ 3
4
|L|−1+

3
8
|G|+ 1

2
(|N|−1) =

(
3
8

+
3
8|N| +

1
4|L|

)
|G|− 3

2

and thus (iv) holds if |N| ≥ 5 (again note that |L| ≥ 4 since H is not elementary
abelian). Therefore, we may assume N = Z3. Now, if i2(Lx) < 3|L|/4 or i2(L) <
3|L|/4−1 then by (5) we have

δ(G)≤ 3
4
|L|+ 3

8
|G|−1=

1
2
|G|−1,

so we may assume i2(Lx) = 3|L|/4 and i2(L) = 3|L|/4−1.
Now by the main theorem of [18] (and the values of δ(G) listed in Table 1), it

follows that L ∼= D8×E, where exp(E)≤ 2. Similarly, if H = L.〈x〉 then i2(H) =
3|H|/4− 1 so we also have H ∼= D8× F , where exp(F) ≤ 2. We deduce that
H = L.〈x′〉, where x′ ∈ Z(H) and x′ inverts N elementwise, so

G= (N×L).〈x′〉= N.〈x′〉×L ∼= S3×D8×E

and thus (iii) holds.

LEMMA 5.8. Let G be a finite soluble group with a minimal normal subgroup
N such that G/N ∼= D(A), where A is abelian and exp(A) ≥ 3. Then one of the
following holds:

(i) G is a 2-group;

(ii) G ∼= D(B), where B is abelian and exp(B)≥ 3;

(iii) G ∼= S3×D8×E, where exp(E)≤ 2;

(iv) G ∼= S3×S3;
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(v) G ∼= S4;

(vi) δ(G)≤ |G|/2−1.

Proof. Here N is an elementary abelian p-group. Let H be an index-two subgroup
ofG containing N such thatH/N ∼=A. Since A is abelian, we haveH/N =H1/N×
H2/N where H1/N is a 2-group and H2/N has odd order. Note that H1 and H2 are
normal subgroups of G.

First assume p ≥ 3. Here H2 has odd order and G/H2 ∼= (G/N)/(H2/N) is a
nontrivial 2-group, so the desired conclusion follows from Lemma 5.7.

For the remainder we may assume N is an elementary abelian 2-group, say
|N| = 2m. If A is a 2-group then so is G and thus (i) holds, so we may as well
assume |A| is divisible by an odd prime. Suppose i2(G\H) > |G|/3. Then Lemma
2.12 implies that H = K1×K2, where K1 is a 2-group and |K2| is odd, so either G
is a 2-group (and thus (i) holds), or G is an extension of a group of odd order by a
nontrivial 2-group and Lemma 5.7 implies that (ii), (iii), (iv) or (vi) holds.

Therefore, for the remainder of the proof, we may assume i2(G \H) ≤ |G|/3,
so by Lemma 2.1 we have

δ(G) = i2(G\H)+δ(H)≤ 1
3
|G|+δ(N)+ |N| ·δ(A) (7)

with δ(N) = |N|−1.
Suppose that |A| is divisible by a prime r ≥ 5, so A = A1×A2, where A1 is an

r-group and |A2| is coprime to r. Then δ(A) = δ(A1)+δ(A2), δ(A1)≤ (|A1|−1)/4
and δ(A2)≤ |A2|−1, hence (7) yields

δ(G)≤
(
1
3

+
|A1|+4|A2|−1
8|A1||A2|

)
|G|−1.

If either |A1| ≥ 9 or |A2| ≥ 2 then this bound implies that (vi) holds. If A = Z7
then δ(A) = 1 and (7) gives δ(G) ≤ 10|G|/21− 1, so we may assume A = Z5.
Here G/N ∼= D5 has a unique class of involutions, with representative Nx and
class size 5. If i2(Nx) = |N| then G ∼= N×D5 ∼= D(N×Z5), so (ii) holds. On the
other hand, if i2(Nx) < |N| then Lemma 2.7 yields i2(Nx)≤ |N|/2, hence i2(G)≤
|N|−1+5|N|/2 and thus δ(G)≤ 9|G|/20−1 since i5(G)≤ 4|N|.

For the remainder, we may assume A=A1×A2 where A1 is a 2-group (possibly
trivial) and A2 is a nontrivial 3-group. If exp(A1) ≥ 4 then δ(A1) ≤ 3|A1|/4− 1
(equality if A1 = Z4×E with exp(E)≤ 2) and thus (7) yields

δ(G)≤
(
1
3

+
3|A1|+2|A2|−2

8|A1||A2|

)
|G|−1

since δ(A2)≤ (|A2|−1)/2. Therefore δ(G)≤ |G|/2−1 since |A1|≥ 4 and |A2|≥ 3,
so we may assume exp(A1)≤ 2.

Next we reduce to the case A2 = Z3. Suppose |A2|≥ 9. Since δ(A1)≤ |A1|−1
and δ(A2) ≤ (|A2|−1)/2, one can check that (7) yields δ(G) ≤ |G|/2−3/2 if A1
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is nontrivial. Therefore, we may assume A = A2 is a 3-group. If exp(A) ≥ 9 then
δ(A) = i3(A)/2≤ |A|/6−1/2 and thus (7) implies that (vi) holds. Now suppose A
is an elementary abelian 3-group. The case A= Z3 follows from Lemma 5.4 since
D(Z3) ∼= S3, so we may assume |A|≥ 9.

Here G/N ∼= D(A) has a unique conjugacy class of involutions, represented
by Nx, of size |A|, and there are precisely (|A|−1)/2 classes of elements of order
3, each of size two. If i2(Nx) = |N| then it is easy to see that G ∼= D(A×N), so
(ii) holds. Now suppose i2(Nx) < |N|. If i2(Nx) ≤ |N|/4 then i2(G) ≤ |N|− 1+
|A||N|/4, i3(G) ≤ (|A|− 1)|N| and we deduce that (vi) holds. Therefore, we may
assume i2(Nx) = |N|/2, so i2(G) = |N|−1+ |A||N|/2. Since A is noncyclic, there
exists an element y ∈ G\N of order 3 such that i3(Ny) < |N|; this quickly follows
from [3, Theorem 3.1(iv), §10.3] (the same argument was used in the proof of
Lemma 5.6). In particular, Lemma 2.7 implies that i3(G)≤ (|A|−3)|N|+2|N|/2,
and thus

δ(G)≤ |N|−1+ |A| · 1
2
|N|+ 1

2
((|A|−3)|N|+ |N|) =

1
2
|G|−1.

To complete the proof, we may assume A= A1×Z3 where A1 is an elementary
abelian 2-group of order 2n, n≥ 1. Recall thatH/N =H1/N×H2/N ∼=A1×Z3, so
H =H1H2 and the Hi are normal subgroups of G. Note that H1 is the unique Sylow
2-subgroup of H and i3(G) = i3(H2) ≤ 2|H2|/3 since H2 = N.Z3. Also recall that
we may assume i2(G\H)≤ |G|/3, hence

δ(G) = i2(H)+ i2(G\H)+
1
2
i3(G)≤ i2(H1)+

1
3
|G|+ 1

3
|H2|. (8)

First assume H1 is not elementary abelian. Then Corollary 2.5 implies that
i2(H1)≤ 3|H1|/4−1= |G|/8−1 (since |G : H1| = 6), hence (vi) follows from (8)
if |A1|≥ 4. Now suppose |A1|= 2. If there exists an involution in H1 \N then H1 =
N.Z2 is a split extension. Moreover, Z(H1)∩N is a nontrivial normal subgroup of
G, so N ≤ Z(H1) since N is a minimal normal subgroup ofG. Therefore Z(H1) =N
or H1, but both possibilities imply that H1 is elementary abelian, a contradiction.
Therefore, i2(H1) = i2(N) = |G|/12−1 and (vi) follows from (8).

Now assume H1 is elementary abelian. Here H =H1.Z3 so Lemma 5.5 implies
that H = T (r)×E or Z3×H1, where r ≥ 1 and exp(E)≤ 2. In the latter case, G is
an extension of Z3 by a nontrivial 2-group and Lemma 5.7 applies. Therefore we
may assume H = T (r)×E. Now all elements of order 3 in H are contained in H2,
hence T (r)≤ H2 since T (r) is generated by elements of order 3 (this is clear since
i3(T (r)) = 2|T (r)|/3). Therefore H2 = T (r)× (E ∩H2) and E ∩H2 is a normal
subgroup of G contained in N. By the minimality of N, E ∩H2 is either trivial, or
equal to N. The latter possibility is absurd since H2 =N.Z3, so E∩H2 is trivial and
thus H2 = T (r).

It follows that H =H2×E with E normal in G and exp(E)≤ 2. Now NE/E is
a minimal normal subgroup of G/E and we have (G/E)/(NE/E) ∼= S3. Therefore
Lemma 5.4 implies that either δ(G/E) ≤ |G/E|/2− 1, G/E = D(B) or G/E =
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S4, where B is abelian and exp(B) ≥ 3. In the first case, Corollary 2.2 yields
δ(G)≤ |G|/2−1, while Lemma 5.1 deals with the caseG/E = S4. Finally, suppose
G/E =D(B). Now H/E =H2 = N.Z3 is a subgroup of G/E, so Z3 is contained in
B and thus Z3 is normal in D(B) (any subgroup of B is normal in D(B)). Therefore
Z3 is normal in H2, so G is an extension of Z3 by a nontrivial 2-group and thus
Lemma 5.7 applies.

We are now in a position to complete the proof of Theorem 1. Suppose G is a
finite soluble group of minimal order such that δ(G) > |G|/2−1 and G *∈L, where
L denotes the collection of groups labelled (I)-(X) in the Introduction. Let N be a
maximal normal subgroup of G and note that G/N ∈ {Z2,Z3} by Lemma 4.2. We
consider both cases in turn.

PROPOSITION 5.9. The case G/N = Z2 leads to a contradiction.

Proof. Suppose G has a normal subgroup N of index two. Let K =
T
i Ni be the

intersection of all normal subgroupsNi ofG such thatG/Ni is a 2-group. ThenG/K
is a nontrivial 2-group and K is nontrivial since all 2-groups with δ(G) > |G|/2−1
are in L by the main theorem of [18].

Let K1 be maximal among normal subgroups of G properly contained in K.
Then K/K1 is a minimal normal subgroup of G/K1, so K/K1 is an elementary
abelian p-group, and the definition of K implies that p > 2. By Corollary 2.2,
we have δ(G/K1) > |G/K1|/2− 1 and thus Lemma 5.7 implies that one of the
following holds:

(i) G/K1 ∼= D(A), where A is abelian and exp(A)≥ 3;

(ii) G/K1 ∼= S3×D8×E, where exp(E)≤ 2;

(iii) G/K1 ∼= S3×S3.

Suppose G/K1 ∼=D(A) as in (i). Note that K1 is nontrivial since we are assum-
ing G *∈ L. Let K2 be minimal among normal subgroups M of G such that G/M is
of the form D(A2), where A2 is abelian and exp(A2) ≥ 3. Note that K2 is nontriv-
ial (since K1 is nontrivial) and let K3 be maximal among normal subgroups of G
properly contained in K2. Then K2/K3 is a minimal normal subgroup of G/K3, so
δ(G/K3) > |G/K3|/2−1 and thus Lemma 5.8 (and the minimality of K2) implies
that G/K3 ∼= S4, S3×S3 or S3×D8×E with exp(E)≤ 2.

Therefore, to complete the proof we may assume G has a nontrivial normal
subgroup L such that G/L ∼= S4, S3×S3 or S3×D8×E. The latter case is ruled out
by Lemma 5.3, so let us consider the other two. Let M be maximal among normal
subgroups of G which are properly contained in L. Then L/M is a minimal normal
subgroup of G/M and (G/M)/(L/M) ∼= G/L. Therefore, Lemmas 5.1 and 5.2
imply that δ(G/M) ≤ |G/M|/2− 1, so δ(G) ≤ |G|/2− 1 by Corollary 2.2. This
final contradiction completes the proof of the proposition.
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PROPOSITION 5.10. The case G/N = Z3 leads to a contradiction.

Proof. Suppose G has a normal subgroup N of index three. If δ(N) ≤ |N|/2− 1
then Lemma 2.1 implies that δ(G)≤ |G|/2−1 (since δ(G/N) = 1), a contradiction.
Therefore, we have δ(N) > |N|/2− 1 and so N ∈ L by the minimality of G. We
now consider the various possibilities for N, labelled (I)–(X) in Section 1.

Suppose N ∼= D(A) is of type (I). If exp(A) ≤ 2 then G is a split extension of
an elementary abelian 2-group by Z3, so Lemma 5.5 implies that either G ∈ L or
δ(G)≤ |G|/2−1, a contradiction. If exp(A) > 2 then A is a characteristic subgroup
of N, so A is normal inG and δ(G/A) = |G/A|/3 sinceG/A ∼= Z6. This contradicts
Corollary 2.2. Similarly, we can rule out cases (VIII) and (IX) sinceG has a normal
subgroup M with G/M ∼= Z6, while Lemma 5.6 deals with (V) as G has a normal
abelian 2-subgroup of index 9 in this case. Of course, if N is of type (VI) then G is
a 3-group and the hypothesis δ(G) > |G|/2−1 implies that exp(G) = 3, so G ∈L.
Also note that N is not of type (X) since G is soluble.

Next suppose N is of type (II), (III), or (IV), so N = Y ×E with exp(E) ≤ 2
and Y = D8 ×D8, H(r) or S(r), for some positive integer r. We claim that G
admits a homomorphism α such that Nα is a 2-group, Gα/Nα ∼= Z3 and one of
the following holds:

(i) Nα= D8×D8; or

(ii) Nα has a minimal characteristic (central) subgroup of order 2n with n odd.

To see this, first observe that G is a split extension of N by 〈x〉= Z3, and N2 =
Y 2 = Z(Y ) is a characteristic subgroup of N. Moreover, Z(Y ) is an 〈x〉-invariant
subgroup of the elementary abelian 2-group Z(N) = Z(Y )×E, so by Maschke’s
Theorem there exists an 〈x〉-invariant subgroup K such that Z(N) = Z(Y )×K.
Then K is normal in G and N/K ∼= Y (since N = Y ×K). If N is of type (II) then
the natural homomorphism from G to G/K satisfies (i), so we may as well assume
N is of type (III) or (IV). Here |N/K| = |Y | = 22r+1. Let L1 be a characteristic
subgroup of N/K, maximal with respect to having order 2m with m≥ 0 even. Then
L1 is a proper subgroup of N/K so there exists a characteristic subgroup L2 of N/K
such that L2/L1 is a minimal characteristic subgroup of (N/K)/L1. Now L2 > L1,
so the choice of L1 implies that L2/L1 has order 2n, with n odd. Therefore, the
natural homomorphism from G to (G/K)/L1 satisfies (ii). This justifies the claim.

Let α be the above homomorphism and set G1 =Gα, N1 = Nα, so G1 is a split
extension ofN1 by 〈x′〉= Z3. In (II),N1 =D8×D8 does not admit an automorphism
of order 3, so Z(D8×D8) = Z2×Z2 is a central subgroup of G1. In (III) and (IV),
N1 has a minimal characteristic subgroup H ≤ Z(N1) of order 2n with n odd. By
Lemma 5.5, since n is odd, there is an element y = y1y2 ∈ H.〈x′〉 of order 6, with
|y1| = 3, |y2| = 2 and [y1,y2] = 1. Since G1 = N1.〈y1〉, y2 ∈ H and H ≤ Z(N1),
it follows that Z(G1)∩H is nontrivial, hence H ≤ Z(G1) since H is a minimal
characteristic subgroup of G1 (note that N1 is characteristic in G1).
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In all three cases, we have shown that N1 contains a nontrivial elementary
abelian 2-subgroup L which is central in G1. Now

i2(G1) = i2(N1)≤ |N1|−1=
1
3
|G1|−1

and
i3(G1) = i3(G1/L)≤ 2|N1/L|≤| N1| =

1
3
|G1|

since i3(Lg) = 1 for all g ∈ G1 \L of order 3, and G1/L = (N1/L).Z3 with N1/L a
2-group. We conclude that δ(G1)≤ |G1|/2−1, and this contradicts Corollary 2.2.

Finally, suppose N is of type (VII), so N = S3×D8×E with exp(E)≤ 2. Then
N has a characteristic subgroup M of order 3 such that N/M ∼= H(1)×F with
exp(F)≤ 2. Then N/M<G/M is a subgroup of type (III), so the previous analysis
implies that δ(G/M)≤ |G/M|/2−1, and this contradicts Corollary 2.2.

We conclude that a minimal counterexample does not exist; the proof of the
main statement of Theorem 1 is complete. To close this section, we justify the
precise values of δ(G) listed in Table 1, and we establish Corollaries 1 and 2.

It is entirely straightforward to calculate the precise value of δ(G) in cases (I),
(II) and (VI)–(X), so let us consider (III), (IV) and (V). In [18], Wall calculates
that i2(H(r)) = 22r + 2r − 1 (see [18, p. 258]) and thus δ(G) = |G|/2+ 2n+r −
1 if G is of type (III), as claimed in Table 1. Next suppose G is of type (IV).
Here S(r) = N.〈z〉= N.Z2, where N is an elementary abelian 2-group of order 22r,
and it suffices to show that i2(S(r)) = 22r + 2r − 1. By construction, the Jordan
form of the matrix A ∈ GL2r(2) ∼= Aut(N) corresponding to conjugation by z has
exactly r indecomposable blocks, hence the proof of Lemma 2.11(iii) implies that
i2(Nz) = 2r and thus i2(S(r)) = |N|−1+2r = 22r +2r−1 as claimed. Finally, in
(V) we have G= N.〈z〉= N.Z3, where N is an elementary abelian 2-group of order
22r. Now i2(G) = |N|− 1 and i3(Nz) = i3(Nz2) = |N|, so i3(G) = 2|N| and thus
δ(G) = 2|N|−1= 2|G|/3−1 as claimed.

Corollary 1 quickly follows from the values of δ(G) listed in Table 1. First
observe that if A is abelian with exp(A)≥ 3 then δ(A)≤ (|A|−1)/2, with equality
if and only if exp(A) = 3. Therefore, if G is of type (I) and exp(A) ≥ 3 then
δ(G)≤ 3|G|/4−1/2 and equality is possible. In (III) and (IV) we have

δ(G) =
(
1
2

+
1
2r+1

)
|G|−1 (9)

and thus δ(G)≤ 3|G|/4−1, with equality if and only if r = 1. The desired bound
is clear in each of the remaining cases.

Finally, let us consider Corollary 2. Suppose G is a finite group with exp(G)≥
3 and δ(G)≥ 2|G|/3. By inspecting Table 1, it is clear that G must be of type (I),
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(III) or (IV). Suppose G = D(A), where A is abelian and exp(A) ≥ 3, so δ(G) =
|G|/2+ δ(A). As before, if exp(A) = 3 then δ(A) = (|A|− 1)/2 and thus δ(G) =
3|G|/4−1/2. Similarly, if A= Z4×E with exp(E) = 2 then δ(A) = |A|/2−1, so
δ(G) = 3|G|/4−1. In all other cases, A has a homomorphic image of the form Zp
(p≥ 5 prime), Zp2 (p≥ 3 prime), Zpq (p and q distinct primes) or Z4×Z4, and the
bound δ(A)≤ |A|/3 quickly follows. Now, ifG is of type (III) or (IV) then (9) holds
and we deduce that δ(G) ≥ 2|G|/3 if and only if r = 1 and |G| ≥ 12. However,
these conditions imply that G ∼=D(Z4×E) for some nontrivial elementary abelian
2-group E. This proves Corollary 2.

This completes the proof of Theorem 1, together with Corollaries 1 and 2.

6. An application

In this final section we describe an application of Theorem 1 to the study of
near-rings. Recall that a near-ring is a set R with two binary operations + and ·
such that (R,+) is a group (not necessarily abelian) and · is associative and satis-
fies a single distributive law. Near-rings were first introduced by Dickson in 1905
in the context of near-fields, and H. Neumann (among others) investigated their
connections with groups in the 1950s (see [11], for example). We refer the reader
to [12] for general background on near-rings.

Near-rings arise naturally in studying functions on a group. Let G be a finite
group and let M0(G) be the set of functions from G to G which fix the identity.
Then M0(G) is a near-ring with respect to the operations ( f + g)(x) = f (x)g(x)
and ( f ·g)(x) = f (g(x)), where x ∈ G. These near-rings are particularly important
since any finite (zero-symmetric) near-ring can be embedded as a subnear-ring of
M0(G) for some finite group G. (Here a near-ring (R,+, ·) is zero symmetric if
r ·0= 0 ·r= 0 for all r ∈ R, where 0 is the identity element of the group (R,+).) In
this sense, the M0(G) play a role similar to that of the symmetric groups in group
theory.

It is easy to see that a function α generates M0(G) (as a near-ring) only if α
is a bijection. Let n be a positive integer. We say that M0(G) is n-gen if it can be
generated by a bijection of order n (order with respect to composition). In [15], it is
shown thatM0(G) is 2-gen if and only if G *= Z3 and exp(G)≥ 3, while theM0(G)
which are 3-gen are determined in [16]. Bounds on the proportion of bijections
which generate M0(G) are obtained by Neumaier in [10].

Let p≥ 5 be a prime number and observe that M0(G) is p-gen only if |G| > p
since there are no bijections of order p in M0(G) if |G| ≤ p. Let G be a finite
group with |G| > p. Then the main theorem of [14] states that precisely one of the
following holds:

(i) M0(G) is p-gen;

(ii) exp(G) = 2 and |G| *≡ 1 mod p;
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(iii) G belongs to a finite collection of groups, denoted by D(p).

Rather surprisingly, it turns out that this finite collection D(p) can be defined
in terms of δ. To see this connection, first observe that a bijection α ∈ M0(G)
generatesM0(G) only if there are no nontrivial proper α-invariant subgroups of G.
Indeed, if H <G is such a subgroup then the near-ring generated by α is contained
in the maximal subnear-ring { f ∈M0(G) : f (H)⊆H}. Suppose α has order p and
|G| is small (relative to p). The idea is that if δ(G) is sufficiently large then G may
have so many subgroups of prime order that it is impossible to define a bijection α
which avoids fixing such a subgroup.

More precisely, in [14] it is shown thatD(p) is the disjoint union

D(p) = D(2, p)∪D(3, p),

where a group G ∈D(i, p) if and only if G satisfies the three conditions

p(i−1) < |G|≤ pi, δ(G) > (i−1)p, exp(G)≥ 3. (10)

In particular, G ∈D(2, p) only if δ(G) > |G|/2, while G ∈D(3, p) only if δ(G) >
2|G|/3. Therefore, in view of Theorem 1 (and the δ(G) values recorded in Table
1), we can determine the groups in the collections D(2, p) and D(3, p).

PROPOSITION 6.1. We can determine the groups inD(p) for any prime p≥ 5.

If p = 2 or 3 then the groups G for which M0(G) is p-gen are determined by
the second author in [15] and [16]. For p≥ 5 we have

COROLLARY 6.2. Let p≥ 5 be a prime and let G be a finite group with |G| >
p. Then M0(G) is p-gen if and only if the following hold:

(i) G is not an elementary abelian 2-group with |G|≡ 1 mod p; and

(ii) G is not in D(p), as specified in Proposition 6.1.

To illustrate the general approach, below we will use Theorem 1 to determine
the groups inD(p), where p= 28+1= 257. First we record a couple of results on
the general nature of the subsets D(2, p) and D(3, p).

PROPOSITION 6.3. We have |D(2, p)|→ ∞ as p→ ∞.

Proof. Suppose p≥ 5. Then there exists a unique integerm≥ 3 such that p< 2m≤
2p, and there are precisely ,(m−1)/2- distinct pairs of integers (r,n), where r≥ 1,
n≥ 0 and m= 2r+1+n. Therefore,D(2, p) contains precisely 2,(m−1)/2-−1
pairwise nonisomorphic groups of types (III) and (IV), hence

|D(2, p)|≥ 2,(m−1)/2-−1≥ m−3> log2 p−3 (11)

and the result follows.
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REMARK 6.4. In practice, most of the groups inD(2, p) are of type D(A) and
thus the lower bound in (11) could be improved. However, computer calculation
suggests that the size ofD(2, p) grows slowly, perhaps logarithmically with respect
to p. For example, we have calculated that |D(2, p)| ≤ 576 for all primes p less
than 106.

PROPOSITION 6.5. Let p≥ 5 be a prime. Then |D(3, p)|≤ 2.

Proof. Suppose G ∈D(3, p). Then 2p < |G| ≤ 3p and δ(G) > 2p ≥ 2|G|/3. By
Corollary 2, we have G = D(A) where either exp(A) = 3 or A = Z4 × E with
exp(E) = 2. If exp(A) = 3 then |A| = 3m for some m ≥ 1, and it is clear that
there can be at most one such m so that 2p< |G|≤ 3p. Similarly, there is at most
one possibility for |E| if A= Z4×E. We conclude that |D(3, p)|≤ 2.

Let us now determine the groups in the collection D(257). Now, if G ∈
D(3,257) then the proof of Proposition 6.5 indicates that there exist positive inte-
gers a and b such that |G|= 2.3a or 2b+3. However, the constraint 514< |G|≤ 771
(see (10)) rules out such a possibility, henceD(3,257) is empty.

Now supposeG∈D(2,257), so 258≤ |G|≤ 514 and δ(G)≥ 258. By Theorem
1, G is a group of type (I)–(X). By inspecting Table 1, it is clear that G is not of
type (VI)–(X). Suppose G is of type (V). Here δ(G) = 2|G|/3−1, so the condition
δ(G) ≥ 258 implies that |G| ≥ 389. Now |G| = 3.22r for some positive integer r,
but there is no r such that 389≤ |G|≤ 514, so G is not of type (V). Next suppose
G is of type (III) or (IV). Then |G| = 22r+n+1 for some r ≥ 2 and n ≥ 0, and (9)
holds (note that if r = 1 then G is isomorphic to a group of type (I)). The bounds
on |G| imply that (r,n) ∈ {(2,4),(3,2),(4,0)}, so there are 6 possibilities for G:

H(2)×Z42 , H(3)×Z22 , H(4), S(2)×Z42 , S(3)×Z22 , S(4),

where Zk2 denotes the direct product of k copies of Z2. If G is of type (II) then |G|=
2n+6 for some n, so the constraints on |G| imply that n = 3, so G = D8×D8×Z32
is the only example in (II).

Finally, suppose G = D(A) is a group of type (I). If G is elementary abelian
then G = Z92 is the only possibility, so let us assume exp(A) ≥ 3. Now Corollary
1 implies that δ(G) < 3|G|/4, so |G| ≥ 344 and it remains to classify the abelian
groups A such that 172 ≤ |A| ≤ 257, exp(A) ≥ 3 and δ(G) = |A|+ δ(A) ≥ 258.
With the aid of a computer, it is easy to check that there are exactly 27 possibilities
for A, up to isomorphism, listed in Table 3. Here we use the notation (na11 , . . . ,nakk )
to denote the abelian group Za1n1 × · · ·×Zaknk , where n1 < n2 < .. . < nk.

We conclude thatD(3,257) is empty, while |D(2,257)| = 6+1+1+27= 35.

REMARK 6.6. In view of Corollary 6.2, it would be interesting to investigate
the n-gen problem for n a composite integer. Here very little seems to be known
at present. One might expect that similar results to those in [14] hold in the prime
power case, while we conjecture that there are only finitely many exceptions when
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A |G| δ(G) A |G| δ(G)
(33,9) 486 283 (22,64) 512 263
(35) 486 364 (44) 512 271
(52,10) 500 282 (22,82) 512 271
(3,84) 504 258 (2,42,8) 512 271
(6,42) 504 260 (22,4,16) 512 271
(255) 510 258 (23,32) 512 271
(162) 512 259 (22,43) 512 287
(8,32) 512 259 (23,4,8) 512 287
(4,64) 512 259 (24,16) 512 287
(2,128) 512 259 (24,42) 512 319
(4,82) 512 263 (25,8) 512 319
(2,8,16) 512 263 (26,4) 512 383
(42,16) 512 263 (257) 514 258
(2,4,32) 512 263

TABLE 3. Abelian groups A with G= D(A) ∈D(257) and exp(A)≥ 3

n is divisible by two distinct primes. It would also be interesting to consider the
proportion of bijections of prime order p which generateM0(G), and study related
problems concerning the random generation of such near-rings.
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