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Fixed point spaces in actions of classical algebraic groups

Timothy C. Burness
(Communicated by R. M. Guralnick)

Abstract. Let G be a simple classical algebraic group over an algebraically closed field K of
characteristic p > 0, and let H be a maximal closed non-subspace subgroup of G. Given such a
pair (G, H), we obtain a close to best possible upper bound for the ratio dim(x N H)/dim x,
where x € G is a semisimple or unipotent element of prime order. We apply this result to the
study of fixed point spaces.

1 Introduction

Let G be a simple classical algebraic group over an algebraically closed field K of
arbitrary characteristic p > 0. If G has natural module V', we write G = CI(V). Fol-
lowing [19], we say that a maximal closed subgroup H of G is a subspace subgroup if
it is reducible on V¥, or if it is an orthogonal group on ¥ embedded in a symplectic
group with p = 2.

The major motivation for this paper arises from a result of Liebeck and Shalev
concerning finite almost simple classical groups [19, Theorem (%)]. This result states
that there exists a constant ¢ > 0 such that, if X is any finite almost simple classical
group, M is a maximal subgroup of X which is not a subspace subgroup, and x € X
is an element of prime order, then

IX¥ N M| < |x¥|)'°. (1)

In [19], the authors apply Theorem () to a number of problems concerning finite
simple groups and finite permutation groups. Among other things, they use the result
to obtain lower bounds for fixed point ratios of primitive actions of classical groups,
to prove the Cameron—Kantor base conjecture, and to prove a major part of the
Guralnick—Thompson genus conjecture. Theorem (%) of [19] is an existence result,
and offers no information on the value of 4 in (1); as a consequence, the applications
in [19] also involve undetermined constants. It is very desirable to strengthen these
results with explicit constants.

In this paper, we obtain a result analogous to [19, Theorem (x)] for algebraic
groups. If x is a prime order semisimple or unipotent element of a simple classical
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algebraic group G, then in Theorem 1 below we find an explicit z > 0 with the prop-
erty that for all non-subspace maximal closed subgroups H of G,

dim(x® N H)
dim x©

<1 —1

In general 1 = 1/2, with some explicit exceptions. We then apply this result to the
study of fixed point spaces Cq(x), where Q = G/J is a coset variety, x € G and

Cao(x) ={weQ: wx =w}.

We obtain a number of corollaries concerning lower bounds for the codimension of
Co(x) in Q.

In future work, we plan to use Theorem 1 and its corollaries to strengthen [19,
Theorem (*)] for finite groups by providing an explicit constant ¢ > 0 in (1). This will
yield explicit bounds in the several applications described above.

Theorem 1. If G = CI(V') is a simple classical algebraic group and H is a maximal
closed subgroup of G which is not a subspace subgroup, and x € G is a non-scalar
semisimple or unipotent element of prime order, then

dim(x?N H)

1
dimxG S22 78

where ¢ = 0 or (G, H°,¢) is given in Table 1.

Table 1

G p H° &

SL,, | arbitrary | Sp,, 1/2n
Sp,, | arbitrary | Sp2 1/2n+2)
SO,, | arbitrary | GL, | 1/(2n—2)

SO; | #2 G | 1/4
Sp6 2 G2 1/4
SOg | #2 SO; | 1/3
SOs | 2 Spe | 1/3

Remark 1. Note that for (G, H°) as listed in the last four rows of Table 1, H® is
irreducibly embedded in G.

Remark 2. The bounds listed in Table 1 are best possible. Examples for which we
have equality are given in Table 2. We also record some examples where an upper
bound of 1/2 is sharp. Here the matrix notation is taken from [5] (see Section 2 for a
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description). In Lemmas 7.6 and 7.7, we demonstrate the sharpness of the upper
bounds recorded in 1 for the irreducible embeddings.

Table 2
G H° P X dim x*° /dim x ¢
SL,, Spa,, arbitrary | [A,,27'1,]° 1/2+1/2n
#2 (73] 1/2+1/2n
Sp,, Spf arbitrary (AL, 2~ I,,/z, Myyay A~ I,,/z} 1/24+1/(2n+2)
#2 /7] 1/24+1/2n+2)
SOy, GL, arbitrary | [Al2, A" I,,/27 My, - I,,/z} 1/24+1/2n-2)
(n even) arbitrary | [JJ 1/2+1/(2n-2)
SL2n SOZn #2 [71/1’1”] 1/2
(n even)
SLany SO241 #2 +[~Lur1, L] 1/2
SLa, GL2NSL,, | arbitrary | [4, 4] 1/2
Spa, GL, #2 (D, Ly, D, 1) 1/2
SO», SO? £2 (b, 1,5, —b, I,_;] 1/2

t 4 e SL, is any semisimple or unipotent matrix.

Recall that if X is a finite group acting transitively on a set A, then the fixed point
ratio of an element x € X is defined to be the proportion of points fixed by x. Bounds
on fixed point ratios for actions of finite groups of Lie type have been obtained and
applied in a number of papers (see [7], [8], [9], [11] for example). Now, if G is an
algebraic group, x € G and Q is a homogeneous G-space, then the codimension

f(x,Q) = dimQ — dim Cq(x)

provides a natural algebraic group analogue of the notion of fixed point ratio. In
[16], the authors obtain close to best possible lower bounds for f(x, Q), where x is an
arbitrary element of an exceptional simple algebraic group G. Now from [16, (1.14)]
we have

f(x,G/H) = dimx® — dim(x° N H),

so in a similar spirit to [16], we may use Theorem 1 to obtain lower bounds for
f(x,G/H), when G is classical.

Corollary 1. Let G be a simple classical algebraic group over an algebraically closed
field of characteristic p = 0, and let Q = G/J, where the closed subgroup J lies in a

maximal non-subspace subgroup H of G. Then for an arbitrary non-scalar element
x € G,

f(x,Q) = (§—¢) dimx€,

where ¢ = 0 is as given in Theorem 1 for the pair (G, H°).
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Given x € G = CI(V), let v(x) denote the codimension of the largest eigenspace of
x on V. In Proposition 2.9, we obtain bounds on dim x¢ in terms of v(x). As a result,
we have the following corollary which is in a similar spirit to the results of Gluck and
Magaard in [9, §§1.3, 1.4] on finite groups of classical Lie type, where the authors
obtain upper bounds for certain fixed point ratios of a unipotent element g in terms

of v(g).

Corollary 2. With (G,Q,¢) as in Corollary 1, let n denote the dimension of the natural
G-module. Set t =1 if G = SL,, and t = 0 otherwise. If x € G and v(x) = s then

[(x,Q) = (5-¢)M,

where

M:max((l+t)s(n—s— 1),2” (s - 1)).

If G is a simple classical algebraic group and x € G, then it is well known that
dim x% > 2r, where r denotes the rank of G. Therefore we also have the following
immediate corollary.

Corollary 3. With (G,Q,¢) as above, and r = rank G, for an arbitrary non-scalar ele-
ment x € G we have

f(x,Q) =r(l —2e).

The structure of the paper is as follows. In Section 2 we introduce a number of
preliminary results taken from the literature which we will need to prove Theorem 1.
In [18, Theorem 1], Liebeck and Seitz classify the maximal closed subgroups of a
simple classical algebraic group G = CI(V'). They define six families %, ..., % of
maximal closed subgroups, and they show that for every closed subgroup H either H
is contained in a member of some %;, or modulo scalars, H is quasisimple and E(H)
is irreducible on V. For the purpose of proving Theorem 1, we may ignore the classes
%) and %5 for they consist of subspace subgroups and finite subgroups respectively.
In Sections 3—-6 we prove that the conclusion of Theorem 1 is true when the maximal
closed subgroup is a member of one of the classes %», 43, €4 and %, respectively (see
Section 2 for a description of these classes). In Section 7 we complete the proof of
Theorem 1 by dealing with the case where H is not a member of any of the classes %.
Here H* is simple and irreducibly embedded in G and our proof relies on recent work
of Liibeck [20] and Guralnick—Saxl [12] on the irreducible representations of simple
algebraic groups. Finally, in Section 8 we use Theorem 1 to derive lower bounds for
the codimension of Cq(x) in Q, and prove Corollary 1.

2 Preliminary results

In this section we introduce some notation and results which we shall need for the
proof of Theorem 1.
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Following [5], we denote by [M), ..., M,] a block diagonal matrix with matrices
M,,..., M, down the diagonal. We use [J;”] to denote a block diagonal matrix with
m unipotent Jordan i-blocks down the diagonal. If {e, fi,...,e;, fi} denotes a stan-
dard symplectic or orthogonal basis of the natural G-module (as described in [14,
§2.5]) then unless otherwise stated, all symplectic or orthogonal matrices will be
written with respect to this specific basis ordering. However, it will also be necessary
from time to time to consider the ordering {ey,..., e, f1,-.., fi}, and any matrix 4
written with respect to this ordering will be denoted by [A4]".

In this preliminary section, we are primarily concerned with obtaining bounds on
dim x?, where H is a reductive group, and x is semisimple or unipotent. The most
basic result in this direction is the following well-known proposition. We can say
much more when H° is semisimple and x is an involution, as the subsequent result
demonstrates.

Proposition 2.1 ([13, (1.6)]). If H is a connected reductive algebraic group and x € H,
then dim Cy(x) = rank H.

Proposition 2.2 ([16, (1.5)]). Let H be an algebraic group with H° semisimple. If x € H
is an involution, then

dim Cge(x) = |ZF(H?)|,
where LT (H®) denotes the set of positive roots in the associated root system of H°.

If G is a simple classical algebraic group, and x € G is a semisimple element then
we can easily calculate dim Cg(x) from knowledge of the eigenvalues of x. The case
where x is unipotent is not as straightforward and to calculate unipotent class di-
mensions we shall make much use of the following proposition. The classification of
involution classes in G = SO, when p =2 is given in [2] and we use the notation
therein for the class representatives.

Proposition 2.3 ([16, (1.10)]). Let G be a simple classical algebraic group over an
algebraically closed field of characteristic p = 0, and let u be a non-identity unipotent
element in G. Suppose that for each i the Jordan canonical form for u has precisely n;
Jordan blocks of size i.

(1) If G = SL,, then

dim Cg(u) =2 "inm; + > inf — 1.

i<j i

(i) If G = Sp,,, with p # 2, then n; is even whenever i is odd, and

dim Cg(u) = Z inn; +%Zin,-2 —I—%Zn,-.

i<j iodd
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(iil) If G = SO, with p # 2, then n; is even whenever i is even, and

Zn,-.

1 1
dim Cg(u) = Z ininj + EZ in? — 3
i iodd

i<j

(iv) If G = SO, with p =2 and m = |n/2| then the conjugacy classes of involutions
in G are represented by elements ay—i, cm—i (With 0 < k < m and m — k even), and if
n=2m+ 1 there is a further class by (with 0 < k < m and m — k odd), where each
of ay—ky bim—i, Cm—i has m — k Jordan 2-blocks and the rest of size 1. If n=2m+ 1
then

dim Co(ap_) = m?> + m+ k>, dim Cg(bp_i) = dim Cg(cp_i) = m?> + k* + k;

and if n = 2m then

2 _m+ k>

dim Cg(ap i) = m* + k> —k, dim Cg(cpni) =m
Proof. Parts (i), (ii) and (iii) follow from [22, pp. 34-39], and (iv) follows from [2,
§7, 8].

It is well known that in good characteristic the unipotent conjugacy classes in a
simple classical algebraic group G are parametrized by a subset . of the set of all
partitions of n = dim V, where V is the natural G-module (see [13, §7]). For example,
if G = SL,, then the unipotent conjugacy classes are in 1-1 correspondence with the
set of all partitions of n, whereas if G = Sp,,, then only those partitions of n where
odd parts occur with even multiplicity correspond in a 1-1 fashion with the unipotent
classes in G. In all cases the correspondence is given by

(n%, .. 1) L [J0 . J0° (2)

In a simple algebraic group G, conjugacy classes are closed precisely when their
elements are semisimple (see [13, Proposition 1.7]). Let % denote the collection of
unipotent elements in G. It is well known that % is a closed, irreducible subset of G
having codimension equal to the rank of G. Hence, if u € %, then the closure of the
class u¥ lies in %. This gives rise to a natural partial ordering on the collection of
unipotent classes; if u, v € % then we write u¢ < v if u lies in the closure of v?.

Lemma 2.4 ([13, (7.19)]). Let G be a simple classical algebraic group over an alge-
braically closed field K of characteristic p = 0. If G # A, assume that p # 2. Let n
denote the dimension of the natural G-module and let u’ and u{ be two unipotent
conjugacy classes in G, with corresponding partitions A,u L n. Then

ulG < uzG if and only if 1 < pu,

where the partial order on the set of all partitions of n is the usual dominance ordering.
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Definition 2.5. Let G = CI(V) be a simple classical algebraic group, and let n = dim V.
The associated partition A(x) L n of a semisimple or unipotent element x € G is defined
as follows. If x is unipotent then we define A(x) to be the partition in the correspon-
dence labelled (2). If p # 2 then dim x¢ is completely determined by A(x), and this
remains true in arbitrary characteristic if G = SL,, (see Proposition 2.3). Now sup-
pose that x € G is semisimple. The natural G-module ¥ decomposes into a direct sum
of eigenspaces under the action of x. The parts of A(x) are defined to be the dimensions
of these eigenspaces. If x € G = SL,, is semisimple and A(x) = (4y,...,4,) L n then
Ca(x)°” = (I[; GL;) N G. If G preserves a non-zero form on V' then we need to distin-
guish between non-degenerate and totally singular eigenspaces. Under the action of a
semisimple element x € G we have

V=WeW. ,oUoU)d & U oU)),

where W,; denote the non-degenerate eigenspaces corresponding to the eigen-
values +1, and every other eigenspace is totally singular and occurs in a pair (U;, U/),
where dim U; =dim U/ = 4; and U; @ U/ is non-degenerate. If « = dim W, and
b =dim W_, then we define A(x) to be the partition (a,b,/llz,...,/lf) L n, where
we set b =0 if p=2. If G=Sp, then Cg(x)° = Sp, x Sp;, x [[; GL;,. Similarly if
G = S0,

Definition 2.6. Given x € G = CI(V), define
v(x) = min{dim[V, Ax] : 1 € K*}.

Observe that v(x) > 0 if x is non-scalar, and note in general that v(x) is the co-
dimension of the largest eigenspace of x with respect to the natural action of G on V.

Remark 2.7. In view of Proposition 2.3, note that if G is of type B, or D, with p # 2
and x € G is unipotent, then v(x) must be even. Similarly, if G = C, or D, and x € G
is semisimple, then v(x) = s is even if s < n.

If xe G=CI(V) is semisimple or unipotent, it is possible to derive upper and
lower bounds for dim x¢ as functions of v(x) and dim V. Before we state and prove
this result, we first prove a useful corollary to Lemma 2.4.

Corollary 2.8. Let H = CI(W) be a simple classical algebraic group embedded in a
simple algebraic group G = CI(V') and suppose that p # 2 if G # SL(V). Let x € H be
unipotent and let y € H be a long root element. Then with respect to the actions of x
and y on V, we have v(x) = v(y).

Proof. Let dim W = d and dim V' =n, and let A L d denote the associated parti-
tion of y e H. Since y € H is a long root element, it follows that 4 = (2,1972) if
H = SL, or Sp,, and otherwise 2 = (22,197%). In any case, we have 1 <z for all
valid partitions # L d (i.e. those which correspond to unipotent classes in H), where
< denotes the dominance ordering on partitions of ¢. Hence Lemma 2.4 implies that
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yexH < xG, and thus y < x¢ as unipotent classes in G. So by a further applica-
tion of Lemma 2.4, if y¢ and x% correspond respectively to the partitions 4, L n,
then }. < fi. Now if k (resp. /) denotes the number of non-zero parts of 4 (resp. f),
then 1 < /i implies that / < k. Since v(y) = n — k and v(x) = n — I, we deduce that

v(x) = v(y).
The following is a slight improvement of [19, (3.4)].

Proposition 2.9. Let G be a simple classical algebraic group, and suppose that x € G is
a semisimple or unipotent element such that v(x) = s. In the case when p =2 and x is
unipotent assume in addition that x is an involution. Then

/(s) < dimx€ < g(s),

where f(s) and g(s) are recorded in Table 3.

Table 3
G f(s) g(s)
SL, max(2s(n — s),ns) s2n—s-1)
Sp,, max(s(2n — s), ns) $(4ns — s>+ 1)
SO, max(s(2n —s—1),n(s — 1)) %(4ns—s —25)
SOzu41 | max(s2n—s),12ns+s—2n—1)) | 1(4ns— s> +1)

Proof. The stated values for f(s) when G =SL, and G = Sp,,, follow from [19,
Lemma 3.4]. Here the authors derive upper and lower bounds for |x%|, where G, is
the fixed point subgroup of a Frobenius morphism ¢ of G, and x € G, is a prime
order semisimple or unipotent element. The proof of these bounds given in [19, (3.4)]
easily translates to the corresponding algebraic groups, and furthermore, it remains
valid for our more general hypothesis on the order of the element x.

The corresponding values for the lower bounds f'(s) stated in [19, (3.4)] for the or-
thogonal groups are slightly inaccurate. For example, suppose that G = SO,,, p # 2
and x = [J35, h,_2] € G, so that v(x) =5 <n is even. Then [19, (3.4)] implies that
dim x¢ > max(s(2n — s),ns) = s(2n — s), but using Proposition 2.3 we calculate that
dim x% = 5(2n — 5 — 1). Following the approach of [19, (3.4)], the proof of the cor-
rected bound f'(s) stated in Table 3 for G = SO,, goes as follows. First note that

s2n—s—1), if s<n
n(s—1), otherwise.

max(s2n—s—1),n(s—1)) = {

Suppose that x is semisimple and s < n, in which case s must be even, and
SOy,—s < Cg(x). It follows that dim Cg(x) < dim SOy, + dimSO;, and thus
dim x% > 2ns — 5% > s(2n — s — 1). If s = n, the largest possible centralizer is GL,,
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and so dimx% > n(n — 1) = n(2n —n — 1). Now since dim GL,, > 2 dim SO,, for all
m, it follows that if s > n, then
dim Cg(x) < dim GL2" %729 — 2,2 _ pg,

2n—s

and so dim x¢ > n(s — 1) as required.

Now assume that x is unipotent and p # 2. Suppose that the Jordan decomposition
of x has precisely n; Jordan blocks of size i, so that > in; =2n and > n; =2n —s.
From Proposition 2.3, we have dim x% = 2n*> — n — g, where

g—Zmn, 221?1 —227’11

i<j iodd

We have

:Zin,nj Zzn +2Z nin; =

i<j i<j

since the last term is non-negative. Hence, dim x¢ > n(s — 1). Similarly we can show
that dim x¢ > s(2n — s — 1). Finally, if p = 2, then by hypothesis x is an involution
and hence s < n. Furthermore, x must be G-conjugate to [J;, >,-2,], and so using
Proposition 2.3 (iv) we see that dim x¢ > 2ns — s — s. The proof of the lower bound
for G = SO, is similar.

The values for g(s) stated in Table 3 are a slight improvement on those given
n [19, (3.4)]. The proof in each case is straightforward. For example, suppose that
G = SO,, and x € G is semisimple, with v(x) = 5. Here we have g(s) = 2ns — s2/2 — s.
Now if s is even (which must be the case if s < n) then clearly we have

dim Cg(x) = dim SOy, 5 + dim T} 5,

so that dimx? < g(s) (here 7; denotes an i-dimensional torus). If s = n is odd then
Cg(x)° = GL,, and thus dimx% = n> — n < g(n). If s > n is odd, then

dim C¢(x) = dim GL,,_, + dim T_,,,

so that dim x% < 4ns — 2n® — s> — s which is less than g(s) for n < s <2n—1. Using

Lemma 2.4, we see that when p # 2 the largest unipotent class x¢ such that v(x) = s
is given by [Jyi1, Dhp—s— 1] . This class has dimension g(s). By hypothesis, if p = 2 we
need only consider involution classes. From Proposition 2.3 (iv) we see that the larger
unipotent class of involutions has dimension 2ns — s2. This is at most g(s) since s > 0
is even. The stated values for g(s) for the other types of G are just as easily verified.

Remark 2.10. The bounds recorded in Table 3 are useful in general arguments, al-
though not surprisingly, we can obtain better bounds given an explicit pair (G, s). If x
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is unipotent we can appeal to Proposition 2.3 and Lemma 2.4, and for x semisimple,
calculating the largest and smallest possible centralizers of x in G is quite straight-
forward. We illustrate this with an example.

Suppose that G = SO, and v(x) = 12. If x is semisimple, then in arbitrary char-
acteristic we clearly have

dim(SOg X T6) < dim Cg(x) < dim(GLg X SO4),

and so 120 < dim x¢ < 156. If x is unipotent, we are interested in the 8-part partitions
of 20, where even parts occur with even multiplicity. With respect to the dominance
ordering on partitions, the least and greatest such partitions are (34,24) and (13,17)
respectively. If we assume that p # 2, then using Proposition 2.3 (iii) and Lemma 2.4,
we obtain exactly the same bounds for dim x¢ as in the semisimple case. This may be
compared with the bound arising from Proposition 2.9, namely 110 < dim x¢ < 174.

In Sections 3—6 we shall make much use of the ; notation of [18]. For the reader’s
convenience, we briefly define the four collections of maximal non-subspace sub-
groups H of positive dimension of a simple algebraic group G = CI(V).

Class %>. Stabilizers of orthogonal decompositions. Here H = Gy, . y,, where
V= (—D;:l Vi, t > 1 and the subspaces V; are mutually orthogonal and isometric.

Class €5. Stabilizers of totally singular decompositions. Here we have G = Sp(V)
or SO(V) and H = Gy, wry, where V=W @ W' and W, W’ are maximal totally
singular subspaces. Note that if G = SO(V) and dim V' = 2 (mod4) then H is not
maximal.

Class €4. Tensor product subgroups. In this case either V' = V; ® V, with dim V; > 1
and H = Ng(C1(V) o CI(V>)) acting naturally on the tensor product, or V' = ®lk:1 Vi
with k > 1, the V; mutually isometric and H = Ng([[ C1(V;)), again acting naturally.
See Section 5 for details of which classical subgroups appear as factors.

Class . Classical subgroups. These are the subgroups Ng(Sp(V)) and Ng(SO(V))
in G =SL(V).

Lemma 2.11. Let G = CI(V) be a simple classical algebraic group, and let H be a
maximal closed subgroup in one of the collections €;, i =2,3,4 or 6. Let x € G be a
semisimple or unipotent element. Then x N H® is a finite union of distinct H°-classes.

Proof. In each case H is a reductive group, so that H° has only finitely many dis-
tinct unipotent conjugacy classes and the result is immediate if x is unipotent. If x is
semisimple then the result follows from [16, (1.3)].

3 Proof of Theorem 1 for H € €,

Let G = CI(V) be a simple classical algebraic group, and let H = (Cl,, ! Sx) N G be
a maximal closed subgroup in the collection %,. In Lemmas 3.1 and 3.2 we suppose
that our given semisimple or unipotent element x € G satisfies
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dim(x% N H) = dim(x® N H°).

Under this hypothesis, Lemma 3.1 quickly reduces the problem to the cases when
k = 2,3, which are dealt with in Lemma 3.2. Finally, in Lemma 3.3 we complete the
proof by considering the case when dim(x% N H) # dim(x% N H°).

Lemma 3.1. Let G=Cl(V) be a simple classical algebraic group, and let
H = (Cl,, 1 Sk) NG be a maximal closed subgroup in the collection €,. Let xe€ G
be a semisimple or unipotent element, and assume that x is an involution if
p=2 and x is unipotent. If x satisfies dim(x®NH)=dim(x¢NH°) then
dim(x¢ N H)/dimx% < 1/2 for all k > 4.

Proof: From Lemma 2.11 we may assume that x € H° and dim(x% N H) = dim x/".
Since x € H®, x fixes a decomposition V = V| @ - -- @ V}, where dim V; = m for each
i. Let s = v(x) and s; = vy,(x;), where x; denotes the restriction of x to V;. Clearly we
have ), 5 <s.

Suppose that G = SL,,, so that Cl,, = GL,,. From Proposition 2.9 we deduce that
dim x°" < 25;(m — 1), and so dimx#" < 2s(m —1). A further application of 2.9
yields that dim x¢ > mks, and thus dim x?" /dimx¢ < 1/2 if k > 4.

Similarly, if G = Sp,,, then dim x> < s;m and dim x% > mks/2. The case when
G = SO, is entirely similar.

Lemma 3.2. Let G=ClV) be a simple classical algebraic group, and let
H = (Cl,, 1 Sk) N G be a maximal closed subgroup in the collection €,. Let x € G be a
semisimple or unipotent element such that dim(x® N H) = dim(x® N H°), and assume
that x is an involution if x is unipotent and p = 2. Then the conclusion of Theorem 1 is
true for all such elements.

Proof. Write V=V, @ --- ® V}, where dim V; = m. With reference to Lemma 2.11,
we may assume that x € H° and dim(x“ N H) = dim x/", and from Lemma 3.1, we
may assume that k = 2 or 3. Let x; denote the restriction of x to V; and let 7; L m
be the associated partition to x; with respect to the action on V; (see Definition 2.5).
Then dim Cp-(x) is completely determined by the partitions {z;}, unless p =2, x
is unipotent and G is Spy,, or SOy,. To be precise, dim Cy-(x) = >, dim Cgj,, (x;).
Furthermore, if x is unipotent, then dim Cg(x) is determined by the partition
n=(m,...,m) L km and we use Proposition 2.3 to compute dimensions.

If x is semisimple, then dim Cg(x) is not determined (in general) by the associated
partitions {z;}. However we can quite easily compute a sharp upper bound. For
example, suppose that k = 2 and x € Sp,,, is semisimple with associated partitions

m = (2a,2b,2%,...,22), m = (2¢,2d,13,..., 1) L m, (3)

where in accordance with Definition 2.5 the first two parts of each partition denote
the dimensions of the non-degenerate eigenspaces of x;, and b =d =0 if p = 2. We
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may assume without loss of generality that 4y > --- =2 4, uy = --- = py,a=b,c>d
and r > ¢. If r > ¢ then set y; = 0 for r < i <r. It is clear that

SPaare) X SPapray X GLyy4p, X -+ X GLj 4y,

is the largest possible centralizer of x in G.

In general, given a semisimple or unipotent element x € H°, let dim x¢ > B(x) be
the sharp lower bound derived from the associated partitions {z;} (we have equality
if x is unipotent). We then define

a(x) = (1 4 2¢)p(x) — 2dim x"", (4)
where ¢ = ¢(G, H°) is given in the statement of Theorem 1. If a(x) > 0 for each pos-
sible pair of partitions 7; and 7, then

dimxf 1
< 5+te

dimx¢ 2

as required.

Let G =SL,,, and H = (GL,, 1 S2) NG, so that e = 0. Let x € H° be semisimple,
with associated partitions 7y = (41,...,4,) and 7y = (4y,...,4,). We may assume
that each 7; has decreasing parts and that » > ¢. If r > ¢t then set i, =0 for t < i < r.
One can easily verify that

R SR SITEE S

and thus o(x) =Y (4 — ;)2 = 0. If x € H° is unipotent with 7; 1 m given by
m o= (m,. . 1), my=(m, .. 1), (5)

then

dimx© =4m® =2 "i(a;+ bi)(aj + by) = Y _ilai +b;)?,

i<j i
and
m m

o(x) = Z (Z(aj - bj))z > 0.

i=1 J=i

Now suppose that G =Sp,,, and H = (Sp,,1S>)NG. In this case we have
e¢=1/(2m+ 2). Let m = 2I. If x € H° is semisimple with associated partitions 7; and
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7, labelled as in (3) (with the corresponding assumptions on parts) then one calcu-
lates that

a(x) =212+ 2l(a—c)* +21(b —d)* + l(a+ b+ c+d)
+ IZ()W - ﬂi)z - 22/1,-/1,- —4ac — 4bd.

Hence a(x) >0since l=a+b+ >, li=c+d+> ;. If p#2and x e H° is uni-
potent with the {r;} labelled as in (5), then

m m

a(x) = (1+1)) (Z(aj - b,-))2 +A42 = iaf +b7)

i—1 - j=i i

— 22 i(a,»aj + bibj) + lZ(ai + bl)

i<j iodd

where m = 2[. Since 2/ = )", ia; = ), ib;, we deduce that a(x) > 0. The case when
G = SOy, (with p # 2 if x is unipotent) is entirely similar and we leave it to the
reader.

From Proposition 2.3 (iv) we deduce that if G = Sp,,, or SO,,, and x € H° is
a unipotent involution (so that p =2) then we need only consider the elements
a1, a1-] = @y (r15) and [c;—r,ci1—s] = [¢py_(r15] fOr all r and s in the range 1 <7,
s < I, with / — r and / — s even, where / = |m/2] and in the notation of [2], ; and ¢;
are unipotent involution class representatives in Cl,,. This is very straightforward.
For example, suppose that

G =8S0y041) and  x = [¢c1—y, c1-] = [Cop1-(rps41)]-
Then from Proposition 2.3 (iv) we compute that
a(x) =120+ (r —s)* = 2r — 25 > 0.

Similarly if £ = 3.

If k = 3 then in each case (G, H®), one easily deduces that a(x) > 0 for all semi-
simple elements x € H°. The arguments are entirely similar to those given previously
for the case when k = 2.

If G =SLs,,, H = (GL,,1S3) N G, and x € H° is unipotent, then with 7; and 7, as

in (5), and 73 = (m“,..., 1) L m, we have
o(x) = dim x4 (Z(a/‘ - b./))z + (Z(“j - Cj))2 +> (Z(bj - C./))z,
=1 =i =1 =i =1 =i

so that a(x) = 0.
With the same labelling of the associated partitions {r;}, if x € Sps,, is unipotent
and p # 2 we have
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() — dim x" *Z( (aj,bj))2+z (Z(aj*c]'))z
i=1 = j=i =
+ 3 (f:(b/ - c/'))2 — 61 +%Z(“i +bit+a),
- = iodd

where m = 21. Then a(x) > 0 since dim x** > 6/. Similarly if x € SO3,, is unipotent
and p # 2.

Lemma 3.3. Let G be a simple classical algebraic group, and let H = (Cl,,1.S;) N G be
a maximal closed subgroup in the collection €,. Let x € G be a semisimple or unipotent
element of prime order. Then the conclusion of Theorem 1 is true.

Proof. In view of Lemma 3.2, we may assume that dim(x% N H) = dim(x% N H°r),
where 1 # 7 € Si. We follow closely the proof of [19, Lemma 4.5].

Replacing x by a suitable G-conjugate, we may assume that x € H°zx, i.e. x is the
image of (b, ...,bx)n, where b; € Cl,, for each i. Let r denote the (prime) order of x,
hence of # and each b;, and suppose that = comprises exactly 4 r-cycles and f fixed
points. From the proof of [19, Lemma 4.5] we have the following important facts:

(¢) x is H°-conjugate to bz, where b = (1,...,1,bpi1,. .., bk),
(*) v(x) = mh(r—1).

We may assume that dim(x% N H) = dim x/". This follows immediately from the
fact that x¢ N H°x is a finite union of H°-classes. To see this, note that the reductive
algebraic group Cl,, only has finitely many distinct classes of semisimple or unipotent
elements of prime order r, and so the claim follows from (o).

Suppose that H = (GL,, 2 Sx) N SL,, so that dim H = km? — 1. Using the fact that
v(x) = mh(r — 1), we see that Proposition 2.9 implies that dim x% > m*kh(r — 1). So

dim(x% N H) - km? — 1 <l
dimx¢ = km2h(r—1) "2’

unless (h,r) = (1,2). If (h,r) = (1,2) then x is an involution and from (¢), with-
out any loss of generality, we may take x to be the image of 5(12), where
b= (Iy,In,bs,...,b;) and the b; € GL,, are involutions. One easily checks that if
t € GL,, is an involution then dim S < m?/2. Hence

dim Cpe (x) = dim Cgp ¢ (x) = m? +Im* (k - 2),
so that dim(x9 N H) = dimx/" < km?/2. Since v(x) > m, Proposition 2.9 implies
that dim x¢ > km? and thus dim(x% N H)/dim x% < 1/2 as required.

Now consider H = (Sp,, 1 Sx) N Sp,,- Using (x) with Proposition 2.9, and the
bound dim(x¢ N H) < dim H, we quickly reduce to the cases (,r) = (1,2),(2,2) and
(1,3). Let m = 2.

Suppose that (h,r) = (1,3). Following [19, (3.4)], we may assume that
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x = (b, by, by, ba, - - - by ) (123),

where each b; € Sp,, is an element of order 3. We claim that dim Cs,, (b;) > 2/%/3 for
each i. If x (and thus each b;) is semisimple of order 3 then Cs;,, (b;) = Spy; x GL;,
for some 0 < j</ Let ¢(j)=dim(Sp, x GL; ;). One easily checks that for
0 < j <1, we have ¢(j) >21*/3+1/3—1/12 > 2/?/3. Now suppose that x is uni-
potent, so that by hypothesis we must have p = 3. We may assume that / > 1. Write
2] = 3a + b, where 0 < b < 3. Since the Jordan form of 5; cannot have a Jordan block
of size j > 3, it follows from Lemma 2.4 that the largest unipotent class in Sp,; of ele-
ments of order 3 is represented by y = [J{, J,]. We calculate using Proposition 2.3 (ii)
that dim Cs,, (y) = 3a?/2 +ab+a/2 + b/2. Since 21?/3 = 3a?/2 + b*/2 + ab, and
0 < b < 2, we deduce that dim Cs,,(y) = 2/%/3 as claimed.
From the claim it follows that

dimx"" < dim H — dim Sp,, — 2/%(k — 3) = 4kI* + Ik — L.

From Proposition 2.9 we have dim x¢ > 4/%k since v(x) > 4/ from (). When / > 2,
these bounds are sufficient to yield dim(x% N H)/dimx% < 1/2. If 1 € Sp, has order
3, then it is clear that dim Csp, () = 1, so that dim(x% N H) < 2k. This is sufficient
since we have dim x¢ > 4k.

Assume now that (4, r) = (2,2); in this case we have k > 4 and x is an involution.
Without loss of generality, we may take

X = (Do, Iy, Iy, Iy, bs, .. by ) (12)(34),

where each b;eSp, is an involution. Now from Proposition 2.2 we have
dim Cs,, (b;) = I? for each i, and hence

dim x*" < dim H — 2dim Sp,, — (k — 4)/>.

Since (h,r) = (2,2), it follows from (x) that v(x) > 4/, and thus dim x¢ > 4/’k (by
Proposition 2.9). This is sufficient to imply that dim(x% N H)/dimx% < 1/2 for all
possible /, k.

This leaves us to deal with the case (#,r) = (1,2). Following the same procedure as
in the previous case, we deduce that dim(x“ N H) < kI*> + kI — I. From Proposition
2.9 we have dim x¢ > 4/%(k — 1) since v(x) > 2/. Using these bounds, we deduce that
dim(x“ N H)/dimx% < 1/2 unless k =2 or (k,[) = (3,1). Consider the latter case.
As usual, we may assume that x = (I, I,b)(12), where b € Sp, satisfies b> = I,. If
x is semisimple then » must be scalar, so that dim(x“ N H) < 3 and dim x¢ = 8. If
b is a unipotent involution then dim Cy-(x) =4 and x is G-conjugate to [J;]. So
dim(x“N H) < 5 and dim x% = 12, which yields a ratio of 5/12 < 1/2.

Finally, note that if kX = 2 then from the statement of Theorem 1 we have ¢ = 1/4/.
We may take x = (I, I5)(12), so that dim x% = 4/ (note that x is an a»; involution
if p =2). Since Cp-(x) = Sp,,, it follows that
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dim(xGﬂH)<2lz+l_l+l
dimx¢ T 42 2 4

as required.

The final case to consider is H = (SO,, ! Sk) NSO,. Using the bounds
dim(x“ N H) < dim H =} (km? — km) and dimx® > mk(mh(r — 1) — 1) (via ()
and Proposition 2.9), we deduce that dim(x® N H)/dim H < 1/2 unless (h,r) = (1,2).
Suppose that m = 2/. Now, if ¢ € SOy is an involution, then from Proposition 2.2 we
have dim 759 < /2. Hence

dim(x°NH) < (k—1)2* = 1) — (k = 2)> = kI* — kI + 1,

and since dimx% > 2lk(2/ — 1), this implies that dim(x®N H)/dim H < 1/2. Sim-
ilarly if m =2/ + 1.

4 Proof of Theorem 1 for H € €5

As described in Section 2, here G = Sp,, or SO,,, and H = Stabg{U, W}, where
U and W are maximal totally singular subspaces of the natural G-module. Hence
H° =~ GL, and |H : H°| = 2. In fact,

Hoz{(g A0T> ;AeGLn};GLn (6)

Lemma 4.1. If G = Sp,,, and H € € then the conclusion of Theorem 1 is true.

Proof. Note that if p=2 then H is not maximal in G since H < Oy, < G,
and so by hypothesis, we may assume that p # 2. We begin by assuming that
dim(x® N H) = dim(x® N H°). From Lemma 2.11, we may assume without loss of
generality that x € H° and dim(x% N H) = dimx/". We follow a similar approach
to that in the proof of Lemma 3.2. Given x € H° = GL,, semisimple or unipotent,
the associated partition A L n derived from the action of x on the natural GL,-
module completely determines dim Cp-(x). From 1 we obtain a sharp lower bound
dim x¢ > f(x) and we define «(x) as in equation (4).

Suppose that x e H° = GL,, is semisimple, and let 1= (4,...,4) L n be the
associated partition. We may assume that A; > --- > A4; > 0 and that k is even.
Clearly Cy-(x)° = [, GL;,, and so dim x#° = n2 — 3°F 72, There are two possible
candidates for the centralizer Cg(x)° of maximal dimension, namely

(1) SpZ/ll X Sp2/12 X GL/13+/14 X X GLik—H’ik’
(11) Sp2/l| X GL)~2+;L} X X GL}-k—2+Ak—l X GLAk.

In (i) we calculate that «(x) = S2¥2(Zoi 1 — Z21)* + 1 — A1 — Ay > 0. Similarly for
(ii).

If x € H® is unipotent, let A = (n“,...,1%) L n be the associated partition. It is a
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basic fact of linear algebra that if 4 € GL, is unipotent then 4 and 4~7 are GL,-

conjugate. Hence in view of the isomorphism (6), considering x as an element of Sp,,

the associated partition is (n2%,...,12*) 1 2n and thus dim x¢ is completely deter-

mined by A since p # 2. From Proposition 2.3 we deduce that a(x) =n— )", 44 @ = 0.
Now suppose that dim(x% N H) # dim(x9 N H°). We can assume that

I,
xeH—-H°=H°t wherer—< I )esz,,,

with respect to the basis ordering {ei,..., ey, fi,..., fa} of a standard symplectic
basis of the natural Sp,,-module. Furthermore, we may assume that x is an involu-
tion since we are only concerned with elements of prime order. It is clear that t in-
duces an involutory graph automorphism of 4, | < H°.

If n=2m+ 1 then from [16, (1.4)] we know that there exists a unique H°-class
of involutions in H°z, and Cy4, ,(x) = B,, for any x in this class. Since 7 is an invo-
lution in the adjoint group PSp,,, we may take x = r. Now 7 does not centralize the
T; torus in H° = T1A,,_;, and so

Cyo(t) =B, and dim(z°NH)=dimt? =2m> 4 3m+ 1.
Since Cs(t7) = GL,, we have dim ¢ = 4m? + 6m + 2 and
dim(z“NH)/dimt% = 1/2.

Now suppose that n = 2m. From [16, (1.4)] we know that there are precisely two
distinct H°-conjugacy classes of involutions in H°t, and so we may assume that
dim(x¢ N H) = dimx". As before we have C;(r) = GL, and Cy:(t) = SO,, and
thus dim /" /dim % = 1/2. For a representative of the other class of involutions in
H°z, consider the element w € H°t, where the action of w on a standard symplectic
basis of the natural Sp,,-module is given by

ei = fompi—i (1 <i<m),
e —fam1-i (m+1<i<2m),
fi —eapi (1<i<m),

(

fi— emr1—i m+1<i<2m).

Since w? = b, and > = —I,,, we conclude that w is not G-conjugate to 7. Clearly we
have Cg(w) = Sp?, so that dimw? = n?. A straightforward direct calculation yields
that Cy4, ,(w) = Sp,, and since @ does not centralize the 7 torus, we deduce that
dimw?" =n?/2 — n/2, so that dim(w® N H)/dimw® =1/2 - 1/2n.

Lemma 4.2. [f G = SO, and H € €5 then the conclusion of Theorem 1 is true.
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Proof. Recall from the statement of Theorem 1 that we have ¢ = 1/(2n — 2) in this
case. We need only consider the case n = 2m, since otherwise H is not maximal in G.
We adopt the same approach as for Lemma 4.1.

Suppose that dim(x¢N H) = dim(x¢ N H°). We may assume that x e H° and
dim(x% N H) = dim x°. If x is semisimple, let A = (4;,...,4) L n be the associated
partition with /; > --- > J and k even. Then dimx"" =n> — 3", /7 and there are
three possible candidates for the centralizer Cg(x)° of largest dimension:

(1) SOM1 X SOz;(z X GL&3+)V4 X - X GL/ik,1+2,(§
(11) SOQ,{l X GL;~2+13 X e X GL;~k72+;~k71 X GL,{,(;
(111) GL).|+/12 X GLMJrM X oo X GL,{k71+,1k;

here case (i) is only possible if p # 2.

For each possibility, we calculate f(x) and derive «(x) as before. We then show
that a(x) > 0 for all partitions A L n. The approach in each case is similar, and so we
shall only deal with (i), and leave (ii) and (iii) to the reader. In (i) we have

k k/2
Bx)=2n" —n—A7 =25 +d+ha =D i =2 oiiiai
i=1 i=2

and

k/2

o(x) Z’ZZUQH — o)) + 0+ n(d + A) ZZA

i=2

Since n =), 4;, we deduce that o(x) > 0.

Now suppose that xe H° is unipotent and p # 2. As in Lemma 4.1, if
A= (n%,...,1%) L n is the associated partition of x with respect to the natural
GL,-module then = (n%* ..., 12) 1 2n is the partition of x as an element of
SO,,. Via Proposition 2.3(iii) we calculate that

a(x) = dim x# ——n(n - Za,)
iodd
Suppose that v(x) = s, so that n —s = >, a;. Then by Proposition 2.9 we have
dimx® > ns= n(n - Zai).
i
Nown—> ,a; =n/2 -3, 4q4/2since n = .ia;, and hence o(x) > 0 as required.

If p = 2, we proceed as in Lemma 4.1, using Proposition 2.3 to calculate dim x "
and dimx¢ for each unipotent involution x € H°. If x has associated partition
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(27,1"=2r) 1| n, then dim x** = 2nr — 2r? and dim x¢ = 4nr — 4r> — 2r since x € G is
an involution of type a,,. Hence

dimxH°_1+ 1 <1+ 1
dimx® 2 " 4n—4r—2 "2 2n-2’

since n = 2r.
Now suppose that dim(x¢N H) # dim(x¢ N H°). As in Lemma 4.1, we may

choose x € H°t, where
I,
T= ( > € SOQn,
I,

with respect to the basis ordering {e,...,en, fi,..., fu} of a standard orthogonal
basis of the natural SO;,-module. As before, 7 induces an involutory graph auto-
morphism of A, ;, and since n = 2m, there are precisely two distinct involution

classes in H°t. We have 72> = I, and as before, when p # 2, we calculate that
Cs(t) = SO? and Cy-(7) = SO,, so that

dime” 1,1 1,
dim<6 2 ' 2n 2" °%

We can represent the other class by the element 6 € H°7 defined as follows:

e —famp1—i (1 <i<m),
eir fomp1-i  (m+1<i<2m),
i —emri—i (1 <i<im),
(

ﬁ = €2m+1-i m+1<i< 2m)

Since 07 = —b,, 0 does indeed lie in the other involution class. Now Cg(6) = GL,
and Cy-(0) = Sp,, and thus dim " /dim #¢ = 1/2. Finally, suppose that p = 2.
In this case, r and 6 are c¢;, and a, unipotent involutions respectively, and
Cy- (1) = Csp,, (t) and Cp-(0) = Sp,,,, where t € Sp,,,, is a long root involution. We
conclude that dim t/”° /dim 7% = 1/2 + 1/2n and dim 0" /dim 0¢ = 1/2.

5 Proof of Theorem 1 for H € €4

Lemma 5.1. If G = SL,, and H = Ng(SL, ® SLy) (where n = ab and a,b > 2) then the
conclusion of Theorem 1 is true.

Proof. Clearly it is sufficient to prove that Theorem 1 holds when G = PSL,,
and H = Ng(PSL, x PSL;). We may assume that a > b. Given he H, define
@, € Aut(PSL, x PSL,) by

o,(x,y) =h""(x, y)h for all x € PSL,, y € PSL,.
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Since each factor is simple, it follows that ¢, either fixes each factor, or interchanges
the factors. Of course, ¢, can only interchange (algebraically) isomorphic factors, and
so we have

Ho H°, ifa#b
~ \H°UH®t, ifa=5b

where H° = PSL, x PSL,, and 7 interchanges factors, i.e. ¢.(x, y) = (y, x).

Let x € G be a semisimple or unipotent element, and assume to begin with that
dim(x¢ N H) = dim(x“ N H°). From Lemma 2.11 we may assume that x € H° and
dim(x® N H) = dimx"". Let v(x) = s. If s > n/2 then we deduce from Proposition
2.3 that dimx“ > n?/2. Since dimx”" < a?> —a+b> — b and n = ab, we conclude
that dim x#" /dim x¢ < 1/2 for all a,b > 2. If s < n/2 we follow closely the method
of Liebeck and Shalev in [19, Lemma 4.3]. Write x = (x1,x3) € PSL, x PSL;. Let
v(x) =s and v(x;) =s;, with respect to the obvious natural modules. From [19,
Lemma 3.7] we have s > max(ass,bs;) and using the upper bound stated in [19,
(3.4)], we have

s227bss2

e
< . _
b2 a a?’

. 2as
dimx < max  {2as; — s} +2bs; — 53} < T~ —
s1<s/b,s2<s/a b

since the maximum is clearly attained when s; = s/b and s, = s/a. From Proposi-
tion 2.9, we have dimx? > 2s(n —s), and using these bounds we calculate that
dimx" /dim x% < 1/2 if g(a,n,s) = 0, where

gla,n,s) = s(n*(1 — a*) + a*) + n’*(a* — 2) — 2na*.

Since n*(1 —a?) +a* <0 and s < n/2, it follows that g(a,n,s) = g(a,n,5(n - 1)),
and it is easily checked that g(a,n,}(n— 1)) = 0 for all possible (a,n) (with n < a?
since we assume that ¢ > b), unless (a,n) = (2,4). However we can exclude this case
since if (a,n) = (2,4) and s < 1 then [19, (3.7)] implies that s; = s, = 0, which in turn
implies that x is scalar.

Now suppose that dim(x% N H) # dim(x% N H°), so that a = b and we may as-

sume that x € H°z. The action of 7 on a basis of V' = V, ® V, is given by
Ui @ vy — U @ vy,

unless p # 2 and $a(a — 1) is odd, where in order to ensure that ¢ has determinant
1 we take v; ® v; — Av; ® v;, where A € K satisfies A% = —1. Since 7 is an involution
and we are only interested in elements of prime order, we need only consider involu-
tions in H°z. From the proof of [19, Lemma 4.5] (cf. () from the proof of Lemma
3.3) we deduce that /" is the unique H°-class of involutions in H°z. Clearly there
exists a basis for V, ® V, with respect to which 7 has the matrix [4",1,], where

2r = a? — a and
0 1
A= .
(1 o)
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Hence dim ¢

I(a* — a?). Since (g9,h)" = (h,g), it follows that Cy- () = PSL,, and
so dim /" = g% —

a* — 1. Hence dim " /dim 1% < 2/a® < 1/2, since a > 2.
Lemma 5.2. If G = Sp,,, and H = Ng(Sp,, ® SO;) (Where p #2, n=ab, a > 1 and
b = 2) then the conclusion of Theorem 1 is true.

Proof. As before, we may assume that G is adjoint, so that
H = Ng(PSp,, x PSOp) = PSp,, x PSO,.

If x e G is semisimple or unipotent, then from Lemma 2.11 we may assume that
dim(x“ N H) = dim x*. We follow the approach of Lemma 5.1. Let v(x) =s. If
s > n then dimx% > »n?, and since dim x* < 2a” + b?/2 — b+ 1/2, we deduce that
dimx? /dimx¢ < 1/2if

n*(a® — 1) +2na — a*(4a* + 1) > 0.

This clearly holds if n > 3a. If b = 2, then dimx < 24?> and dimx% > n®> = 44>
which is sufficient.

Now suppose that v(x) = s < n, so that dim x¢ > s(2n — 5). Write x = (x1,x;) € H
and v(x;) = s;. Then from [19, (3.7)] and [19, (3.4)] we have s > max(2as,, bs;) and

) 1 1
dimx? < max {531(461—51 —&—1)—1—532(219—52—1—1)}.

51 <5/b,52<s5/2a

The maximum is realized when s; and s, are as large as possible, and we calculate
that dim x” /dim x¢ < 1/2 if h(a,n,s) > 0, where

h(a,n,s) = s(n*(1 — 4a®) + 4a*) + 4n*(2a* — 1) — 2n’a — 4na’*(4a + 1).

Then h(a,n,s) = h(a,n,n — 1) = 0 unless (a,n) € {(1,2),(1,3)}. We can exclude the
case (a,n) = (1,2) since x is assumed to be non-scalar. If (a,n) = (1,3) we must have
s=2,5 =0 and s, = 1, and thus Proposition 2.9 implies that dimx? <2 and
dimx% > 8.

Lemma 5.3. Suppose that H = Ng(SL, ® SL, ® SL,), where G = Spg if p # 2 and
G = SOy if p = 2. Then the conclusion of Theorem 1 is true.

Proof. We may assume that G is adjoint. We have H/H° =~ S;, where S;
acts naturally on H° = PSLS’ by permuting factors. Let =€ .S3 be such that
dim(x% N H) = dim(x% N H°z); thus we may assume that x € H°x.

Suppose that w=1. Then from Lemma 2.11, we may assume that
dim(x% N H) = dim x"". It is clear that dim x** < 6, and from repeated application
of [19, (3.7)], we see that v(x) > 4, and hence from Proposition 2.9 we deduce that
dim x© is at least 16 if p # 2 and at least 12 if p = 2.
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Now assume that 7z is a transposition, so that we need only consider
involutions. Suppose that 7 = (12) € S3, so that if (g1,9»,93) € H® we have
(91,92,93)" = (92,91,93), and dimn" =3. The action of # on a basis of
Vo ® V, ® V; is given by

0; @ v; ® v — v ®v; ® vk,

and so it is clear that 7 is G-conjugate to [—1I, Ig] if p # 2, and to a; otherwise. Hence
dimz% =12 if p # 2 and dim 7% = 10 if p = 2. Now we easily calculate that

{(97971,2)71 : g,z € PSL,, 22 = 1}

is the complete set of involutions in H°z, and that 7" = {(g,g7", 1)n : g € PSL,}. If
z € PSL, is an involution, then

(1, 1,2)7 9" = (g,g7" b zh)m.

Since there exists a unique class of involutions in PSL;, we deduce that there are
precisely two H°-classes of involutions in H°z with representatives 7 and (1,1, z)x,
where z € PSL, is an involution. Clearly Cg-((1,1,z)n) = PSL, x Cpsr,(z), so that
dim((1,1,z)n)"" = 5. We also calculate that (1,1,z)x is G-conjugate to [—ily, ils] if
p#2, and to a4 if p =2, where i € K satisfies i2 = —1. Hence dim((1,1,2)7)“ is
equal to 20 if p # 2 and to 12 if p = 2.

Finally, suppose that x € H°w, where w = (123) € S3, so that

(91,92,93)” = (93,91, 92),

and w acts on a basis of V>, ® V>, ® V> by
0; ® v ® v — v ® U; @ v

Clearly dimw®" = 6, and as before we calculate that dimw® =22 if p # 2 and
dimw® = 18 if p = 2. From the proof of [19, Lemma 4.5] it follows that " is the
unique H°-class of elements of order 3 in H°w, and we are done.

Lemma 5.4. The conclusion of Theorem 1 is true in the remaining €4 cases.

Proof. In each case, we may assume that G is adjoint. Let x € H be semisimple
or unipotent of prime order. If G = PSL, and H = Ng(PSL!) (where 7 > 3) then
dim(x“N H) < dim H = t(a®> — 1) and Proposition 2.9 implies that

dimx% > 2(a’ — 1).

This is sufficient to imply that dim(x®N H)/dimx¢ < 1/2, unless (a,?) = (2,3).
However, we may ignore this case since H is not maximal in G (see Lemma 5.3). The
case when G = PSO,r and H = Ng(PSO!) (where a # 2,4, t > 3 and p # 2) is just as
easy. Similarly for G = PSp,.,, and H = N(PSp;,) (with p # 2 and ¢ > 3 odd); we
quickly reduce to the case (a, t) = (1,3), which has been dealt with in Lemma 5.3.
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The argument for G = PSO,.,: and H = Ng(PSp;,) (where ¢ > 3 is even, or p = 2)
is again similar. We have v(x) > 2 for all prime order semisimple and unipotent ele-
ments x € H (cf. Remark 2.7), and applying Proposition 2.9, we are left to deal with
the case (a, 1) = (1,3) for which we have Lemma 5.3.

If G =PSOy, and H = Ng(PSp,, x PSp,;) then H is connected if a # b, or if
a=b is odd. If dim(x% N H) = dim(x% N H°) then the proof is similar to Lemma
5.2. If a=b is even, then H = H° U H°t, where 7 € G interchanges the factors. As
in Lemma 5.1, there is a unique class of involutions in the coset H°z. Since 7 is
G-conjugate to [—hy_y, bhyryg) if p#2, and to ¢y, if p=2, we deduce that
dim % = 4a* — a®. Clearly Cy-(7) = Sp,,, and an upper bound of 1/2 follows im-
mediately. The case when G = PSO,,, H = Ng(PSO, x PSOy) is similar.

6 Proof of Theorem 1 for H € €

In this section, we deal with the classical subgroups Ng(Sp,,) and Ng(SO2,) in
G = SL,,. Notice that we exclude the case when G = Sp,,, H = Ng(SO,,) and p =2
since this is a subspace subgroup (see Section 1). Clearly it is sufficient to prove that
Theorem 1 holds when H € @ under the assumption that G is adjoint. We have
Npsi,, (PSp,,) = PSp,,, and Npst,,,, (SO2,41) = SO»,41 since B, and C, fail to admit
any non-trivial graph automorphisms. However, PSO,, does admit an involutory
graph automorphism 7 which interchanges the two conjugacy classes of maximal
parabolic subgroups with Levi factors A4,_;. Since 7 € GL, has determinant —1, we
have Npsy,,(PSO,,) = PSO,, if p # 2. If p =2 then Npsp, (PSO;,) is a maximal
closed subgroup of PSp,,,.

Lemma 6.1. If H is a maximal closed non-subspace subgroup in the collection €, then
the conclusion to Theorem 1 is true.

Proof. By hypothesis, H is a simple algebraic group. If x € G is semisimple or uni-
potent then by Lemma 2.11 we may assume that x € H and dim(x“ N H) = dim x/’.
The proof is very straightforward: the associated partition 4 completely determines

dim x¥ and dim x“, and we show that
a(x) = (14 2¢) dimx% — 2dimx? > 0,

for all possible associated partitions A, where ¢ = ¢(G, H®) is given in the statement of
Theorem 1.

If (G,H) = (PSL,,,,PSp,,) then ¢ = 1/2n in this case. Let x € H be semisimple
with associated partition 1 = (2a,2b, ﬂhlz, e /1,%) 1 25 in accordance with Definition
2.5. Then

a(x) = 2n® — 4a® — 4b* —2Ziiz+2na+2nb >0,
i

since n=a+b+> ;4. If p#2 and x is unipotent with partition given by
A= (2n% ..., 19) L 2n, then
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a(x) = dim x% — n(Zn - Za,).

iodd

Now if v(x) = s, then 2n — s = . a;. From Proposition 2.9 we have

dim x¢ > 2ns:n(4n—22a,~) and 4n—2Za,~ >2n— Zai
i i iodd

since 2n = ), ia;. Hence a(x) > 0.

If x is unipotent and p = 2, then by hypothesis, x is an involution and therefore
has associated partition 2 = (27, 12"=2") 1 2n for some r > 0. Using Proposition 2.3,
we calculate that dim x¢ = 4nr — 2r2, and dim x* = 2nr — r? if x is of type a,, and
2nr — r? + r otherwise. Clearly in each case we have dim x* /dimx¢ < 1/2 +1/2n.

The proof when (G, H) = (PSL,, Ng(PSO,)) is entirely similar and we leave it to
the reader.

7 Proof of Theorem 1 for H ¢ €;

Let G = CI(V') be a simple classical algebraic group. According to [18, Theorem 1], if
H < G is a closed subgroup which is not contained in a member of one of the col-
lections %; (1 <i < 6), then E(H) is simple and acts irreducibly on V, i.e. we have
an irreducible embedding ¢ : E(H) — G. Since dim(x® N H) =0 for all xe G if H
is finite, we may assume that E(H) = H° is a connected simple algebraic group of
positive dimension.

Let 2 =ajA; + -+ a4, denote the highest weight of the irreducible embedding
@ and write V' = M (A). Here r = rank H° and the 4; are the fundamental dominant
weights corresponding to a fixed fundamental system of roots. We follow Bourbaki
[3] in labelling the Dynkin diagram of H°. Now H is connected unless there exists
some element 7 € Ng(H°) inducing a non-trivial graph automorphism 7 of H°. If
M (2)" denotes the corresponding ‘twisted’ irreducible H°-module, then from [14,
(5.4.2) (ii)] we know that M(1)" = M(z(1)), so that H is connected unless (1) = 4
for some non-trivial graph automorphism 7 of H°.

Let x € H be semisimple or unipotent of prime order. The following lemma pro-
vides us with an upper bound for dim(x“ N H).

Lemma 7.1. Let (G, H) be as above. If x € H is a semisimple or unipotent element of
prime order, then dim(x® N H) < dim H — rank H°.

Proof. From Lemma 2.11, we know that x¢ N H° is a finite union of H°-classes. If 7 is
a non-trivial graph automorphism of H° then it is well known that x¢ N H°z is a finite
union of H°-classes since x has prime order. So, replacing x by a suitable G-conjugate,
we may assume that dim(x% N H) = dim x#". If dim(x® N H) = dim(x% N H°) then
we may assume that x € H° and the conclusion of the lemma follows from Proposi-
tion 2.1. Otherwise, x € H°7, and from [16, (1.4)], [10, Table 4.3.3] and [2, (8.7)] we
deduce that dim Cp-(x) > rank H° for all prime order elements x € H°z.

In order to derive a lower bound for dim x“, we may appeal to [12, Theorem 8.3]
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since H < CI(V') = G is an irreducible subgroup. This result states that if x € H and
n = dim V' then

v(x) > max($v/n,2),

with the exception of a small number of cases (G, H). Using Proposition 2.9, this
provides us with a lower bound for dim x¢. The relevant exceptions to [12, (8.3)] are
the following irreducible embeddings H° 5 G:

2

(a) Spg % S0 (r=2) (e) SL3; = SLs (p #2)
(b) SO; 2805 (p#2)  (f) G280, (p#2)
() SLy 4805 (p#23) () G Sps  (p=2)
(d) SLy & sp,  (p#2.3)

where A denotes the highest weight of the irreducible embedding.

For now, we shall assume that ¢ is not one of these exceptional cases. Therefore
we can say that v(x) > 3 for all x e H, and from Proposition 2.9 we deduce that
dimx% > f(G,n), for some function of the dimension n of the natural G-module.
For example, if G = Sp,, then f(G,n) = 3n — 9. For a fixed H let N(H) € Z be min-
imal such that n > N(H) implies that

dim H — rank H°® 1
<

f(G,n) S 2
Using Lemma 7.1, we observe that n > N(H) implies that

dim(x“ N H)/dimx% < 1/2.

For example, suppose that H° = SO;9 and G = Sp,,. Then dim H — rank H° = 40
and 40/(3n—9) < 1/2 if and only if n > 89/3. So in this case, N(H) = 30. In
general, if G = Sp, and H° is a simple algebraic group, we easily calculate that
N(H) = [M], where M is given in Table 4.

Table 4
G= Spn

H° M

SLy | 2d2/3—2d/3+3
Spyy | 4d2/3+3
SOy, 4d2/374d/3+3
SO2411 4d2/3 +3

Eq 51
E; 87
Es 163
F 35

Gy 11
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In the case of G = Sp,, this leaves us to deal with a finite collection of irreducible
representations ¢ : H° — Sp,, where n < N(H). Detailed information on the small
degree irreducible representations of simple algebraic groups can be found in [20].
Careful consideration of [20, Tables A.6—48] and [4, Table 2], together with [20,
Theorem 1], yields the following complete list of (self-dual) irreducible representa-
tions H° — Sp,,, where n < N(H), with N(H) as given in Table 4:

(h) SLs 5 Spyy (P22 () SOu S Sy (p#2)
(i) Sp“Sp (P22 () E5Sps (p#2),
(i) SOn ™% Spyy (p#2)

in addition to the previous exceptional cases labelled (d) and (g).

Applying the same procedure to the other classical groups, we conclude that we are
left to deal with the following additional irreducible representations.

A, s

m) SO]O — SL16

u) E7 ﬁ) 8056
SL¢ 23 SOy )

n Fy A SO

)
;.2 }~4
0) Spé — S014 W) F4 — SOzﬁ

( (
( (
( (
(x) SL; %250, (p=
(¥) Sps 28015 (
() Fi 22805  (
( (

') Gy 2 S0,

1
q) Spjp = SO3
25,26

SO, = SO3;

r)
s) SO; 2 SOy
)

) SOy 2 SOy

( (

( (

( (

A

(p) Sps = SOus (p=
( (

( (

( (

( (

As previously remarked, H = Ng(H®) is connected unless H° admits a non-trivial
graph automorphism which fixes the highest weight of the irreducible embedding
@ : H° — G. Using this criterion, one can easily verify that the only embeddings (a)—
(z') where H is not connected are those labelled (h), (n) and (x).

The embeddings (o), (q), (s) and (n) are particularly easy to deal with. In each
case, G = SO,,, (for some m) and [12, (8.3)] implies that v(p(x)) > 4 for all xe H
(see Remark 2.7). The desired conclusion now follows immediately from Proposi-
tion 2.9 and Lemma 7.1. Similarly for (x), if x € A is unipotent, then v(p(x)) =>4
(see Remark 2.7) and thus dim ¢(x)5%7 > 12 (the smallest class corresponds to the
partition (3,22)). If x € H is semisimple, then we also have dim ¢(x)® > 12 since
v(p(x)) = 3 and the largest possible centralizer is SO4 x SOs. This is sufficient since
from Lemma 7.1 we have dim(x“ N H) < 6.

In cases (c), (d), (e) and (h), we can easily calculate directly with the representation
@, and deduce in each case that we have an upper bound of 1/2. The values (o, f)
recorded in the following table are easily verified. In each case, v(p(x)) = o for all
non-scalar semisimple elements x € H. Similarly for f and non-trivial unipotent ele-
ments in H.
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Embedding| (c) (d) (e) (h)
@p) |24 23 (23 86

Note that for (h), we have v(p(u)) = 6 if u = [J2, I4], and so from Corollary 2.8 we
have v(¢(y)) = 6 for all unipotent elements y € H. Also referring to (h), if t € H de-
notes the ‘inverse transpose’ involutory graph automorphism of H® = As, then from
[16, (1.4)] we know that there are precisely two distinct As-classes of involutions in
the coset As7, with representatives 7 and w say. It is easy to check that up to Spy,-
conjugacy, the action of 7 is given by [—ilyo, il}o], while @ acts as [—11g, I1¢]-

Lemma 7.2. The conclusion to Theorem 1 is true for the embeddings (k), (j), (r), (m)
and (p).

Proof. In each case, ¢ is a spin representation. We have the following table of lower
bounds for v(p(x)), and we use the («, ) notation as before.

Embedding | (k) (J) (r) (m)  (p)
@f) | (10,8) (10,8) (10,8) (54) (8,4)

Note that (k) is a restriction of (j), and (p) is a restriction of (m) (with p = 2). In
order to justify the stated values of £, in view of Corollary 2.8, it is sufficient to show
that v(p(u)) = f where u € H° is a long root element and ¢ is either (j) or (m). Con-
sider (j). Let u = [J2, I4] € As < SOj» be a long root element. From [17, Proposition
2.6], we have

M(is) | As=Vs @ (Ve)" @ (;\V6>7

and

M) | As = 0% @ (/2\V6> @ (ﬂVs)*,

where Vg is the natural 4s-module, and 0 denotes the trivial As-module. We then
calculate that v(p(u)) = 8 for both spin representations. Similarly in (m) we have

M(l4)lA4=M(;»5)lA4=0® (/2\V5> @ (/4\1/5)7

and thus v(p(u)) = 4, where u € SOy is a long root element. For (k), (j), (r) and (m)
we deduce immediately from Proposition 2.9 and Lemma 7.1 that Theorem 1 holds
for unipotent elements. In (p), we have p =2 and so by hypothesis we need only
consider unipotent involutions. Hence dim x5 < 20 (with equality if x is a ¢4 invo-
lution) and since v(p(x)) = 4, from 2.9 we conclude that dim ¢(x)>%" > 44.
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Consider (j) and let x € SO;; be semisimple. Since a graph automorphism of
SO, interchanges the weights 4s and A¢, we need only consider A = 4s. Without
loss of generality, let x = [y, ..., us] € GL¢ < SO12. Then v(p(x)) = v((x)), where
Y : GLg — GLj; is the representation afforded by the GLg-module

000 ® (AVs) @ (AV)

and where 0’ is the 1-dimensional module v +— (detx)v (see [14, p. 196]). Let
0 : GL¢ — GLs be the representation afforded by the module /\2 Vs. One easily
verifies that v(6(x)) > 5 for all non-scalar semisimple elements x € GL¢. Similarly for
the representation afforded by A4 Vs. So if x € GLg is non-scalar semisimple then
v(¥(x)) = 10. Suppose that x = [uls] € GLg. Then y(x) = [1,u®, u*I1s, u*I}s] and
clearly v(i(x)) = 10 unless x> = 1. But x> = 1 implies that x € SOy, is scalar, so that
we may indeed take o = 10 for (j), and hence for (k) and (r) too. This is sufficient to
deduce the desired conclusion via Lemma 7.1 and Proposition 2.9.

Similarly, we have o =5 for (m), and the required conclusion follows in the
usual manner. For (p), we may choose x € GL4y < GLs < SOy and in the same way
we calculate that v(p(x)) > 8. In fact, one easily checks that v(¢(x)) = 10, unless
x = [u, 1], in which case Cg(p(x))° = GLg, or x = [u, u, I] where

Cg(go(x))o = SOg x GL4

(where u # 1). If v(p(x)) = 10 then dim¢(x)¢ > 78 (since the largest possible cen-
tralizer is GLg x SOy) Wthh is sufficient since d1m xSPs < 32 for all x € Spg. Other-
wise, (dim x5Ps, dim ¢ (x)©) = (14, 56) or (22,76).

Consider the representation labelled (y): this is the embeddmg ¢ : Spe — SO;3 and

= 3. The Spg-module which affords ¢ is a section of /\ V. If x € Spe is unipotent
then we can assume that x has order 3, so that dim x5Ps < dimu®P = 14, where
u = [J3. This is sufficient since v(p(x)) >4 (by [12, (8.3)] and Remark 2.7) and so
from Proposition 2.9 we have dim ¢(x)5°" > 32. From the proof of Lemma 7.2
we have v(p(x)) = 5 for all semisimple elements x € Sp, (since o« = 5 for (m)). This
implies that dim (x)%°" > 40 (the largest possible centralizer is SOg x SOs). From
Lemma 7.1 we have dim(x® N H) < 18.

Lemma 7.3. Theorem 1 holds for the irreducible embedding (t).

Proof. This spin representation embeds SOy in SO16. The argument when x is semi-
simple is similar to that for (p) in Lemma 7.2. We have dim x5 < 32 and v(¢p(x)) > 8.
Hence dim ¢(x)“ = 64 unless Cg(p(x))° = GLg (the next largest centralizer is SO;).
It is clear that we can only have a GLg centralizer if x = [, 5] € GL4 < SOg, where
1 # 1. In this case, dim ¢(x)“ = 56 and dim x5Ps = 14,

Now if u €SOy is a long root element then from the proof of Lemma 7.2 we
know that v(¢(u)) = 4. So from Proposition 2.9 and Corollary 2.8, it follows that
dim q)(x)G > 44 for all unipotent elements x € SOg. This leaves us to explicitly cal-



Fixed point spaces in actions of classical algebraic groups 339

culate with those unipotent elements whose conjugacy classes have dimension greater
than 22. Up to conjugacy, we have the results recorded in Table 5, from which the
conclusion of Theorem 1 follows immediately.

Table 5
Embedding (t), x unipotent
x o(x) dim x5% | dim p(x)3*
[Jo] [Ji1,J5] 32 108
[J7, Do) [J2, D) 30 102
[Js,J3, 1] [JSZ,J32] 28 94
[Js, J2] s, J2,J3] 26 92
J2,1,] s, J2, 1] 26 90
[Js, L] V3] 24 88
3] i J3), p #3 24 80, p#3
5,73, p =3 78, p=3

The images ¢(x) may be calculated directly by restricting the spin representation of
SOy, or by appealing to some well-known results from representation theory. We
sketch briefly the arguments involved. Here Vj¢ denotes the SOg spin module M (14)
in question, and M (n) denotes an irreducible 4;-module of highest weight n. Note
that the results of Table 5 remain valid if p = 0.

Let x =[Jo] € A < B4, and assume that p > 11 (since x is assumed to have
prime order). From [17, Proposition 2.13] and [1, Lemma 2.2] we have
Vie | A1 = M(10) @ M (4), so that [J;] acts on Vig as [Ji1,Js).

Suppose that x = [J7, ] € Dy < By (p = 7). We have Vig | SOy = M (23) @ M (14).
The triality graph automorphism of D4 acts as a permutation on the irreducible
D, modules M (A1), M(23) and M (A4). Since [J7, I;] represents the unique unipotent
SOs-conjugacy class of dimension 24, it follows that x acts on Vie as [J7, . Simi-
larly for x = [Js,J3, I1].

The action of x = [J42, I1] € SOy is given by the action of [J4, I}] € A4 < Ds. From
[17, (2.6)] we have Vig | As = M(14) @ M(42) @ 0. We now calculate easily that up
to conjugacy, [Ja, 1] acts on Vi as [J5,J7, I;] as claimed.

Both x = [J5,J5] and [Js, I4] lie in the subgroup SOs x SO4 < SOy. Since this sub-
group is isomorphic to Sp, x (SL, ® SL,), and

Vie L Sps x (SL2 ® SLa) = M (/1) ® (M (Z1) @ M(41)),

it is straightforward to verify the results of Table 5 in these cases.
Finally, suppose that x = [J]] € SOy. We have p > 3. Now, x € SO3 = 4; and

Vie | 4] = (M(1) ® M(1) ® M(1))>.
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If p > 3 then one readily checks that
M) @M(1) @ M(1) = M(3) @ M(1) ® M(1),

so that [J2]® € 47 acts on Vyg as [J2, J§]. If p = 3, then the 4;-modules M (1) and M (2)
are both tilting, and 7'(3) := M(2) ® M(1) is an indecomposable tilting 4;-module
of highest weight 3 and d1m Cr@)(u) = 2, where u = [J2] € 41 (see [21, (2.3)]). From
this we deduce that [/]’ e A3 acts on M( YOM(1)®M(1)=T3)® (0® M(1))
as [J#,J2). Hence, x acts on V16 as [J5,J3).

Lemma 7.4. The conclusion to Theorem 1 is true for the embeddings (1), (u), (v), (W)
and (z).

Proof. In each case, E(H) = H° is an exceptional algebraic group. We have the fol-
lowing table, where («, ) is defined as before.

Embedding | m (u) (W) (2)
@p) | (14,12) (14,12) (8,6) (7,6)

In each case, these lower bounds on v(g(x)) are sufficient to imply that Theorem 1
holds in each case (via Proposition 2.9 and Lemma 7.1). So it suffices to prove the
recorded values in the table. The values of § follow immediately from [15, Tables 3,
7]. To obtain the lower bounds for semisimple elements, we use some well-known
results from representation theory. Consider (1) and (u), and let x € E7 be semisimple.
Without loss of generality, we may assume that x € 47 < E;. From [17, Proposition
2.3] we have

2 2 .
Vs L 41 = (AVs) @ (AVs) .
where Vg is the natural 47-module. One easily checks that v(p(y)) = 7 for all semi-

simple y € SLg, where p : SLg A—> SL,s. Hence v(p(x)) = 14 if x is semisimple and ¢
is one of the embeddings (1) or (u). Now consider (w) and (z). If x € Fy is semisimple
then we may assume that x € By < Ds. Let V7 denote the irreducible Eg-module
M(21). Then from [17, Table 8.7] we have

Va7 | Ds = M(4) @ M(44) @O,

where 0 is the trivial Ds-module. Since Mg, (A4) is a section of V7, it follows that
v(p(x)) = v(x) +v(p(x)), where v(x) is with respect to the action of x on the natural
Ds-module, and p is the spin representation Ds o SLis. Now v(x) > 2 and from the
proof of Lemma 7.2 we have v(p(x)) = 5 and hence we may take o = 8 for (w) (see
Remark 2.7) and o = 7 for (z).

The fact that Theorem 1 holds for the embedding labelled (v) is immediate
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from our work above with the representation (w). From [14, (5.4.2) (ii)] we have
M(2y) = M(24)", where 7 : Fy — Fy is a graph automorphism.

Lemma 7.5. Theorem 1 holds for the irreducible embedding (3).

Proof. This is the embedding ¢ : Sps — Sp4, with highest weight 43 and p # 2. If
X € Spg is semisimple then v(p(x)) > 4 (see Remark 2.7) and Proposition 2.9 implies
that dim ¢(x)%"* > 40 which is sufficient since dim x3s < 18. Now suppose that
x € Spg is unipotent. We have v(p(x)) =3 and thus dim ¢(x)" > 33. In view of
Proposition 2.3, this just leaves us to deal with x = [Jg] € Spg.

Let x = [Jg] € Sps. Since x is assumed to have prime order, we must have p > 7.
Let V14 denote the Spg-module in question, and as before, let M (n) denote an irre-
ducible 4;-module with high weight n. The element u = [J,] € 4, acts on M(5) (up to
Spe-conjugacy) as x. By calculating the weights of /\3 M(5), we observe that

/3\V(5) L Ay =9/5/3,

that is, /\3 M(5) | A1 has the same composition factors as the A;-module
W(9) + W(5) + W(3), where W (n) denotes the Weyl module of 4; of highest weight
n (i.e. W(n) = S"V>, where V, is the natural 4;-module). Of course W(n) = M (n) if
p > n. Now from [1, Lemma 2.2|, we have

Ext{"' (M(9), M(3)) =0,
and hence it follows that
Vigl A1 = W(9) &) W(3) ifp > 7.

Thus, up to conjugacy we have ¢(x) = [J10,J4] € Sp;4 and dim p(x)P* = 94 if p > 7.
Of course we arrive at the same conclusion if we allow p = 0. Now suppose that
p="7. From [21, Lemma 2.2 (ii)] we know that W (9) + W (5) + W (3) has composi-
tion factors M(9), M(3)? and M(5). Since p = 7, from [1, Lemma 2.2] we have

Ext{" (M(5), M(3)) = Ext{" (M(9), M(5)) = 0.

Hence V4 is a direct summand of A3 M(5). Now p =7 and so /\3 M(5) is a direct
summand of M(5) ® M(5) ® M(5). Hence from [21, Lemmas 2.1, 2.3], we conclude
that V14 | A, is tilting. From [21, Lemma 2.3 (d)], we deduce that v(p(x)) = 12 and
s0 up to conjugacy, ¢(x) = [J7] € Spy4 if p = 7. This gives us dim ¢(x) SPi — 9,

Lemma 7.6. Theorem 1 holds for the irreducible embeddings (a) and (b).
Proof. These are both exceptions to the main statement of [12, (8.3)], and a full

explicit calculation is required. In both cases, if x € H° is semisimple then we may
assume that x = [g, iy, 3] € GL3 < H°. Then dim ¢(x)*% = dim z50 where
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1z = (L, tols, 1y oy sty 435 13, fy 112] € SO,

and u? = p . Tt is then straightforward to check that for both (a) and (b)

max dim x" 5
dim ¢(x) 5 6’

where the maximum is taken over all non-scalar semisimple elements in H°. This
maximum is realized for both embeddings if x = [y, 1, 1] € GL3 < H®, where u; # 1.

The results for unipotent elements are given in Tables 6 and 7 for (a) and (b)
respectively. To produce Table 7, we apply representation-theoretic arguments simi-
lar to those used in the construction of Table 5. For Table 6, we first calculate the
image of each unipotent involution class of Sp, in SOg under the isomorphism
Spg = Stabgo, (U), where U is a 1-dimensional non-singular subspace of the natural
SOg-module. We find that by, ¢; — ¢2, @y — ap and b3 +— ¢4. From triality, we know
that the a, and ¢4 involution classes in SOg are fixed by each spin representation of
D4, and we easily calculate directly that the ¢, class in SOg is mapped via a spin
representation to the a4 class.

Since an upper bound of 1/2 fails to hold for both of these irreducible embeddings,
they are recorded in Table 1. Note that in Table 6 we need only consider involutory
unipotent elements since p = 2.

Table 6
Embedding (a), x unipotent
x | o(x) | dimxSPe | dimgp(x)5%
b] ag 6 12
a | @ 8 10
) ay 10 12
b3 Cq 12 16
Table 7
Embedding (b), x unipotent
x o(x) dim x597 | dim ¢(x) 5%
7] 1J7,1)] 18 24
Us.1 | 2] 16 20
V3.0 | V3L 14 18
[J3,J22} [J37J22,11] 12 16
3, Is] | [J5] 10 12
V3.5 | V3,4 8 10

From Tables 6 and 7, we conclude that we have a sharp upper bound of 5/6 with
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respect to the irreducible embeddings (a) and (b). This upper bound is realized for
both semisimple and unipotent elements. This is listed in Table 1.

Lemma 7.7. The conclusion of Theorem 1 holds for each of the irreducible embeddings

(2)—(2").

Proof. Tt remains to show that Theorem 1 holds for (f), (g) and (z’). The fact that
Theorem 1 holds for (z") will follow immediately from our work with (f). This is
easily seen by considering the composition of ¢ with 7, where v : G, — G is a graph
automorphism. From [14, (5.4.2) (ii)] we have M (4;)" = M(4,), and since t is an
algebraic automorphism, all conjugacy class dimensions are preserved.

Recall that both (f) and (g) are exceptional cases of [12, (8.3)]. Suppose that x € G,
is unipotent, and assume for now that p # 2. Using the standard labelling of the
unipotent classes in G,, we have the following table, where x denotes an arbitrary
element of each unipotent conjugacy class. The values for dim x% are taken from
[6, p. 401] and [16, (1.7)], and the stated values for dim ¢(x)*®" are derived from [15,
Table 1].

Table 8
Embedding (f), x unipotent

x class P dimx@ | dim¢(x)5°
A arbitrary 6 8
Ay 3 6 12

i #2,3 8 12
AV |3 8 12
G>(ap) | arbitrary 10 14

From Table 8 we immediately conclude that if xe G, is unipotent then
dim(x% N H)/dim x¢ < 3/4, with equality possible. This case is recorded in Table 1.
Similarly, if p = 2 and x € G is unipotent, then as always we may assume that x is an
involution, i.e. x is in either the A4; or the A, unipotent class. If x lies in the latter
class then dim x® = 8 and dim ¢(x)%" = 12 since ¢(x) is Sps-conjugate to bs (see
[15, Table 1]). Otherwise, x is a long root element and we may embed x in 4, (where
the A4, is generated by long root subgroups). We have dim x = 6 and

Vel Ay =V3® (V3)", (7)

where V3 is the natural 4,-module, and so it follows that ¢(x) is Spg-conjugate to ay,
so that dim ¢(x)5P = 8. Again, this embedding is listed in Table 1.

If x € G, is semisimple then we may choose x € 42 < G,, where A4, is generated by
long root subgroups. In arbitrary characteristic, we claim that
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dim x @

dim p(x) 7" h

| W\

(note that this is slightly better than the upper bound recorded in Table 1). If
p =2 then (7) implies that dimg(x) S’s > 14, with equality if and only if
x=[u,u", 1] € 4; < Ay, where u# 1. In this case we have Cg,(x) = A4,T), so
that dim x@ /dim (x)5P = 5/7. If dim ¢(x)% = 16, then x = [, u, i~ 2] € A, and
dim x% < 10. Otherwise, dim ¢(x)P = 18 and dim x% < 12. The case when p # 2
is very similar, using the fact that

In this case, note that dim ¢(x)5%" > 12, with equality if and only if x = [~ 1, 1] € 4,.
Since this element is an involution, we have Cg,(x) = 47 in this case.

This completes the proof of Theorem 1 in the case where the maximal closed sub-
group H is not a member of one of the classes %;. In view of our work in Sections 3,
4, 5 and 6, the proof of Theorem 1 is complete.

8 Fixed point spaces

With the proof of Theorem 1 now complete, we are in a position to apply the result
to the study of fixed point spaces. Recall the general situation; G is a simple algebraic
group over an algebraically closed field K of characteristic p > 0, and we are inter-
ested in obtaining lower bounds for the codimension of the fixed point space Cq(x),
where x € G and Q is an algebraic variety on which G acts transitively and morphi-
cally. Following [16], we denote this codimension by f(x, Q). Of course, if v € Q and
H = G, then the action of G on Q is equivalent to the usual action of G on the coset
variety G/H, and so without loss of generality we may assume that Q = G/H, where
H is a closed subgroup.

In order to deduce such lower bounds from Theorem 1, we apply a well-known
result ([16, (1.14)]) which states that for x € H,

f(x,Q) = dimx? — dim(x% N H). (8)

For the purpose of deriving lower bounds f(x,€Q), we may of course assume that x
is semisimple or unipotent since Cq(x) = Ca(x;,) N Ca(x,), where x = x;x, = x,x; is
the Jordan decomposition of x. Furthermore, it follows immediately from (8) that we
may assume that G acts primitively on Q.

With these assumptions, the following result is immediate from equation (8) and
Theorem 1.

Lemma 8.1. Let G be a simple classical algebraic group over an algebraically closed
field of characteristic p = 0, and let Q = G/J, where J is a closed subgroup of G lying
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in some maximal closed non-subspace subgroup H of G. If x € G is an element of prime
order, then

f(x,Q) > (L —¢)dimx9,
where ¢ = 0 is as defined in Theorem 1 for the pair (G, H°).

In order to prove Corollary 1 (from which Corollaries 2 and 3 follow immediately)
we just need to show that Lemma 8.1 extends to arbitrary elements of G. Since
Co(x) = Cq(x") for all n € N, we see that the result extends immediately to arbitrary
elements of finite order.

Now suppose that x € G is semisimple and has infinite order. As previously
remarked, we may as well assume that Q = G/H, with H a maximal closed non-
subspace subgroup. Replacing x by a suitable G-conjugate, we may assume that
x € H. It is clear from the classification of maximal closed subgroups ([18, Theorem
1]) that all maximal non-subspace subgroups are reductive, and so by replacing x by
some finite power we may assume that x € T < H°, where T is a maximal torus of
H°. Let L denote the closure in G of the subgroup (x>, so that L is a closed subgroup
of T, having positive dimension. It is clear that if x fixes w € Q then so does every
element of L. So in particular, for the purpose of obtaining a lower bound f(x,Q),
we may replace x by any element of prime order of the subtorus L° < T.

Finally, suppose that p = 0, so that all unipotent elements of G have infinite order.
If x € G is unipotent, then for any closed subgroup H of G we have x¢ NH < H°®
because there are no unipotent elements in the set H — H° (since H/H" is finite). It
is straightforward to check that the arguments in Sections 3, 4, 5 and 6
make no assumption on the order of x in the case where x € G is unipotent and
dim(x% N H) = dim(x% N H°). Similarly, one easily verifies that the work in Section
7 remains valid for unipotent elements if p = 0.

Combining the above results, we conclude that Lemma 8.1 holds for arbitrary
elements of G, and the proof of Corollary 1 is complete.
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