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Fixed point spaces in actions of classical algebraic groups
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(Communicated by R. M. Guralnick)

Abstract. Let G be a simple classical algebraic group over an algebraically closed field K of
characteristic pd 0, and let H be a maximal closed non-subspace subgroup of G. Given such a
pair ðG;HÞ, we obtain a close to best possible upper bound for the ratio dimðxG VHÞ=dim xG,
where x A G is a semisimple or unipotent element of prime order. We apply this result to the
study of fixed point spaces.

1 Introduction

Let G be a simple classical algebraic group over an algebraically closed field K of
arbitrary characteristic pd 0. If G has natural module V , we write G ¼ ClðVÞ. Fol-
lowing [19], we say that a maximal closed subgroup H of G is a subspace subgroup if
it is reducible on V , or if it is an orthogonal group on V embedded in a symplectic
group with p ¼ 2.

The major motivation for this paper arises from a result of Liebeck and Shalev
concerning finite almost simple classical groups [19, Theorem ð?Þ]. This result states
that there exists a constant d > 0 such that, if X is any finite almost simple classical
group, M is a maximal subgroup of X which is not a subspace subgroup, and x A X

is an element of prime order, then

jxX VMj < jxX j1�d: ð1Þ

In [19], the authors apply Theorem ð?Þ to a number of problems concerning finite
simple groups and finite permutation groups. Among other things, they use the result
to obtain lower bounds for fixed point ratios of primitive actions of classical groups,
to prove the Cameron–Kantor base conjecture, and to prove a major part of the
Guralnick–Thompson genus conjecture. Theorem ð?Þ of [19] is an existence result,
and o¤ers no information on the value of d in (1); as a consequence, the applications
in [19] also involve undetermined constants. It is very desirable to strengthen these
results with explicit constants.

In this paper, we obtain a result analogous to [19, Theorem ð?Þ] for algebraic
groups. If x is a prime order semisimple or unipotent element of a simple classical



algebraic group G, then in Theorem 1 below we find an explicit i > 0 with the prop-
erty that for all non-subspace maximal closed subgroups H of G,

dimðxG VHÞ
dim xG

c 1� i:

In general i ¼ 1=2, with some explicit exceptions. We then apply this result to the
study of fixed point spaces CWðxÞ, where W ¼ G=J is a coset variety, x A G and

CWðxÞ ¼ fo A W : ox ¼ og:

We obtain a number of corollaries concerning lower bounds for the codimension of
CWðxÞ in W.

In future work, we plan to use Theorem 1 and its corollaries to strengthen [19,
Theorem ð?Þ] for finite groups by providing an explicit constant d > 0 in (1). This will
yield explicit bounds in the several applications described above.

Theorem 1. If G ¼ ClðVÞ is a simple classical algebraic group and H is a maximal

closed subgroup of G which is not a subspace subgroup, and x A G is a non-scalar

semisimple or unipotent element of prime order, then

dimðxG VHÞ
dim xG

c
1

2
þ e;

where e ¼ 0 or ðG;H�; eÞ is given in Table 1.

Remark 1. Note that for ðG;H�Þ as listed in the last four rows of Table 1, H� is
irreducibly embedded in G.

Remark 2. The bounds listed in Table 1 are best possible. Examples for which we
have equality are given in Table 2. We also record some examples where an upper
bound of 1=2 is sharp. Here the matrix notation is taken from [5] (see Section 2 for a

Table 1

G p H� e

SL2n arbitrary Sp2n 1=2n

Sp2n arbitrary Sp2
n 1=ð2nþ 2Þ

SO2n arbitrary GLn 1=ð2n� 2Þ
SO7 02 G2 1=4
Sp6 2 G2 1=4
SO8 02 SO7 1=3
SO8 2 Sp6 1=3
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description). In Lemmas 7.6 and 7.7, we demonstrate the sharpness of the upper
bounds recorded in 1 for the irreducible embeddings.

Recall that if X is a finite group acting transitively on a set L, then the fixed point

ratio of an element x A X is defined to be the proportion of points fixed by x. Bounds
on fixed point ratios for actions of finite groups of Lie type have been obtained and
applied in a number of papers (see [7], [8], [9], [11] for example). Now, if G is an
algebraic group, x A G and W is a homogeneous G-space, then the codimension

f ðx;WÞ ¼ dimW� dimCWðxÞ

provides a natural algebraic group analogue of the notion of fixed point ratio. In
[16], the authors obtain close to best possible lower bounds for f ðx;WÞ, where x is an
arbitrary element of an exceptional simple algebraic group G. Now from [16, (1.14)]
we have

f ðx;G=HÞ ¼ dim xG � dimðxG VHÞ;

so in a similar spirit to [16], we may use Theorem 1 to obtain lower bounds for
f ðx;G=HÞ, when G is classical.

Corollary 1. Let G be a simple classical algebraic group over an algebraically closed

field of characteristic pd 0, and let W ¼ G=J, where the closed subgroup J lies in a

maximal non-subspace subgroup H of G. Then for an arbitrary non-scalar element

x A G,

f ðx;WÞd 1
2 � e
� �

dim xG;

where ed 0 is as given in Theorem 1 for the pair ðG;H�Þ.

Table 2

G H� p x dim xH�
=dim xG

SL2n Sp2n arbitrary ½lIn; l�1In�} 1=2þ 1=2n
02 ½J n

2 � 1=2þ 1=2n
Sp2n Sp2

n arbitrary ½lIn=2; l�1In=2; lIn=2; l
�1In=2�} 1=2þ 1=ð2nþ 2Þ

02 ½J n
2 � 1=2þ 1=ð2nþ 2Þ

SO2n GLn arbitrary ½lIn=2; l�1In=2; lIn=2; l
�1In=2�} 1=2þ 1=ð2n� 2Þ

(n even) arbitrary ½J n
2 � 1=2þ 1=ð2n� 2Þ

SL2n SO2n 02 ½�In; In� 1=2
(n even)
SL2nþ1 SO2nþ1 02 G½�Inþ1; In� 1=2
SL2n GL2

n V SL2n arbitrary ½A;A�y 1=2
Sp2n GLn 02 ½�I2; In�2;�I2; In�2�} 1=2
SO2n SO2

n 02 ½�I2; In�2;�I2; In�2� 1=2

yA A SLn is any semisimple or unipotent matrix.
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Given x A G ¼ ClðVÞ, let nðxÞ denote the codimension of the largest eigenspace of
x on V . In Proposition 2.9, we obtain bounds on dim xG in terms of nðxÞ. As a result,
we have the following corollary which is in a similar spirit to the results of Gluck and
Magaard in [9, §§1.3, 1.4] on finite groups of classical Lie type, where the authors
obtain upper bounds for certain fixed point ratios of a unipotent element g in terms
of nðgÞ.

Corollary 2. With ðG;W; eÞ as in Corollary 1, let n denote the dimension of the natural

G-module. Set t ¼ 1 if G ¼ SLn, and t ¼ 0 otherwise. If x A G and nðxÞ ¼ s then

f ðx;WÞd 1
2 � e
� �

M;

where

M ¼ max ð1þ tÞsðn� s� 1Þ; n

2� t
ðs� 1Þ

� �
:

If G is a simple classical algebraic group and x A G, then it is well known that
dim xG d 2r, where r denotes the rank of G. Therefore we also have the following
immediate corollary.

Corollary 3. With ðG;W; eÞ as above, and r ¼ rankG, for an arbitrary non-scalar ele-

ment x A G we have

f ðx;WÞd rð1� 2eÞ:

The structure of the paper is as follows. In Section 2 we introduce a number of
preliminary results taken from the literature which we will need to prove Theorem 1.
In [18, Theorem 1], Liebeck and Seitz classify the maximal closed subgroups of a
simple classical algebraic group G ¼ ClðVÞ. They define six families C1; . . . ;C6 of
maximal closed subgroups, and they show that for every closed subgroup H either H
is contained in a member of some Ci, or modulo scalars, H is quasisimple and EðHÞ
is irreducible on V . For the purpose of proving Theorem 1, we may ignore the classes
C1 and C5 for they consist of subspace subgroups and finite subgroups respectively.
In Sections 3–6 we prove that the conclusion of Theorem 1 is true when the maximal
closed subgroup is a member of one of the classes C2;C3;C4 and C6 respectively (see
Section 2 for a description of these classes). In Section 7 we complete the proof of
Theorem 1 by dealing with the case where H is not a member of any of the classes Ci.
Here H� is simple and irreducibly embedded in G and our proof relies on recent work
of Lübeck [20] and Guralnick–Saxl [12] on the irreducible representations of simple
algebraic groups. Finally, in Section 8 we use Theorem 1 to derive lower bounds for
the codimension of CWðxÞ in W, and prove Corollary 1.

2 Preliminary results

In this section we introduce some notation and results which we shall need for the
proof of Theorem 1.
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Following [5], we denote by ½M1; . . . ;Mn� a block diagonal matrix with matrices
M1; . . . ;Mn down the diagonal. We use ½Jm

i � to denote a block diagonal matrix with
m unipotent Jordan i-blocks down the diagonal. If fe1; f1; . . . ; el ; flg denotes a stan-
dard symplectic or orthogonal basis of the natural G-module (as described in [14,
§2.5]) then unless otherwise stated, all symplectic or orthogonal matrices will be
written with respect to this specific basis ordering. However, it will also be necessary
from time to time to consider the ordering fe1; . . . ; el ; f1; . . . ; flg, and any matrix A

written with respect to this ordering will be denoted by ½A�}.
In this preliminary section, we are primarily concerned with obtaining bounds on

dim xH , where H is a reductive group, and x is semisimple or unipotent. The most
basic result in this direction is the following well-known proposition. We can say
much more when H� is semisimple and x is an involution, as the subsequent result
demonstrates.

Proposition 2.1 ([13, (1.6)]). If H is a connected reductive algebraic group and x A H,
then dimCHðxÞd rankH.

Proposition 2.2 ([16, (1.5)]). Let H be an algebraic group with H� semisimple. If x A H

is an involution, then

dimCH� ðxÞd jSþðH�Þj;

where SþðH�Þ denotes the set of positive roots in the associated root system of H�.

If G is a simple classical algebraic group, and x A G is a semisimple element then
we can easily calculate dimCGðxÞ from knowledge of the eigenvalues of x. The case
where x is unipotent is not as straightforward and to calculate unipotent class di-
mensions we shall make much use of the following proposition. The classification of
involution classes in G ¼ SOn when p ¼ 2 is given in [2] and we use the notation
therein for the class representatives.

Proposition 2.3 ([16, (1.10)]). Let G be a simple classical algebraic group over an

algebraically closed field of characteristic pd 0, and let u be a non-identity unipotent

element in G. Suppose that for each i the Jordan canonical form for u has precisely ni
Jordan blocks of size i.

(i) If G ¼ SLn then

dimCGðuÞ ¼ 2
X
i< j

ininj þ
X
i

in2i � 1:

(ii) If G ¼ Sp2n with p0 2, then ni is even whenever i is odd, and

dimCGðuÞ ¼
X
i< j

ininj þ
1

2

X
i

in2i þ
1

2

X
i odd

ni:
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(iii) If G ¼ SOn with p0 2, then ni is even whenever i is even, and

dimCGðuÞ ¼
X
i< j

ininj þ
1

2

X
i

in2i �
1

2

X
i odd

ni:

(iv) If G ¼ SOn with p ¼ 2 and m ¼ bn=2c then the conjugacy classes of involutions

in G are represented by elements am�k; cm�k (with 0c kcm and m� k even), and if

n ¼ 2mþ 1 there is a further class bm�k (with 0c kcm and m� k odd ), where each
of am�k; bm�k; cm�k has m� k Jordan 2-blocks and the rest of size 1. If n ¼ 2mþ 1
then

dimCGðam�kÞ ¼ m2 þmþ k2; dimCGðbm�kÞ ¼ dimCGðcm�kÞ ¼ m2 þ k2 þ k;

and if n ¼ 2m then

dimCGðam�kÞ ¼ m2 þ k2 � k; dimCGðcm�kÞ ¼ m2 �mþ k2:

Proof. Parts (i), (ii) and (iii) follow from [22, pp. 34–39], and (iv) follows from [2,
§§7, 8].

It is well known that in good characteristic the unipotent conjugacy classes in a
simple classical algebraic group G are parametrized by a subset S of the set of all
partitions of n ¼ dimV , where V is the natural G-module (see [13, §7]). For example,
if G ¼ SLn, then the unipotent conjugacy classes are in 1–1 correspondence with the
set of all partitions of n, whereas if G ¼ Spn, then only those partitions of n where
odd parts occur with even multiplicity correspond in a 1–1 fashion with the unipotent
classes in G. In all cases the correspondence is given by

ðnan ; . . . ; 1a1Þ ? n $ ½J an
n ; . . . ; J a1

1 �G ð2Þ

In a simple algebraic group G, conjugacy classes are closed precisely when their
elements are semisimple (see [13, Proposition 1.7]). Let U denote the collection of
unipotent elements in G. It is well known that U is a closed, irreducible subset of G
having codimension equal to the rank of G. Hence, if u A U, then the closure of the
class uG lies in U. This gives rise to a natural partial ordering on the collection of
unipotent classes; if u; v A U then we write uG c vG if u lies in the closure of vG.

Lemma 2.4 ([13, (7.19)]). Let G be a simple classical algebraic group over an alge-

braically closed field K of characteristic pd 0. If G0An assume that p0 2. Let n
denote the dimension of the natural G-module and let uG

1 and uG
2 be two unipotent

conjugacy classes in G, with corresponding partitions l; m ? n. Then

uG
1 c uG

2 if and only if lc m;

where the partial order on the set of all partitions of n is the usual dominance ordering.
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Definition 2.5. Let G ¼ ClðVÞ be a simple classical algebraic group, and let n ¼ dimV .
The associated partition lðxÞ ? n of a semisimple or unipotent element x A G is defined
as follows. If x is unipotent then we define lðxÞ to be the partition in the correspon-
dence labelled (2). If p0 2 then dim xG is completely determined by lðxÞ, and this
remains true in arbitrary characteristic if G ¼ SLn (see Proposition 2.3). Now sup-
pose that x A G is semisimple. The natural G-module V decomposes into a direct sum
of eigenspaces under the action of x. The parts of lðxÞ are defined to be the dimensions
of these eigenspaces. If x A G ¼ SLn is semisimple and lðxÞ ¼ ðl1; . . . ; lrÞ ? n then
CGðxÞ� ¼ ð

Q
i GLliÞVG. If G preserves a non-zero form on V then we need to distin-

guish between non-degenerate and totally singular eigenspaces. Under the action of a
semisimple element x A G we have

V ¼ W1 lW�1 l ðU1 lU 0
1Þl � � �l ðUs lU 0

s Þ;

where WG1 denote the non-degenerate eigenspaces corresponding to the eigen-
valuesG1, and every other eigenspace is totally singular and occurs in a pair ðUi;U

0
i Þ,

where dimUi ¼ dimU 0
i ¼ li and Ui lU 0

i is non-degenerate. If a ¼ dimW1 and
b ¼ dimW�1 then we define lðxÞ to be the partition ða; b; l21 ; . . . ; l

2
s Þ ? n, where

we set b ¼ 0 if p ¼ 2. If G ¼ Spn then CGðxÞ� ¼ Spa � Spb �
Q

i GLli . Similarly if
G ¼ SOn.

Definition 2.6. Given x A G ¼ ClðVÞ, define

nðxÞ ¼ minfdim½V ; lx� : l A K �g:

Observe that nðxÞ > 0 if x is non-scalar, and note in general that nðxÞ is the co-
dimension of the largest eigenspace of x with respect to the natural action of G on V .

Remark 2.7. In view of Proposition 2.3, note that if G is of type Bn or Dn with p0 2
and x A G is unipotent, then nðxÞ must be even. Similarly, if G ¼ Cn or Dn and x A G

is semisimple, then nðxÞ ¼ s is even if s < n.

If x A G ¼ ClðVÞ is semisimple or unipotent, it is possible to derive upper and
lower bounds for dim xG as functions of nðxÞ and dimV . Before we state and prove
this result, we first prove a useful corollary to Lemma 2.4.

Corollary 2.8. Let H ¼ ClðWÞ be a simple classical algebraic group embedded in a

simple algebraic group G ¼ ClðVÞ and suppose that p0 2 if G0 SLðVÞ. Let x A H be

unipotent and let y A H be a long root element. Then with respect to the actions of x

and y on V, we have nðxÞd nðyÞ.

Proof. Let dimW ¼ d and dimV ¼ n, and let l? d denote the associated parti-
tion of y A H. Since y A H is a long root element, it follows that l ¼ ð2; 1d�2Þ if
H ¼ SLd or Spd , and otherwise l ¼ ð22; 1d�4Þ. In any case, we have lc p for all
valid partitions p? d (i.e. those which correspond to unipotent classes in H), where
c denotes the dominance ordering on partitions of d. Hence Lemma 2.4 implies that
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y A xH H xG, and thus yG c xG as unipotent classes in G. So by a further applica-
tion of Lemma 2.4, if yG and xG correspond respectively to the partitions ~ll; ~mm? n,
then ~llc ~mm. Now if k (resp. l) denotes the number of non-zero parts of ~ll (resp. ~mm),
then ~llc ~mm implies that lc k. Since nðyÞ ¼ n� k and nðxÞ ¼ n� l, we deduce that
nðxÞd nðyÞ.

The following is a slight improvement of [19, (3.4)].

Proposition 2.9. Let G be a simple classical algebraic group, and suppose that x A G is

a semisimple or unipotent element such that nðxÞ ¼ s. In the case when p ¼ 2 and x is

unipotent assume in addition that x is an involution. Then

f ðsÞc dim xG
c gðsÞ;

where f ðsÞ and gðsÞ are recorded in Table 3.

Proof. The stated values for f ðsÞ when G ¼ SLn and G ¼ Sp2n follow from [19,
Lemma 3.4]. Here the authors derive upper and lower bounds for jxGs j, where Gs is
the fixed point subgroup of a Frobenius morphism s of G, and x A Gs is a prime
order semisimple or unipotent element. The proof of these bounds given in [19, (3.4)]
easily translates to the corresponding algebraic groups, and furthermore, it remains
valid for our more general hypothesis on the order of the element x.

The corresponding values for the lower bounds f ðsÞ stated in [19, (3.4)] for the or-
thogonal groups are slightly inaccurate. For example, suppose that G ¼ SO2n, p0 2
and x ¼ ½J s

2 ; I2n�2s� A G, so that nðxÞ ¼ sc n is even. Then [19, (3.4)] implies that
dim xG dmaxðsð2n� sÞ; nsÞ ¼ sð2n� sÞ, but using Proposition 2.3 we calculate that
dim xG ¼ sð2n� s� 1Þ. Following the approach of [19, (3.4)], the proof of the cor-
rected bound f ðsÞ stated in Table 3 for G ¼ SO2n goes as follows. First note that

maxðsð2n� s� 1Þ; nðs� 1ÞÞ ¼ sð2n� s� 1Þ; if sc n

nðs� 1Þ; otherwise.

�

Suppose that x is semisimple and s < n, in which case s must be even, and
SO2n�s cCGðxÞ. It follows that dimCGðxÞc dimSO2n�s þ dimSOs, and thus
dim xG d 2ns� s2 > sð2n� s� 1Þ. If s ¼ n, the largest possible centralizer is GLn,

Table 3

G f ðsÞ gðsÞ

SLn maxð2sðn� sÞ; nsÞ sð2n� s� 1Þ
Sp2n maxðsð2n� sÞ; nsÞ 1

2 ð4ns� s2 þ 1Þ
SO2n maxðsð2n� s� 1Þ; nðs� 1ÞÞ 1

2 ð4ns� s2 � 2sÞ
SO2nþ1 max sð2n� sÞ; 12 ð2nsþ s� 2n� 1Þ

� �
1
2 ð4ns� s2 þ 1Þ
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and so dim xG d nðn� 1Þ ¼ nð2n� n� 1Þ. Now since dimGLm d 2 dimSOm for all
m, it follows that if s > n, then

dimCGðxÞc dimGL
2n=ð4n�2sÞ
2n�s ¼ 2n2 � ns;

and so dim xG d nðs� 1Þ as required.
Now assume that x is unipotent and p0 2. Suppose that the Jordan decomposition

of x has precisely ni Jordan blocks of size i, so that
P

ini ¼ 2n and
P

ni ¼ 2n� s.
From Proposition 2.3, we have dim xG ¼ 2n2 � n� g, where

g ¼
X
i< j

ininj þ
1

2

X
in2i �

1

2

X
i odd

ni:

We have

nð2n� sÞ ¼ 1

2

�X
ini

��X
ni

�

¼
X
i< j

ininj þ
1

2

X
in2i þ

1

2

X
i< j

ð j � iÞninj d g;

since the last term is non-negative. Hence, dim xG d nðs� 1Þ. Similarly we can show
that dim xG d sð2n� s� 1Þ. Finally, if p ¼ 2, then by hypothesis x is an involution
and hence sc n. Furthermore, x must be G-conjugate to ½J s

2 ; I2n�2s�, and so using
Proposition 2.3 (iv) we see that dim xG d 2ns� s2 � s. The proof of the lower bound
for G ¼ SO2nþ1 is similar.

The values for gðsÞ stated in Table 3 are a slight improvement on those given
in [19, (3.4)]. The proof in each case is straightforward. For example, suppose that
G ¼ SO2n and x A G is semisimple, with nðxÞ ¼ s. Here we have gðsÞ ¼ 2ns� s2=2� s.
Now if s is even (which must be the case if s < n) then clearly we have

dimCGðxÞd dim SO2n�s þ dimTs=2;

so that dim xG c gðsÞ (here Ti denotes an i-dimensional torus). If s ¼ n is odd then
CGðxÞ� ¼ GLn and thus dim xG ¼ n2 � n < gðnÞ. If s > n is odd, then

dimCGðxÞd dimGL2n�s þ dimTs�n;

so that dim xG c 4ns� 2n2 � s2 � s which is less than gðsÞ for n < sc 2n� 1. Using
Lemma 2.4, we see that when p0 2 the largest unipotent class xG such that nðxÞ ¼ s

is given by ½Jsþ1; I2n�s�1�G. This class has dimension gðsÞ. By hypothesis, if p ¼ 2 we
need only consider involution classes. From Proposition 2.3 (iv) we see that the larger
unipotent class of involutions has dimension 2ns� s2. This is at most gðsÞ since s > 0
is even. The stated values for gðsÞ for the other types of G are just as easily verified.

Remark 2.10. The bounds recorded in Table 3 are useful in general arguments, al-
though not surprisingly, we can obtain better bounds given an explicit pair ðG; sÞ. If x
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is unipotent we can appeal to Proposition 2.3 and Lemma 2.4, and for x semisimple,
calculating the largest and smallest possible centralizers of x in G is quite straight-
forward. We illustrate this with an example.

Suppose that G ¼ SO20 and nðxÞ ¼ 12. If x is semisimple, then in arbitrary char-
acteristic we clearly have

dimðSO8 � T6Þc dimCGðxÞc dimðGL8 � SO4Þ;

and so 120c dim xG c 156. If x is unipotent, we are interested in the 8-part partitions
of 20, where even parts occur with even multiplicity. With respect to the dominance
ordering on partitions, the least and greatest such partitions are ð34; 24Þ and ð13; 17Þ
respectively. If we assume that p0 2, then using Proposition 2.3 (iii) and Lemma 2.4,
we obtain exactly the same bounds for dim xG as in the semisimple case. This may be
compared with the bound arising from Proposition 2.9, namely 110c dim xG c 174.

In Sections 3–6 we shall make much use of the Ci notation of [18]. For the reader’s
convenience, we briefly define the four collections of maximal non-subspace sub-
groups H of positive dimension of a simple algebraic group G ¼ ClðVÞ.

Class C2. Stabilizers of orthogonal decompositions. Here H ¼ GfV1;...;Vtg, where
V ¼ 0 t

i¼1
Vi, t > 1 and the subspaces Vi are mutually orthogonal and isometric.

Class C3. Stabilizers of totally singular decompositions. Here we have G ¼ SpðVÞ
or SOðVÞ and H ¼ GfW ;W 0g, where V ¼ W lW 0 and W ;W 0 are maximal totally
singular subspaces. Note that if G ¼ SOðVÞ and dimV 1 2 ðmod 4Þ then H is not
maximal.

Class C4. Tensor product subgroups. In this case either V ¼ V1 nV2 with dimVi > 1

andH ¼ NGðClðV1Þ � ClðV2ÞÞ acting naturally on the tensor product, or V ¼1k

i¼1Vi

with k > 1, the Vi mutually isometric and H ¼ NGð
Q

ClðViÞÞ, again acting naturally.
See Section 5 for details of which classical subgroups appear as factors.

Class C6. Classical subgroups. These are the subgroups NGðSpðVÞÞ and NGðSOðVÞÞ
in G ¼ SLðVÞ.

Lemma 2.11. Let G ¼ ClðVÞ be a simple classical algebraic group, and let H be a

maximal closed subgroup in one of the collections Ci, i ¼ 2; 3; 4 or 6. Let x A G be a

semisimple or unipotent element. Then xG VH� is a finite union of distinct H�-classes.

Proof. In each case H is a reductive group, so that H� has only finitely many dis-
tinct unipotent conjugacy classes and the result is immediate if x is unipotent. If x is
semisimple then the result follows from [16, (1.3)].

3 Proof of Theorem 1 for H A C2

Let G ¼ ClðVÞ be a simple classical algebraic group, and let H ¼ ðClm o SkÞVG be
a maximal closed subgroup in the collection C2. In Lemmas 3.1 and 3.2 we suppose
that our given semisimple or unipotent element x A G satisfies
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dimðxG VHÞ ¼ dimðxG VH�Þ:

Under this hypothesis, Lemma 3.1 quickly reduces the problem to the cases when
k ¼ 2; 3, which are dealt with in Lemma 3.2. Finally, in Lemma 3.3 we complete the
proof by considering the case when dimðxG VHÞ0 dimðxG VH�Þ.

Lemma 3.1. Let G ¼ ClðVÞ be a simple classical algebraic group, and let

H ¼ ðClm o SkÞVG be a maximal closed subgroup in the collection C2. Let x A G

be a semisimple or unipotent element, and assume that x is an involution if

p ¼ 2 and x is unipotent. If x satisfies dimðxG VHÞ ¼ dimðxG VH�Þ then

dimðxG VHÞ=dim xG c 1=2 for all kd 4.

Proof. From Lemma 2.11 we may assume that x A H� and dimðxG VHÞ ¼ dim xH�
.

Since x A H�, x fixes a decomposition V ¼ V1 l � � �lVk, where dimVi ¼ m for each
i. Let s ¼ nðxÞ and si ¼ nVi

ðxiÞ, where xi denotes the restriction of x to Vi. Clearly we
have

P
i si c s.

Suppose that G ¼ SLmk, so that Clm ¼ GLm. From Proposition 2.9 we deduce that

dim xGLm

i c 2siðm� 1Þ, and so dim xH�
c 2sðm� 1Þ. A further application of 2.9

yields that dim xG dmks, and thus dim xH�
=dim xG c 1=2 if kd 4.

Similarly, if G ¼ Spmk then dim x
Spm
i c sim and dim xG dmks=2. The case when

G ¼ SOmk is entirely similar.

Lemma 3.2. Let G ¼ ClðVÞ be a simple classical algebraic group, and let

H ¼ ðClm o SkÞVG be a maximal closed subgroup in the collection C2. Let x A G be a

semisimple or unipotent element such that dimðxG VHÞ ¼ dimðxG VH�Þ, and assume

that x is an involution if x is unipotent and p ¼ 2. Then the conclusion of Theorem 1 is

true for all such elements.

Proof. Write V ¼ V1 l � � �lVk, where dimVi ¼ m. With reference to Lemma 2.11,
we may assume that x A H� and dimðxG VHÞ ¼ dim xH�

, and from Lemma 3.1, we
may assume that k ¼ 2 or 3. Let xi denote the restriction of x to Vi and let pi ? m

be the associated partition to xi with respect to the action on Vi (see Definition 2.5).
Then dimCH� ðxÞ is completely determined by the partitions fpig, unless p ¼ 2, x
is unipotent and G is Spkm or SOkm. To be precise, dimCH� ðxÞ ¼

P
i dimCClmðxiÞ.

Furthermore, if x is unipotent, then dimCGðxÞ is determined by the partition
p ¼ ðp1; . . . ; pkÞ ? km and we use Proposition 2.3 to compute dimensions.

If x is semisimple, then dimCGðxÞ is not determined (in general) by the associated
partitions fpig. However we can quite easily compute a sharp upper bound. For
example, suppose that k ¼ 2 and x A Sp2m is semisimple with associated partitions

p1 ¼ ð2a; 2b; l21 ; . . . ; l
2
r Þ; p2 ¼ ð2c; 2d; m2

1 ; . . . ; m
2
t Þ ? m; ð3Þ

where in accordance with Definition 2.5 the first two parts of each partition denote
the dimensions of the non-degenerate eigenspaces of xi, and b ¼ d ¼ 0 if p ¼ 2. We
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may assume without loss of generality that l1 d � � �d lr, m1 d � � �d mt, ad b, cd d

and rd t. If r > t then set mi ¼ 0 for t < ic r. It is clear that

Sp2ðaþcÞ � Sp2ðbþdÞ �GLl1þm1 � � � � �GLlrþmr

is the largest possible centralizer of x in G.
In general, given a semisimple or unipotent element x A H�, let dim xG d bðxÞ be

the sharp lower bound derived from the associated partitions fpig (we have equality
if x is unipotent). We then define

aðxÞ ¼ ð1þ 2eÞbðxÞ � 2 dim xH�
; ð4Þ

where e ¼ eðG;H�Þ is given in the statement of Theorem 1. If aðxÞd 0 for each pos-
sible pair of partitions p1 and p2, then

dim xH�

dim xG
c

1

2
þ e

as required.
Let G ¼ SL2m and H ¼ ðGLm o S2ÞVG, so that e ¼ 0. Let x A H� be semisimple,

with associated partitions p1 ¼ ðl1; . . . ; lrÞ and p2 ¼ ðm1; . . . ; mtÞ. We may assume
that each pi has decreasing parts and that rd t. If r > t then set mi ¼ 0 for t < ic r.
One can easily verify that

bðxÞ ¼ 4m2 �
X
i

l2i �
X
i

m2
i � 2

X
i

limi;

and thus aðxÞ ¼
Pr

i¼1ðli � miÞ
2
d 0. If x A H� is unipotent with pi ? m given by

p1 ¼ ðmam ; . . . ; 1a1Þ; p2 ¼ ðmbm ; . . . ; 1b1Þ; ð5Þ

then

dim xG ¼ 4m2 � 2
X
i< j

iðai þ biÞðaj þ bjÞ �
X
i

iðai þ biÞ2;

and

aðxÞ ¼
Xm
i¼1

�Xm
j¼i

ðaj � bjÞ
�2

d 0:

Now suppose that G ¼ Sp2m and H ¼ ðSpm o S2ÞVG. In this case we have
e ¼ 1=ð2mþ 2Þ. Let m ¼ 2l. If x A H� is semisimple with associated partitions p1 and
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p2 labelled as in (3) (with the corresponding assumptions on parts) then one calcu-
lates that

aðxÞ ¼ 2l2 þ 2lða� cÞ2 þ 2lðb� dÞ2 þ lðaþ bþ cþ dÞ

þ l
X
i

ðli � miÞ
2 � 2

X
i

limi � 4ac� 4bd:

Hence aðxÞd 0 since l ¼ aþ bþ
P

i li ¼ cþ d þ
P

i mi. If p0 2 and x A H� is uni-
potent with the fpig labelled as in (5), then

aðxÞ ¼ ðl þ 1Þ
Xm
i¼1

�Xm
j¼i

ðaj � bjÞ
�2

þ 4l 2 �
X
i

iða2i þ b2i Þ

� 2
X
i< j

iðaiaj þ bibjÞ þ l
X
i odd

ðai þ biÞ:

where m ¼ 2l. Since 2l ¼
P

i iai ¼
P

i ibi, we deduce that aðxÞd 0. The case when
G ¼ SO2m (with p0 2 if x is unipotent) is entirely similar and we leave it to the
reader.

From Proposition 2.3 (iv) we deduce that if G ¼ Sp2m or SO2m and x A H� is
a unipotent involution (so that p ¼ 2) then we need only consider the elements
½al�r; al�s� ¼ ½am�ðrþsÞ� and ½cl�r; cl�s� ¼ ½cm�ðrþsÞ� for all r and s in the range 1 < r,
s < l, with l � r and l � s even, where l ¼ bm=2c and in the notation of [2], ai and ci
are unipotent involution class representatives in Clm. This is very straightforward.
For example, suppose that

G ¼ SO2ð2lþ1Þ and x ¼ ½cl�r; cl�s� ¼ ½c2lþ1�ðrþsþ1Þ�:

Then from Proposition 2.3 (iv) we compute that

aðxÞ ¼ 12l þ ðr� sÞ2 � 2r� 2sd 0:

Similarly if k ¼ 3.
If k ¼ 3 then in each case ðG;H�Þ, one easily deduces that aðxÞd 0 for all semi-

simple elements x A H�. The arguments are entirely similar to those given previously
for the case when k ¼ 2.

If G ¼ SL3m, H ¼ ðGLm o S3ÞVG, and x A H� is unipotent, then with p1 and p2 as
in (5), and p3 ¼ ðmcm ; . . . ; 1c1Þ ? m, we have

aðxÞ ¼ dim xH� þ
Xm
i¼1

�Xm
j¼i

ðaj � bjÞ
�2

þ
Xm
i¼1

�Xm
j¼i

ðaj � cjÞ
�2

þ
Xm
i¼1

�Xm
j¼i

ðbj � cjÞ
�2
;

so that aðxÞd 0.
With the same labelling of the associated partitions fpig, if x A Sp3m is unipotent

and p0 2 we have
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aðxÞ ¼ dim xH� þ
Xm
i¼1

�Xm
j¼i

ðaj � bjÞ
�2

þ
Xm
i¼1

�Xm
j¼i

ðaj � cjÞ
�2

þ
Xm
i¼1

�Xm
j¼i

ðbj � cjÞ
�2

� 6l þ 1

2

X
i odd

ðai þ bi þ ciÞ;

where m ¼ 2l. Then aðxÞd 0 since dim xH�
d 6l. Similarly if x A SO3m is unipotent

and p0 2.

Lemma 3.3. Let G be a simple classical algebraic group, and let H ¼ ðClm o SkÞVG be

a maximal closed subgroup in the collection C2. Let x A G be a semisimple or unipotent

element of prime order. Then the conclusion of Theorem 1 is true.

Proof. In view of Lemma 3.2, we may assume that dimðxG VHÞ ¼ dimðxG VH�pÞ,
where 10 p A Sk. We follow closely the proof of [19, Lemma 4.5].

Replacing x by a suitable G-conjugate, we may assume that x A H�p, i.e. x is the
image of ðb1; . . . ; bkÞp, where bi A Clm for each i. Let r denote the (prime) order of x,
hence of p and each bi, and suppose that p comprises exactly h r-cycles and f fixed
points. From the proof of [19, Lemma 4.5] we have the following important facts:

ð�Þ x is H�-conjugate to bp, where b ¼ ð1; . . . ; 1; bhrþ1; . . . ; bkÞ,
ð?Þ nðxÞdmhðr� 1Þ.

We may assume that dimðxG VHÞ ¼ dim xH�
. This follows immediately from the

fact that xG VH�p is a finite union of H�-classes. To see this, note that the reductive
algebraic group Clm only has finitely many distinct classes of semisimple or unipotent
elements of prime order r, and so the claim follows from ð�Þ.

Suppose thatH ¼ ðGLm o SkÞV SLmk, so that dimH ¼ km2 � 1. Using the fact that
nðxÞdmhðr� 1Þ, we see that Proposition 2.9 implies that dim xG dm2khðr� 1Þ. So

dimðxG VHÞ
dim xG

c
km2 � 1

km2hðr� 1Þ <
1

2
;

unless ðh; rÞ ¼ ð1; 2Þ. If ðh; rÞ ¼ ð1; 2Þ then x is an involution and from ð�Þ, with-
out any loss of generality, we may take x to be the image of bð12Þ, where
b ¼ ðIm; Im; b3; . . . ; bkÞ and the bi A GLm are involutions. One easily checks that if
t A GLm is an involution then dim tGLm cm2=2. Hence

dimCH� ðxÞ ¼ dimCGL k
m
ðxÞdm2 þ 1

2m
2ðk � 2Þ;

so that dimðxG VHÞ ¼ dim xH�
c km2=2. Since nðxÞdm, Proposition 2.9 implies

that dim xG d km2 and thus dimðxG VHÞ=dim xG c 1=2 as required.
Now consider H ¼ ðSpm o SkÞV Spmk. Using ð?Þ with Proposition 2.9, and the

bound dimðxG VHÞc dimH, we quickly reduce to the cases ðh; rÞ ¼ ð1; 2Þ; ð2; 2Þ and
ð1; 3Þ. Let m ¼ 2l.

Suppose that ðh; rÞ ¼ ð1; 3Þ. Following [19, (3.4)], we may assume that
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x ¼ ðI2l ; I2l ; I2l ; b4; . . . ; bkÞð123Þ;

where each bi A Sp2l is an element of order 3. We claim that dimCSp2l ðbiÞd 2l 2=3 for
each i. If x (and thus each bi) is semisimple of order 3 then CSp2l ðbiÞ ¼ Sp2j �GLl�j,
for some 0c j < l. Let jð jÞ ¼ dimðSp2j �GLl�jÞ. One easily checks that for
0c j < l, we have jð jÞd 2l 2=3þ l=3� 1=12 > 2l2=3. Now suppose that x is uni-
potent, so that by hypothesis we must have p ¼ 3. We may assume that l > 1. Write
2l ¼ 3aþ b, where 0c b < 3. Since the Jordan form of bi cannot have a Jordan block
of size j > 3, it follows from Lemma 2.4 that the largest unipotent class in Sp2l of ele-
ments of order 3 is represented by y ¼ ½J a

3 ; Jb�. We calculate using Proposition 2.3 (ii)
that dimCSp2l ðyÞd 3a2=2þ abþ a=2þ b=2. Since 2l2=3 ¼ 3a2=2þ b2=2þ ab, and
0c bc 2, we deduce that dimCSp2l ðyÞd 2l 2=3 as claimed.

From the claim it follows that

dim xH�
c dimH � dimSp2l � 2

3 l
2ðk � 3Þ ¼ 4

3 kl
2 þ lk � l:

From Proposition 2.9 we have dim xG d 4l2k since nðxÞd 4l from ð?Þ. When ld 2,
these bounds are su‰cient to yield dimðxG VHÞ=dim xG < 1=2. If t A Sp2 has order
3, then it is clear that dimCSp2ðtÞ ¼ 1, so that dimðxG VHÞc 2k. This is su‰cient
since we have dim xG d 4k.

Assume now that ðh; rÞ ¼ ð2; 2Þ; in this case we have kd 4 and x is an involution.
Without loss of generality, we may take

x ¼ ðI2l ; I2l ; I2l ; I2l ; b5; . . . ; bkÞð12Þð34Þ;

where each bi A Sp2l is an involution. Now from Proposition 2.2 we have
dimCSp2l ðbiÞd l 2 for each i, and hence

dim xH�
c dimH � 2 dim Sp2l � ðk � 4Þl2:

Since ðh; rÞ ¼ ð2; 2Þ, it follows from ð?Þ that nðxÞd 4l, and thus dim xG d 4l2k (by
Proposition 2.9). This is su‰cient to imply that dimðxG VHÞ=dim xG < 1=2 for all
possible l; k.

This leaves us to deal with the case ðh; rÞ ¼ ð1; 2Þ. Following the same procedure as
in the previous case, we deduce that dimðxG VHÞc kl2 þ kl � l. From Proposition
2.9 we have dim xG d 4l 2ðk � 1Þ since nðxÞd 2l. Using these bounds, we deduce that
dimðxG VHÞ=dim xG c 1=2 unless k ¼ 2 or ðk; lÞ ¼ ð3; 1Þ. Consider the latter case.
As usual, we may assume that x ¼ ðI2; I2; bÞð12Þ, where b A Sp2 satisfies b2 ¼ I2. If
x is semisimple then b must be scalar, so that dimðxG VHÞc 3 and dim xG ¼ 8. If
b is a unipotent involution then dimCH� ðxÞ ¼ 4 and x is G-conjugate to ½J 3

2 �. So
dimðxG VHÞc 5 and dim xG ¼ 12, which yields a ratio of 5=12 < 1=2.

Finally, note that if k ¼ 2 then from the statement of Theorem 1 we have e ¼ 1=4l.
We may take x ¼ ðI2l ; I2lÞð12Þ, so that dim xG ¼ 4l2 (note that x is an a2l involution
if p ¼ 2). Since CH� ðxÞ ¼ Sp2l , it follows that
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dimðxG VHÞ
dim xG

c
2l2 þ l

4l2
¼ 1

2
þ 1

4l
;

as required.
The final case to consider is H ¼ ðSOm o SkÞV SOmk. Using the bounds

dimðxG VHÞc dimH ¼ 1
2 ðkm2 � kmÞ and dim xG d 1

2mkðmhðr� 1Þ � 1Þ (via ð?Þ
and Proposition 2.9), we deduce that dimðxG VHÞ=dimHc 1=2 unless ðh; rÞ ¼ ð1; 2Þ.
Suppose that m ¼ 2l. Now, if t A SO2l is an involution, then from Proposition 2.2 we
have dim tSO2l c l 2. Hence

dimðxG VHÞc ðk � 1Þð2l 2 � lÞ � ðk � 2Þl2 ¼ kl2 � kl þ l;

and since dim xG d 2lkð2l � 1Þ, this implies that dimðxG VHÞ=dimH < 1=2. Sim-
ilarly if m ¼ 2l þ 1.

4 Proof of Theorem 1 for H A C3

As described in Section 2, here G ¼ Sp2n or SO2n, and H ¼ StabGfU ;Wg, where
U and W are maximal totally singular subspaces of the natural G-module. Hence
H� GGLn and jH : H�j ¼ 2. In fact,

H� ¼ A 0

0 A�T

� �
: A A GLn

� �
GGLn ð6Þ

Lemma 4.1. If G ¼ Sp2n and H A C3 then the conclusion of Theorem 1 is true.

Proof. Note that if p ¼ 2 then H is not maximal in G since H < O2n < G,
and so by hypothesis, we may assume that p0 2. We begin by assuming that
dimðxG VHÞ ¼ dimðxG VH�Þ. From Lemma 2.11, we may assume without loss of
generality that x A H� and dimðxG VHÞ ¼ dim xH�

. We follow a similar approach
to that in the proof of Lemma 3.2. Given x A H� ¼ GLn semisimple or unipotent,
the associated partition l? n derived from the action of x on the natural GLn-
module completely determines dimCH� ðxÞ. From l we obtain a sharp lower bound
dim xG d bðxÞ and we define aðxÞ as in equation (4).

Suppose that x A H� ¼ GLn is semisimple, and let l ¼ ðl1; . . . ; lkÞ ? n be the
associated partition. We may assume that l1 d � � �d lk d 0 and that k is even.
Clearly CH� ðxÞ� ¼

Q
i GLli , and so dim xH� ¼ n2 �

Pk
i¼1 l

2
i . There are two possible

candidates for the centralizer CGðxÞ� of maximal dimension, namely

(i) Sp2l1 � Sp2l2 �GLl3þl4 � � � � �GLlk�1þlk ;

(ii) Sp2l1 �GLl2þl3 � � � � �GLlk�2þlk�1
�GLlk .

In (i) we calculate that aðxÞ ¼
Pk=2

i¼2 ðl2i�1 � l2iÞ2 þ n� l1 � l2 d 0. Similarly for
(ii).

If x A H� is unipotent, let l ¼ ðnan ; . . . ; 1a1Þ ? n be the associated partition. It is a
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basic fact of linear algebra that if A A GLn is unipotent then A and A�T are GLn-
conjugate. Hence in view of the isomorphism (6), considering x as an element of Sp2n
the associated partition is ðn2an ; . . . ; 12a1Þ ? 2n and thus dim xG is completely deter-
mined by l since p0 2. From Proposition 2.3 we deduce that aðxÞ ¼ n�

P
i odd aid0.

Now suppose that dimðxG VHÞ0 dimðxG VH�Þ. We can assume that

x A H �H� ¼ H�t where t ¼ In

�In

� �
A Sp2n;

with respect to the basis ordering fe1; . . . ; en; f1; . . . ; fng of a standard symplectic
basis of the natural Sp2n-module. Furthermore, we may assume that x is an involu-
tion since we are only concerned with elements of prime order. It is clear that t in-
duces an involutory graph automorphism of An�1 < H�.

If n ¼ 2mþ 1 then from [16, (1.4)] we know that there exists a unique H�-class
of involutions in H�t, and CAn�1

ðxÞ ¼ Bm for any x in this class. Since t is an invo-
lution in the adjoint group PSp2n, we may take x ¼ t. Now t does not centralize the
T1 torus in H� ¼ T1An�1, and so

CH� ðtÞ ¼ Bm and dimðtG VHÞ ¼ dim tH
� ¼ 2m2 þ 3mþ 1:

Since CGðtÞGGLn, we have dim tG ¼ 4m2 þ 6mþ 2 and

dimðtG VHÞ=dim tG ¼ 1=2:

Now suppose that n ¼ 2m. From [16, (1.4)] we know that there are precisely two
distinct H�-conjugacy classes of involutions in H�t, and so we may assume that
dimðxG VHÞ ¼ dim xH�

. As before we have CGðtÞ ¼ GLn and CH� ðtÞ ¼ SOn, and

thus dim tH
�
=dim tG ¼ 1=2. For a representative of the other class of involutions in

H�t, consider the element o A H�t, where the action of o on a standard symplectic
basis of the natural Sp2n-module is given by

ei 7! f2mþ1�i ð1c icmÞ;

ei 7! �f2mþ1�i ðmþ 1c ic 2mÞ;

fi 7! �e2mþ1�i ð1c icmÞ;

fi 7! e2mþ1�i ðmþ 1c ic 2mÞ:

Since o2 ¼ I2n and t2 ¼ �I2n, we conclude that o is not G-conjugate to t. Clearly we
have CGðoÞ ¼ Sp2

n , so that dimoG ¼ n2. A straightforward direct calculation yields
that CAn�1

ðoÞ ¼ Spn, and since o does not centralize the T1 torus, we deduce that
dimoH� ¼ n2=2� n=2, so that dimðoG VHÞ=dimoG ¼ 1=2� 1=2n.

Lemma 4.2. If G ¼ SO2n and H A C3 then the conclusion of Theorem 1 is true.
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Proof. Recall from the statement of Theorem 1 that we have e ¼ 1=ð2n� 2Þ in this
case. We need only consider the case n ¼ 2m, since otherwise H is not maximal in G.
We adopt the same approach as for Lemma 4.1.

Suppose that dimðxG VHÞ ¼ dimðxG VH�Þ. We may assume that x A H� and
dimðxG VHÞ ¼ dim xH�

. If x is semisimple, let l ¼ ðl1; . . . ; lkÞ ? n be the associated
partition with l1 d � � �d lk and k even. Then dim xH� ¼ n2 �

P
i l

2
i and there are

three possible candidates for the centralizer CGðxÞ� of largest dimension:

(i) SO2l1 � SO2l2 �GLl3þl4 � � � � �GLlk�1þlk ;

(ii) SO2l1 �GLl2þl3 � � � � �GLlk�2þlk�1
�GLlk ;

(iii) GLl1þl2 �GLl3þl4 � � � � �GLlk�1þlk ;

here case (i) is only possible if p0 2.
For each possibility, we calculate bðxÞ and derive aðxÞ as before. We then show

that aðxÞd 0 for all partitions l? n. The approach in each case is similar, and so we
shall only deal with (i), and leave (ii) and (iii) to the reader. In (i) we have

bðxÞ ¼ 2n2 � n� l21 � l22 þ l1 þ l2 �
Xk
i¼1

l2i � 2
Xk=2
i¼2

l2i�1l2i;

and

aðxÞ ¼ n
Xk=2
i¼2

ðl2i�1 � l2iÞ2 þ n2 þ nðl1 þ l2Þ � 2
Xk
i¼1

l2i :

Since n ¼
P

i li, we deduce that aðxÞd 0.
Now suppose that x A H� is unipotent and p0 2. As in Lemma 4.1, if

l ¼ ðnan ; . . . ; 1a1Þ ? n is the associated partition of x with respect to the natural
GLn-module then m ¼ ðn2an ; . . . ; 12a1Þ ? 2n is the partition of x as an element of
SO2n. Via Proposition 2.3(iii) we calculate that

aðxÞ ¼ dim xH� � 1

2
n
�
n�

X
i odd

ai

�
:

Suppose that nðxÞ ¼ s, so that n� s ¼
P

i ai. Then by Proposition 2.9 we have

dim xH�
d ns ¼ n

�
n�

X
i

ai

�
:

Now n�
P

i ai d n=2�
P

i odd ai=2 since n ¼
P

i iai, and hence aðxÞd 0 as required.
If p ¼ 2, we proceed as in Lemma 4.1, using Proposition 2.3 to calculate dim xH�

and dim xG for each unipotent involution x A H�. If x has associated partition
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ð2r; 1n�2rÞ ? n, then dim xH� ¼ 2nr� 2r2 and dim xG ¼ 4nr� 4r2 � 2r since x A G is
an involution of type a2r. Hence

dim xH�

dim xG
¼ 1

2
þ 1

4n� 4r� 2
c

1

2
þ 1

2n� 2
;

since nd 2r.
Now suppose that dimðxG VHÞ0 dimðxG VH�Þ. As in Lemma 4.1, we may

choose x A H�t, where

t ¼ In

In

� �
A SO2n;

with respect to the basis ordering fe1; . . . ; en; f1; . . . ; fng of a standard orthogonal
basis of the natural SO2n-module. As before, t induces an involutory graph auto-
morphism of An�1, and since n ¼ 2m, there are precisely two distinct involution
classes in H�t. We have t2 ¼ I2n and as before, when p0 2, we calculate that
CGðtÞ ¼ SO2

n and CH� ðtÞ ¼ SOn, so that

dim tH
�

dim tG
¼ 1

2
þ 1

2n
<

1

2
þ e:

We can represent the other class by the element y A H�t defined as follows:

ei 7! �f2mþ1�i ð1c icmÞ;

ei 7! f2mþ1�i ðmþ 1c ic 2mÞ;

fi 7! �e2mþ1�i ð1c icmÞ;

fi 7! e2mþ1�i ðmþ 1c ic 2mÞ:

Since y2 ¼ �I2n, y does indeed lie in the other involution class. Now CGðyÞ ¼ GLn

and CH� ðyÞ ¼ Spn, and thus dim yH�
=dim yG ¼ 1=2. Finally, suppose that p ¼ 2.

In this case, t and y are c2m and a2m unipotent involutions respectively, and
CH� ðtÞ ¼ CSp2mðtÞ and CH� ðyÞ ¼ Sp2m, where t A Sp2m is a long root involution. We

conclude that dim tH
�
=dim tG ¼ 1=2þ 1=2n and dim yH�

=dim yG ¼ 1=2.

5 Proof of Theorem 1 for H A C4

Lemma 5.1. If G ¼ SLn and H ¼ NGðSLa n SLbÞ (where n ¼ ab and a; bd 2) then the

conclusion of Theorem 1 is true.

Proof. Clearly it is su‰cient to prove that Theorem 1 holds when G ¼ PSLab

and H ¼ NGðPSLa � PSLbÞ. We may assume that ad b. Given h A H, define
jh A AutðPSLa � PSLbÞ by

jhðx; yÞ ¼ h�1ðx; yÞh for all x A PSLa; y A PSLb:
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Since each factor is simple, it follows that jh either fixes each factor, or interchanges
the factors. Of course, jh can only interchange (algebraically) isomorphic factors, and
so we have

H ¼ H�; if a0 b

H� UH�t; if a ¼ b

�

where H� ¼ PSLa � PSLb, and t interchanges factors, i.e. jtðx; yÞ ¼ ðy; xÞ.
Let x A G be a semisimple or unipotent element, and assume to begin with that

dimðxG VHÞ ¼ dimðxG VH�Þ. From Lemma 2.11 we may assume that x A H� and
dimðxG VHÞ ¼ dim xH�

. Let nðxÞ ¼ s. If sd n=2 then we deduce from Proposition
2.3 that dim xG d n2=2. Since dim xH�

c a2 � aþ b2 � b and n ¼ ab, we conclude
that dim xH�

=dim xG c 1=2 for all a; bd 2. If s < n=2 we follow closely the method
of Liebeck and Shalev in [19, Lemma 4.3]. Write x ¼ ðx1; x2Þ A PSLa � PSLb. Let
nðxÞ ¼ s and nðxiÞ ¼ si, with respect to the obvious natural modules. From [19,
Lemma 3.7] we have sdmaxðas2; bs1Þ and using the upper bound stated in [19,
(3.4)], we have

dim xH�
c max

s1cs=b; s2cs=a
f2as1 � s21 þ 2bs2 � s22gc

2as

b
� s2

b2
þ 2bs

a
� s2

a2
;

since the maximum is clearly attained when s1 ¼ s=b and s2 ¼ s=a. From Proposi-
tion 2.9, we have dim xG d 2sðn� sÞ, and using these bounds we calculate that
dim xH�

=dim xG c 1=2 if gða; n; sÞd 0, where

gða; n; sÞ ¼ sðn2ð1� a2Þ þ a4Þ þ n3ða2 � 2Þ � 2na4.

Since n2ð1� a2Þ þ a4 < 0 and s < n=2, it follows that gða; n; sÞd g a; n; 12 ðn� 1Þ
� �

,
and it is easily checked that g a; n; 12 ðn� 1Þ

� �
d 0 for all possible ða; nÞ (with nc a2

since we assume that ad b), unless ða; nÞ ¼ ð2; 4Þ. However we can exclude this case
since if ða; nÞ ¼ ð2; 4Þ and sc 1 then [19, (3.7)] implies that s1 ¼ s2 ¼ 0, which in turn
implies that x is scalar.

Now suppose that dimðxG VHÞ0 dimðxG VH�Þ, so that a ¼ b and we may as-
sume that x A H�t. The action of t on a basis of V ¼ Va nVa is given by

vi n vj 7! vj n vi;

unless p0 2 and 1
2 aða� 1Þ is odd, where in order to ensure that t has determinant

1 we take vi n vj 7! lvj n vi, where l A K satisfies la2 ¼ �1. Since t is an involution
and we are only interested in elements of prime order, we need only consider involu-
tions in H�t. From the proof of [19, Lemma 4.5] (cf. ð}Þ from the proof of Lemma
3.3) we deduce that tH

�
is the unique H�-class of involutions in H�t. Clearly there

exists a basis for Va nVa with respect to which t has the matrix ½Ar; Ia�, where
2r ¼ a2 � a and

A ¼ 0 1

1 0

� �
:

Timothy C. Burness330



Hence dim tG ¼ 1
2 ða4 � a2Þ. Since ðg; hÞt ¼ ðh; gÞ, it follows that CH� ðtÞGPSLa, and

so dim tH
� ¼ a2 � 1. Hence dim tH

�
=dim tG c 2=a2 c 1=2, since ad 2.

Lemma 5.2. If G ¼ Sp2n and H ¼ NGðSp2a n SObÞ (where p0 2, n ¼ ab, ad 1 and

bd 2) then the conclusion of Theorem 1 is true.

Proof. As before, we may assume that G is adjoint, so that

H ¼ NGðPSp2a � PSObÞ ¼ PSp2a � PSOb:

If x A G is semisimple or unipotent, then from Lemma 2.11 we may assume that
dimðxG VHÞ ¼ dim xH . We follow the approach of Lemma 5.1. Let nðxÞ ¼ s. If
sd n then dim xG d n2, and since dim xH c 2a2 þ b2=2� bþ 1=2, we deduce that
dim xH=dim xG c 1=2 if

n2ða2 � 1Þ þ 2na� a2ð4a2 þ 1Þd 0:

This clearly holds if nd 3a. If b ¼ 2, then dim xH c 2a2 and dim xG d n2 ¼ 4a2

which is su‰cient.
Now suppose that nðxÞ ¼ s < n, so that dim xG d sð2n� sÞ. Write x ¼ ðx1; x2Þ A H

and nðxiÞ ¼ si. Then from [19, (3.7)] and [19, (3.4)] we have sdmaxð2as2; bs1Þ and

dim xH
c max

s1cs=b; s2cs=2a

1

2
s1ð4a� s1 þ 1Þ þ 1

2
s2ð2b� s2 þ 1Þ

� �
:

The maximum is realized when s1 and s2 are as large as possible, and we calculate
that dim xH=dim xG c 1=2 if hða; n; sÞd 0, where

hða; n; sÞ ¼ sðn2ð1� 4a2Þ þ 4a4Þ þ 4n3ð2a2 � 1Þ � 2n2a� 4na3ð4aþ 1Þ:

Then hða; n; sÞd hða; n; n� 1Þd 0 unless ða; nÞ A fð1; 2Þ; ð1; 3Þg. We can exclude the
case ða; nÞ ¼ ð1; 2Þ since x is assumed to be non-scalar. If ða; nÞ ¼ ð1; 3Þ we must have
s ¼ 2, s1 ¼ 0 and s2 ¼ 1, and thus Proposition 2.9 implies that dim xH c 2 and
dim xG d 8.

Lemma 5.3. Suppose that H ¼ NGðSL2 n SL2 n SL2Þ, where G ¼ Sp8 if p0 2 and

G ¼ SO8 if p ¼ 2. Then the conclusion of Theorem 1 is true.

Proof. We may assume that G is adjoint. We have H=H� GS3, where S3

acts naturally on H� ¼ PSL3
2 by permuting factors. Let p A S3 be such that

dimðxG VHÞ ¼ dimðxG VH�pÞ; thus we may assume that x A H�p.
Suppose that p ¼ 1. Then from Lemma 2.11, we may assume that

dimðxG VHÞ ¼ dim xH�
. It is clear that dim xH�

c 6, and from repeated application
of [19, (3.7)], we see that nðxÞd 4, and hence from Proposition 2.9 we deduce that
dim xG is at least 16 if p0 2 and at least 12 if p ¼ 2.
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Now assume that p is a transposition, so that we need only consider
involutions. Suppose that p ¼ ð12Þ A S3, so that if ðg1; g2; g3Þ A H� we have
ðg1; g2; g3Þp ¼ ðg2; g1; g3Þ, and dim pH� ¼ 3. The action of p on a basis of
V2 nV2 nV2 is given by

vi n vj n vk 7! vj n vi n vk;

and so it is clear that p is G-conjugate to ½�I2; I6� if p0 2, and to a2 otherwise. Hence
dim pG ¼ 12 if p0 2 and dim pG ¼ 10 if p ¼ 2. Now we easily calculate that

fðg; g�1; zÞp : g; z A PSL2; z
2 ¼ 1g

is the complete set of involutions in H�p, and that pH� ¼ fðg; g�1; 1Þp : g A PSL2g. If
z A PSL2 is an involution, then

ð1; 1; zÞpð1;g;hÞ ¼ ðg; g�1; h�1zhÞp:

Since there exists a unique class of involutions in PSL2, we deduce that there are
precisely two H�-classes of involutions in H�p with representatives p and ð1; 1; zÞp,
where z A PSL2 is an involution. Clearly CH� ðð1; 1; zÞpÞGPSL2 � CPSL2

ðzÞ, so that

dimðð1; 1; zÞpÞH
�
¼ 5. We also calculate that ð1; 1; zÞp is G-conjugate to ½�iI4; iI4� if

p0 2, and to a4 if p ¼ 2, where i A K satisfies i2 ¼ �1. Hence dimðð1; 1; zÞpÞG is
equal to 20 if p0 2 and to 12 if p ¼ 2.

Finally, suppose that x A H�o, where o ¼ ð123Þ A S3, so that

ðg1; g2; g3Þo ¼ ðg3; g1; g2Þ;

and o acts on a basis of V2 nV2 nV2 by

vi n vj n vk 7! vk n vi n vj:

Clearly dimoH� ¼ 6, and as before we calculate that dimoG ¼ 22 if p0 2 and
dimoG ¼ 18 if p ¼ 2. From the proof of [19, Lemma 4.5] it follows that oH�

is the
unique H�-class of elements of order 3 in H�o, and we are done.

Lemma 5.4. The conclusion of Theorem 1 is true in the remaining C4 cases.

Proof. In each case, we may assume that G is adjoint. Let x A H be semisimple
or unipotent of prime order. If G ¼ PSLa t and H ¼ NGðPSL t

aÞ (where td 3) then
dimðxG VHÞc dimH ¼ tða2 � 1Þ and Proposition 2.9 implies that

dim xG
d 2ðat � 1Þ:

This is su‰cient to imply that dimðxG VHÞ=dim xG c 1=2, unless ða; tÞ ¼ ð2; 3Þ.
However, we may ignore this case since H is not maximal in G (see Lemma 5.3). The
case when G ¼ PSOa t and H ¼ NGðPSO t

aÞ (where a0 2; 4, td 3 and p0 2) is just as
easy. Similarly for G ¼ PSp2 ta t and H ¼ NGðPSp t

2aÞ (with p0 2 and td 3 odd); we
quickly reduce to the case ða; tÞ ¼ ð1; 3Þ, which has been dealt with in Lemma 5.3.
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The argument for G ¼ PSO2 ta t and H ¼ NGðPSp t
2aÞ (where td 3 is even, or p ¼ 2)

is again similar. We have nðxÞd 2 for all prime order semisimple and unipotent ele-
ments x A H (cf. Remark 2.7), and applying Proposition 2.9, we are left to deal with
the case ða; tÞ ¼ ð1; 3Þ for which we have Lemma 5.3.

If G ¼ PSO4ab and H ¼ NGðPSp2a � PSp2bÞ then H is connected if a0 b, or if
a ¼ b is odd. If dimðxG VHÞ ¼ dimðxG VH�Þ then the proof is similar to Lemma
5.2. If a ¼ b is even, then H ¼ H� UH�t, where t A G interchanges the factors. As
in Lemma 5.1, there is a unique class of involutions in the coset H�t. Since t is
G-conjugate to ½�I2a2�a; I2a2þa� if p0 2, and to c2a2�a if p ¼ 2, we deduce that
dim tG ¼ 4a4 � a2. Clearly CH� ðtÞG Sp2a, and an upper bound of 1=2 follows im-
mediately. The case when G ¼ PSOab, H ¼ NGðPSOa � PSObÞ is similar.

6 Proof of Theorem 1 for H A C6

In this section, we deal with the classical subgroups NGðSp2nÞ and NGðSO2nÞ in
G ¼ SL2n. Notice that we exclude the case when G ¼ Sp2n, H ¼ NGðSO2nÞ and p ¼ 2
since this is a subspace subgroup (see Section 1). Clearly it is su‰cient to prove that
Theorem 1 holds when H A C6 under the assumption that G is adjoint. We have
NPSL2n

ðPSp2nÞ ¼ PSp2n and NPSL2nþ1
ðSO2nþ1Þ ¼ SO2nþ1 since Bn and Cn fail to admit

any non-trivial graph automorphisms. However, PSO2n does admit an involutory
graph automorphism t which interchanges the two conjugacy classes of maximal
parabolic subgroups with Levi factors An�1. Since t A GLn has determinant �1, we
have NPSL2n

ðPSO2nÞ ¼ PSO2n if p0 2. If p ¼ 2 then NPSL2n
ðPSO2nÞ is a maximal

closed subgroup of PSp2n.

Lemma 6.1. If H is a maximal closed non-subspace subgroup in the collection C6, then
the conclusion to Theorem 1 is true.

Proof. By hypothesis, H is a simple algebraic group. If x A G is semisimple or uni-
potent then by Lemma 2.11 we may assume that x A H and dimðxG VHÞ ¼ dim xH .
The proof is very straightforward: the associated partition l completely determines
dim xH and dim xG, and we show that

aðxÞ ¼ ð1þ 2eÞ dim xG � 2 dim xH
d 0;

for all possible associated partitions l, where e ¼ eðG;H�Þ is given in the statement of
Theorem 1.

If ðG;HÞ ¼ ðPSL2n;PSp2nÞ then e ¼ 1=2n in this case. Let x A H be semisimple
with associated partition l ¼ ð2a; 2b; l21 ; . . . ; l

2
kÞ ? 2n in accordance with Definition

2.5. Then

aðxÞ ¼ 2n2 � 4a2 � 4b2 � 2
X
i

l2i þ 2naþ 2nbd 0;

since n ¼ aþ bþ
P

i li. If p0 2 and x is unipotent with partition given by
l ¼ ð2na2n ; . . . ; 1a1Þ ? 2n, then
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aðxÞ ¼ dim xG � n
�
2n�

X
i odd

ai

�
:

Now if nðxÞ ¼ s, then 2n� s ¼
P

i ai. From Proposition 2.9 we have

dim xG
d 2ns ¼ n

�
4n� 2

X
i

ai

�
and 4n� 2

X
i

ai d 2n�
X
i odd

ai

since 2n ¼
P

i iai. Hence aðxÞd 0.
If x is unipotent and p ¼ 2, then by hypothesis, x is an involution and therefore

has associated partition l ¼ ð2r; 12n�2rÞ ? 2n for some r > 0. Using Proposition 2.3,
we calculate that dim xG ¼ 4nr� 2r2, and dim xH ¼ 2nr� r2 if x is of type ar, and
2nr� r2 þ r otherwise. Clearly in each case we have dim xH=dim xG c 1=2þ 1=2n.

The proof when ðG;HÞ ¼ ðPSLn;NGðPSOnÞÞ is entirely similar and we leave it to
the reader.

7 Proof of Theorem 1 for H B Ci

Let G ¼ ClðVÞ be a simple classical algebraic group. According to [18, Theorem 1], if
H < G is a closed subgroup which is not contained in a member of one of the col-
lections Ci ð1c ic 6Þ, then EðHÞ is simple and acts irreducibly on V , i.e. we have
an irreducible embedding j : EðHÞ ! G. Since dimðxG VHÞ ¼ 0 for all x A G if H
is finite, we may assume that EðHÞ ¼ H� is a connected simple algebraic group of
positive dimension.

Let l ¼ a1l1 þ � � � þ arlr denote the highest weight of the irreducible embedding
j and write V ¼ MðlÞ. Here r ¼ rankH� and the li are the fundamental dominant
weights corresponding to a fixed fundamental system of roots. We follow Bourbaki
[3] in labelling the Dynkin diagram of H�. Now H is connected unless there exists
some element t A NGðH�Þ inducing a non-trivial graph automorphism t of H�. If
MðlÞt denotes the corresponding ‘twisted’ irreducible H�-module, then from [14,
(5.4.2) (ii)] we know that MðlÞt GMðtðlÞÞ, so that H is connected unless tðlÞ ¼ l

for some non-trivial graph automorphism t of H�.
Let x A H be semisimple or unipotent of prime order. The following lemma pro-

vides us with an upper bound for dimðxG VHÞ.

Lemma 7.1. Let ðG;HÞ be as above. If x A H is a semisimple or unipotent element of

prime order, then dimðxG VHÞc dimH � rankH�.

Proof. From Lemma 2.11, we know that xG VH� is a finite union ofH�-classes. If t is
a non-trivial graph automorphism of H� then it is well known that xG VH�t is a finite
union ofH�-classes since x has prime order. So, replacing x by a suitable G-conjugate,
we may assume that dimðxG VHÞ ¼ dim xH�

. If dimðxG VHÞ ¼ dimðxG VH�Þ then
we may assume that x A H� and the conclusion of the lemma follows from Proposi-
tion 2.1. Otherwise, x A H�t, and from [16, (1.4)], [10, Table 4.3.3] and [2, (8.7)] we
deduce that dimCH� ðxÞ > rankH� for all prime order elements x A H�t.

In order to derive a lower bound for dim xG, we may appeal to [12, Theorem 8.3]
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since H < ClðVÞ ¼ G is an irreducible subgroup. This result states that if x A H and
n ¼ dimV then

nðxÞ > max 1
2

ffiffiffi
n

p
; 2

� �
;

with the exception of a small number of cases ðG;HÞ. Using Proposition 2.9, this
provides us with a lower bound for dim xG. The relevant exceptions to [12, (8.3)] are
the following irreducible embeddings H� !l G:

ðaÞ Sp6 !
l3

SO8 ðp ¼ 2Þ ðeÞ SL3 !
2l1

SL6 ðp0 2Þ

ðbÞ SO7 !
l3

SO8 ðp0 2Þ ð fÞ G2 !
l1

SO7 ðp0 2Þ

ðcÞ SL2 !
4l1

SO5 ðp0 2; 3Þ ðgÞ G2 !
l1

Sp6 ðp ¼ 2Þ

ðdÞ SL2 !
3l1

Sp4 ðp0 2; 3Þ

where l denotes the highest weight of the irreducible embedding.
For now, we shall assume that j is not one of these exceptional cases. Therefore

we can say that nðxÞd 3 for all x A H, and from Proposition 2.9 we deduce that
dim xG d f ðG; nÞ, for some function of the dimension n of the natural G-module.
For example, if G ¼ Spn then f ðG; nÞ ¼ 3n� 9. For a fixed H let NðHÞ A Z be min-
imal such that ndNðHÞ implies that

dimH � rankH�

f ðG; nÞ c
1

2
:

Using Lemma 7.1, we observe that ndNðHÞ implies that

dimðxG VHÞ=dim xG
c 1=2:

For example, suppose that H� ¼ SO10 and G ¼ Spn. Then dimH � rankH� ¼ 40
and 40=ð3n� 9Þc 1=2 if and only if nd 89=3. So in this case, NðHÞ ¼ 30. In
general, if G ¼ Spn and H� is a simple algebraic group, we easily calculate that
NðHÞ ¼ dMe, where M is given in Table 4.

Table 4
G ¼ Spn

H� M

SLd 2d 2=3� 2d=3þ 3
Sp2d 4d 2=3þ 3
SO2d 4d 2=3� 4d=3þ 3
SO2dþ1 4d 2=3þ 3
E6 51
E7 87
E8 163
F4 35
G2 11
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In the case of G ¼ Spn, this leaves us to deal with a finite collection of irreducible
representations j : H� ! Spn, where n < NðHÞ. Detailed information on the small
degree irreducible representations of simple algebraic groups can be found in [20].
Careful consideration of [20, Tables A.6–48] and [4, Table 2], together with [20,
Theorem 1], yields the following complete list of (self-dual) irreducible representa-
tions H� ! Spn, where n < NðHÞ, with NðHÞ as given in Table 4:

ðhÞ SL6 !
l3

Sp20 ðp0 2Þ ðkÞ SO11 !
l5

Sp32 ðp0 2Þ

ðiÞ Sp6 !
l3

Sp14 ðp0 2Þ ðlÞ E7 !
l7

Sp56 ðp0 2Þ;

ð jÞ SO12 

!l5;l6
Sp32 ðp0 2Þ

in addition to the previous exceptional cases labelled (d) and (g).
Applying the same procedure to the other classical groups, we conclude that we are

left to deal with the following additional irreducible representations.

ðmÞ SO10 

!l4;l5
SL16 ðp arbitraryÞ ðuÞ E7 !

l7
SO56 ðp ¼ 2Þ

ðnÞ SL6 !
l3

SO20 ðp ¼ 2Þ ðvÞ F4 !
l1

SO26 ðp ¼ 2Þ

ðoÞ Sp6 !
l2

SO14 ðp0 3Þ ðwÞ F4 !
l4

SO26 ðp0 3Þ

ðpÞ Sp8 !
l4

SO16 ðp ¼ 2Þ ðxÞ SL3 

!l1þl2
SO7 ðp ¼ 3Þ

ðqÞ Sp10 !
l5

SO32 ðp ¼ 2Þ ðyÞ Sp6 !
l2

SO13 ðp ¼ 3Þ

ðrÞ SO12 

!l5;l6
SO32 ðp ¼ 2Þ ðzÞ F4 !

l4
SO25 ðp ¼ 3Þ

ðsÞ SO7 !
l2

SO14 ðp ¼ 2Þ ðz 0Þ G2 !
l2

SO7 ðp ¼ 3Þ:

ðtÞ SO9 !
l4

SO16 ðp0 2Þ

As previously remarked, H ¼ NGðH�Þ is connected unless H� admits a non-trivial
graph automorphism which fixes the highest weight of the irreducible embedding
j : H� ! G. Using this criterion, one can easily verify that the only embeddings (a)–
(z 0) where H is not connected are those labelled (h), (n) and (x).

The embeddings (o), (q), (s) and (n) are particularly easy to deal with. In each
case, G ¼ SO2m (for some m) and [12, (8.3)] implies that nðjðxÞÞd 4 for all x A H

(see Remark 2.7). The desired conclusion now follows immediately from Proposi-
tion 2.9 and Lemma 7.1. Similarly for (x), if x A H is unipotent, then nðjðxÞÞd 4
(see Remark 2.7) and thus dim jðxÞSO7 d 12 (the smallest class corresponds to the
partition ð3; 22Þ). If x A H is semisimple, then we also have dim jðxÞG d 12 since
nðjðxÞÞd 3 and the largest possible centralizer is SO4 � SO3. This is su‰cient since
from Lemma 7.1 we have dimðxG VHÞc 6.

In cases (c), (d), (e) and (h), we can easily calculate directly with the representation
j, and deduce in each case that we have an upper bound of 1=2. The values ða; bÞ
recorded in the following table are easily verified. In each case, nðjðxÞÞd a for all
non-scalar semisimple elements x A H. Similarly for b and non-trivial unipotent ele-
ments in H.
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Embedding (c) (d) (e) (h)

ða; bÞ ð2; 4Þ ð2; 3Þ ð2; 3Þ ð8; 6Þ

Note that for (h), we have nðjðuÞÞ ¼ 6 if u ¼ ½J2; I4�, and so from Corollary 2.8 we
have nðjðyÞÞd 6 for all unipotent elements y A H. Also referring to (h), if t A H de-
notes the ‘inverse transpose’ involutory graph automorphism of H� ¼ A5, then from
[16, (1.4)] we know that there are precisely two distinct A5-classes of involutions in
the coset A5t, with representatives t and o say. It is easy to check that up to Sp20-
conjugacy, the action of t is given by ½�iI10; iI10�, while o acts as ½�I10; I10�.

Lemma 7.2. The conclusion to Theorem 1 is true for the embeddings (k), ( j), (r), (m)
and (p).

Proof. In each case, j is a spin representation. We have the following table of lower
bounds for nðjðxÞÞ, and we use the ða; bÞ notation as before.

Embedding (k) ( j) (r) (m) (p)

ða; bÞ ð10; 8Þ ð10; 8Þ ð10; 8Þ ð5; 4Þ ð8; 4Þ

Note that (k) is a restriction of ( j), and (p) is a restriction of (m) (with p ¼ 2). In
order to justify the stated values of b, in view of Corollary 2.8, it is su‰cient to show
that nðjðuÞÞd b where u A H� is a long root element and j is either ( j) or (m). Con-
sider ( j). Let u ¼ ½J2; I4� A A5 < SO12 be a long root element. From [17, Proposition
2.6], we have

Mðl5Þ # A5 ¼ V6 l ðV6Þ� l
�
5
3

V6

�
;

and

Mðl6Þ # A5 ¼ 02 l
�
5
2

V6

�
l
�
5
2

V6

��
;

where V6 is the natural A5-module, and 0 denotes the trivial A5-module. We then
calculate that nðjðuÞÞ ¼ 8 for both spin representations. Similarly in (m) we have

Mðl4Þ # A4 ¼ Mðl5Þ # A4 ¼ 0l
�
5
2

V5

�
l
�
5
4

V5

�
;

and thus nðjðuÞÞ ¼ 4, where u A SO10 is a long root element. For (k), ( j), (r) and (m)
we deduce immediately from Proposition 2.9 and Lemma 7.1 that Theorem 1 holds
for unipotent elements. In (p), we have p ¼ 2 and so by hypothesis we need only
consider unipotent involutions. Hence dim xSp8 c 20 (with equality if x is a c4 invo-

lution) and since nðjðxÞÞd 4, from 2.9 we conclude that dim jðxÞSO16 d 44.
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Consider ( j) and let x A SO12 be semisimple. Since a graph automorphism of
SO12 interchanges the weights l5 and l6, we need only consider l ¼ l5. Without
loss of generality, let x ¼ ½m1; . . . ; m6� A GL6 < SO12. Then nðjðxÞÞ ¼ nðcðxÞÞ, where
c : GL6 ! GL32 is the representation a¤orded by the GL6-module

0l 0 0 l
�
5
2

V6

�
l
�
5
4

V6

�
and where 0 0 is the 1-dimensional module v 7! ðdet xÞv (see [14, p. 196]). Let

y : GL6 ! GL15 be the representation a¤orded by the module 52
V6. One easily

verifies that nðyðxÞÞd 5 for all non-scalar semisimple elements x A GL6. Similarly for
the representation a¤orded by 54

V6. So if x A GL6 is non-scalar semisimple then
nðcðxÞÞd 10. Suppose that x ¼ ½mI6� A GL6. Then cðxÞ ¼ ½1; m6; m2I15; m

4I15� and
clearly nðcðxÞÞd 10 unless m2 ¼ 1. But m2 ¼ 1 implies that x A SO12 is scalar, so that
we may indeed take a ¼ 10 for ( j), and hence for (k) and (r) too. This is su‰cient to
deduce the desired conclusion via Lemma 7.1 and Proposition 2.9.

Similarly, we have a ¼ 5 for (m), and the required conclusion follows in the
usual manner. For (p), we may choose x A GL4 < GL5 < SO10 and in the same way
we calculate that nðjðxÞÞd 8. In fact, one easily checks that nðjðxÞÞd 10, unless
x ¼ ½m; I3�, in which case CGðjðxÞÞ� ¼ GL8, or x ¼ ½m; m; I2� where

CGðjðxÞÞ� ¼ SO8 �GL4

(where m0 1). If nðjðxÞÞd 10 then dim jðxÞG d 78 (since the largest possible cen-
tralizer is GL6 � SO4) which is su‰cient since dim xSp8 c 32 for all x A Sp8. Other-
wise, ðdim xSp8 ; dim jðxÞGÞ ¼ ð14; 56Þ or ð22; 76Þ.

Consider the representation labelled (y): this is the embedding j : Sp6 ! SO13 and
p ¼ 3. The Sp6-module which a¤ords j is a section of52

V6. If x A Sp6 is unipotent
then we can assume that x has order 3, so that dim xSp6 c dim uSp6 ¼ 14, where
u ¼ ½J 2

3 �. This is su‰cient since nðjðxÞÞd 4 (by [12, (8.3)] and Remark 2.7) and so
from Proposition 2.9 we have dim jðxÞSO13 d 32. From the proof of Lemma 7.2
we have nðjðxÞÞd 5 for all semisimple elements x A Sp6 (since a ¼ 5 for (m)). This
implies that dim jðxÞSO13 d 40 (the largest possible centralizer is SO8 � SO5). From
Lemma 7.1 we have dimðxG VHÞc 18.

Lemma 7.3. Theorem 1 holds for the irreducible embedding (t).

Proof. This spin representation embeds SO9 in SO16. The argument when x is semi-
simple is similar to that for (p) in Lemma 7.2. We have dim xSO9 c32 and nðjðxÞÞd8.
Hence dim jðxÞG d 64 unless CGðjðxÞÞ� ¼ GL8 (the next largest centralizer is SO2

8).
It is clear that we can only have a GL8 centralizer if x ¼ ½m; I3� A GL4 < SO9, where
m0 1. In this case, dim jðxÞG ¼ 56 and dim xSp8 ¼ 14.

Now if u A SO9 is a long root element then from the proof of Lemma 7.2 we
know that nðjðuÞÞ ¼ 4. So from Proposition 2.9 and Corollary 2.8, it follows that
dim jðxÞG d 44 for all unipotent elements x A SO9. This leaves us to explicitly cal-
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culate with those unipotent elements whose conjugacy classes have dimension greater
than 22. Up to conjugacy, we have the results recorded in Table 5, from which the
conclusion of Theorem 1 follows immediately.

The images jðxÞ may be calculated directly by restricting the spin representation of
SO10, or by appealing to some well-known results from representation theory. We
sketch briefly the arguments involved. Here V16 denotes the SO9 spin module Mðl4Þ
in question, and MðnÞ denotes an irreducible A1-module of highest weight n. Note
that the results of Table 5 remain valid if p ¼ 0.

Let x ¼ ½J9� A A1 < B4, and assume that pd 11 (since x is assumed to have
prime order). From [17, Proposition 2.13] and [1, Lemma 2.2] we have
V16 # A1 ¼ Mð10ÞlMð4Þ, so that ½J2� acts on V16 as ½J11; J5�.

Suppose that x ¼ ½J7; I2� A D4 < B4 (pd7). We have V16 # SO8 ¼ Mðl3ÞlMðl4Þ.
The triality graph automorphism of D4 acts as a permutation on the irreducible
D4 modules Mðl1Þ;Mðl3Þ and Mðl4Þ. Since ½J7; I1� represents the unique unipotent
SO8-conjugacy class of dimension 24, it follows that x acts on V16 as ½J 2

7 ; I2�. Simi-
larly for x ¼ ½J5; J3; I1�.

The action of x ¼ ½J 2
4 ; I1� A SO9 is given by the action of ½J4; I1� A A4 < D5. From

[17, (2.6)] we have V16 # A4 ¼ Mðl4ÞlMðl2Þl 0. We now calculate easily that up
to conjugacy, ½J4; I1� acts on V16 as ½J5; J 2

4 ; I3� as claimed.
Both x ¼ ½J5; J 2

2 � and ½J5; I4� lie in the subgroup SO5 � SO4 < SO9. Since this sub-
group is isomorphic to Sp4 � ðSL2 n SL2Þ, and

V16 # Sp4 � ðSL2 n SL2Þ ¼ Mðl1Þn ðMðl1ÞlMðl1ÞÞ;

it is straightforward to verify the results of Table 5 in these cases.
Finally, suppose that x ¼ ½J 3

3 � A SO9. We have pd 3. Now, x A SO3
3 GA3

1 and

V16 # A3
1 ¼ ðMð1ÞnMð1ÞnMð1ÞÞ2:

Table 5
Embedding (t), x unipotent

x jðxÞ dim xSO9 dim jðxÞSO16

½J9� ½J11; J5� 32 108
½J7; I2� ½J 2

7 ; I2� 30 102

½J5; J3; I1� ½J 2
5 ; J

2
3 � 28 94

½J5; J 2
2 � ½J5; J 2

4 ; J3� 26 92

½J 2
4 ; I1� ½J5; J 2

4 ; I3� 26 90
½J5; I4� ½J 4

4 � 24 88

½J 3
3 � ½J 2

4 ; J
4
2 �, p0 3 24 80, p0 3

½J 4
3 ; J

2
2 �, p ¼ 3 78, p ¼ 3
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If p > 3 then one readily checks that

Mð1ÞnMð1ÞnMð1Þ ¼ Mð3ÞlMð1ÞlMð1Þ;

so that ½J2�3 A A3
1 acts on V16 as ½J 2

4 ; J
4
2 �. If p ¼ 3, then the A1-modulesMð1Þ andMð2Þ

are both tilting, and Tð3Þ :¼ Mð2ÞnMð1Þ is an indecomposable tilting A1-module
of highest weight 3 and dimCTð3ÞðuÞ ¼ 2, where u ¼ ½J2� A A1 (see [21, (2.3)]). From
this we deduce that ½J2�3 A A3

1 acts on Mð1ÞnMð1ÞnMð1Þ ¼ Tð3Þl ð0nMð1ÞÞ
as ½J 2

3 ; J2�. Hence, x acts on V16 as ½J 4
3 ; J

2
2 �.

Lemma 7.4. The conclusion to Theorem 1 is true for the embeddings (l), (u), (v), (w)
and (z).

Proof. In each case, EðHÞ ¼ H� is an exceptional algebraic group. We have the fol-
lowing table, where ða; bÞ is defined as before.

Embedding (l) (u) (w) (z)

ða; bÞ ð14; 12Þ ð14; 12Þ ð8; 6Þ ð7; 6Þ

In each case, these lower bounds on nðjðxÞÞ are su‰cient to imply that Theorem 1
holds in each case (via Proposition 2.9 and Lemma 7.1). So it su‰ces to prove the
recorded values in the table. The values of b follow immediately from [15, Tables 3,
7]. To obtain the lower bounds for semisimple elements, we use some well-known
results from representation theory. Consider (l) and (u), and let x A E7 be semisimple.
Without loss of generality, we may assume that x A A7 < E7. From [17, Proposition
2.3] we have

V56 # A7 ¼
�
5
2

V8

�
l
�
5
2

V8

��
;

where V8 is the natural A7-module. One easily checks that nðrðyÞÞd 7 for all semi-

simple y A SL8, where r : SL8 

!52
V8

SL28. Hence nðjðxÞÞd 14 if x is semisimple and j

is one of the embeddings (l) or (u). Now consider (w) and (z). If x A F4 is semisimple
then we may assume that x A B4 < D5. Let V27 denote the irreducible E6-module
Mðl1Þ. Then from [17, Table 8.7] we have

V27 # D5 ¼ Mðl1ÞlMðl4Þl 0;

where 0 is the trivial D5-module. Since MF4
ðl4Þ is a section of V27, it follows that

nðjðxÞÞd nðxÞ þ nðrðxÞÞ, where nðxÞ is with respect to the action of x on the natural

D5-module, and r is the spin representation D5 !
l4

SL16. Now nðxÞd 2 and from the
proof of Lemma 7.2 we have nðrðxÞÞd 5 and hence we may take a ¼ 8 for (w) (see
Remark 2.7) and a ¼ 7 for (z).

The fact that Theorem 1 holds for the embedding labelled (v) is immediate
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from our work above with the representation (w). From [14, (5.4.2) (ii)] we have
Mðl1ÞGMðl4Þt, where t : F4 ! F4 is a graph automorphism.

Lemma 7.5. Theorem 1 holds for the irreducible embedding (i).

Proof. This is the embedding j : Sp6 ! Sp14, with highest weight l3 and p0 2. If
x A Sp6 is semisimple then nðjðxÞÞd 4 (see Remark 2.7) and Proposition 2.9 implies
that dim jðxÞSp14 d 40 which is su‰cient since dim xSp6 c 18. Now suppose that
x A Sp6 is unipotent. We have nðjðxÞÞd 3 and thus dim jðxÞSp14 d 33. In view of
Proposition 2.3, this just leaves us to deal with x ¼ ½J6� A Sp6.

Let x ¼ ½J6� A Sp6. Since x is assumed to have prime order, we must have pd 7.
Let V14 denote the Sp6-module in question, and as before, let MðnÞ denote an irre-
ducible A1-module with high weight n. The element u ¼ ½J2� A A1 acts on Mð5Þ (up to
Sp6-conjugacy) as x. By calculating the weights of53

Mð5Þ, we observe that

5
3

Vð5Þ # A1 ¼ 9=5=3;

that is, 53
Mð5Þ # A1 has the same composition factors as the A1-module

Wð9Þ þWð5Þ þWð3Þ, where WðnÞ denotes the Weyl module of A1 of highest weight
n (i.e. WðnÞ ¼ SnV2, where V2 is the natural A1-module). Of course WðnÞ ¼ MðnÞ if
p > n. Now from [1, Lemma 2.2], we have

ExtA1

1 ðMð9Þ;Mð3ÞÞ ¼ 0;

and hence it follows that

V14 # A1 ¼ Wð9ÞlWð3Þ if p > 7:

Thus, up to conjugacy we have jðxÞ ¼ ½J10; J4� A Sp14 and dim jðxÞSp14 ¼ 94 if p > 7.
Of course we arrive at the same conclusion if we allow p ¼ 0. Now suppose that
p ¼ 7. From [21, Lemma 2.2 (ii)] we know that Wð9Þ þWð5Þ þWð3Þ has composi-
tion factors Mð9Þ;Mð3Þ2 and Mð5Þ. Since p ¼ 7, from [1, Lemma 2.2] we have

ExtA1

1 ðMð5Þ;Mð3ÞÞ ¼ ExtA1

1 ðMð9Þ;Mð5ÞÞ ¼ 0:

Hence V14 is a direct summand of 53
Mð5Þ. Now p ¼ 7 and so 53

Mð5Þ is a direct
summand of Mð5ÞnMð5ÞnMð5Þ. Hence from [21, Lemmas 2.1, 2.3], we conclude
that V14 # A1 is tilting. From [21, Lemma 2.3 (d)], we deduce that nðjðxÞÞ ¼ 12 and

so up to conjugacy, jðxÞ ¼ ½J 2
7 � A Sp14 if p ¼ 7. This gives us dim jðxÞSp14 ¼ 90.

Lemma 7.6. Theorem 1 holds for the irreducible embeddings (a) and (b).

Proof. These are both exceptions to the main statement of [12, (8.3)], and a full
explicit calculation is required. In both cases, if x A H� is semisimple then we may
assume that x ¼ ½m1; m2; m3� A GL3 < H�. Then dim jðxÞSO8 ¼ dim zSO8 where
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mz ¼ ½1; m1m2m3; m1; m2m3; m2; m1m3; m3; m1m2� A SO8;

and m2 ¼ m1m2m3. It is then straightforward to check that for both (a) and (b)

max
dim xH�

dim jðxÞSO8

 !
¼ 5

6
;

where the maximum is taken over all non-scalar semisimple elements in H�. This
maximum is realized for both embeddings if x ¼ ½m1; 1; 1� A GL3 < H�, where m1 0 1.

The results for unipotent elements are given in Tables 6 and 7 for (a) and (b)
respectively. To produce Table 7, we apply representation-theoretic arguments simi-
lar to those used in the construction of Table 5. For Table 6, we first calculate the
image of each unipotent involution class of Sp6 in SO8 under the isomorphism
Sp6 G StabSO8

ðUÞ, where U is a 1-dimensional non-singular subspace of the natural
SO8-module. We find that b1; c2 7! c2, a2 7! a2 and b3 7! c4. From triality, we know
that the a2 and c4 involution classes in SO8 are fixed by each spin representation of
D4, and we easily calculate directly that the c2 class in SO8 is mapped via a spin
representation to the a4 class.

Since an upper bound of 1/2 fails to hold for both of these irreducible embeddings,
they are recorded in Table 1. Note that in Table 6 we need only consider involutory
unipotent elements since p ¼ 2.

From Tables 6 and 7, we conclude that we have a sharp upper bound of 5/6 with

Table 6
Embedding (a), x unipotent

x jðxÞ dim xSp6 dim jðxÞSO8

b1 a4 6 12
a2 a2 8 10
c2 a4 10 12
b3 c4 12 16

Table 7
Embedding (b), x unipotent

x jðxÞ dim xSO7 dim jðxÞSO8

½J7� ½J7; I1� 18 24
½J5; I2� ½J 2

4 � 16 20

½J 2
3 ; I1� ½J 2

3 ; I2� 14 18
½J3; J 2

2 � ½J3; J 2
2 ; I1� 12 16

½J3; I4� ½J 4
2 � 10 12

½J 2
2 ; I3� ½J 2

2 ; I4� 8 10
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respect to the irreducible embeddings (a) and (b). This upper bound is realized for
both semisimple and unipotent elements. This is listed in Table 1.

Lemma 7.7. The conclusion of Theorem 1 holds for each of the irreducible embeddings

(a)–(z 0).

Proof. It remains to show that Theorem 1 holds for (f ), (g) and (z 0). The fact that
Theorem 1 holds for (z 0) will follow immediately from our work with (f ). This is
easily seen by considering the composition of j with t, where t : G2 ! G2 is a graph
automorphism. From [14, (5.4.2) (ii)] we have Mðl1Þt GMðl2Þ, and since t is an
algebraic automorphism, all conjugacy class dimensions are preserved.

Recall that both (f ) and (g) are exceptional cases of [12, (8.3)]. Suppose that x A G2

is unipotent, and assume for now that p0 2. Using the standard labelling of the
unipotent classes in G2, we have the following table, where x denotes an arbitrary
element of each unipotent conjugacy class. The values for dim xG2 are taken from
[6, p. 401] and [16, (1.7)], and the stated values for dim jðxÞSO7 are derived from [15,
Table 1].

From Table 8 we immediately conclude that if x A G2 is unipotent then
dimðxG VHÞ=dim xG c 3=4, with equality possible. This case is recorded in Table 1.
Similarly, if p ¼ 2 and x A G2 is unipotent, then as always we may assume that x is an
involution, i.e. x is in either the A1 or the ~AA1 unipotent class. If x lies in the latter
class then dim xG2 ¼ 8 and dim jðxÞSp6 ¼ 12 since jðxÞ is Sp6-conjugate to b3 (see
[15, Table 1]). Otherwise, x is a long root element and we may embed x in A2 (where
the A2 is generated by long root subgroups). We have dim xG2 ¼ 6 and

V6 # A2 ¼ V3 l ðV3Þ�; ð7Þ

where V3 is the natural A2-module, and so it follows that jðxÞ is Sp6-conjugate to a2,
so that dim jðxÞSp6 ¼ 8. Again, this embedding is listed in Table 1.

If x A G2 is semisimple then we may choose x A A2 < G2, where A2 is generated by
long root subgroups. In arbitrary characteristic, we claim that

Table 8
Embedding (f ), x unipotent

x class p dim xG2 dim jðxÞSO7

A1 arbitrary 6 8
~AA1 3 6 12

02; 3 8 12
~AA
ð3Þ
1 3 8 12

G2ða1Þ arbitrary 10 14
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dim xG2

dim jðxÞH� c
5

7

(note that this is slightly better than the upper bound recorded in Table 1). If
p ¼ 2 then (7) implies that dim jðxÞSp6 d 14, with equality if and only if
x ¼ ½m; m�1; 1� A A1 < A2, where m0 1. In this case we have CG2

ðxÞ ¼ A1T1, so
that dim xG2=dim jðxÞSp6 ¼ 5=7. If dim jðxÞSp6 ¼ 16, then x ¼ ½m; m; m�2� A A2, and
dim xG2 c 10. Otherwise, dim jðxÞSp6 ¼ 18 and dim xG2 c 12. The case when p0 2
is very similar, using the fact that

V7 # A2 ¼ V3 l ðV3Þ� l 0:

In this case, note that dim jðxÞSO7 d 12, with equality if and only if x ¼ ½�I2; 1� A A2.
Since this element is an involution, we have CG2

ðxÞ ¼ A2
1 in this case.

This completes the proof of Theorem 1 in the case where the maximal closed sub-
group H is not a member of one of the classes Ci. In view of our work in Sections 3,
4, 5 and 6, the proof of Theorem 1 is complete.

8 Fixed point spaces

With the proof of Theorem 1 now complete, we are in a position to apply the result
to the study of fixed point spaces. Recall the general situation; G is a simple algebraic
group over an algebraically closed field K of characteristic pd 0, and we are inter-
ested in obtaining lower bounds for the codimension of the fixed point space CWðxÞ,
where x A G and W is an algebraic variety on which G acts transitively and morphi-
cally. Following [16], we denote this codimension by f ðx;WÞ. Of course, if o A W and
H ¼ Go, then the action of G on W is equivalent to the usual action of G on the coset
variety G=H, and so without loss of generality we may assume that W ¼ G=H, where
H is a closed subgroup.

In order to deduce such lower bounds from Theorem 1, we apply a well-known
result ([16, (1.14)]) which states that for x A H,

f ðx;WÞ ¼ dim xG � dimðxG VHÞ: ð8Þ

For the purpose of deriving lower bounds f ðx;WÞ, we may of course assume that x
is semisimple or unipotent since CWðxÞ ¼ CWðxsÞVCWðxuÞ, where x ¼ xsxu ¼ xuxs is
the Jordan decomposition of x. Furthermore, it follows immediately from (8) that we
may assume that G acts primitively on W.

With these assumptions, the following result is immediate from equation (8) and
Theorem 1.

Lemma 8.1. Let G be a simple classical algebraic group over an algebraically closed

field of characteristic pd 0, and let W ¼ G=J, where J is a closed subgroup of G lying
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in some maximal closed non-subspace subgroup H of G. If x A G is an element of prime

order, then

f ðx;WÞd 1
2 � e
� �

dim xG;

where ed 0 is as defined in Theorem 1 for the pair ðG;H�Þ.

In order to prove Corollary 1 (from which Corollaries 2 and 3 follow immediately)
we just need to show that Lemma 8.1 extends to arbitrary elements of G. Since
CWðxÞHCWðxnÞ for all n A N, we see that the result extends immediately to arbitrary
elements of finite order.

Now suppose that x A G is semisimple and has infinite order. As previously
remarked, we may as well assume that W ¼ G=H, with H a maximal closed non-
subspace subgroup. Replacing x by a suitable G-conjugate, we may assume that
x A H. It is clear from the classification of maximal closed subgroups ([18, Theorem
1]) that all maximal non-subspace subgroups are reductive, and so by replacing x by
some finite power we may assume that x A T cH�, where T is a maximal torus of
H�. Let L denote the closure in G of the subgroup hxi, so that L is a closed subgroup
of T , having positive dimension. It is clear that if x fixes o A W then so does every
element of L. So in particular, for the purpose of obtaining a lower bound f ðx;WÞ,
we may replace x by any element of prime order of the subtorus L� cT .

Finally, suppose that p ¼ 0, so that all unipotent elements of G have infinite order.
If x A G is unipotent, then for any closed subgroup H of G we have xG VHHH�

because there are no unipotent elements in the set H �H� (since H=H� is finite). It
is straightforward to check that the arguments in Sections 3, 4, 5 and 6
make no assumption on the order of x in the case where x A G is unipotent and
dimðxG VHÞ ¼ dimðxG VH�Þ. Similarly, one easily verifies that the work in Section
7 remains valid for unipotent elements if p ¼ 0.

Combining the above results, we conclude that Lemma 8.1 holds for arbitrary
elements of G, and the proof of Corollary 1 is complete.
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[3] N. Bourbaki. Groupes et algèbres de Lie, chapitres IV–VI (Hermann, 1968).
[4] J. Brundan. Double coset density in classical algebraic groups. Trans. Amer. Math. Soc.

352 (1999), 1405–1436.
[5] T. C. Burness. Fixed point spaces in primitive actions of simple algebraic groups.

J. Algebra 265 (2003), 744–771.

Fixed point spaces in actions of classical algebraic groups 345



[6] R. W. Carter. Finite groups of Lie type: conjugacy classes and characters (Wiley-
Interscience, 1985).

[7] D. Frohardt and K. Magaard. Composition factors of monodromy groups. Ann. of Math.

(2) 154 (2001), 327–345.
[8] D. Frohardt and K. Magaard. Grassmannian fixed point ratios. Geom. Dedicata 82

(2000), 21–104.
[9] D. Gluck and K. Magaard. Character and fixed point ratios in finite classical groups.

Proc. London Math. Soc. (3) 71 (1995), 547–584.
[10] D. Gorenstein, R. Lyons and R. Solomon. The classification of finite simple groups, vol. 3

(American Mathematical Society, 1999).
[11] R. Guralnick and W. M. Kantor. Probabilistic generation of finite simple groups. J.

Algebra 234 (2000), 743–792.
[12] R. Guralnick and J. Saxl. Generation of finite almost simple groups by conjugates. To

appear.
[13] J. E. Humphreys. Conjugacy classes in semisimple algebraic groups. AMS Math. Surveys

and Monographs vol. 43 (American Mathematical Society, 1995).
[14] P. B. Kleidman and M. W. Liebeck. The subgroup structure of the finite classical groups.

London Math. Soc. Lecture Note Series 129 (Cambridge University Press, 1990).
[15] R. Lawther. Jordan block sizes of unipotent elements in exceptional algebraic groups.

Comm. Algebra 23 (1995), 4125–4156.
[16] R. Lawther, M. W. Liebeck and G. M. Seitz. Fixed point spaces in actions of exceptional

algebraic groups. Pacific J. Math. 205 (2002), 339–391.
[17] M. W. Liebeck and G. M. Seitz. Reductive subgroups of exceptional algebraic groups.

Mem. Amer. Math. Soc. 121 (1996), no. 580.
[18] M. W. Liebeck and G. M. Seitz. On the subgroup structure of the classical groups. Invent.

Math. 134 (1998), 427–453.
[19] M. W. Liebeck and A. Shalev. Simple groups, permutation groups, and probability. J.

Amer. Math. Soc. 12 (1999), 497–520.
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