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Abstract

Let G be a simple algebraic group of adjoint type acting primitively on an algebraic varietye
study the dimensions of the subvarieties of fixed points of involutior.im particular, we obtain
a close to best possible functigi{k), whereh is the Coxeter number af, with the property that
with the exception of a small finite number of cases, there exists an involuiior such that the
dimension of the fixed point space ©ifs at leastf (2) dim 2.

0 2003 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a simple algebraic group over an algebraically closed fieldf arbitrary
characteristicp > 0. In this paper we consider primitive actions @fon coset varieties
2 = G/H,whereH is a maximal closed subgroup 6f.

Fort € G, the fixed point space

Colt)={we 2: ot =w}

is a subvariety of2. In a recent paper [11], Lawther, Liebeck, and Seitz obtained upper
bounds for dinCg, (¢) in the case wheré& is a simple algebraic group of exceptional type
acting transitively on2, andt is a non-identity element a¥. This study was motivated by
the notion offixed point ratio in finite group theory. IiG is a finite group acting transitively

on a setf2, then the fixed point ratio of € G is defined to be the proportion of points
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fixed by x. Such ratios for finite simple groups of Lie type have been studied in a number
of papers. In [4-6,16] upper bounds on fixed point ratios are obtained and applied to a
number of problems in the case whéerds a classical group. For finite simple exceptional
groups of Lie type, the reader is referred to [10], where Liebeck, Lawther, and Seitz study
fixed point ratios. Using the upper bounds for the corresponding algebraic groups in [11],
the authors obtain close to best possible upper bounds.

The study oflower bounds for fixed point ratios was initiated by Saxl and Shalev in
a paper on the fixity of permutation groups [19]. The fixjtyof a finite permutation group
G is defined to be the maximal number of fixed points of a non-trivial elemen.of
In [19], it is shown that ifG is a simple primitive permutation group of fixity, then
eitherG = PSLx(g) or Sz(¢) in their natural permutation actions (of degeee- 1, g2 + 1,
respectively), orG| is bounded by some function gf.

This paper is the first to consider the analogous question on lower bounds fGrdim
in the context of algebraic groups. Here the natural analogue of the fixed point ratiabf
is dimCgq () — dim£2. In this paper we shall study the ratio

_ dimCgq (1)
fa@®) = “dmo

In particular, we are interested in lower bounds for pagx f (¢), an analogous notion to
that of fixity in finite permutation groups.

Let h denote the Coxeter number@f In a similar spirit to the result of Saxl and Shalev,
we define a close to best possible functjbit) with the property that either there exists an
involutionz € G such thatf, (r) > f(h), or (G, H®) is one of a finite number of possible
cases. This is detailed in the following theorem.

Theorem 1. Let G bea simplealgebraic group of adjoint type, over an algebraically closed
field K of characteristic p > 0. Let H be either amaximal closed subgroup of G or afinite
subgroup of G, and let G act on the coset variety 2 = G/H. Let h denote the Coxeter
number of G. Then one of the following holds:

(i) thereexistsaninvolutions € G such that

1 1
fe®) 25— 57—/
2 2h+1

(i) either H isfinite of odd order, or (G, H) = (A1, P1); inboth cases, f () = 0 for all
involutionst € G;

(i) (G, H®)islisted in Table 1.1 In each casethere existsaninvolution r € H° such that
fo@) >e.

In the statement of Theorem ¥; denotes the standard parabolic subgroupGof
corresponding to deleting thi¢h node from the Dynkin diagram (where diagrams are
labelled as in Bourbaki [2]). The subgroups < D4 and A, < Bz in Table 1.1 are
irreducible embeddings. Alsoi,, A» < G, are maximal rank subgroups corresponding
respectively to long and sha#t, subsystems.
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Table 1.1

(G, H®) p €
(D4, Ap), (G2, P1) arbitrary 25
(G2, Po) £2 2/5
(B3, A2) 3 5/13
(G2,A2), (C2, Pp) #2 1/3
(C2, P7) 2 1/3
(G2, A2) 3 1/3

Remark 1. The bound in (i) is close to best possible. To see this, note that

IZHG) 1 1

dmG 2 2n+2
where| X+ (G)| denotes the number of positive roots in the associated root systém of
Let » = rankG. If the subgroupH of G is finite and: € H is an involution with dim¢
maximal, then in the most cases we have dire= (1/2)(dimG + r) (see [11, 1.5]), and
since dimG = r(h + 1), it follows that fo (1) = 1/2 — 1/2(h + 1). It will be shown in
Section 4 that there exist examples of arbitrarily large rank wifiexe) = 1/2—1/2(h+1)
for every involutiory (see Remark 4.1).

Observe that if the Coxeter numbér of G is greater than or equal to 3, then
1/2—-1/(2h + 1) > 1/3. Up to isomorphismA1 is the only simple algebraic group such
thath < 3 (see the table below). # < G = A1 is either maximal of positive dimension,
or finite of even order then with the exception of the cade, P1), it is possible to find
an involutions € H such thatf (r) > 1/3 (see Tables 2.4, 3.3.1 and the last paragraph of
Lemma 3.6). Thus in view of Theorem 1, we have the following corollary.

Corollary 1. With G, H, £2 asin Theorem 1, if (G, H) # (A1, P1), and H isnot finite of
odd order then there exists an involution r € G such that

1
fo@® > 3

One should note that in many cases we can improve on the lower bound stated in
Theorem 1(i). Referring the reader to the tables in Lemmas 3.1-3.3 and 3.6, one observes
that in the cases which correspond to these tables, it is possible to establish lower bounds
which tend to 1 as the Coxeter numlieof G tends to infinity.

For the reader’s convenience, we list the values of the Coxeter nundfes, for each
type of simple algebraic groug:

G A B ( Dy Go F4 Eg E7 Eg
h 1+1 2 22 22-2 6 12 12 18 30

The layout of the paper is as follows. The first section is concerned with various
preliminary results from the literature which we shall need for the proof of the theorem.
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The key result is the Liebeck/Seitz classification of the maximal subgroups of positive
dimension in a simple algebraic group. This is stated in Theorem 2.1 for classical groups,
and Theorem 2.2 for those of exceptional type. In Sections 3 and 4, we shall deal with
the classical groups, the two parts of Theorem 2.1 dictating the structure of our proof.
In Section 5 we turn our attention to the exceptional groups, and complete the proof of
Theorem 1.

Notation

The following notation will be used throughout the paper. Gebe a simple algebraic
group over K. The fundamental roots in a fundamental system dbrare denoted
a1, ...,q;, With corresponding fundamental dominant weights ..., »;. We follow
Bourbaki [2] in labelling the Dynkin diagram of;. 7; denotes a torus of rank If
A =air1+---+a); is adominant weight them (1) denotes the irreducibl€ G-module
with high weightAi. If H is a subgroup ofz andV is a KG-module thenV | H will
denote the restriction df to H.

2. Preliminary results

Let G be a simple algebraic group ovéf. When G is classical we shall write
G =CI(V) € {L(V), F(V), O(V)}, whereV is the natural module. As Theorem 1 is
stated for adjoint groups, any elementhose square is scalar is said to be an involution
in the classical group.

We now introduce some notation which will be used throughout the paper. We use
[M, ..., M,] to denote the block diagonal matrix with the matriages, ..., M,, down
the diagonal, andl/y"] will represent the @& x 2m block diagonal matrix withn Jordan
2-blocks on the diagonal. At times we shall also use the not#tigi,, jI,—,], wherea
is odd and it is understood thate K satisfiesj” = —1. Similarly,i will always denote a
field element such that = —1.

If G =C;or Dy, then{es, f1,...e, f;} will denote respectively a standard symplectic
or orthogonal basis of the natural moduleand all matrices are written with respect
to this specific ordering. However, it will also be necessary to consider the ordering
{e1,..., e, f1,..., fi}, and any matrixA written with respect to this ordering will be
denoted by[A]®. When p = 2, there exists an abstract isomorphigm SOz11 — Sy
which is also a homomorphism of algebraic groups (see [21, Theorem 28]). Therefore,
we shall only consider the cage= B; whenp is odd. We order our orthogonal basis as
{e1, f1,..., e, fi, x}, wherex is non-singular. For a full description of these bases, see [9,
§2.5].

In Sections 3 and 4, we shall make much use of the notation and main result of [14].
In order to state this, we first define six collections of maximal subgréiigg a simple
classical algebraic groug = CI(V).

ClassCy: SQubspace stabilisers. Subgroup$! = Gy, whereU is a totally singular or non-
degenerate proper non-zero subspac¥ ofn the cas€G, p) = (SO(V), 2), we
also allow the case wherté is non-singular of dimension 1.
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ClassCp: Stabilisers of orthogonal decompositions. Here H = Gyy,,....v,3, whereV =
@!_, Vi, t > 1, and the subspacés are mutually orthogonal and isometric.

ClassCs: Stabilisers of totally singular decompositions. Here we haveG = Sp(V) or
SO(V) andH = Gw,wy, whereV =W & W andW, W’ are maximal totally
singular subspaces. Note thatif= SO(V) and dimV = 2 (mod 4) therH is not
maximal and hence we exclude this case.

Class C4: Tensor product subgroups. In this case eitheV = V1 ® Vo with dimV; > 1 and
H = Ng(Cl(V1) o CI(V2)) acting naturally on the tensor product,Jor= ®f?:1 Vi
with & > 1, the V; mutually isometric andd = Ng (] [Cl(V;)), again acting
naturally. See Lemma 3.4 for the specific details on which classical subgroups
appear as factors.

ClassCs: Finite local groups. We haveH = Ng(R), whereR is an irreducibleg-group
of symplectic type, for a prime different from p. Each subgroup in this class is
finite.

ClassCg: Classical subgroups. These are the subgroupg; (Sp(V)) and Ng (SO(V)) in
G =9.(V), andNg(SO(V)) in G = (V) whenp = 2.

Theorem 2.1 [14, Theorem 1]Let G = CI(V) be a classical simple algebraic group over
an algebraically closed field of arbitrary characteristic, and let H be a closed subgroup
of G. Let C(G) denote the collection  J; C; of subgroups of G. Then one of the following
holds:

(i) H iscontainedin a member of C(G);
(i) moduloscalars, H isalmost simple, and the quasisimplesubgroup E (H) isirreducible
on V. Furthermore, if H isinfinite, then E(H) istensor-indecomposableon V.

As we remarked in the introduction, whéhnis classical we shall use this theorem to
prove Theorem 1 in two stages, beginning with the case where our maximal subgroup
H is a member of one of the collectiods. Our approach whei{ is not in C(G) is
less direct and we need to appeal to some recent results [17] concerning the irreducible
representations of simple algebraic groups in prime characteristic.

The study of maximal closed subgroups of exceptional simple algebraic groups dates
back to the fundamental work of Dynkin, and the problem of classifying all such subgroups
of positive dimension has only recently been solved for arbitrary algebraically closed fields.
The following result is due to Liebeck and Seitz.

Theorem 2.2 [12, Corollary 2.1(i)].Let G be a ssimple algebraic group of exceptional type
over an algebraically closed field of characteristic p > 0. The maximal closed subgroups
of positive dimension in G are as follows:

(a) maximal parabolic subgroups;

(b) maximal reductive subgroups of maximal rank (see Table 2.1);
(c) Ng(X),with X asin Table2.2;

(d) G=E7, p#2and H = (22 x D4).S3;

() G=Eg, p+#2,3,5and H = A1 x Ss.
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Table 2.1
Maximal reductive subgroupSgs (M) of maximal rank
G M
Eg Ds,AlE7,A8,AzEG,A§,D§, Ag,A%TB
E7 A1Dg, A7, AgAs, A3Dy, Al EgT1, Ty
Eg A1As, A3, D4T. Tp
Fa(p#2) By, Dy, A1C3, Ao Ao
Fa(p=2 above, plus duals
G2 A1A1, Az, Ag (p=3)

Table 2.2

G X

Eg Aq (3 classesp > 23,29, 31 resp.)By (p = 5), GoFy, A1A2 (p #2,3), Ang (p#2
E7 Aq (2 classesp > 17,19 resp.) A2 (p = 5), A1Fy, A% (p#£2,3),A1G2 (p #2),G2C3

Eg A2 (p#2,3),G2(p#T7), Fa,Ca (p#2),A2G2
Fy A1 (p=213.G2(p=7),A1G2 (p#2)
G2 A1 (p2T7)

For use in Section 4, we need some results on the self-dual irreducible representations
of the simple algebraic grou@ = S_,,.

Proposition 23. If G =9, and p: G — GL(V) is a non-trivial self-dual irreducible
representation of minimal degree then one of the following holds:

(i) G =9, (inwhich case every irreducible representation is self-dual );

(i) G=SL4andV = /\2 U, where U isthe natural 4-dimensional G-module;
(i) G=SsandV = /\3 U, where U isthe natural 6-dimensional G-module;
(iv) p istheadjoint representation of G.

Proof. In [17, Theorem 5.1], Lubeck lists ap-restricted irreduciblesL,,-modules for
n > 13 whose dimension is at mogt — 1)%/8. For 3< n < 18, Lilbeck has produced
tables [17, Tables A.6—21] which record the degrees and highest weightpefestricted
irreducible SL,,-modules whose degree is at most some numb@), where f(n) >
f(3) =400 for all 3< n < 18. Using these results, together with the fact thia.)* =

M (—w, (X)), wherew, is the longest element of the Weyl group@f(see [8, 3.1.6]), the
proposition follows immediately. O

Remark 2.4. It is not difficult to see that the irreducible representation in (ii) emisds
in SOg, While in (i) we haveSLs embedded ir8p, if p # 2, andSOxq if p = 2.
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In a similar spirit, we will need the following result.

Proposition 2.5. Let G = 94, with 4 odd. Then the only irreducible self-dual n-dimen-
sional representation of G such that n < 4d? — 4 is the adjoint representation.

In order to prove the proposition, we state two further results.

Lemma 2.6 [7, 10.3B].Let . = ajr1 + --- + a,A, be a dominant weight of G, where
r denotes the rank. Then the stabiliser of A in the Weyl group W of G is the parabolic
subgroup generated by the reflections along the simple roots «; for which a; # 0.

Lemma 2.7 [18, Premet].If the root system of G has different root lengths, we assume
that p # 2, and if G is of type G2, we also assume that p # 3. Let A be a p-restricted
dominant weight. Then the set of weights of the irreducible G-module M (1) is the union
of the W-orbits of dominant weights w with o < A.

Proof of Proposition 2.5. Let M (1) be an irreducible self-dual;-module of highest
weight A = aji1 + --- + ag_11q4_1, and suppose that diM (1) < 4d? — 4. Now, if

5<d <17, then it is immediate from Lubeck’s tables [17] that the only irreducible
representation of; satisfying the hypotheses is the adjoint representation. Suppose now
thatd > 19. Recall that the Weyl group @f acts on the set of weights &f (1), and thus

dimM () > |W - A|. Recall also that the Weyl group &, is the symmetric grous,,.

Now sinceM (L\)* = M (—w, (1)), self-duality implies that;; = a,_; for eachi. Suppose
thatas = ag—3 # 0. From Lemma 2.6, th&/-stabiliser ofi is contained in a parabolic
subgroup of typeds x Ag_7 x A2, SO

d!

. 2
A3ad e 44

dimM@O) = WA= |W: Wy | >

whend > 19. Hence we must haves = a;—3 = 0. Similarly, we also have; = a;_2 =
Asa=0aq_4="--=0aq4/2-1/2 =aq;2+1/2 =0, i.e.A =al1+arg—1. If a > 2 then

A—a1—ag_1=(@—2)A+X 2+ rg—2+ (a —2rg—-1

is dominant. From Lemma 2.7, it follows that= 1 — a1 — ay—1 is a weight ofM (1). As
before,W,, is contained in a parabolic subgroup of type x A;_5 x Ay, and it follows
that dimM (L) > |W : W,| > 4d? — 4 whend > 19. Hencea = 1 andA = A1 + Ag_1,
which is the highest weight of the adjoint representation.

For use in Section 4.2, we require the following result on self-dual minimal degree
irreducibleG-modules, wheré& is exceptional.

Proposition 2.8. Let G bea simplealgebraic group of exceptional type. Thefollowing table
records the dimension » of the minimal degree non-trivial self-dual irreducible G-module:
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G 4 n
Eg #*2 324
2 351

E7 arbitrary 56
Eg arbitrary 248

Fy #3 26
3 25
Gy #2 7
2 6

Proof. SinceM(L)* = M(—w, (1)), it follows that if G is one ofE7, Eg, F4 or G2 then
every irreducibleG-module is self-dual. iG = E¢ thenw, = —t, wherert is a graph
automorphism of5 induced from the order two symmetry of the Dynkin diagramdor
The data in the table now follows immediately from [17, Tables A.49-58].

Next we record a number of results concerning involutions in a simple algebraic
groupG.

Proposition 2.9. Let G beaclassical group, and supposethat p # 2. We havethefollowing
table of involution class representativesin G:

G t Cg (1) dim:¢
Aj (=12 114121 T1Ak—14A1 -2 Akl +1-2k)
[—jlay1. jli-2] TAxA-—2%-1  (Gk+2)(0—2k)
By (— Lok, To141-2] Dy By 2k(2 +1 — 2k)
C [— 1ok, I2(1—1)] CrCi— 4k (I — k)
(=i, il;]° T1A;_1 0+
Dy [— T2k, I24—1)] Dy Dy 4k (l — k)
(—ily,il]® T1A; 1 10— 1)

Suppose thati = Sp,,, or Lo, andp = 2. The Jordan canonical form of a unipotent
involutionr € G has the forn{Jé, Dgn—p], for some 1< < m. We call such an element
an/-involution. As described in [1], if is even (which must be the case i€ SOo,,) then
there are precisely two distinct conjugacy classésinfolutions inG, with representatives
denoted byq; and¢;. If (,) is the associated symmetric bilinear form on the natural
G-moduleVs,, then an-involutions € G is said to be imlG if and only if

(t(v),v)=0 forallveV.

Otherwise,r € c©. Therefore with no ambiguity we can take = [J}, Izou—1)], where
the basis is ordered in the usual way. We will Lllslé, Ion—nla to denote a member of
the conjugacy classlG. If [ is odd there is a unique class bfnvolutions in Spy,,, and
following [1], we denote this class k.
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Proposition 2.10. Let G be a classical group over an algebraically closed field of
characteristic p > 0, and let u be a non-identity unipotent element in G. Suppose for
each i, the Jordan canonical formfor u hasn; Jordan blocks of size .

(i) If G = SL,, then

dimCg(u) = ZZininj + Zm,z -1

i<j i
(i) Let G =Sp,,, and p = 2. Then
dimCq (am—r) = m?>+m + k2,
dimCe (bpm—i) = diMCq(cm_i) =m?+k? +k.
(i) 1f G = SOy, and p = 2, we have
dimCq(am—i) =m?+k>—k,  dimCg(cm_i) =m> —m +k>.

Proof. Part (i) follows from [22, pp. 34-39], and (ii) and (iii) follow from [1, Sections 7
and 8]. O

Using Propositions 2.9 and 2.10, we have the following result.
Proposition 2.11. Let G be a simple algebraic group of classical type. The following is

atable of representatives of invol ution classes of maximal dimensionin G, wheren denotes
the dimension of the natural G-module:

G p n t dim¢G
A #2 [+1=2m (=il ilm] (1+1)2/2
I=2m H[—I, Lyg1] 12/2+1
=2 I+l=2m (751 (+1?%/2
I=2m g 1] 12/2+1
B, #£2 2+1 +[—1}, [41] 1241
a #£2 2 =il if1® 12 +1
= 2 A 241
D #2 2=0(mod4 -, 1] 12
2/ =2 (mod 4 (=11, 141] 2-1
=2 2=0(mod4 A 12
2/ =2 (mod 4 st 1) 2-1

Next we state a well-known result concerning involutions in exceptional groups.
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Proposition 2.12[11, 1.2],[15, 4.3]Let G beadjoint and of exceptional type. When p # 2,
the centralisersin G of involutions are as follows:

G involution centralisers ¢

Eg A1E7, Dg 128
E7 A1Dg, (A7).2, (T1Eg) .2 70
Eg A1As, DsTq 40
Fy A1C3, By 28
G A2 8

For each G, we also record ¢, the maximal dimension of a conjugacy class of involutions
in G. This upper bound is also realised when p = 2.

The following result regarding long root elements in a simple algebraic gtoispalso
well known.

Proposition 2.13 [11, 1.12].If U, denotes a long root subgroup of G, and 1 +# ¢ € Uy,
then dims¢ is given in the following table:

G Al By C D G, F4 Ee¢ E7 Eg
dim:® 20 4-4 2 4-6 6 16 22 34 58

Recall that ifa is a long root of a simple algebraic group, with corresponding
root subgroufd/,, then(U,, U—y) = S2(K), unless of cours& = PSL>(K) andp # 2.
Suppose # 2. Afundamental involution in G (relative to some long roat) is defined to
be the unique involution € (U,, U_,). This implies thatC (r) must have am factor,
and in view of Proposition 2.12, this completely determines the conjugacy clase 6f
wheng is exceptional. For use in Section 5, Table 2.3 is a table of fundamental involutions,
with corresponding centralisers.

Table 2.3

Fundamental involutions

G t Cg()
Aj [—12,11-1] T1A14;-2
By [—14, I3l AfBl—z
Ci [—12, I-2] A1Ci-1
Dy (14, I21-4] A2D;_,
Eg - A1 E7
E7 - A1Dg
Eg - A14s
Fy - A1C3

2
G - A7
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The next result provides us with a method for calculating @iptz). It reduces the
problem to a calculation of conjugacy class dimensions.

Proposition 2.14[11, 1.14].Let G bean algebraic group, and let H be a closed subgroup.
If $2 denotesthe coset variety G/H, thenfor x € H,

dimCq (x) = dim2 — dimx© + dim(x“ N H).

All of our calculations rely on this important result. In practise however, it is often
difficult to calculate diniz® N H) directly and so we use the fact that dii N H) >
dimz#’° to obtain a lower bound for difip (7).

We are now in a position to prove Theorem 1 in the case wheig a finite subgroup
of G.

Proposition 2.15. Let G be a simple algebraic group over an algebraically closed field K .
If H isfinite, then the conclusion of Theorem 1 istrue.

Proof. We can assume that/ | is even. Let € H be an involution. Since dif® =dimG

and din(z® N H) = 0, it follows from Proposition 2.14 that difi, (1) = dimG — dim:©.

Using the upper bounds provided by Propositions 2.11 and 2.12, we obtain the results in
Table 2.4, which are independent of characteristic, and from which Theorem 1 follows
immediately. There denotes the dimension of the natuéaimodule forG classical. O

Remark 2.16. As we shall see in Section 4, there are examples where equality can hold.
This illustrates the fact that the bound in Theorem 1(i) is close to best possible.

Table 2.4

H finite

G h n fe® >

A 1+1 1+ 1even %—m

I+1odd i

B 2 2+1 3 oD

G 2 2 3 oD

D; 20 -2 2 =0 (mod 4) %*ﬁ
2 =2 (mod 4) %7%

Eg 30 - 3 oD

E7 18 - 3 oD

Eg 12 - %*ﬁ

Fy 12 - %72(,1—1“)

G2 6 - - W
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In order to calculate dinf® when 2 = G/H and H = P; is a maximal parabolic
subgroup, we make use of the following well-known result.

Proposition 2.17. Let P; be a parabolic subgroup of a smple algebraic group G, and let
P; = Q;L; beaLevi decomposition, where Q; = R, (P;). Then,

)

dimG —dimP;, =dimQ; = | Z*(G)| — | Z* (L))

where | X1 (X)| denotes the number of positive roots in the associated root system of the
semisimple group X.

We finish this preliminary section with three technical propositions which will be
needed to deal with the case whéfds a maximal parabolic subgroup 6f.

Proposition 2.18 [20, p. 54].If u is a unipotent element of the simple algebraic group G,
and B is a Borel subgroup of G, then

dim(u®nB) = %dimuG.

Proposition 2.19. Let G bea simple algebraic group of exceptional type, and let s beanon-
identity semisimple element of G lying in the maximal parabolic subgroup P; = Q;L;. If
2; =G/P; and D = Cg(s), then

(i) DN P; isaparabolic subgroup of D;
(i) dim Cg, (s) >dimR, (DN P;) = |ZT(D)| — |ZF(CL,(5))].

Proof. For (i), see [11, 3.1]. Since dif; = dim Q; (2.17) and dings® N P;) > dims?i,
it follows from Proposition 2.14 that diig, (s) > dimR, (D N P;). The last part follows
from Proposition 2.17 sinc€y, (s) is a LevifactorofDN P;. O

Proposition 2.20 [11, 2.1].Let uq, = u be a long root element of the simple algebraic

group G, and let P, = Q;L; be a maximal parabolic subgroup, where Q; = R, (P;) and
L; aLevi subgroup. If u € L;, then

(dimu® — dimu*?).

NI =

dimu® —dim(u® N P;) =

3. Proof of Theorem 1, Part |: G classical, H € C(G)

In this section we deal with the case wheres classical and? is a member of one
of the classeg; (see Theorem 2.1). Treating each collectibrin turn, we seek to find
best possible lower bounds fgk, (r) and obtain Theorem 1 as a corollary of this work.
Throughout this section we repeatedly apply Propositions 2.9, 2.10, and 2.14.

Lemma 3.1. If H € C1 then the conclusion of Theorem 1 istrue.
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Table 3.1
H=P
G dim$ p t dims# dims¢ Fo@) >
A il+1-1) £2 [—j,iL I+i—1 2 1-4
L, —jl 2 —i 2
2 [J2, I;_1] I+i—-1 2 1- Hil
[11-1, J2] 2—i 2
By 2i—3i%/24+i/2  #2 Iy, 1] 2 —i 2 1-%4
C; 2i—3i%/2+i/2  #£2  [=Ip Iy_3] 2+i-3 4 -4 1- 4
[I91_2, —1I2] 3 -3 4 -4
ifi=1
4] —2i — 4,
otherwise
D 1%272-1)2, #£2 [~ Iy_>] 3 -3, 4 -4 1-2
ifi=1-1 ifi=1-1
2i —3i2/2—1i/2, 20 +i—3,
otherwise otherwise
[Ip1_2, —17] 3 -3 44 -4
ifi=1
4 —2i —4,
otherwise

Proof. The maximal parabolic subgroups 6f= CI(V) are the stabilisers of totally sin-
gular subspaces df. We adopt the standard notatiéh, 1< i < rankG. Following [14],
N; will denote the stabiliser it of ani-dimensional non-degenerate subspac¥ oBe-
ginning with the maximal parabolic subgroups, we have Table 3.1. We now justify the in-
formation in this table. The stated values for dffrfollow from Propositions 2.9 and 2.10,
and we use Proposition 2.17 to calculate dimThus in view of Proposition 2.14, we only
need to justify the stated values for difh. Once this is achieved, one can readily check
via Proposition 2.14 that in each ca@g, P;, p), the lower bound forf (¢) in the last
column is realised for at least one of the listed involutions

If G = A;, we can calculate dinfi directly. For example, ift = [—j, jI;], then
Cp(t)=(GL1 xGL)NP;,s0dimCp,(t) =1+ (i — 1)2+41(l+1—i)— 1. To calculate
dim¢Fi for the other types oG when p is odd, we interpreCp, (¢) in terms of smaller
parabolics. For example,if=[— I, I21_2] € S5, then

Cp (1) = (P1 in §p,) X (Pi—1in Fgy_o).

Now suppose thatt = C; or D;, andp = 2. We claim that iff € P; is an involution,
then

P 1--2. ifG=c,
@)=
1--2. ifG=D.
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Table 3.1.1
(G, H) p t fo@) >
(A2, P1) #2 [—12,1] 1/2

2 [1, J5] 1/2
(A2, Pp) #2 [1,-17] 1/2

2 [, 1] 1/2
(C2, P1) 2 (12, J2] 2/3
(C2, P2) #2 [—12, I2] 2/3

Let G=C;. If 1 <i <1l—1thent =[J2, Iy_2] is a long root element contained
in the simple factorC;_; of a Levi subgroupL; of P;. Thus, using Proposition 2.13,
we have dim® = 2/ and dimv’ > 2/ — 2i, and applying Proposition 2.20, we have
fo@) =>1-2/1+4). Wheni =1, we take the same involution and use Spaltenstein’s
result (2.18) to establish a lower bound of2/(I 4+ 1). Hence, in either case, a bound of
1—2/(+ 1) holds. We treat the cage = D; in a similar way; for 1< i <[ — 3, letz be

a long root element lying in th®;_; simple factor of a Levi subgroup @f;. Now¢ is G-
conjugate tc[J22, I2—4], and, using Proposition 2.20 in conjunction with Proposition 2.13,
we havefo(t) > 1—4/( + 8). Similarly, if i =1 — 2, choosing a long root elementn

the A;_3, factor of the Levi subgroup gives ditfi — dimsLi = 2/, and finally, ifi =1 — 1
or [, we have dim® — dimrLi = 21 — 4 whent is a long root element in the Levi factor
A;_1. Thus in all cases, a lower bound of14/(l + 5) holds.

As it stands, in some low-rank cases the above work is not sufficient to establish the
conclusion of Theorem 1 wheH is a maximal parabolic subgroup. However, as detailed
in Table 3.1.1, it is possible to derive better lower bounds.(€arH, p) = (Ca, P1, # 2)
and(C», P>, 2), the best lower bound is/B < 7/18=1/2—1/(2h + 1). These exceptions
are recorded in Table 1.1.

We now consider the stabilise$ = N; of non-degenerate subspaces of the natural
G-module. Note that ifG = B; then Np; 11 = Nag—;), SO we need only consider even-
dimensional non-degenerate subspaces in this case. We have Table 3.2.

We now justify the information in this table. If is a non-degenerate subspace of the
naturalG-moduleV thenH = Gy = Cl(U) x CI(U1) and dims2 follows immediately.

By exploiting this isomorphism, we can easily calculate dig(r) for a given involutiory.
For example, iftG = C;, H = No;, p =2 andt = [J, Iz—2] then

CH(t) = Cspy, (5) X F_2;,

wheres = [J2, I2i—2] € Spy;. We calculate dinfs,, (s) via Proposition 2.10.

This leaves us to deal with one remaining case, natt@\H, p) = (Dy, N1, 2), where
N; is the stabiliser inG of a 1-dimensional non-singular subspaceof the natural
module V. Relative to a standard basis, we take= (e1 + f1) and the corresponding
data in the table follows from the well-known fact theéit = Sp,;_, (see [9, 4.1.7]).

As with Table 3.1, it is straightforward to check the validity of the stated lower bounds
in the last column using Proposition 2.14. To establish Theorem 1, we need to make
alternative choices farin some small rank cases. These are given in Table 3.2.1.
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Table 3.2
H=N;
G H dim$2 p r dimsH# dims¢ fo@® >
B Ny Ai +2i — 4i2 #£2 [—Iy,1] 20—2i 2 1- 24
[—12, Ip—1] 4i—4 4 -2
C; Ny 4i — 4i2 #2 [—12, Iz_2] 4i — 4 4 -4 1-2
[Iz_2, —1I7] 4—4i—4 4 -4
2 [J2, Iz_2] 2i 2 1— 1%1
[21-2, J2] 2-2i 2
D; Ny 4i — 4i2 #2 [— 12, Iz_2) 4i — 4 4 -4 1-2
[I9j_2, —1I?] 4] —4i — 4 4 — 4
2 (U2, Iy_4] 4i —4 4-4 1-2
Uz—a. J2] 4 —4i—4 4-4
Noj_1 45 — 21 — 42 £2 Up_2, — 1] 44 -2 4 -4 1- 1%1
+4i—1
Ny 2-1 2 (U2, Iy_4] 4 -6 4 -4 1- w21
Table 3.2.1
(G, H) p t fo@®) =
(B2, N2) #2 [—14,1] 2/3
(B2, Ng) #2 (=12, I3] 1/2
(C2, No) #2 [—ilp.il]® 1/2
2 [J2, I2] 1/2
(C3,N2) #2 (14, —1I7] 1/2
(D3, N2) #2 (14, —1I7] 1/2
2 (12, J2] 1/2

With the exception of the cag®1, N>), the data in Tables 3.2 and 3.2.1 is sufficient to
establish the fact that Theorem 1 holds wh€e= N;. To deal with(B1, N2), one observes
that H = N> corresponds to the subgroup of monomial matrice®Shy, = SO3. We shall
see in Lemma 3.2 that in this case, a lower bound/@fHolds.

This completes the proof of Theorem 1 wh@rnis classical andd € C1. O

Lemma 3.2. If H € C» then the conclusion of Theorem 1istrue.

Proof. We have Table 3.3, wheté = ({ 7). Note that the subgrouff® = (01)* N G in
bothG = B; and D; is finite and so in view of Proposition 2.15, Theorem 1 holds in these
cases.

The stated values of dinf" are easy to verify; givem € H° = (Cl,,)* N G, let s
denote the restriction aof to V1, where the naturat;-module V admits the orthogonal
decompositionV = @¢_, V;. It is clear in each case that dift” = dims®», which we

can calculate in the usual manner.
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Table 3.3
HeCo
G H° dim 2 p t dimtH® dimC fo® >
A GLn)*NG 12—i(m—2) #2 [(—J,j1] 2m -2 2 —1%1
m>1 -m+1 2 [J2, I1-1] 2m -2 2 _1%1
©GL)'*tine 241 #£2 [—Jj. j 1] 0 2 1- 24
2 [A, [_1] 1 2 1- 255
B (Om)NG 22420 —im  #£2  [=IpIy_1] 2m —4 4 -2 1- 5
m>1 +1/2—m/2
C (Soo)? 202 — 2Im #£2  [=I Iy_2] am — 4 44 1-2
2 [J2, I21-2] 2m 2 1-7
D; Om)*NG 22 —Im £2  [=IIy_>] 2m—4 44 1-2
m>1 2 (2, I_a] 2m—4 44 1-2
Table 3.3.1
G H° p t fa@ =
A1 (GLp2NG #2 B 1/2
Ay GLD3NG £2 [A, —1] 1/2
Cz (Sp)? #2 [—ilp,ilo]® 1/2
C3 (S2)3 #2 [—il3,il3]° 1/2
D3 (032NG #2 [—Ip,1, -1, 1] 5/9

As in the previous lemma, we need to make alternative choices in some small rank
cases in order to deduce that the conclusion of Theorem 1 is true Wher>. This
is detailed in Table 3.3.1, wher® denotes the matri(?‘ol). This just leaves the case
G = D3, H = (02 83) N G. This is dealt with by interpreting? as the subgroup of
monomial matrices ifPSL4 = SOg, where according to Table 3.3, a lower bound ¢2 1
can be established.oO

Lemma 3.3. If H € C3 then the conclusion of Theorem 1 istrue.
Proof. Here we havé& = C; or D;. With respect to the naturél-module bases introduced

earlier, letW = (e1,...,¢;) and W' = (f1,..., fi). Itis clear that ifH = Gw,w, then
H° =Gy w = GLy, via the isomorphism

A 0
AI—)(O (AT)]_)GG,

where the matrices iG are written with respect to the basis orderiag . .., ¢/, f1, ..., fi).
If ¥/ € GLy, letr € H° be the image under this isomorphism. The lemma now follows
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Table 3.4
HeC3
G H° dme p I dim:/H°  dim:© fa®
¢ Gl P4l #2 [-1Lq] 2A-2 4-4 1—%
2(1-1)
2 l2hpl  2-2 A4-4 1-F7p
D Gl 12—l #£2 [-1LL_4q 2-2 4-4 1-2
20-4
2 [l 2-2  4-6 1-77

from Table 3.4. Note that whep is even, in both cases above the listed involutias
G-conjugate taiy.

Observe that apart from the caGe= Dy, p # 2, we always havg, (r) > 2/3 for each
involutiont in the table. However, as stated in the definition of the subgroup colleGiion
if G = D; and! is odd, then the corresponding subgratips not maximal inG. Thus, we
can ignore the casé = D3, and conclude that a lower bound of at leag2 holds when
G=Djandp#2. O

Lemma 3.4. If H € C4 then the conclusion of Theorem 1 istrue.

Proof. We begin with some preliminary remarks on notationGli= Cl(V) and V =
®F_, Vi then we use®" Cl(V;) to denote the central product of classical gro@sVy) o
-+ 0 Cl(Vy), acting naturally on the tensor product. Similarlyyif=V1 @ Vo ® --- ® V2
(k factors), we adopt the notation= 1 ® 1 1, to represent the element 6f which acts
naturally on the tensor product ason V; andz; on each subspadé.

We have Tables 3.5-3.8, where as in Lemma 32denotes the Z 2 matrix
interchanging the standard basis vectors.

In each case, the central product acts naturally on the tensor product, so the action
of a given involutionz on the naturalG-module V is easy to calculate, from which
dimz¢ follows in the usual way. One should note thatGf= D;, p = 2, and H®° =

Table 3.5
HeCy, G=A,_1
H° dims2 p t dim¢H° dim:C fo@®) >
L. 09, n? — a? #£2 (=, jla—11® Ip 2q —2 2nb — 2b2 1- 2
azb a>2 —b241 2 U2, 21 ® I 2a -2 2nb — 212 1- %
L, ® 9Ly 9 #£2 [—i,i1® [—i,i] 4 8 3
2 A®A 4 8 3

®‘a, -1 #2 [ jle-l® e 2a-2  2%/a—2n%/a? 3
a>?2 —ka?+k 2 [, 1,21 Q%1 1, 20—2  212/a — 2n2/4? 1
X, n?-1 #£2 QF[—i. ] 2%k n2/2 1

—3k 2 XA 2% n2/2 3
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Table 3.6
HeCy, G=B
H° dims2 p t dim¢f° dim¢© fo@) >
S0, ® 1, 20241 £2 (12, I,_21® I 2a — 4 4b+2b %—2(,1—1“)
azb —a2/2+a/2 —4p?

—b2/24b/2
X0, 2241 #£2 [l L, _2l®“ 11, 2a-4 221+ 1)%/a 1

—ka2/2+ ka2 —4(2 + 1)2/a?

Table 3.7
HeCy4, G=C;
H° dimg p ' dim¢H° dim:G fol() >
P2, ® Op 22 +1 #£2 (12, 2421 ® I 4a — 4 4b — 4b? 3
b<2a —24%—q
a>1 —b2/2+ D)2
2 ® 02 6 #2 [—i,i1® Iz 2 4 2
P, ® Oy 22 41 £2 Iog ® [— I, Ip_5] a4 —4 8a — 1642 1
b>2a —2a%—q

—b2/2+b)2
®" P2, 22 41 #2 Dy 2@, d-4  4%ja—42/a? 3
a>1 —2ka? — ka
R 3, 22 41 £2 QF1—i. i 2%k 2 1

—3k

Sy, ® Spopy thent = [Jo, I,—2] ® Iy IS G-conjugate toagp,. Similarly, the element
[J2, I2a—2] 1 Iy € ®* Sp,, < Dy is G-conjugate tay .

In almost all cases, we choose involutions of the farm s ® 1 I,, wheres is an
involution in Cl(V1). In such cases, we calculate difi by observing thaC o (1) =
Cap(s). If G=A4,_10r C; andt = ®"[—i, i], then it is not difficult to check that
Cpeo(¢) is isomorphic to the torug. Similarly, if G = A,_1 or D; andt = ®k A, then
Cph- (1) = Ty. In both cases, these observations provide us with the tabulated values for
dimeH°.

Finally, we need to make some remarks on the lower bounds stated in the last column
of each table. Using the calculated data and Proposition 2.14, we obtain a lower bound
for dimCg (7). Dividing by dim$2, one can check that for all possible values:of, a, b
or k, the resulting expression is always at least the stated bound in the table. This is clearly
sufficient to establish that Theorem 1 holds in this case. However, it should be noted that
we can obtain much stronger bounds than those stated as the rahlnofeases. For
example, consider the cage= S, andH = Ng (L, ® - - - ® ) (k factors), sor = a*.
Assuminga > 3 and referring to the data in Table 3.5, we have

2na — 2n? — 243 + 242

H>1-— .
fa @) n2a? — a? — ka* + ka?
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Table 3.8
HeCy, G=Dy
H° dime p t dim¢H° dim#C fo® >
Do, @y, A2 —1-24a2 #£2 [—1I2, 12,1 ® Iop da — 4 b — 162 1
a>b —a—2b2— b [—ils,ila]° ® Inp a®+a 12—
=2 V2, 2421 ® Ipp 2a 4lb — 4b2 — 2 i
S0, ® SO, 22— #£2 (1. 1,21 ® 1 2a — 4 4b — 4p? %7m
a>b —a?/2+a)2
—b2/2+b)2
Q" P2, 221 #£2 [~y @1, 4a—-4  42/a—42/a? 3
a>2 —24%k — ak
X 22 110k #2 [—il,iLI° Rl 6 12— - z(h%rl)
®" 5, 22-1-3k  #2 R [-i.i] % 12 3~ W
— k 2 1 1
=2 ®"A 2k <! 3~ 2¥D
®" Pz, 221 =2 [ l2d® T 20 22/a—12/a? 3
a>1 —242%k — ak —l/a
X0, 22 - #£2  [=I I, 2l® 11, 2a—-4 82/a—162/4? 1
a#24 —ka?/2 +ka/2

T For the givens, we can establish this bound except whenb) = (4,3) or (4,4). In these cases, let
t =[—ilp,il>]° ® I, to obtain fo (1) > 1/2.

One can now check that this expression is always greater tffarafid in fact, it is easy to
check that for a fixed > 3, this expression tends (from below) te-12a — 2)/a?, as the
rank of G tends to infinity. O

Lemma 3.5. If H € Cs then the conclusion of Theorem 1 istrue.
Proof. This follows immediately from Proposition 2.150
Lemma 3.6. If H € Cg then the conclusion of Theorem 1 istrue.

Proof. Using Propositions 2.9 and 2.10, we have Table 3.9. Note that in all cases,
the matrices are written with respect to the usual basis ordering corresponding to the
appropriate non-degenerate form on the natGrahodule.

To complete the proof of Theorem 1 whéi € Cs, we need to look at the cases
(G, H°) = (SL4, Spa) whenp £ 2, and(SL2, SO2). For the latter case, one easily observes
that Ng (S0Oy) is the subgroup of monomial matrices$hy, so this has been dealt with in
Lemma 3.2. For the other case, let [—i I, i [2]° € S, to obtainfe(r) > 3/5. O

This completes the proof of Theorem 1 in the case wiigieclassical and the maximal
subgroupH lies in one of the class&3. In the next section, we complete the classical case
by considering the situation wheFé is maximal inG, but not a member of son.
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Table 3.9
HeCg
G H° dim 2 p t dim¢H° dim¢G fo® >
A Sy 12/24+1/2—1 #2 [—12, I;_1] 22 4-4 1-
= [J2, [_1] [+1 2 1- HLZ
S04 12/2431/2 #£2 -1, 1] I 21 1-%
1=2m
O;11 12/2+31/2 #£2 [—I2, ;1] 22 4 -4 %
= = 2 4-4
I=2m+1 =2 2. I1_3] 2-2 a4-4 -
¢ SOy 2 =2 U2, Iy_4] 4 -4 4-2 1-1

4. Proof of Theorem 1, Part I1: G classical, H ¢ C(G)

According to Theorem 2.1, iff is maximal inG = CI(V) but not a member of sontg,
thenE (H) is simple and acts irreducibly an. Of course, ifE (H) is finite then so i and
in this case Theorem 1 follows from Proposition 2.15. Hence we can assumé(tiats
connected. IfE(H) is a classical group, sa§(H) = Cl(U), we shall adopt the following
general strategy.

Using Proposition 2.11, we choose an involutior Cl(U) so that dim®@®) is
as large as possible. Now ¢:ClI(U) — G is an irreducible representation such that
Im(¢) = E(H), then¢(¢) is also an involution and dig()E#) = dim:© ™). From
Proposition 2.11 we obtain an upper bound for ¢im¢, and thus a lower bound for
dimCg (¢) in the usual manner. If diti = d and dimV = n then from this lower bound
we obtain a functiory (n, d) with the property that iff (n, d) > 0 then

S 1 1
Je®W 25 = sy

Using Lubeck’s results [17], we can show that in almost all cases, eftherd) > 0
is true, or otherwise, in those cases when the inequality fails to hold,small and
we can explicitly calculate with the representatipnto establish a lower bound of
1/2 — 1/2(h + 1). However, there are examples where we are forced to accept the
slightly weaker bound of 22 — 1/(2h + 1), with two further exceptional cases, namely
(G, E(H)) = (Da, A2) and(Bz, A2).

If E(H) is exceptional, then we shall chooses in Proposition 2.12 to maximise
dim£H) and apply the same strategy, again utilising Liibeck’s results. In this case, we are
able to establish that the bound of2l— 1/2(% + 1) holds without exception. Clearly, this
is sufficient to complete the proof of Theorem 1 wh@iis classical.

Remark 4.1. With reference to Remark 2.16,#(H) is finite then we can demonstrate that
the bound in Theorem 1 is close to best possible. For example, SUBR&SE= PS2(q),
wheregq is a power of some odd prime. Then the irreducible Steinberg represengation
embed$S . »(q) in SO,. Furthermoreyr maps the unique class of involutionsR$L2(q)
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to the class of involutions iSO, of largest dimension. Using Proposition 2.11, we deduce
that fo (1) =1/2—1/2(h + 1). WhenE(H) = Az, andG = B;, C; or D;, we have been
unable to establish a lower bound of2l— 1/2(h + 1). However, with two exceptions,
1/2—-1/(2h + 1) does hold, and it is in this sense that Theorem 1 can be described as
being close to best possible.

4.1. E(H) classical

Applying the strategy described above, we obtain the results in Table 4.1, w/laec:
n denote the respective dimensions of the natural modules &) andG.

Table 4.1
E(H) is classical
G E(H) dim$ dimeEHE > dime()C < fn,d)
A Ay n?—d? d?j2-1/2 n2/2 n? —d?
—n—1
B, n? —d?/2 d?/4—1/4 n2/2 212 — 3p — d?
+d/2-1 +nd +2d —5
Cr n?—d2/2 d2/a+d)2 n?/2 212 4+ nd
—dj2-1 —d?—2n—4
D, n? —d?/2 d?/4—1 n2/2 212 — 6n — d?
+d/2-1 +nd +2d — 8
By Ay n2/2—n/2 d?/2-1/2 n2/4—1/4 1-42
—d?+1
B, n2/2—nj2 d?/4—1/4 n?/4—1/4 nd — d?
—d2/2+d)2 —n+d
Cr n2/2—n/2 d?/4+d)2 n2/4—1/4 n—d-—1
—d?/2—dj2
D, n2/2—n/2 d?/4—1 n2/4—1/4 nd — d?
—d2/2+d)2 —4n4d
q Ay n2/24n/2 d2j2—1/2 n2/4+4n/2 1-42
—d?+1
B, n2/2+n/2 d?/4—1/4 n2/4+n/2 nd — d?
—d%/2+4d)2 +2d—n—1
Cr n2/2+n/2 d?/4+d)2 n2/4+n/2 n—d
—d?/2—d/2
D, n2/24n/2 d?/4—1 n2/4+4n/2 nd — d?
—d2/2+d)2 +2d —4n — 4
Dy Ay n2/2—n/2 d?/2-1/2 n2/4 1-4?
—d?+1
B, n2/2—n/2 d?/4—1/4 n?/4 nd — d?
—d?/2+d)2 —n+1
Cr n2/2—n/2 d%/4+dj2 n2/4 n—d—2
—d?/2—d/2
D, n2/2—n/2 d?/4—1 n2/4 nd — d?
—d%/2+4d)2 —4n+4




T.C. Burness/ Journal of Algebra 265 (2003) 744-771 765

Leaving the case&G, E(H)) = (B;, A,), (B, D;), (Cy, A), (Cy, D), (D, Ay), and
(Dy, D) for now, one easily checks that for the remaining cases we always have
f(n,d) > 0. This follows immediately from the lower bounds arwhich arise naturally
from the dimensional constraints. For example(df, E(H)) = (A,—1, Aq—1) then we
must have: > d + 1, which implies thatf (n,d) =n? —d2 —n —1> 0.

Now consider the cas& = C; and E(H) = A,. If d is even, then following
Proposition 2.11 we can choose our involutiorso that dim?#) = 42/2 and thus
f(n,d) =n — d?+ 2. According to Proposition 2.3 and Remark 2.4, the only self-dual
irreducible representation &, with d even, embeddingL, in §, and satisfying: <
d? — 2 is the 20-dimension&@Lg-moduleV = /\3 U whenp # 2, whereU is the natural
SLe-module. Ift = [—15, I4] € SLg, then the action of on V is given by[—12, Is] and
hencefq (1) > 19/35. Whend is odd, f (n, d) = 1 — d? and we are forced to consider the
slightly weaker lower bound of/R — 1/(2h + 1). For this to hold, we require > 4d? — 4.

In view of Proposition 2.5, this leaves the adjoint representation with which we can
calculate explicitly. To be precise, let=[—1;_1,1] € 4 if p # 2, andt = [J2, I;-2]

if p=2.Then Adt) = [—12d-2, I;2_p41] and[JZZd*Z, 12_4443], respectively. In both
cases, we have dim AdE#) = 24 — 2 and dim Adr)® = 2d3 — 642+ 64 — 2, and from

this one can easily deduce that (Ad(z)) > 1/2.

If G=C; and E(H) = D,, thenn > d(d — 1)/2 — 2 (see [17, Theorem 5.1]).
Whend > 8, this is sufficient to imply thaif (n,d) > 0. Since f(n,6) = 2n — 28 and
s = Py, it follows from Proposition 2.3 thaif (rn,6) > 0, so a lower bound of
1/2 — 1/2(h + 1) holds in this case. Similarly, itz = D; and E(H) = D,, we use
[17, Theorem 5.1] to show thaf(n,d) > 0 whend > 8. Now, f(n,6) = 2n — 32, so
Proposition 2.3 leaves us to deal with the adjoint representation. A direct calculation shows
that a lower bound of 22— 1/2(h + 1) also holds in this case. Similar reasoning deals with
the caseG = B;, E(H) = D,.

Suppose now that = B; andE(H) = A,. AsintheG = C; case, ifd is even then we
can use Proposition 2.3 to show that a lower bound@f11/2(k + 1) holds, and whed is
odd, we are forced to considefA— 1/(2h + 1). For this to hold, we require > 4d? — 3,
and using Proposition 2.5, the only odd-dimensional self-dual irreducible representation
for which this fails is the adjoint representation whenlividesd. Calculating explicitly,
we see that a bound of/2 — 1/2(h + 1) holds whend > 5. However, ifd = 3 and
p = 3, then the adjoint representation embé&tls in SO; and as stated in Table 1.1,

a direct calculation shows that the best lower bound'is35< 1/2 —1/(2h + 1) = 11/26.
Similarly, if G = D; andE(H) = A, then Y2 — 1/2(h + 1) holds wherd is even, and
whend is odd we use Propositions 2.3, 2.5, and a direct calculation with the adjoint
representation to establish a lower bound g2 + 1/(2h + 1), with the exception of the
caseE(H) = SL.3 andG = SOg, p # 3. Here the adjoint representation maps the unique
class of involutions inSL3 to the class inS0g of largest dimension, sg, (t) = 2/5 <
1/2—-1/(2h 4+ 1) = 11/26 for any involutiorz in SL3. This exceptional case is recorded

in Table 1.1.

This completes the proof of Theorem 1 whéh is not in C(G) and E(H) is
classical.
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4.2. E(H) exceptional

We now complete the proof of Theorem 1 whénis classical, employing the same
strategy as in Section 4.1. Following Proposition 2.12, we chease(H) = H° to
maximise dim£() and obtain a condition of the form > ¢ which is sufficient to
imply that fo(z) > 1/2 — 1/2(h + 1), where as beforen denotes the dimension of
the naturalG-module. If G = A; then it is clear that for this choice af we have
fo(t) > 1/2. For example, ifE(H) = E7, chooser € E(H) such that dimfU) = 70.
Since dimr¢ < (I + 1)2/2 (see Proposition 2.11), we haye (1) > 1/2.

For the other types of;, using Propositions 2.12 and 2.11, we derive the following
values ofc:

G E(H)=Eg E7 Eg Fy Go

By 39 19 31 13 7
C 38 18 30 12 6
Dy 40 20 32 14 8

Recalling that we only consider the caGe= B; when p # 2, it follows immediately
from Proposition 2.8 thatwe havg (1) > 1/2—1/2(h+1)whenG = B, or C;. If G = Dy
then from Proposition 2.8 and [17, Table A.49], we deduce that we need only consider the
irreducible embedding;, — SOg (p = 2). According to Proposition 2.11, ife SOg is
an involution then dim™¢ < 8. So ift € G2 is an involution such that dim¥2 = 8, then
dimrSs =8 andfo(r) = 1.

This completes the proof of Theorem 1 whénis a classical simple algebraic group.
In the final section, we turn our attention to the exceptional groups.

5. Proof of Theorem 1, Part I11: G exceptional

In this final section we consider the case whéreis a simple algebraic group of
exceptional type, and in doing so we complete the proof of Theorem 1. As in the classical
case, the key result is the Liebeck/Seitz classification of the maximal subgroups of positive
dimension (Theorem 2.2). In even characteristic, things are greatly simplified by the use of
long root involutions. Whemp # 2, our initial strategy is to choose fundamental involutions
where possible (see Table 2.3). For those cases for which this method fails, we will need
to make alternative choices for and work harder to identify the centralis€g;(z), in
some cases invoking results concerning the representation theory of the simple exceptional
groups. We begin by dealing with the maximal parabolic subgroups. Throughout this
section,G will always denote a simple algebraic group of exceptional type.

Lemma 5.1. If H isa maximal parabolic subgroup, then the conclusion of Theorem 1 is
true.

Proof. Let H = P, = Q;L; be a maximal parabolic subgroup 6f and assume to begin
with thatp = 2. If L} = X1X>--- X;, with eachX; simple, letr be a long root involution
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in the simple factorX ;, where the rank ok ; is maximal. Apart from the case#y, Py)
and (G2, P1), this is always possible. Since difi = dim+*/, we can easily calculate
dimCg, (r) via Propositions 2.13 and 2.20, whee = G/P;.

For example, suppos€é = E7 and H = P4. SinceL4 = T1A1A2A3 is a Levi factor
of Py, it follows from Proposition 2.17 that dif24 = 53. Following the described method,
let r be a long root involution in thet3 factor of L4, so from Proposition 2.13 we have
dim¢% = 34 and dim’4 = 6. Proposition 2.20 now implies that difiy,, (t) = 53— 14=
39, and it is clear that Theorem 1 holds in this particular case.

In fact, with the exception of the two cases mentioned above, this method yields bounds
which are always greater than2. To deal with(F4, P»), we need to slightly adapt the
method sincd., = A1A2, and the fundamental roots of the highest rankactor are both
short. However, by choosing a long root involutiom the A, factor, we have dim2 = 2
and fqo (1) > 13/20. This leaves the cag&,, P1). Since P; contains a Borel subgroup
it follows thatu® N Py # ¢ for any unipotent element € G. Hence ifs is a long root
involution in G then there exists somge G such thatt = s¢ € P;. So dimr® =6 and
via Proposition 2.18, we have din¥ N P1) > 3 and hencef, (1) > 2/5. Since this is the
best lower bound that we can obtain, an2 11/26=1/2 — 1/(2h + 1), this case is
included in Table 1.1.

Now suppose thap # 2. If L§ = X1X2--- X;, where eachX; is simple, letr be a
fundamental involution inX ;, where the rank o ; is maximal. Referring to Table 2.3,
this gives usCz, (1) andD = Cg(¢), and so via Proposition 2.19, we derive a lower bound
for dimCg, (¢). For example, consid€tEs, Ps), whereLg = T1DsAo and dim2g = 97.
Let ¢+ € Ds be a fundamental involution, so from Table 2.3 we h&vg, (1) = A%A:g
and henceCr, (1) = T1A§A2A3 and D = Cgg(t) = AL1E7. Since| Xt (A1E7)| = 64 and
|+ (CLg(1))] = 11, it follows from Proposition 2.19 that difio, (1) > 53. It is readily
checked that this method provides lower bounds in excesgdf1/2(h 4+ 1) in almost
all cases, the exceptions beingz, Ps4), (Ee, P;), 2<i <5, (F4, Pj), 1< j <3, and
when G = G,. From Proposition 2.12 we know tha&i, contains a unique class of
involutions with centraliseD = A%, so | XT(D)| = 2. Since dim2; =5 fori =1, 2,
it follows from Proposition 2.19 that if = 71t € L; = T1A1, wherety = 1o = [—i, i],
then fo, () > 2/5 < 11/26=1/2 — 1/(2h + 1). This case is recorded in Table 1.1 of
Theorem 1(iii).

We now deal with the other cases for which our initial method failed. (K&tH) =
(Ee, P3), so dim23 = 25 and L3 = T1A1A4. Let t = [—1I4,1] € A4 < L3 then
| X (Cry(1))] = 7. Now A4 naturally embeds iDs. Viewing 7 as an element abs, we
haver = [—Ig, I2],S0D4 < Cp, (1) < Cg(t). SinceDy4 is not contained i 1 As, it follows
from Proposition 2.12 thab = C (1) = T1Ds, s0| X1 (D)| = 20, and dinCg, (1) > 13.
The casdEg, Ps) is identical, and Eg, P») is dealt with in a similar way. To be precise,
if t =[—14, I2] € As < L then viewingr as an element afi4 and arguing as before, we
deduce thaCq () = T1 Ds, and hencefo, (1) > 13/21.

For (Ee, P4) we have dinf24 = 29 and Ls = T1A1A3. Let t = t1tr € A3 < La,
wherer1 = tp = [~ 12, 1] € Ag, s0| X1 (CL,(1))| = 3. To show thaiCs(t) = T1Ds, we
consider the restriction tﬂ% of the 27-dimensional irreduciblEg-moduleVy7 = M (11).
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According to [13, Proposition 2.3],

Vorl A3 = (M) @ M(32) ®0) @ (M(h2) ®0® M(%1)) @ (0@ M (A1) ® M(12)),

where A1 and A, are fundamental dominant weights df, and 0 denotes the trivial
Ao-module. Letr = t11or3 € A3, wherety = I3 andr = 13 = [— I, 1]. Using the above
decomposition, one easily shows that the action @ V7 is given by[—116, I11]. Now
from [13, Proposition 2.3] we have

Vo7l A1As = (M (A1) ® M(11)) ® (0® M (14)),
and from [13, Table 8.7],
Va7l Ds =M (1) ® M(Asg) ® 0.

Hence ift € Eg is an involution andCg, (1) = A1As, then (up to conjugacy),acts onV,y
as[—I12, I15]. On the other hand, € g, (1) = T1 Ds, the action is given by—I1e, I11]. We
conclude thaCq (1) = T1 D5 and f (¢) > 17/29.

For (F4, P;), i = 1,2, lett € P; be the involution in(Usy,, U—q) = So. Viewing ¢
in the B4 subsystem subgroup @, we deduce from Chevalley’s commutator relations
thatt centralises @3 subgroup. Sincész £ A1Cs, it follows from Proposition 2.12 that
Cg (1) = Bs. In the usual manner, we calculate thigt, (r) > 7/15 and f,(¢) > 3/5. To
deal with (F4, P3), we lets be the involution in(U,,, U—s,). Thent € P3 and sincexs
anday are of equal length, it follows from the above work tli&f (1) = B4. From this we
deduce thajfo,(r) > 3/5.

Finally, we consider the cas&7, Ps). Lett =11tp € ApA3 < Lg = T1A1A2A3, where
1 = [—1I,1] andr = [— 17, I2]. Clearly we can view as an element of the subgroup
A2 < ApAs3. Since|Z(A%)| = 3, it follows thatr lifts to an involution inE7, the simply
connected cover. From [11, 1.2], we know that an involutionEin which lifts to an
involution in E7 must have centraliseA1Dg. Thus,| X1 (Cg,(1))| = 31 and fg, (1) >
27/53. O

Following Theorem 2.2(b), we now consider the case wiitte Ng (M) is a maximal
reductive subgroup of maximal rank.

Lemmab.2. If H = Ng (M), with M asin Table 2.1, then the conclusion of Theorem 1 is
true.

Proof. If p =2, lett € X be along root involution, wher¥ is a simple factor oM = H°

of largest possible rank. Using Proposition 2.13, we obtainsfirand dim¥, giving

rise to a lower bound for dir@i; (). For example, suppose = Es and M = AEg, SO
dims2 = 162. If t € Eg is a long root involution, then dimfs = 22 and dim® = 58.
Hence, dinCg (1) > 126. This method yields lower bounds which are always greater than
or equal to 2, with the obvious exception of the casés= E;, H = Ng(T;), 6 <i <8,

for which an alternative argument is required.
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Let @ denote the root system 6f = E;, and letoe € @. As previously remarked when
discussing fundamental involutions, it is a basic fact that there exists an isomorphism

V1 32(K) = (Ua, U—a).

Following [3], let ny, = 1/f(_01 é) When p = 2, n, € Ng(T;) is G-conjugate to a long
root involution and we can use the results of Proposition 2.13. For example=ifEg
then dim$2 = 240, and choosing= n, for some roow € @, we have dim® =58 and
dimCg(r) > 182.

Whenp # 2, we employ an analogous method to that used in the proof of Lemma 5.1.
Choosing € X to be a fundamental involution (whekeis a simple factor off of largest
rank) yields lower bounds which are greater than or equal 29 ith the exception of the
following cases:

G M

Eg Tg

E7  T7,A7.AzAs, Al

Eg TGvAlAS’Ag

Fy A1C3, A2Ap

Gy A1A1,A2, Ay (p=3)

If (G, M) = (Es, Tg), then dim2 = 240 and since any semisimple element lies in a
maximal torus, and all the maximal tori @@ are conjugate, it is clear that we can choose
an involutiont € H such thatCq (1) = A1E7. So dimt¢ = 112 and dinCo (1) > 128.
Using the fact that each subgrompis of maximal rank, in the same way we can deal with
the casesE?7, AZ), (E7,T7), (Ee, Tg) and(Fa, AZXZ). To handle the remaining cases, we
need to work harder.

Let (G, M) = (E7, A7), and choose = [—I4, I4] € A7, so dim2 = 70 and dim# =
32. It is clear that lies in a subgroup ofAi7 which is isomorphic toAg = S_7. It now
follows thatr lifts to an involution in the simply connected grodip, and as in Lemma 5.1,
we deduce thaf s (1) = A1Dg and thus dinCq, (1) = 38. We handle the cas&7, A»2As)
in the same way. Let = nr, € A2 < AzAs, Wheren = [—1o, 1] and 1 = [~ 12, I1].
Since|Z(A§)| = 32, it follows that the preimage afin E7 is also an involution and thus
fo(t) > 23/45.

Suppose now thatG, H) = (Es, A14s), and lettr = [—1I4, I2] € A4 < As. As in
Lemma 5.1,4A4 embeds inD5 and we haveD, < Cg (1), SOCg(¢t) = T1Ds and fo (1) >
3/5. If t =ntr3 e A% < Eg, wherer1 = I3 andr = 13 = [— 1>, 1], then from our work
in Lemma 5.1 concerningEs, P4), we know thatCg (r) = T1Ds. This gives us a lower
bound of 59 in this case. G, H) = (F4, A1C3), lett = 1112, wherety = [—i,i] € A1
andt, = [—il3,i13]° € C3. Then fo(t) > 1/2. For(Go, A1A1) we can establish a lower
bound of ¥2 by choosing = t1t2, wheret; = = [—i,i] € Aj.

Finally, we observe that fofG2, A2) and (G2, Kz) there does not exist an involution
t € M such thatfo(t) > 11/26=1/2 — 1/(2h + 1). Here we have din® = 6 and
dim:¢ = 8 for any involutions € G. Since A, has a unique class of involutions, whose
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dimension is 4, it follows that A3 is the best possible lower bound in each case. This is
recorded in Table 1.1. O

According to Theorem 2.2, whem+ 2, (22 x Dy4).S3 < E7is maximal; andd; x Ss <
Esgis maximal wherp # 2, 3, 5. In the former case, dif2 = 105 and ift = [—14, I4] € Dy
then dimy?+ = 16. Since dim® < 70 we havefqo(t) > 17/35> 35/74. If (G, H) =
(Eg, A1 x S5) then dim2 = 245 and iff = [—i, i] € A1 = P95, we have dim”° =2 and
thus fo (1) > 119/245> 59/122 since dim® < 128. Note that thei; factor here must
be adjoint as otherwisH would be contained in a subgrodp; () for some involutiorr,
contradicting the maximality off .
To complete the proof of Theorem 1, we need to consider one final collection of
maximal subgroups. As in Theorem 2.2(c), these are the subgrégip¥), whereX is
asin Table 2.2.

Lemma5.3. If H = Ng(X), with X asin Table 2.2, then the conclusion of Theorem 1 is
true.

Proof. SupposeX = X1 --- X, where eachX; is simple. SinceVg (X) is maximal, it is
clear that for eachi, Z(X;) cannot contain an involution — if this were the case, we
would haveNg(X) < Cg(t), contradicting the maximality oNg (X). So in particular,
if p#£2 andX; = A1 or C;, then X; must be adjoint. Let = ---t, € X, where
eachs; € X; is an involution such that dinﬁ(" is maximal. Using the upper bound for
dimz¢ from Proposition 2.12 we deduce thas (1) > 1/2 — 1/2(h + 1), unlessG = E7,
p =5 andX = A,. For example, suppose = Eg and X = A1G§. Letr = r11213, Where
t1 = [—1,i] andf; = t3 satisfies dimJZG2 = 8. Hence dim* = 18 and since din® =217
and dimr¢ < 128 we havefo (1) > 107/217> 15/31=1/2 — 1/2(h + 1).

To deal with(G, X) = (E7, A2), lett =[—1>, 1] € X. We claim thatCg () = A1De.
To see this, consider the action 06n the 56-dimensional irreduciblE;-module Vsg =
M (17). According to [13, Table 8.6], ip > 5 then

Vsl A2 =M (611) & M(612),

and thus the action afis given by[—I24, I32]. Whenp =5, we see from [12, Table 10.2]
that Vse | A2 has the same composition factors as fyemodule S6vs @ (S6V3)* and
hence the action of is again given by[—1I24, I32]. Now from [13, Proposition 2.3] we
have

Vs | A1Ds = (M (1) ® M(A1)) ® (0® M (%)),

so if s € E7 is an involution andC g, (s) = A1De, then (up to conjugacy}, acts onVsg as
[—I»4, I32]. We conclude tha€g (1) = A1De. Hence, dim® = 64, and since dim® = 4
and dim2 = 125, we deduce thaf, (1) > 65/125>1/2. 0O
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This completes the proof of Theorem 1 in the case wiieiga simple algebraic group
of exceptional type. In view of the results of Sections 3 and 4, the proof of Theorem 1 is
complete.
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