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Abstract

LetG be a simple algebraic group of adjoint type acting primitively on an algebraic varietyΩ. We
study the dimensions of the subvarieties of fixed points of involutions inG. In particular, we obtain
a close to best possible functionf (h), whereh is the Coxeter number ofG, with the property tha
with the exception of a small finite number of cases, there exists an involutiont in G such that the
dimension of the fixed point space oft is at leastf (h)dimΩ.
 2003 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a simple algebraic group over an algebraically closed fieldK of arbitrary
characteristicp � 0. In this paper we consider primitive actions ofG on coset varietie
Ω =G/H , whereH is a maximal closed subgroup ofG.

For t ∈G, the fixed point space

CΩ(t)= {ω ∈Ω : ωt = ω}

is a subvariety ofΩ . In a recent paper [11], Lawther, Liebeck, and Seitz obtained u
bounds for dimCΩ(t) in the case whereG is a simple algebraic group of exceptional ty
acting transitively onΩ , andt is a non-identity element ofG. This study was motivated b
the notion offixed point ratio in finite group theory. IfG is a finite group acting transitivel
on a setΩ , then the fixed point ratio ofx ∈ G is defined to be the proportion of poin
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fixed byx. Such ratios for finite simple groups of Lie type have been studied in a nu
of papers. In [4–6,16] upper bounds on fixed point ratios are obtained and applie
number of problems in the case whereG is a classical group. For finite simple exceptio
groups of Lie type, the reader is referred to [10], where Liebeck, Lawther, and Seitz
fixed point ratios. Using the upper bounds for the corresponding algebraic groups in
the authors obtain close to best possible upper bounds.

The study oflower bounds for fixed point ratios was initiated by Saxl and Shale
a paper on the fixity of permutation groups [19]. The fixityf of a finite permutation grou
G is defined to be the maximal number of fixed points of a non-trivial element oG.
In [19], it is shown that ifG is a simple primitive permutation group of fixityf , then
eitherG= PSL2(q) or Sz(q) in their natural permutation actions (of degreeq + 1, q2 + 1,
respectively), or|G| is bounded by some function off .

This paper is the first to consider the analogous question on lower bounds for dimCΩ(t)

in the context of algebraic groups. Here the natural analogue of the fixed point ratio oft ∈G

is dimCΩ(t)− dimΩ . In this paper we shall study the ratio

fΩ(t)= dimCΩ(t)

dimΩ
.

In particular, we are interested in lower bounds for maxt∈G# fΩ(t), an analogous notion t
that of fixity in finite permutation groups.

Leth denote the Coxeter number ofG. In a similar spirit to the result of Saxl and Shale
we define a close to best possible functionf (h) with the property that either there exists
involution t ∈G such thatfΩ(t) � f (h), or (G,H ◦) is one of a finite number of possib
cases. This is detailed in the following theorem.

Theorem 1. Let G be a simple algebraic group of adjoint type, over an algebraically closed
field K of characteristic p � 0. Let H be either a maximal closed subgroup of G or a finite
subgroup of G, and let G act on the coset variety Ω = G/H . Let h denote the Coxeter
number of G. Then one of the following holds:

(i) there exists an involution t ∈G such that

fΩ(t)� 1

2
− 1

2h+ 1
;

(ii) either H is finite of odd order, or (G,H)= (A1,P1); in both cases, fΩ(t)= 0 for all
involutions t ∈G;

(iii) (G,H ◦) is listed in Table 1.1. In each case there exists an involution t ∈H ◦ such that
fΩ(t)� ε.

In the statement of Theorem 1,Pi denotes the standard parabolic subgroup oG
corresponding to deleting theith node from the Dynkin diagram (where diagrams
labelled as in Bourbaki [2]). The subgroupsA2 < D4 and A2 < B3 in Table 1.1 are
irreducible embeddings. Also,A2, Ã2 < G2 are maximal rank subgroups correspond
respectively to long and shortA2 subsystems.
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Table 1.1

(G,H ◦) p ε

(D4,A2), (G2,P1) arbitrary 2/5
(G2,P2) 
= 2 2/5
(B3,A2) 3 5/13
(G2,A2), (C2,P1) 
= 2 1/3
(C2,P2) 2 1/3
(G2, Ã2) 3 1/3

Remark 1. The bound in (i) is close to best possible. To see this, note that

|Σ+(G)|
dimG

= 1

2
− 1

2h+ 2
,

where|Σ+(G)| denotes the number of positive roots in the associated root systemG.
Let r = rankG. If the subgroupH of G is finite andt ∈ H is an involution with dimtG

maximal, then in the most cases we have dimtG = (1/2)(dimG+ r) (see [11, 1.5]), and
since dimG = r(h + 1), it follows thatfΩ(t) = 1/2− 1/2(h + 1). It will be shown in
Section 4 that there exist examples of arbitrarily large rank wherefΩ(t)= 1/2−1/2(h+1)
for every involutiont (see Remark 4.1).

Observe that if the Coxeter numberh of G is greater than or equal to 3, the
1/2− 1/(2h+ 1) > 1/3. Up to isomorphism,A1 is the only simple algebraic group su
thath < 3 (see the table below). IfH <G= A1 is either maximal of positive dimensio
or finite of even order then with the exception of the case(A1,P1), it is possible to find
an involutiont ∈H such thatfΩ(t)� 1/3 (see Tables 2.4, 3.3.1 and the last paragrap
Lemma 3.6). Thus in view of Theorem 1, we have the following corollary.

Corollary 1. With G, H , Ω as in Theorem 1, if (G,H) 
= (A1,P1), and H is not finite of
odd order then there exists an involution t ∈G such that

fΩ(t)� 1

3
.

One should note that in many cases we can improve on the lower bound sta
Theorem 1(i). Referring the reader to the tables in Lemmas 3.1–3.3 and 3.6, one ob
that in the cases which correspond to these tables, it is possible to establish lower
which tend to 1 as the Coxeter numberh of G tends to infinity.

For the reader’s convenience, we list the values of the Coxeter numberh of G, for each
type of simple algebraic groupG:

G Al Bl Cl Dl G2 F4 E6 E7 E8

h l+ 1 2l 2l 2l − 2 6 12 12 18 30

The layout of the paper is as follows. The first section is concerned with va
preliminary results from the literature which we shall need for the proof of the theo
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The key result is the Liebeck/Seitz classification of the maximal subgroups of po
dimension in a simple algebraic group. This is stated in Theorem 2.1 for classical g
and Theorem 2.2 for those of exceptional type. In Sections 3 and 4, we shall dea
the classical groups, the two parts of Theorem 2.1 dictating the structure of our
In Section 5 we turn our attention to the exceptional groups, and complete the pr
Theorem 1.

Notation
The following notation will be used throughout the paper. LetG be a simple algebrai

group overK. The fundamental roots in a fundamental system forG are denoted
α1, . . . , αl , with corresponding fundamental dominant weightsλ1, . . . , λl . We follow
Bourbaki [2] in labelling the Dynkin diagram ofG. Ti denotes a torus of ranki. If
λ= a1λ1+· · ·+alλl is a dominant weight thenM(λ) denotes the irreducibleKG-module
with high weightλ. If H is a subgroup ofG andV is aKG-module thenV ↓ H will
denote the restriction ofV toH .

2. Preliminary results

Let G be a simple algebraic group overK. When G is classical we shall write
G = Cl(V ) ∈ {SL(V ), Sp(V ), SO(V )}, whereV is the natural module. As Theorem 1
stated for adjoint groups, any elementt whose square is scalar is said to be an involu
in the classical group.

We now introduce some notation which will be used throughout the paper. W
[M1, . . . ,Mn] to denote the block diagonal matrix with the matricesM1, . . . , Mn down
the diagonal, and[Jm

2 ] will represent the 2m× 2m block diagonal matrix withm Jordan
2-blocks on the diagonal. At times we shall also use the notation[−jIa, jIn−a ], wherea
is odd and it is understood thatj ∈K satisfiesjn =−1. Similarly, i will always denote a
field element such thati2 =−1.

If G= Cl or Dl , then{e1, f1, . . . el, fl} will denote respectively a standard symplec
or orthogonal basis of the natural moduleV and all matrices are written with respe
to this specific ordering. However, it will also be necessary to consider the ord
{e1, . . . , el, f1, . . . , fl}, and any matrixA written with respect to this ordering will b
denoted by[A]♦. Whenp = 2, there exists an abstract isomorphismψ : SO2l+1 → Sp2l
which is also a homomorphism of algebraic groups (see [21, Theorem 28]). Ther
we shall only consider the caseG= Bl whenp is odd. We order our orthogonal basis
{e1, f1, . . . , el, fl , x}, wherex is non-singular. For a full description of these bases, se
§2.5].

In Sections 3 and 4, we shall make much use of the notation and main result o
In order to state this, we first define six collections of maximal subgroupsH of a simple
classical algebraic groupG= Cl(V ).

Class C1: Subspace stabilisers. SubgroupsH =GU , whereU is a totally singular or non
degenerate proper non-zero subspace ofV . In the case(G,p)= (SO(V ),2), we
also allow the case whereU is non-singular of dimension 1.
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Class C2: Stabilisers of orthogonal decompositions. HereH = G{V1,...,Vt }, whereV =⊕t
i=1Vi , t > 1, and the subspacesVi are mutually orthogonal and isometric.

Class C3: Stabilisers of totally singular decompositions. Here we haveG = Sp(V ) or
SO(V ) andH = G{W,W ′ }, whereV =W ⊕W ′ andW , W ′ are maximal totally
singular subspaces. Note that ifG= SO(V ) and dimV ≡ 2 (mod 4) thenH is not
maximal and hence we exclude this case.

Class C4: Tensor product subgroups. In this case eitherV = V1 ⊗ V2 with dimVi > 1 and
H =NG(Cl(V1)◦Cl(V2)) acting naturally on the tensor product, orV =⊗k

i=1Vi
with k > 1, the Vi mutually isometric andH = NG(

∏
Cl(Vi)), again acting

naturally. See Lemma 3.4 for the specific details on which classical subg
appear as factors.

Class C5: Finite local groups. We haveH = NG(R), whereR is an irreducibleq-group
of symplectic type, for a primeq different fromp. Each subgroup in this class
finite.

Class C6: Classical subgroups. These are the subgroupsNG(Sp(V )) andNG(SO(V )) in
G= SL(V ), andNG(SO(V )) in G= Sp(V ) whenp = 2.

Theorem 2.1 [14, Theorem 1].Let G= Cl(V ) be a classical simple algebraic group over
an algebraically closed field of arbitrary characteristic, and let H be a closed subgroup
of G. Let C(G) denote the collection

⋃
i Ci of subgroups of G. Then one of the following

holds:

(i) H is contained in a member of C(G);
(ii) modulo scalars,H is almost simple, and the quasisimple subgroupE(H) is irreducible

on V . Furthermore, if H is infinite, then E(H) is tensor-indecomposable on V .

As we remarked in the introduction, whenG is classical we shall use this theorem
prove Theorem 1 in two stages, beginning with the case where our maximal sub
H is a member of one of the collectionsCi . Our approach whenH is not in C(G) is
less direct and we need to appeal to some recent results [17] concerning the irre
representations of simple algebraic groups in prime characteristic.

The study of maximal closed subgroups of exceptional simple algebraic groups
back to the fundamental work of Dynkin, and the problem of classifying all such subg
of positive dimension has only recently been solved for arbitrary algebraically closed
The following result is due to Liebeck and Seitz.

Theorem 2.2 [12, Corollary 2.1(i)].Let G be a simple algebraic group of exceptional type
over an algebraically closed field of characteristic p � 0. The maximal closed subgroups
of positive dimension in G are as follows:

(a) maximal parabolic subgroups;
(b) maximal reductive subgroups of maximal rank (see Table 2.1);
(c) NG(X), with X as in Table 2.2;
(d) G=E7, p 
= 2 and H = (22 ×D4).S3;
(e) G=E8, p 
= 2,3,5 and H =A1 × S5.
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Table 2.1
Maximal reductive subgroupsNG(M) of maximal rank

G M

E8 D8,A1E7,A8,A2E6,A
2
4,D

2
4,A

4
2,A

8
1, T8

E7 A1D6,A7,A2A5,A
3
1D4,A

7
1,E6T1, T7

E6 A1A5,A
3
2,D4T2, T6

F4 (p 
= 2) B4,D4,A1C3,A2Ã2

F4 (p= 2) above, plus duals

G2 A1Ã1,A2, Ã2 (p = 3)

Table 2.2

G X

E8 A1 (3 classes,p � 23,29,31 resp.),B2 (p � 5),G2F4,A1A2 (p 
= 2,3),A1G
2
2 (p 
= 2)

E7 A1 (2 classes,p � 17,19 resp.),A2 (p � 5),A1F4,A
2
1 (p 
= 2,3),A1G2 (p 
= 2),G2C3

E6 A2 (p 
= 2,3),G2 (p 
= 7),F4,C4 (p 
= 2),A2G2

F4 A1 (p � 13),G2 (p = 7),A1G2 (p 
= 2)

G2 A1 (p � 7)

For use in Section 4, we need some results on the self-dual irreducible represen
of the simple algebraic groupG= SLn.

Proposition 2.3. If G = SLn and ρ :G → GL(V ) is a non-trivial self-dual irreducible
representation of minimal degree then one of the following holds:

(i) G= SL2 (in which case every irreducible representation is self-dual );
(ii) G= SL4 and V =∧2

U , where U is the natural 4-dimensional G-module;
(iii) G= SL6 and V =∧3

U , where U is the natural 6-dimensional G-module;
(iv) ρ is the adjoint representation of G.

Proof. In [17, Theorem 5.1], Lübeck lists allp-restricted irreducibleSLn-modules for
n� 13 whose dimension is at most(n − 1)2/8. For 3� n � 18, Lübeck has produce
tables [17, Tables A.6–21] which record the degrees and highest weights of allp-restricted
irreducible SLn-modules whose degree is at most some numberf (n), wheref (n) �
f (3) = 400 for all 3� n � 18. Using these results, together with the fact thatM(λ)∗ ∼=
M(−wo(λ)), wherewo is the longest element of the Weyl group ofG (see [8, 3.1.6]), the
proposition follows immediately. ✷
Remark 2.4. It is not difficult to see that the irreducible representation in (ii) embedsSL4
in SO6, while in (iii) we haveSL6 embedded inSp20 if p 
= 2, andSO20 if p = 2.
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In a similar spirit, we will need the following result.

Proposition 2.5. Let G = SLd , with d odd. Then the only irreducible self-dual n-dimen-
sional representation of G such that n < 4d2 − 4 is the adjoint representation.

In order to prove the proposition, we state two further results.

Lemma 2.6 [7, 10.3B]. Let λ = a1λ1 + · · · + arλr be a dominant weight of G, where
r denotes the rank. Then the stabiliser of λ in the Weyl group W of G is the parabolic
subgroup generated by the reflections along the simple roots αi for which ai 
= 0.

Lemma 2.7 [18, Premet].If the root system of G has different root lengths, we assume
that p 
= 2, and if G is of type G2, we also assume that p 
= 3. Let λ be a p-restricted
dominant weight. Then the set of weights of the irreducible G-module M(λ) is the union
of the W -orbits of dominant weights ω with ω � λ.

Proof of Proposition 2.5. Let M(λ) be an irreducible self-dualG-module of highes
weight λ = a1λ1 + · · · + ad−1λd−1, and suppose that dimM(λ) < 4d2 − 4. Now, if
5 � d � 17, then it is immediate from Lübeck’s tables [17] that the only irreduc
representation ofG satisfying the hypotheses is the adjoint representation. Suppose
thatd � 19. Recall that the Weyl group ofG acts on the set of weights ofM(λ), and thus
dimM(λ) � |W · λ|. Recall also that the Weyl group ofSLn is the symmetric groupSn.
Now sinceM(λ)∗ ∼=M(−wo(λ)), self-duality implies thatai = ad−i for eachi. Suppose
that a3 = ad−3 
= 0. From Lemma 2.6, theW -stabiliser ofλ is contained in a paraboli
subgroup of typeA2 ×Ad−7 ×A2, so

dimM(λ)� |W · λ| = |W :Wλ|� d!
3!3!(d − 6)! > 4d2 − 4

whend � 19. Hence we must havea3 = ad−3 = 0. Similarly, we also havea2 = ad−2 =
a4 = ad−4 = · · · = ad/2−1/2 = ad/2+1/2 = 0, i.e.λ= aλ1 + aλd−1. If a � 2 then

λ− α1 − αd−1 = (a − 2)λ1 + λ2 + λd−2 + (a − 2)λd−1

is dominant. From Lemma 2.7, it follows thatω= λ− α1 − αd−1 is a weight ofM(λ). As
before,Wω is contained in a parabolic subgroup of typeA1 ×Ad−5 ×A1, and it follows
that dimM(λ) � |W : Wω| > 4d2 − 4 whend � 19. Hencea = 1 andλ = λ1 + λd−1,
which is the highest weight of the adjoint representation.✷

For use in Section 4.2, we require the following result on self-dual minimal de
irreducibleG-modules, whereG is exceptional.

Proposition 2.8. Let G be a simple algebraic group of exceptional type. The following table
records the dimension n of the minimal degree non-trivial self-dual irreducible G-module:
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E6 
= 2 324
2 351

E7 arbitrary 56
E8 arbitrary 248
F4 
= 3 26

3 25
G2 
= 2 7

2 6

Proof. SinceM(λ)∗ ∼=M(−wo(λ)), it follows that if G is one ofE7, E8, F4 or G2 then
every irreducibleG-module is self-dual. IfG = E6 thenwo = −τ , whereτ is a graph
automorphism ofG induced from the order two symmetry of the Dynkin diagram forG.
The data in the table now follows immediately from [17, Tables A.49–53].✷

Next we record a number of results concerning involutions in a simple alge
groupG.

Proposition 2.9. Let G be a classical group, and suppose that p 
= 2. We have the following
table of involution class representatives in G:

G t CG(t) dim tG

Al [−I2k, Il+1−2k ] T1A2k−1Al−2k 4k(l+ 1− 2k)

[−jI2k+1, jIl−2k] T1A2kAl−2k−1 (4k + 2)(l − 2k)

Bl [−I2k, I2l+1−2k ] DkBl−k 2k(2l + 1− 2k)

Cl [−I2k, I2(l−k)] CkCl−k 4k(l− k)

[−iIl , iIl ]♦ T1Al−1 l(l + 1)

Dl [−I2k, I2(l−k)] DkDl−k 4k(l− k)

[−iIl , iIl ]♦ T1Al−1 l(l − 1)

Suppose thatG= Sp2m or SO2m, andp = 2. The Jordan canonical form of a unipote
involution t ∈G has the form[J l

2, I2(m−l)], for some 1� l � m. We call such an elemen
an l-involution. As described in [1], ifl is even (which must be the case ift ∈ SO2m) then
there are precisely two distinct conjugacy classes ofl-involutions inG, with representative
denoted byal and cl . If ( , ) is the associated symmetric bilinear form on the nat
G-moduleV2m, then anl-involution t ∈G is said to be inaGl if and only if

(
t (v), v

) = 0 for all v ∈ V.

Otherwise,t ∈ cGl . Therefore with no ambiguity we can takecl = [J l
2, I2(m−l)], where

the basis is ordered in the usual way. We will use[J l
2, I2(m−l)]a to denote a member o

the conjugacy classaGl . If l is odd there is a unique class ofl-involutions inSp2m, and
following [1], we denote this class bybG.
l
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Proposition 2.10. Let G be a classical group over an algebraically closed field of
characteristic p � 0, and let u be a non-identity unipotent element in G. Suppose for
each i , the Jordan canonical form for u has ni Jordan blocks of size i .

(i) If G= SLn, then

dimCG(u)= 2
∑
i<j

ininj +
∑
i

in2
i − 1.

(ii) Let G= Sp2m and p = 2. Then

dimCG(am−k) = m2 +m+ k2,

dimCG(bm−k) = dimCG(cm−k)=m2 + k2 + k.

(iii) If G= SO2m and p = 2, we have

dimCG(am−k)=m2 + k2 − k, dimCG(cm−k)=m2 −m+ k2.

Proof. Part (i) follows from [22, pp. 34–39], and (ii) and (iii) follow from [1, Sections
and 8]. ✷

Using Propositions 2.9 and 2.10, we have the following result.

Proposition 2.11. Let G be a simple algebraic group of classical type. The following is
a table of representatives of involution classes of maximal dimension in G, where n denotes
the dimension of the natural G-module:

G p n t dim tG

Al 
= 2 l + 1= 2m [−iIm, iIm] (l+ 1)2/2

l = 2m ±[−Im, Im+1] l2/2+ l

= 2 l + 1= 2m [Jm2 ] (l+ 1)2/2

l = 2m [Jm2 ,1] l2/2+ l

Bl 
= 2 2l + 1 ±[−Il, Il+1] l2 + l

Cl 
= 2 2l [−iIl , iIl ]♦ l2 + l

= 2 2l [J l2] l2 + l

Dl 
= 2 2l ≡ 0 (mod 4) [−Il, Il] l2

2l ≡ 2 (mod 4) [−Il−1, Il+1] l2 − 1

= 2 2l ≡ 0 (mod 4) [J l2] l2

2l ≡ 2 (mod 4) [J l−1
2 , I2] l2 − 1

Next we state a well-known result concerning involutions in exceptional groups.
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Proposition 2.12 [11, 1.2], [15, 4.3].Let G be adjoint and of exceptional type. When p 
= 2,
the centralisers in G of involutions are as follows:

G involution centralisers c

E8 A1E7,D8 128

E7 A1D6, (A7).2, (T1E6).2 70

E6 A1A5,D5T1 40

F4 A1C3,B4 28

G2 A2
1 8

For each G, we also record c, the maximal dimension of a conjugacy class of involutions
in G. This upper bound is also realised when p = 2.

The following result regarding long root elements in a simple algebraic groupG is also
well known.

Proposition 2.13 [11, 1.12].If Uα denotes a long root subgroup of G, and 1 
= t ∈ Uα ,
then dimtG is given in the following table:

G Al Bl Cl Dl G2 F4 E6 E7 E8

dim tG 2l 4l − 4 2l 4l − 6 6 16 22 34 58

Recall that ifα is a long root of a simple algebraic groupG, with corresponding
root subgroupUα , then〈Uα,U−α〉 ∼= SL2(K), unless of courseG= PSL2(K) andp 
= 2.
Supposep 
= 2. A fundamental involution in G (relative to some long rootα) is defined to
be the unique involutiont ∈ 〈Uα,U−α〉. This implies thatCG(t) must have anA1 factor,
and in view of Proposition 2.12, this completely determines the conjugacy class oft in G

whenG is exceptional. For use in Section 5, Table 2.3 is a table of fundamental involu
with corresponding centralisers.

Table 2.3
Fundamental involutions

G t CG(t)

Al [−I2, Il−1] T1A1Al−2

Bl [−I4, I2l−3] A2
1Bl−2

Cl [−I2, I2l−2] A1Cl−1

Dl [−I4, I2l−4] A2
1Dl−2

E8 – A1E7

E7 – A1D6

E6 – A1A5

F4 – A1C3

G2 – A2
1
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The next result provides us with a method for calculating dimCΩ(t). It reduces the
problem to a calculation of conjugacy class dimensions.

Proposition 2.14 [11, 1.14].Let G be an algebraic group, and let H be a closed subgroup.
If Ω denotes the coset variety G/H , then for x ∈H ,

dimCΩ(x)= dimΩ − dimxG + dim
(
xG ∩H

)
.

All of our calculations rely on this important result. In practise however, it is o
difficult to calculate dim(tG ∩ H) directly and so we use the fact that dim(tG ∩ H) �
dimtH

◦
to obtain a lower bound for dimCΩ(t).

We are now in a position to prove Theorem 1 in the case whereH is a finite subgroup
of G.

Proposition 2.15. Let G be a simple algebraic group over an algebraically closed field K .
If H is finite, then the conclusion of Theorem 1 is true.

Proof. We can assume that|H | is even. Lett ∈H be an involution. Since dimΩ = dimG

and dim(tG ∩H)= 0, it follows from Proposition 2.14 that dimCΩ(t)= dimG− dimtG.
Using the upper bounds provided by Propositions 2.11 and 2.12, we obtain the res
Table 2.4, which are independent of characteristic, and from which Theorem 1 fo
immediately. Theren denotes the dimension of the naturalG-module forG classical. ✷
Remark 2.16. As we shall see in Section 4, there are examples where equality can
This illustrates the fact that the bound in Theorem 1(i) is close to best possible.

Table 2.4
H finite

G h n fΩ(t)�

Al l + 1 l + 1 even 1
2 − 1

2l(h+1)

l+ 1 odd 1
2

Bl 2l 2l + 1 1
2 − 1

2(h+1)

Cl 2l 2l 1
2 − 1

2(h+1)

Dl 2l − 2 2l ≡ 0 (mod 4) 1
2 − 1

2(h+1)

2l ≡ 2 (mod 4) 1
2 − l−2

2l(h+1)

E8 30 – 1
2 − 1

2(h+1)

E7 18 – 1
2 − 1

2(h+1)

E6 12 – 1
2 − 1

6(h+1)

F4 12 – 1
2 − 1

2(h+1)

G2 6 – 1
2 − 1

2(h+1)
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In order to calculate dimΩ when Ω = G/H and H = Pi is a maximal parabolic
subgroup, we make use of the following well-known result.

Proposition 2.17. Let Pi be a parabolic subgroup of a simple algebraic group G, and let
Pi =QiLi be a Levi decomposition, where Qi =Ru(Pi). Then,

dimG− dimPi = dimQi =
∣∣Σ+(G)

∣∣− ∣∣Σ+(
L′
i

)∣∣,
where |Σ+(X)| denotes the number of positive roots in the associated root system of the
semisimple group X.

We finish this preliminary section with three technical propositions which will
needed to deal with the case whereH is a maximal parabolic subgroup ofG.

Proposition 2.18 [20, p. 54].If u is a unipotent element of the simple algebraic group G,
and B is a Borel subgroup of G, then

dim
(
uG ∩B

) = 1

2
dimuG.

Proposition 2.19. LetG be a simple algebraic group of exceptional type, and let s be a non-
identity semisimple element of G lying in the maximal parabolic subgroup Pi =QiLi . If
Ωi =G/Pi and D = CG(s), then

(i) D ∩Pi is a parabolic subgroup of D;
(ii) dimCΩi (s)� dimRu(D ∩Pi)= |Σ+(D)| − |Σ+(CLi (s))|.

Proof. For (i), see [11, 3.1]. Since dimΩi = dimQi (2.17) and dim(sG ∩ Pi) � dimsPi ,
it follows from Proposition 2.14 that dimCΩi (s)� dimRu(D ∩ Pi). The last part follows
from Proposition 2.17 sinceCLi (s) is a Levi factor ofD ∩ Pi . ✷
Proposition 2.20 [11, 2.1]. Let uα = u be a long root element of the simple algebraic
group G, and let Pi =QiLi be a maximal parabolic subgroup, where Qi = Ru(Pi) and
Li a Levi subgroup. If u ∈Li , then

dimuG − dim
(
uG ∩ Pi

) = 1

2

(
dimuG − dimuLi

)
.

3. Proof of Theorem 1, Part I: G classical, H ∈ C(G)

In this section we deal with the case whereG is classical andH is a member of one
of the classesCi (see Theorem 2.1). Treating each collectionCi in turn, we seek to find
best possible lower bounds forfΩ(t) and obtain Theorem 1 as a corollary of this wo
Throughout this section we repeatedly apply Propositions 2.9, 2.10, and 2.14.

Lemma 3.1. If H ∈ C1 then the conclusion of Theorem 1 is true.
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Table 3.1
H = Pi

G dimΩ p t dim tH dim tG fΩ(t)�

Al i(l + 1− i) 
= 2 [−j, jIl] l+ i − 1 2l 1− 2
l+1

[jIl,−j ] 2l− i 2l

2 [J2, Il−1] l+ i − 1 2l 1− 2
l+1

[Il−1, J2] 2l− i 2l

Bl 2li − 3i2/2+ i/2 
= 2 [−I2l ,1] 2l− i 2l 1− 2
l+1

Cl 2li − 3i2/2+ i/2 
= 2 [−I2, I2l−2] 2l + i − 3 4l − 4 1− 2
l+1

[I2l−2,−I2] 3l − 3, 4l − 4

if i = l

4l − 2i − 4,

otherwise

Dl l2/2− l/2, 
= 2 [−I2, I2l−2] 3l − 3, 4l − 4 1− 2
l

if i = l − 1 if i = l − 1

2li − 3i2/2− i/2, 2l + i − 3,

otherwise otherwise

[I2l−2,−I2] 3l − 3, 4l − 4

if i = l

4l− 2i − 4,

otherwise

Proof. The maximal parabolic subgroups ofG= Cl(V ) are the stabilisers of totally sin
gular subspaces ofV . We adopt the standard notationPi , 1� i � rankG. Following [14],
Ni will denote the stabiliser inG of an i-dimensional non-degenerate subspace ofV . Be-
ginning with the maximal parabolic subgroups, we have Table 3.1. We now justify th
formation in this table. The stated values for dimtG follow from Propositions 2.9 and 2.10
and we use Proposition 2.17 to calculate dimΩ . Thus in view of Proposition 2.14, we on
need to justify the stated values for dimtH . Once this is achieved, one can readily che
via Proposition 2.14 that in each case(G,Pi,p), the lower bound forfΩ(t) in the last
column is realised for at least one of the listed involutionst .

If G = Al , we can calculate dimtPi directly. For example, ift = [−j, jIl], then
CPi (t)

∼= (GL1 ×GLl)∩Pi , so dimCPi (t)= 1+ (i− 1)2 + l(l+ 1− i)− 1. To calculate
dimtPi for the other types ofG whenp is odd, we interpretCPi (t) in terms of smaller
parabolics. For example, ift = [−I2, I2l−2] ∈ Sp2l , then

CPi (t)
∼= (P1 in Sp2)× (Pi−1 in Sp2l−2).

Now suppose thatG = Cl or Dl , andp = 2. We claim that ift ∈ Pi is an involution,
then

fΩ(t)�
{

1− 2
l+1, if G= Cl ,

1− 4 , if G=D .

l+5 l
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Table 3.1.1

(G,H) p t fΩ(t)�

(A2,P1) 
= 2 [−I2,1] 1/2

2 [1, J2] 1/2

(A2,P2) 
= 2 [1,−I2] 1/2

2 [J2,1] 1/2

(C2,P1) 2 [I2, J2] 2/3

(C2,P2) 
= 2 [−I2, I2] 2/3

Let G = Cl . If 1 � i � l − 1 then t = [J2, I2l−2] is a long root element containe
in the simple factorCl−i of a Levi subgroupLi of Pi . Thus, using Proposition 2.1
we have dimtG = 2l and dimtLi � 2l − 2i, and applying Proposition 2.20, we ha
fΩ(t) � 1− 2/(l + 4). Wheni = l, we take the same involution and use Spaltenste
result (2.18) to establish a lower bound of 1− 2/(l + 1). Hence, in either case, a bound
1− 2/(l + 1) holds. We treat the caseG=Dl in a similar way; for 1� i � l − 3, let t be
a long root element lying in theDl−i simple factor of a Levi subgroup ofPi . Now t is G-
conjugate to[J 2

2 , I2l−4]a and, using Proposition 2.20 in conjunction with Proposition 2
we havefΩ(t) � 1− 4/(l + 8). Similarly, if i = l − 2, choosing a long root elementt in
theAl−3, factor of the Levi subgroup gives dimtG − dimtLi = 2l, and finally, ifi = l − 1
or l, we have dimtG − dimtLi = 2l − 4 whent is a long root element in the Levi facto
Al−1. Thus in all cases, a lower bound of 1− 4/(l + 5) holds.

As it stands, in some low-rank cases the above work is not sufficient to establi
conclusion of Theorem 1 whenH is a maximal parabolic subgroup. However, as deta
in Table 3.1.1, it is possible to derive better lower bounds. For(G,H,p)= (C2,P1, 
= 2)
and(C2,P2,2), the best lower bound is 1/3< 7/18= 1/2−1/(2h+1). These exception
are recorded in Table 1.1.

We now consider the stabilisersH = Ni of non-degenerate subspaces of the nat
G-module. Note that ifG = Bl thenN2i+1 ∼= N2(l−i), so we need only consider eve
dimensional non-degenerate subspaces in this case. We have Table 3.2.

We now justify the information in this table. IfU is a non-degenerate subspace of
naturalG-moduleV thenH =GU

∼= Cl(U)× Cl(U⊥) and dimΩ follows immediately.
By exploiting this isomorphism, we can easily calculate dimCH(t) for a given involutiont .
For example, ifG= Cl , H =N2i , p = 2 andt = [J2, I2l−2] then

CH (t)∼= CSp2i
(s)× Sp2l−2i ,

wheres = [J2, I2i−2] ∈ Sp2i . We calculate dimCSp2i
(s) via Proposition 2.10.

This leaves us to deal with one remaining case, namely(G,H,p)= (Dl,N1,2), where
N1 is the stabiliser inG of a 1-dimensional non-singular subspaceU of the natural
moduleV . Relative to a standard basis, we takeU = 〈e1 + f1〉 and the correspondin
data in the table follows from the well-known fact thatN1 ∼= Sp2l−2 (see [9, 4.1.7]).

As with Table 3.1, it is straightforward to check the validity of the stated lower bo
in the last column using Proposition 2.14. To establish Theorem 1, we need to
alternative choices fort in some small rank cases. These are given in Table 3.2.1.
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Table 3.2
H =Ni

G H dimΩ p t dim tH dim tG fΩ(t)�

Bl N2i 4li + 2i − 4i2 
= 2 [−I2l ,1] 2l − 2i 2l 1− 2
l+1

[−I2, I2l−1] 4i − 4 4l − 2

Cl N2i 4li − 4i2 
= 2 [−I2, I2l−2] 4i − 4 4l − 4 1− 2
l

[I2l−2,−I2] 4l − 4i − 4 4l − 4

2 [J2, I2l−2] 2i 2l 1− 2
l+1

[I2l−2, J2] 2l − 2i 2l

Dl N2i 4li − 4i2 
= 2 [−I2, I2l−2] 4i − 4 4l − 4 1− 2
l

[I2l−2,−I2] 4l − 4i − 4 4l − 4

2 [J2
2 , I2l−4] 4i − 4 4l − 4 1− 2

l

[I2l−4, J
2
2 ] 4l − 4i − 4 4l − 4

N2i−1 4li − 2l − 4i2 
= 2 [I2l−2,−I2] 4l − 4i − 2 4l − 4 1− 2
l+1

+4i − 1

N1 2l− 1 2 [J2
2 , I2l−4] 4l − 6 4l − 4 1− 2

2l−1

Table 3.2.1

(G,H) p t fΩ(t)�

(B2,N2) 
= 2 [−I4,1] 2/3

(B2,N4) 
= 2 [−I2, I3] 1/2

(C2,N2) 
= 2 [−iI2, iI2]♦ 1/2

2 [J2, I2] 1/2

(C3,N2) 
= 2 [I4,−I2] 1/2

(D3,N2) 
= 2 [I4,−I2] 1/2

2 [I2, J2
2 ] 1/2

With the exception of the case(B1,N2), the data in Tables 3.2 and 3.2.1 is sufficien
establish the fact that Theorem 1 holds whenH =Ni . To deal with(B1,N2), one observe
thatH =N2 corresponds to the subgroup of monomial matrices inPSL2 ∼= SO3. We shall
see in Lemma 3.2 that in this case, a lower bound of 1/2 holds.

This completes the proof of Theorem 1 whenG is classical andH ∈ C1. ✷
Lemma 3.2. If H ∈ C2 then the conclusion of Theorem 1 is true.

Proof. We have Table 3.3, whereA= (0
1

1
0

)
. Note that the subgroupH ◦ = (O1)

a ∩G in
bothG= Bl andDl is finite and so in view of Proposition 2.15, Theorem 1 holds in th
cases.

The stated values of dimtH
◦

are easy to verify; givent ∈ H ◦ = (Clm)a ∩ G, let s
denote the restriction oft to V1, where the naturalG-moduleV admits the orthogona
decompositionV = ⊕a

i=1Vi . It is clear in each case that dimtH
◦ = dimsClm , which we

can calculate in the usual manner.
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Table 3.3
H ∈ C2

G H ◦ dimΩ p t dim tH
◦

dim tG fΩ(t)�

Al (GLm)a ∩G l2 − l(m− 2) 
= 2 [−j, jIl] 2m− 2 2l 1− 2
l+1

m> 1 −m+ 1 2 [J2, Il−1] 2m− 2 2l 1− 2
l+1

(GL1)
l+1 ∩G l2 + l 
= 2 [−j, jIl] 0 2l 1− 2

l+1

2 [A,Il−1] 1 2l 1− 2l−1
l(l+1)

Bl (Om)
a ∩G 2l2 + 2l − lm 
= 2 [−I2, I2l−1] 2m− 4 4l − 2 1− 4

2l+1

m> 1 +1/2−m/2

Cl (Sp2m)
a 2l2 − 2lm 
= 2 [−I2, I2l−2] 4m− 4 4l − 4 1− 2

l

2 [J2, I2l−2] 2m 2l 1− 1
l

Dl (Om)
a ∩G 2l2 − lm 
= 2 [−I2, I2l−2] 2m− 4 4l − 4 1− 2

l

m > 1 2 [J2
2 , I2l−4] 2m− 4 4l − 4 1− 2

l

Table 3.3.1

G H ◦ p t fΩ(t)�

A1 (GL1)
2 ∩G 
= 2 B 1/2

A2 (GL1)
3 ∩G 
= 2 [A,−1] 1/2

C2 (Sp2)
2 
= 2 [−iI2, iI2]♦ 1/2

C3 (Sp2)
3 
= 2 [−iI3, iI3]♦ 1/2

D3 (O3)
2 ∩G 
= 2 [−I2,1,−I2,1] 5/9

As in the previous lemma, we need to make alternative choices in some sma
cases in order to deduce that the conclusion of Theorem 1 is true whenH ∈ C2. This
is detailed in Table 3.3.1, whereB denotes the matrix

( 0 −1
1 0

)
. This just leaves the cas

G = D3, H = (O2 � S3) ∩ G. This is dealt with by interpretingH as the subgroup o
monomial matrices inPSL4 ∼= SO6, where according to Table 3.3, a lower bound of 1/2
can be established.✷
Lemma 3.3. If H ∈ C3 then the conclusion of Theorem 1 is true.

Proof. Here we haveG= Cl orDl . With respect to the naturalG-module bases introduce
earlier, letW = 〈e1, . . . , el〉 andW ′ = 〈f1, . . . , fl〉. It is clear that ifH = G{W,W ′}, then
H ◦ =GW,W ′ ∼= GLl , via the isomorphism

A  →
(
A 0
0 (AT )−1

)
∈G,

where the matrices inG are written with respect to the basis ordering(e1, . . . , el, f1, . . . , fl).
If t ′ ∈ GLl , let t ∈ H ◦ be the image under this isomorphism. The lemma now foll
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Table 3.4
H ∈ C3

G H ◦ dimΩ p t ′ dim t ′H◦
dim tG fΩ(t)

Cl GLl l2 + l 
= 2 [−1, Il−1] 2l − 2 4l − 4 1− 2(l−1)
l(l+1)

2 [J2, Il−2] 2l − 2 4l − 4 1− 2(l−1)
l(l+1)

Dl GLl l2 − l 
= 2 [−1, Il−1] 2l − 2 4l − 4 1− 2
l

2 [J2, Il−2] 2l − 2 4l − 6 1− 2l−4
l(l−1)

from Table 3.4. Note that whenp is even, in both cases above the listed involutiont is
G-conjugate toa2.

Observe that apart from the caseG=Dl , p 
= 2, we always havefΩ(t)� 2/3 for each
involution t in the table. However, as stated in the definition of the subgroup collectioC3,
if G=Dl andl is odd, then the corresponding subgroupH is not maximal inG. Thus, we
can ignore the caseG=D3, and conclude that a lower bound of at least 1/2 holds when
G=Dl andp 
= 2. ✷
Lemma 3.4. If H ∈ C4 then the conclusion of Theorem 1 is true.

Proof. We begin with some preliminary remarks on notation. IfG = Cl(V ) andV =⊗k
i=1Vi then we use

⊗k Cl(Vi) to denote the central product of classical groups,Cl(V1)◦
· · · ◦ Cl(Vk), acting naturally on the tensor product. Similarly, ifV = V1 ⊗ V2 ⊗ · · · ⊗ V2
(k factors), we adopt the notationt = t1 ⊗k−1 t2 to represent the element ofG which acts
naturally on the tensor product ast1 onV1 andt2 on each subspaceV2.

We have Tables 3.5–3.8, where as in Lemma 3.2,A denotes the 2× 2 matrix
interchanging the standard basis vectors.

In each case, the central product acts naturally on the tensor product, so the
of a given involutiont on the naturalG-moduleV is easy to calculate, from whic
dimtG follows in the usual way. One should note that ifG = Dl , p = 2, andH ◦ =

Table 3.5
H ∈ C4, G=An−1

H ◦ dimΩ p t dim tH
◦

dim tG fΩ(t)�

SLa ⊗ SLb n2 − a2 
= 2 [−j, jIa−1] ⊗ Ib 2a − 2 2nb− 2b2 1− 2
a+1

a � b, a > 2 −b2 + 1 2 [J2, Ia−2] ⊗ Ib 2a − 2 2nb− 2b2 1− 2
a+1

SL2 ⊗ SL2 9 
= 2 [−i, i] ⊗ [−i, i] 4 8 5
9

2 A⊗A 4 8 5
9⊗k SLa n2 − 1 
= 2 [−j, jIa−1]

⊗k−1 Ia 2a − 2 2n2/a − 2n2/a2 1
2

a > 2 −ka2 + k 2 [J2, Ia−2]
⊗k−1 Ia 2a − 2 2n2/a − 2n2/a2 1

2⊗k SL2 n2 − 1 
= 2
⊗k [−i, i] 2k n2/2 1

2

−3k 2
⊗k A 2k n2/2 1

2
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Table 3.6
H ∈ C4, G=Bl

H ◦ dimΩ p t dim tH
◦

dim tG fΩ(t)�

SOa ⊗ SOb 2l2 + l 
= 2 [−I2, Ia−2] ⊗ Ib 2a − 4 4lb + 2b 1
2 − 1

2(h+1)

a � b −a2/2+ a/2 −4b2

−b2/2+ b/2⊗k SOa 2l2 + l 
= 2 [−I2, Ia−2]
⊗k−1 Ia 2a − 4 2(2l+ 1)2/a 1

2
−ka2/2+ ka/2 −4(2l+ 1)2/a2

Table 3.7
H ∈ C4, G=Cl

H ◦ dimΩ p t dim tH
◦

dim tG fΩ(t)�

Sp2a ⊗ SOb 2l2 + l 
= 2 [−I2, I2a−2] ⊗ Ib 4a − 4 4lb− 4b2 1
2

b � 2a −2a2 − a

a > 1 −b2/2+ b/2

Sp2 ⊗ SO2 6 
= 2 [−i, i] ⊗ I2 2 4 2
3

Sp2a ⊗ SOb 2l2 + l 
= 2 I2a ⊗ [−I2, Ib−2] 4b− 4 8la − 16a2 1
2

b > 2a −2a2 − a

−b2/2+ b/2⊗k Sp2a 2l2 + l 
= 2 [−I2, I2a−2]
⊗k−1 I2a 4a − 4 4l2/a − 4l2/a2 1

2
a > 1 −2ka2 − ka⊗k Sp2 2l2 + l 
= 2

⊗k[−i, i] 2k l2 1
2

−3k

Sp2a ⊗ Sp2b then t = [J2, I2a−2] ⊗ I2b is G-conjugate toa2b. Similarly, the elemen
[J2, I2a−2] ⊗k−1 I2a ∈ ⊗k Sp2a < Dl is G-conjugate toal/a.

In almost all cases, we choose involutions of the formt = s ⊗k−1 Ia , wheres is an
involution in Cl(V1). In such cases, we calculate dimtH

◦
by observing thatCH ◦(t) ∼=

CCl(V1)(s). If G = An−1 or Cl and t = ⊗k[−i, i], then it is not difficult to check tha
CH ◦(t) is isomorphic to the torusTk. Similarly, if G = An−1 or Dl and t = ⊗k A, then
CH ◦(t) ∼= Tk . In both cases, these observations provide us with the tabulated valu
dimtH

◦
.

Finally, we need to make some remarks on the lower bounds stated in the last c
of each table. Using the calculated data and Proposition 2.14, we obtain a lower
for dimCΩ(t). Dividing by dimΩ , one can check that for all possible values ofn, l, a, b

or k, the resulting expression is always at least the stated bound in the table. This is
sufficient to establish that Theorem 1 holds in this case. However, it should be note
we can obtain much stronger bounds than those stated as the rank ofG increases. Fo
example, consider the caseG= SLn andH =NG(SLa ⊗ · · ·⊗ SLa) (k factors), son= ak.
Assuminga � 3 and referring to the data in Table 3.5, we have

fΩ(t)� 1− 2n2a − 2n2 − 2a3 + 2a2

2 2 2 4 2 .

n a − a − ka + ka
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Table 3.8
H ∈ C4, G=Dl

H ◦ dimΩ p t dim tH
◦

dim tG fΩ(t)�

Sp2a ⊗ Sp2b 2l2 − l − 2a2 
= 2 [−I2, I2a ] ⊗ I2b 4a − 4 8lb− 16b2 1
2

a � b −a − 2b2 − b [−iIa, iIa ]♦ ⊗ I2b a2 + a l2 − l

= 2 [J2, I2a−2] ⊗ I2b 2a 4lb− 4b2 − 2b 1
2

SOa ⊗ SOb 2l2 − l 
= 2 [−I2, Ia−2] ⊗ Ib 2a − 4 4lb − 4b2 1
2 − 1

2(h+1)
†

a � b −a2/2+ a/2

−b2/2+ b/2⊗k Sp2a 2l2 − l 
= 2 [−I2, I2a−2]
⊗k−1 I2a 4a − 4 4l2/a − 4l2/a2 1

2

a > 2 −2a2k− ak⊗k Sp4 2l2 − l − 10k 
= 2 [−iI2, iI2]♦
⊗k−1 I4 6 l2 − l 1

2 − 1
2(h+1)⊗k Sp2 2l2 − l − 3k 
= 2

⊗k[−i, i] 2k l2 1
2 − 1

2(h+1)

= 2
⊗k A 2k � l2 1

2 − 1
2(h+1)⊗k Sp2a 2l2 − l = 2 [J2, I2a−2]

⊗k−1 I2a 2a 2l2/a − l2/a2 1
2

a > 1 −2a2k− ak −l/a⊗k SOa 2l2 − l 
= 2 [−I2, Ia−2]
⊗k−1 Ia 2a − 4 8l2/a − 16l2/a2 1

2

a 
= 2,4 −ka2/2+ ka/2

† For the givent , we can establish this bound except when(a, b) = (4,3) or (4,4). In these cases, le
t = [−iI2, iI2]♦ ⊗ Ib to obtainfΩ(t)� 1/2.

One can now check that this expression is always greater than 1/2, and in fact, it is easy to
check that for a fixeda � 3, this expression tends (from below) to 1− (2a − 2)/a2, as the
rank ofG tends to infinity. ✷
Lemma 3.5. If H ∈ C5 then the conclusion of Theorem 1 is true.

Proof. This follows immediately from Proposition 2.15.✷
Lemma 3.6. If H ∈ C6 then the conclusion of Theorem 1 is true.

Proof. Using Propositions 2.9 and 2.10, we have Table 3.9. Note that in all c
the matrices are written with respect to the usual basis ordering corresponding
appropriate non-degenerate form on the naturalG-module.

To complete the proof of Theorem 1 whenH ∈ C6, we need to look at the cas
(G,H ◦)= (SL4, Sp4) whenp 
= 2, and(SL2,SO2). For the latter case, one easily obser
thatNG(SO2) is the subgroup of monomial matrices inSL2, so this has been dealt with
Lemma 3.2. For the other case, lett = [−iI2, iI2]♦ ∈ Sp4 to obtainfΩ(t)� 3/5. ✷

This completes the proof of Theorem 1 in the case whereG is classical and the maxima
subgroupH lies in one of the classesCi . In the next section, we complete the classical c
by considering the situation whereH is maximal inG, but not a member of someCi .
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Table 3.9
H ∈ C6

G H ◦ dimΩ p t dim tH
◦

dim tG fΩ(t)�

Al Spl+1 l2/2+ l/2− 1 
= 2 [−I2, Il−1] 2l − 2 4l − 4 1− 4
l+2

= 2 [J2, Il−1] l+ 1 2l 1− 2
l+2

SOl+1 l2/2+ 3l/2 
= 2 [−Il,1] l 2l 1− 2
l+3

l = 2m

SOl+1 l2/2+ 3l/2 
= 2 [−I2, Il−1] 2l − 2 4l − 4 1− 4l−4
l2+3l

l = 2m+ 1 = 2 [J2
2 , Il−3] 2l − 2 4l − 4 1− 4l−4

l2+3l

Cl SO2l 2l = 2 [J2
2 , I2l−4] 4l − 4 4l − 2 1− 1

l

4. Proof of Theorem 1, Part II: G classical, H /∈ C(G)

According to Theorem 2.1, ifH is maximal inG= Cl(V ) but not a member of someCi ,
thenE(H) is simple and acts irreducibly onV . Of course, ifE(H) is finite then so isH and
in this case Theorem 1 follows from Proposition 2.15. Hence we can assume thatE(H) is
connected. IfE(H) is a classical group, sayE(H)∼= Cl(U), we shall adopt the following
general strategy.

Using Proposition 2.11, we choose an involutiont ∈ Cl(U) so that dimtCl(U) is
as large as possible. Now ifϕ : Cl(U) → G is an irreducible representation such th
Im(ϕ) = E(H), then ϕ(t) is also an involution and dimϕ(t)E(H) = dimtCl(U). From
Proposition 2.11 we obtain an upper bound for dimϕ(t)G, and thus a lower bound fo
dimCΩ(t) in the usual manner. If dimU = d and dimV = n then from this lower bound
we obtain a functionf (n, d) with the property that iff (n, d)� 0 then

fΩ(t)� 1

2
− 1

2(h+ 1)
.

Using Lübeck’s results [17], we can show that in almost all cases, eitherf (n, d) � 0
is true, or otherwise, in those cases when the inequality fails to hold,n is small and
we can explicitly calculate with the representationϕ to establish a lower bound o
1/2 − 1/2(h + 1). However, there are examples where we are forced to accep
slightly weaker bound of 1/2− 1/(2h+ 1), with two further exceptional cases, name
(G,E(H))= (D4,A2) and(B3,A2).

If E(H) is exceptional, then we shall chooset as in Proposition 2.12 to maximis
dimtE(H) and apply the same strategy, again utilising Lübeck’s results. In this case, w
able to establish that the bound of 1/2− 1/2(h+ 1) holds without exception. Clearly, th
is sufficient to complete the proof of Theorem 1 whenG is classical.

Remark 4.1. With reference to Remark 2.16, ifE(H) is finite then we can demonstrate th
the bound in Theorem 1 is close to best possible. For example, supposeE(H)∼= PSL2(q),
whereq is a power of some odd prime. Then the irreducible Steinberg representatψ

embedsPSL2(q) in SOq . Furthermore,ψ maps the unique class of involutions inPSL2(q)
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to the class of involutions inSOq of largest dimension. Using Proposition 2.11, we ded
thatfΩ(t)= 1/2− 1/2(h+ 1). WhenE(H)=A2m andG= Bl , Cl or Dl , we have been
unable to establish a lower bound of 1/2− 1/2(h + 1). However, with two exceptions
1/2− 1/(2h + 1) does hold, and it is in this sense that Theorem 1 can be describ
being close to best possible.

4.1. E(H) classical

Applying the strategy described above, we obtain the results in Table 4.1, whered and
n denote the respective dimensions of the natural modules forE(H) andG.

Table 4.1
E(H) is classical

G E(H) dimΩ dimϕ(t)E(H) � dimϕ(t)G � f (n,d)

Al Ar n2 − d2 d2/2− 1/2 n2/2 n2 − d2

−n− 1
Br n2 − d2/2 d2/4− 1/4 n2/2 2n2 − 3n− d2

+d/2− 1 +nd + 2d − 5
Cr n2 − d2/2 d2/4+ d/2 n2/2 2n2 + nd

−d/2− 1 −d2 − 2n− 4
Dr n2 − d2/2 d2/4− 1 n2/2 2n2 − 6n− d2

+d/2− 1 +nd + 2d − 8
Bl Ar n2/2− n/2 d2/2− 1/2 n2/4− 1/4 1− d2

−d2 + 1
Br n2/2− n/2 d2/4− 1/4 n2/4− 1/4 nd − d2

−d2/2+ d/2 −n+ d

Cr n2/2− n/2 d2/4+ d/2 n2/4− 1/4 n− d − 1
−d2/2− d/2

Dr n2/2− n/2 d2/4− 1 n2/4− 1/4 nd − d2

−d2/2+ d/2 −4n+ d

Cl Ar n2/2+ n/2 d2/2− 1/2 n2/4+ n/2 1− d2

−d2 + 1
Br n2/2+ n/2 d2/4− 1/4 n2/4+ n/2 nd − d2

−d2/2+ d/2 +2d − n− 1
Cr n2/2+ n/2 d2/4+ d/2 n2/4+ n/2 n− d

−d2/2− d/2
Dr n2/2+ n/2 d2/4− 1 n2/4+ n/2 nd − d2

−d2/2+ d/2 +2d − 4n− 4
Dl Ar n2/2− n/2 d2/2− 1/2 n2/4 1− d2

−d2 + 1
Br n2/2− n/2 d2/4− 1/4 n2/4 nd − d2

−d2/2+ d/2 −n+ 1
Cr n2/2− n/2 d2/4+ d/2 n2/4 n− d − 2

−d2/2− d/2
Dr n2/2− n/2 d2/4− 1 n2/4 nd − d2

−d2/2+ d/2 −4n+ 4



T.C. Burness / Journal of Algebra 265 (2003) 744–771 765

have

ual

e

can

).

f

shows
ith

tation

1,

joint

que

ed
Leaving the cases(G,E(H)) = (Bl,Ar), (Bl,Dr), (Cl,Ar), (Cl,Dr), (Dl,Ar), and
(Dl,Dr) for now, one easily checks that for the remaining cases we always
f (n, d)� 0. This follows immediately from the lower bounds onn which arise naturally
from the dimensional constraints. For example, if(G,E(H)) = (An−1,Ad−1) then we
must haven� d + 1, which implies thatf (n, d)= n2 − d2 − n− 1 � 0.

Now consider the caseG = Cl and E(H) = Ar . If d is even, then following
Proposition 2.11 we can choose our involutiont so that dimtE(H) = d2/2 and thus
f (n, d) = n − d2 + 2. According to Proposition 2.3 and Remark 2.4, the only self-d
irreducible representation ofSLd with d even, embeddingSLd in Spn and satisfyingn <
d2 − 2 is the 20-dimensionalSL6-moduleV = ∧3

U whenp 
= 2, whereU is the natural
SL6-module. If t = [−I2, I4] ∈ SL6, then the action oft on V is given by[−I12, I8] and
hencefΩ(t)� 19/35. Whend is odd,f (n, d)= 1− d2 and we are forced to consider th
slightly weaker lower bound of 1/2−1/(2h+1). For this to hold, we requiren� 4d2−4.
In view of Proposition 2.5, this leaves the adjoint representation with which we
calculate explicitly. To be precise, lett = [−Id−1,1] ∈ SLd if p 
= 2, andt = [J2, Id−2]
if p = 2. Then Ad(t) = [−I2d−2, Id2−2d+1] and [J 2d−2

2 , Id2−4d+3], respectively. In both
cases, we have dim Ad(t)E(H) = 2d − 2 and dim Ad(t)G = 2d3− 6d2+ 6d− 2, and from
this one can easily deduce thatfΩ(Ad(t))� 1/2.

If G = Cl and E(H) = Dr , then n � d(d − 1)/2 − 2 (see [17, Theorem 5.1]
When d � 8, this is sufficient to imply thatf (n, d) � 0. Sincef (n,6) = 2n − 28 and
SO6 ∼= PSL4, it follows from Proposition 2.3 thatf (n,6) � 0, so a lower bound o
1/2 − 1/2(h + 1) holds in this case. Similarly, ifG = Dl and E(H) = Dr , we use
[17, Theorem 5.1] to show thatf (n, d) � 0 whend � 8. Now, f (n,6) = 2n − 32, so
Proposition 2.3 leaves us to deal with the adjoint representation. A direct calculation
that a lower bound of 1/2−1/2(h+1) also holds in this case. Similar reasoning deals w
the caseG= Bl , E(H)=Dr .

Suppose now thatG= Bl andE(H)=Ar . As in theG= Cl case, ifd is even then we
can use Proposition 2.3 to show that a lower bound of 1/2−1/2(h+1) holds, and whend is
odd, we are forced to consider 1/2− 1/(2h+ 1). For this to hold, we requiren� 4d2− 3,
and using Proposition 2.5, the only odd-dimensional self-dual irreducible represen
for which this fails is the adjoint representation whenp dividesd . Calculating explicitly,
we see that a bound of 1/2 − 1/2(h + 1) holds whend � 5. However, if d = 3 and
p = 3, then the adjoint representation embedsSL3 in SO7 and as stated in Table 1.
a direct calculation shows that the best lower bound is 5/13< 1/2− 1/(2h+ 1)= 11/26.
Similarly, if G = Dl andE(H) = Ar then 1/2− 1/2(h+ 1) holds whend is even, and
when d is odd we use Propositions 2.3, 2.5, and a direct calculation with the ad
representation to establish a lower bound of 1/2− 1/(2h+ 1), with the exception of the
caseE(H)= SL3 andG= SO8, p 
= 3. Here the adjoint representation maps the uni
class of involutions inSL3 to the class inSO8 of largest dimension, sofΩ(t) = 2/5 <

1/2− 1/(2h+ 1)= 11/26 for any involutiont in SL3. This exceptional case is record
in Table 1.1.

This completes the proof of Theorem 1 whenH is not in C(G) and E(H) is
classical.
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4.2. E(H) exceptional

We now complete the proof of Theorem 1 whenG is classical, employing the sam
strategy as in Section 4.1. Following Proposition 2.12, we chooset ∈ E(H) = H ◦ to
maximise dimtE(H), and obtain a condition of the formn � c which is sufficient to
imply that fΩ(t) � 1/2 − 1/2(h + 1), where as before,n denotes the dimension o
the naturalG-module. If G = Al then it is clear that for this choice oft we have
fΩ(t) � 1/2. For example, ifE(H) = E7, chooset ∈ E(H) such that dimtE(H) = 70.
Since dimtG � (l + 1)2/2 (see Proposition 2.11), we havefΩ(t)� 1/2.

For the other types ofG, using Propositions 2.12 and 2.11, we derive the follow
values ofc:

G E(H)=E6 E7 E8 F4 G2

Bl 39 19 31 13 7
Cl 38 18 30 12 6
Dl 40 20 32 14 8

Recalling that we only consider the caseG = Bl whenp 
= 2, it follows immediately
from Proposition 2.8 that we havefΩ(t)� 1/2−1/2(h+1)whenG= Bl orCl . If G=Dl

then from Proposition 2.8 and [17, Table A.49], we deduce that we need only consid
irreducible embeddingG2 ↪→ SO6 (p = 2). According to Proposition 2.11, ift ∈ SO6 is
an involution then dimtSO6 � 8. So if t ∈G2 is an involution such that dimtG2 = 8, then
dimtSO6 = 8 andfΩ(t)= 1.

This completes the proof of Theorem 1 whenG is a classical simple algebraic grou
In the final section, we turn our attention to the exceptional groups.

5. Proof of Theorem 1, Part III: G exceptional

In this final section we consider the case whereG is a simple algebraic group o
exceptional type, and in doing so we complete the proof of Theorem 1. As in the cla
case, the key result is the Liebeck/Seitz classification of the maximal subgroups of p
dimension (Theorem 2.2). In even characteristic, things are greatly simplified by the
long root involutions. Whenp 
= 2, our initial strategy is to choose fundamental involutio
where possible (see Table 2.3). For those cases for which this method fails, we wil
to make alternative choices fort , and work harder to identify the centraliserCG(t), in
some cases invoking results concerning the representation theory of the simple exce
groups. We begin by dealing with the maximal parabolic subgroups. Throughou
section,G will always denote a simple algebraic group of exceptional type.

Lemma 5.1. If H is a maximal parabolic subgroup, then the conclusion of Theorem 1 is
true.

Proof. Let H = Pi =QiLi be a maximal parabolic subgroup ofG, and assume to beg
with thatp = 2. If L′ =X1X2 · · ·Xs , with eachXl simple, lett be a long root involution
i



T.C. Burness / Journal of Algebra 265 (2003) 744–771 767

e

d,
e

ounds
e

p

,
nd

f

of

e,
e

in the simple factorXj , where the rank ofXj is maximal. Apart from the cases(F4,P2)

and (G2,P1), this is always possible. Since dimtLi = dimtXj , we can easily calculat
dimCΩi (t) via Propositions 2.13 and 2.20, whereΩi =G/Pi .

For example, supposeG = E7 andH = P4. SinceL4 = T1A1A2A3 is a Levi factor
of P4, it follows from Proposition 2.17 that dimΩ4 = 53. Following the described metho
let t be a long root involution in theA3 factor ofL4, so from Proposition 2.13 we hav
dimtG = 34 and dimtL4 = 6. Proposition 2.20 now implies that dimCΩ4(t)= 53− 14=
39, and it is clear that Theorem 1 holds in this particular case.

In fact, with the exception of the two cases mentioned above, this method yields b
which are always greater than 1/2. To deal with(F4,P2), we need to slightly adapt th
method sinceL′

2 =A1A2, and the fundamental roots of the highest rankA2 factor are both
short. However, by choosing a long root involutiont in theA1 factor, we have dimtL2 = 2
andfΩ(t) � 13/20. This leaves the case(G2,P1). SinceP1 contains a Borel subgrou
it follows that uG ∩ P1 
= ∅ for any unipotent elementu ∈ G. Hence ifs is a long root
involution in G then there exists someg ∈ G such thatt = sg ∈ P1. So dimtG = 6 and
via Proposition 2.18, we have dim(tG ∩P1)� 3 and hencefΩ1(t)� 2/5. Since this is the
best lower bound that we can obtain, and 2/5< 11/26= 1/2− 1/(2h+ 1), this case is
included in Table 1.1.

Now suppose thatp 
= 2. If L′
i = X1X2 · · ·Xs , where eachXl is simple, lett be a

fundamental involution inXj , where the rank ofXj is maximal. Referring to Table 2.3
this gives usCLi (t) andD = CG(t), and so via Proposition 2.19, we derive a lower bou
for dimCΩi (t). For example, consider(E8,P6), whereL6 = T1D5A2 and dimΩ6 = 97.
Let t ∈ D5 be a fundamental involution, so from Table 2.3 we haveCD5(t) = A2

1A3

and henceCL6(t) = T1A
2
1A2A3 andD = CE8(t) = A1E7. Since|Σ+(A1E7)| = 64 and

|Σ+(CL6(t))| = 11, it follows from Proposition 2.19 that dimCΩ6(t) � 53. It is readily
checked that this method provides lower bounds in excess of 1/2− 1/2(h+ 1) in almost
all cases, the exceptions being(E7,P4), (E6,Pi), 2 � i � 5, (F4,Pj ), 1 � j � 3, and
when G = G2. From Proposition 2.12 we know thatG2 contains a unique class o
involutions with centraliserD = A2

1, so |Σ+(D)| = 2. Since dimΩi = 5 for i = 1,2,
it follows from Proposition 2.19 that ift = t1t2 ∈ Li = T1A1, wheret1 = t2 = [−i, i],
thenfΩi (t) � 2/5 < 11/26= 1/2 − 1/(2h + 1). This case is recorded in Table 1.1
Theorem 1(iii).

We now deal with the other cases for which our initial method failed. Let(G,H) =
(E6,P3), so dimΩ3 = 25 and L3 = T1A1A4. Let t = [−I4,1] ∈ A4 < L3; then
|Σ+(CL3(t))| = 7. NowA4 naturally embeds inD5. Viewing t as an element ofD5, we
havet = [−I8, I2], soD4 <CD5(t) < CG(t). SinceD4 is not contained inA1A5, it follows
from Proposition 2.12 thatD = CG(t) = T1D5, so |Σ+(D)| = 20, and dimCΩ3(t) � 13.
The case(E6,P5) is identical, and(E6,P2) is dealt with in a similar way. To be precis
if t = [−I4, I2] ∈ A5 < L2 then viewingt as an element ofA4 and arguing as before, w
deduce thatCG(t)= T1D5, and hencefΩ2(t)� 13/21.

For (E6,P4) we have dimΩ4 = 29 andL4 = T1A1A
2
2. Let t = t1t2 ∈ A2

2 < L4,
where t1 = t2 = [−I2,1] ∈ A2, so |Σ+(CL4(t))| = 3. To show thatCG(t) = T1D5, we
consider the restriction toA3 of the 27-dimensional irreducibleE6-moduleV27=M(λ1).
2
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According to [13, Proposition 2.3],

V27↓A3
2 = (

M(λ1)⊗M(λ2)⊗ 0
)⊕ (

M(λ2)⊗ 0⊗M(λ1)
)⊕ (

0⊗M(λ1)⊗M(λ2)
)
,

whereλ1 and λ2 are fundamental dominant weights ofA2, and 0 denotes the trivia
A2-module. Lett = t1t2t3 ∈ A3

2, wheret1 = I3 and t2 = t3 = [−I2,1]. Using the above
decomposition, one easily shows that the action oft onV27 is given by[−I16, I11]. Now
from [13, Proposition 2.3] we have

V27↓A1A5 =
(
M(λ1)⊗M(λ1)

)⊕ (
0⊗M(λ4)

)
,

and from [13, Table 8.7],

V27↓D5 =M(λ1)⊕M(λ4)⊕ 0.

Hence ift ∈E6 is an involution andCE6(t)=A1A5, then (up to conjugacy),t acts onV27
as[−I12, I15]. On the other hand, ifCE6(t)= T1D5, the action is given by[−I16, I11]. We
conclude thatCG(t)= T1D5 andfΩ(t)� 17/29.

For (F4,Pi), i = 1,2, let t ∈ Pi be the involution in〈Uα3,U−α3〉 ∼= SL2. Viewing t

in theB4 subsystem subgroup ofF4, we deduce from Chevalley’s commutator relatio
that t centralises aD3 subgroup. SinceD3 
< A1C3, it follows from Proposition 2.12 tha
CG(t) = B4. In the usual manner, we calculate thatfΩ1(t) � 7/15 andfΩ2(t) � 3/5. To
deal with (F4,P3), we let t be the involution in〈Uα4,U−α4〉. Thent ∈ P3 and sinceα3
andα4 are of equal length, it follows from the above work thatCG(t)= B4. From this we
deduce thatfΩ3(t)� 3/5.

Finally, we consider the case(E7,P4). Let t = t1t2 ∈ A2A3 <L4 = T1A1A2A3, where
t1 = [−I2,1] and t2 = [−I2, I2]. Clearly we can viewt as an element of the subgro
A2

2 < A2A3. Since|Z(A2
2)| = 32, it follows that t lifts to an involution inÊ7, the simply

connected cover. From [11, 1.2], we know that an involution inE7 which lifts to an
involution in Ê7 must have centraliserA1D6. Thus, |Σ+(CE7(t))| = 31 andfΩ4(t) �
27/53. ✷

Following Theorem 2.2(b), we now consider the case whereH =NG(M) is a maximal
reductive subgroup of maximal rank.

Lemma 5.2. If H =NG(M), with M as in Table 2.1, then the conclusion of Theorem 1 is
true.

Proof. If p= 2, let t ∈X be a long root involution, whereX is a simple factor ofM =H ◦
of largest possible rank. Using Proposition 2.13, we obtain dimtG and dimtX , giving
rise to a lower bound for dimCΩ(t). For example, supposeG = E8 andM = A2E6, so
dimΩ = 162. If t ∈ E6 is a long root involution, then dimtE6 = 22 and dimtG = 58.
Hence, dimCΩ(t)� 126. This method yields lower bounds which are always greater
or equal to 1/2, with the obvious exception of the casesG= Ei , H =NG(Ti), 6� i � 8,
for which an alternative argument is required.
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Let Φ denote the root system ofG= Ei , and letα ∈Φ. As previously remarked whe
discussing fundamental involutions, it is a basic fact that there exists an isomorphism

ψ : SL2(K)→〈Uα,U−α〉.

Following [3], let nα = ψ
( 0 1
−1 0

)
. Whenp = 2, nα ∈ NG(Ti) is G-conjugate to a long

root involution and we can use the results of Proposition 2.13. For example, ifG = E8

then dimΩ = 240, and choosingt = nα for some rootα ∈ Φ, we have dimtG = 58 and
dimCΩ(t)� 182.

Whenp 
= 2, we employ an analogous method to that used in the proof of Lemm
Choosingt ∈X to be a fundamental involution (whereX is a simple factor ofM of largest
rank) yields lower bounds which are greater than or equal to 1/2, with the exception of the
following cases:

G M

E8 T8
E7 T7,A7,A2A5,A

7
1

E6 T6,A1A5,A
3
2

F4 A1C3,A2Ã2
G2 A1Ã1,A2, Ã2 (p = 3)

If (G,M) = (E8, T8), then dimΩ = 240 and since any semisimple element lies i
maximal torus, and all the maximal tori inG are conjugate, it is clear that we can choo
an involution t ∈ H such thatCG(t) = A1E7. So dimtG = 112 and dimCΩ(t) � 128.
Using the fact that each subgroupM is of maximal rank, in the same way we can deal w
the cases(E7,A

7
1), (E7, T7), (E6, T6) and(F4,A2Ã2). To handle the remaining cases, w

need to work harder.
Let (G,M)= (E7,A7), and chooset = [−I4, I4] ∈ A7, so dimΩ = 70 and dimtH =

32. It is clear thatt lies in a subgroup ofA7 which is isomorphic toA6 = SL7. It now
follows thatt lifts to an involution in the simply connected group̂E7, and as in Lemma 5.1
we deduce thatCG(t)= A1D6 and thus dimCΩ(t)= 38. We handle the case(E7,A2A5)

in the same way. Lett = t1t2 ∈ A2
2 < A2A5, where t1 = [−I2,1] and t2 = [−I2, I4].

Since|Z(A2
2)| = 32, it follows that the preimage oft in Ê7 is also an involution and thu

fΩ(t)� 23/45.
Suppose now that(G,H) = (E6,A1A5), and let t = [−I4, I2] ∈ A4 < A5. As in

Lemma 5.1,A4 embeds inD5 and we haveD4 < CG(t), soCG(t) = T1D5 andfΩ(t) �
3/5. If t = t1t2t3 ∈ A3

2 < E6, wheret1 = I3 and t2 = t3 = [−I2,1], then from our work
in Lemma 5.1 concerning(E6,P4), we know thatCG(t) = T1D5. This gives us a lowe
bound of 5/9 in this case. If(G,H) = (F4,A1C3), let t = t1t2, wheret1 = [−i, i] ∈ A1
andt2 = [−iI3, iI3]♦ ∈ C3. ThenfΩ(t) � 1/2. For(G2,A1Ã1) we can establish a lowe
bound of 1/2 by choosingt = t1t2, wheret1 = t2 = [−i, i] ∈A1.

Finally, we observe that for(G2,A2) and(G2, Ã2) there does not exist an involutio
t ∈ M such thatfΩ(t) � 11/26 = 1/2 − 1/(2h + 1). Here we have dimΩ = 6 and
dimtG = 8 for any involutiont ∈ G. SinceA2 has a unique class of involutions, who
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dimension is 4, it follows that 1/3 is the best possible lower bound in each case. Th
recorded in Table 1.1. ✷

According to Theorem 2.2, whenp 
= 2, (22×D4).S3 <E7 is maximal; andA1×S5 <

E8 is maximal whenp 
= 2,3,5. In the former case, dimΩ = 105 and ift = [−I4, I4] ∈D4
then dimtD4 = 16. Since dimtG � 70 we havefΩ(t) � 17/35> 35/74. If (G,H) =
(E8,A1×S5) then dimΩ = 245 and ift = [−i, i] ∈A1 = PSL2, we have dimtH

◦ = 2 and
thusfΩ(t) � 119/245> 59/122 since dimtG � 128. Note that theA1 factor here mus
be adjoint as otherwiseH would be contained in a subgroupCG(t) for some involutiont ,
contradicting the maximality ofH .

To complete the proof of Theorem 1, we need to consider one final collectio
maximal subgroups. As in Theorem 2.2(c), these are the subgroupsNG(X), whereX is
as in Table 2.2.

Lemma 5.3. If H = NG(X), with X as in Table 2.2, then the conclusion of Theorem 1 is
true.

Proof. SupposeX = X1 · · ·Xs , where eachXi is simple. SinceNG(X) is maximal, it is
clear that for eachi, Z(Xi) cannot contain an involutiont – if this were the case, w
would haveNG(X) < CG(t), contradicting the maximality ofNG(X). So in particular,
if p 
= 2 andXi = A1 or Cl , then Xi must be adjoint. Lett = t1 · · · ts ∈ X, where
eachti ∈ Xi is an involution such that dimtXi

i is maximal. Using the upper bound f
dimtG from Proposition 2.12 we deduce thatfΩ(t) � 1/2− 1/2(h+ 1), unlessG= E7,
p � 5 andX = A2. For example, supposeG= E8 andX = A1G

2
2. Let t = t1t2t3, where

t1 = [−i, i] andt2 = t3 satisfies dimtG2
2 = 8. Hence dimtX = 18 and since dimΩ = 217

and dimtG � 128 we havefΩ(t)� 107/217> 15/31= 1/2− 1/2(h+ 1).
To deal with(G,X) = (E7,A2), let t = [−I2,1] ∈ X. We claim thatCG(t) = A1D6.

To see this, consider the action oft on the 56-dimensional irreducibleE7-moduleV56 =
M(λ7). According to [13, Table 8.6], ifp > 5 then

V56↓A2 =M(6λ1)⊕M(6λ2),

and thus the action oft is given by[−I24, I32]. Whenp = 5, we see from [12, Table 10.2
thatV56 ↓ A2 has the same composition factors as theA2-moduleS6V3 ⊕ (S6V3)

∗ and
hence the action oft is again given by[−I24, I32]. Now from [13, Proposition 2.3] we
have

V56↓A1D6 =
(
M(λ1)⊗M(λ1)

)⊕ (
0⊗M(λ5)

)
,

so if s ∈E7 is an involution andCE7(s)=A1D6, then (up to conjugacy),s acts onV56 as
[−I24, I32]. We conclude thatCG(t)= A1D6. Hence, dimtG = 64, and since dimtX = 4
and dimΩ = 125, we deduce thatfΩ(t)� 65/125> 1/2. ✷
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This completes the proof of Theorem 1 in the case whereG is a simple algebraic grou
of exceptional type. In view of the results of Sections 3 and 4, the proof of Theorem
complete.
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