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Abstract. A non-regular primitive permutation group is said to be extremely primitive
if a point stabilizer acts primitively on each of its orbits. By a theorem of Mann and
the second and third authors, every finite extremely primitive group is either almost
simple or of affine type. In a recent paper we classified the extremely primitive almost
simple classical groups, and in this note we determine the examples with a sporadic or
alternating socle. We obtain two infinite families for An (or Sn); they comprise the
natural 2-primitive action of n points, plus the action on partitions of {1, . . . , n} into
subsets of size n/2 (with n/2 odd). There are 20 examples for sporadic groups, including
the rank 6 representation of Co2 on the cosets of McL.

1. Introduction

A non-regular primitive permutation group G on a set Ω is said to be extremely primitive
if a point stabilizer H = Gα acts primitively on each of its orbits. Equivalently, G is
extremely primitive if H ∩Hx is a maximal subgroup of H for all x ∈ G \H. Moreover,
by an old theorem of Manning [13], if G is extremely primitive on Ω then Gα is faithful
on each of its orbits in Ω \ {α}, so H ∩ Hx is also core-free in H. For example, every
2-primitive group G is extremely primitive, and the finite groups with this property can
be determined via the classification of finite simple groups.

By a theorem of Mann and the second and third authors [12, Theorem 1.1], every finite
extremely primitive group is either almost simple or of affine type, and the affine examples
are known up to a finite number of possibilities. In [7], we classified the extremely primitive
almost simple classical groups, and the purpose of this note is to determine the almost
simple examples with a sporadic or alternating socle.

Theorem 1. Let G be a finite almost simple primitive permutation group, with point
stabilizer H and socle G0. Assume G0 is a sporadic or alternating group. Then G is
extremely primitive if and only if (G,H) is one of the cases listed in Table 1.

Remark 1. In Table 1, we set α = |G : G0| and we adopt the standard Atlas [8] notation
for simple groups.

Corollary 1. Let G, G0 and H be defined as above. Then G is extremely primitive, but
not 2-primitive, if and only if one of the following holds:

(i) G = Sn or An, H = (Sn/2 o S2) ∩G, n ≡ 2 (mod 4) and n ≥ 10;

(ii) (G0, H) = (J2,U3(3).α), (HS,M22.α), (Suz, G2(4).α), (McL,U4(3).α), (Ru, 2F4(2).2),
(Co2,U6(2).2) or (Co2,McL).
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G0 H Rank Conditions
An NG((Sn/2 o S2) ∩G) (n+ 2)/4 n ≡ 2 (mod 4)
An NG(An−1) 2 G 6 Sn
An NG(D10) 2 n = 5
M11 S6 2
M11 L2(11) 2
M12 M11 2 G = G0

M22 L3(4).α 2
M23 M22 2
M24 M23 2
J2 U3(3).α 3
HS M22.α 3
HS U3(5) 2 G = G0

Suz G2(4).α 3
McL U4(3).α 3
Ru 2F4(2).2 3
Co2 U6(2).2 3
Co2 McL 6
Co3 McL.2 2

Table 1. The extremely primitive sporadic and alternating groups

In order to complete the classification of the almost simple extremely primitive groups
it remains to determine the examples with socle an exceptional group of Lie type. These
groups will be the subject of a future paper.

Our proof of Theorem 1 uses some recent work on bases for almost simple primitive
groups. Recall that if G is a permutation group on Ω then a subset of Ω is a base if its
pointwise stabilizer in G is trivial; the minimal size of a base is denoted by b(G). Now, if
b(G) = 2 then H has a regular orbit on Ω, so G is not extremely primitive. In [5, 6] (see
also [10, 15]), the primitive almost simple groups G with b(G) = 2 and socle a sporadic or
alternating group are determined. This observation greatly simplifies the proof of Theorem
1 since we can immediately eliminate the cases with b(G) = 2. For instance, if G = Sn or
An and a point stabilizer H acts primitively on {1, . . . , n} then [5, Theorem 1] states that
b(G) = 2 for all n > 12, so in this situation we may assume n ≤ 12 and the remaining
cases are easily handled.

In addition to the main theorem of [6] on base sizes, in our analysis of sporadic groups
we make use of the data recorded in the Web Atlas [17] on permutation representations
and maximal subgroups of sporadic groups. In many cases, this information allows us to
construct G and H as suitable permutation groups (using GAP [9] or Magma [1]) and
then quickly determine whether or not G is extremely primitive. For some of the larger
sporadic groups, this approach is not practical (due to the large degrees of the relevant
permutation representations). However, by applying an easy lemma (see Lemma 2.2) we
can essentially reduce the problem to a handful of cases (G,H) in which the corresponding
permutation character 1GH is multiplicity-free, which means that all irreducible constituents
of 1GH occur with multiplicity 1. The multiplicity-free actions of almost simple sporadic
groups have been classified (see [3]), and a great deal of information is known about these
actions. In particular, all the subdegrees in such actions have been computed and it is
straightforward to decide whether or not G is extremely primitive.



EXTREMELY PRIMITIVE SPORADIC AND ALTERNATING GROUPS 3

This note is organized as follows. In Section 2 we record a couple of preliminary results
which will be useful in the proof of Theorem 1. The proof itself is given in Sections 3 and
Sections 4.

2. Preliminaries

Let G be a primitive permutation group on a finite set Ω with point stabilizer H. A
subset B of Ω is a base for G if the pointwise stabilizer of B in G is trivial; we write b(G)
for the minimal size of a base for G. Determining b(G) is an interesting problem, with
important applications in computational group theory (see [16, Chapter 4], for example).

Bases for almost simple primitive groups with a sporadic or alternating socle are studied
in [5, 6, 10], and the cases with b(G) = 2 have been completely determined (see also [15]
for two exceptional cases involving the Baby Monster sporadic group). Clearly, if b(G) = 2
then H ∩ Hx = 1 for some x ∈ G, and thus G is not extremely primitive (note that a
maximal subgroup of an almost simple group cannot be of prime order). This observation,
combined with the main theorems of [5] and [6], plays a key role in the proof of Theorem
1.

Lemma 2.1. Let G be an almost simple permutation group, and let b(G) be the minimal
size of a base for G. If b(G) = 2 then G is not extremely primitive.

The next lemma provides four conditions on the point stabilizer H, each of which implies
that G is not extremely primitive. Here F (H) and Soc(H) denote the Fitting subgroup
and socle of H, respectively.

Lemma 2.2. Suppose |H| is composite and one of the following conditions hold:

(i) Z(H) 6= 1.

(ii) F (H) is not elementary abelian.

(iii) F (H) is an elementary abelian group Zep, but |Ω| − 1 is indivisible by pe.

(iv) Soc(H) is not a product of isomorphic simple groups.

Then G is not extremely primitive.

Proof. By Manning’s theorem [13], if G is extremely primitive then H = Gα is faithful on
each of its orbits in Ω \ {α}. It is a basic fact that the socle of a primitive permutation
group is a product of isomorphic simple groups, so (iv) is immediate. See [7, Lemma 2.2]
for parts (i), (ii) and (iii). �

3. Sporadic groups

In this section we assume G is an almost simple primitive permutation group with socle
G0 and point stabilizer H, where G0 is a sporadic simple group.

Proposition 3.1. If G is extremely primitive then (G,H) is one of the cases listed in [6,
Tables 1 and 2], and either H is almost simple, or (G,H) = (M11,M9:2), (J2, 3.A6.2) or
(J2.2, 3.A6.2

2).

Proof. By Lemma 2.1 we have b(G) > 2, so by the main theorems of [6] and [14], either
(G,H) is one of the cases listed in [6, Tables 1 and 2], or (G,H) = (B, 22+10+20.(M22:2×
S3)). In the latter case, the Fitting subgroup F (H) = 22+10+20 is nonabelian, so Lemma
2.2(ii) eliminates this possibility.

We now inspect each case (G,H) in [6, Tables 1 and 2] with the property that H is
not an almost simple group. We claim that at least one of the four conditions on H
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in the statement of Lemma 2.2 is satisfied, unless (G,H) = (M11,M9:2), (J2, 3.A6.2) or
(J2.2, 3.A6.2

2).

Clearly, if (G,H) is one of the following cases

(M12:2, (2× 2×A5).2) (Fi23, O7(3)× S3) (Co1, (A4 ×G2(4)):2)
(Fi′24, (3×O+

8 (3):3):2) (Fi24, S3 ×O+
8 (3):S3) (B, (22 × F4(2)):2)

then Soc(H) is not a product of isomorphic simple groups, so Condition (iv) of Lemma 2.2
is satisfied. In each of the remaining cases, we claim that at least one of the Conditions
(i) – (iii) holds. We present this information in Table 2; for a line representing a group G,
the subgroups in the column labelled “Condition (x)” are those for which Lemma 2.2(x)
holds.

This is a straightforward verification. The claim is clear if G ∈ {M11, J1, J3,O
′N}, so

assume otherwise. If H is a subgroup in the second column of Table 2 then H has a
normal subgroup of order 2, so Z(H) 6= 1 and thus Condition (i) is satisfied. Clearly, if H
is in the third column then F (H) is not elementary abelian, so Condition (ii) holds, and
for H in the fourth column, it is easy to check that F (H) 6= 1 is elementary abelian and
|G : H| − 1 is indivisible by |F (H)| (see [8]). �

Proposition 3.2. Suppose G 6∈ {Fi23,Co1,O
′N,HN,HN.2,Fi′24,Fi24,Ly,Th,B}. Then

the conclusion to Theorem 1 holds.

Proof. By the previous proposition, we immediately deduce that Theorem 1 holds if G =
O′N.2, J4 or M, so we will assume otherwise. An explicit permutation representation of
G on n < 5000 points is given in the Web Atlas [17] (see [6, Table 3] for the precise
value of n) and using Magma [1] (in particular the command MaximalSubgroups) we can
construct G and H as subgroups of Sn. For each case (G,H) appearing in Table 1 we use
the Magma command CosetAction to construct G as a permutation group on the set of
right cosets of H in G and we quickly deduce that G is extremely primitive. In each of the
remaining cases, it is easy to find an element x ∈ G (by random search) such that H ∩Hx

is non-maximal (here it is convenient to use the Magma command IsMaximal to deduce
non-maximality), which proves that G is not extremely primitive in these cases. �

To complete the proof of Theorem 1 for sporadic groups, it remains to show that none
of the following cases (G,H) are extremely primitive (see [6, Table 2]):

(Fi23, O
+
8 (3):S3) (Fi23,S8(2)) (Ly, G2(5)) (Co1,Co2) (Co1,Co3)

(Co1,U6(2):S3) (HN, A12) (HN,U3(8):3) (HN.2, S12) (HN.2,U3(8):6)
(O′N,L3(7):2) (Th, 3D4(2):3) (Fi′24,Fi23) (Fi′24, O

−
10(2)) (Fi24, O

−
10(2):2)

(B,Fi23) (B,Th)

(1)

Proposition 3.3. Suppose (G,H) = (Co1,U6(2):S3) or (B,Th). Then G is not extremely
primitive.

Proof. First consider the case G = Co1 and H = U6(2):S3. The Web Atlas [17] gives a
permutation representation of G on 98280 points, together with generators for H in terms
of the given generators of G. As before, using Magma, we can construct G and H in
terms of this representation, and it is easy to find an element x ∈ G such that H ∩Hx is
a non-maximal subgroup of H.

Now assume (G,H) = (B,Th). The character tables of G and H are available in
the GAP Character Table Library [2], together with the fusion of H-classes in G. Given
this information, it is easy to calculate the permutation character 1GH , and by computing
〈1GH , 1GH〉 we deduce that the rank of G is 34. The smallest maximal subgroup of H has
order 120 (see [17], for example), so the largest primitive permutation representation of H
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G Condition (i) Condition (ii) Condition (iii)
M12 2× S5 21+4:S3, 4

2:D12 32:2.S4

M12.2 21+4:S3.2, 4
2:D12.2, 3

1+2:D8

M22 24:A6, 2
4:S5, 2

3:L3(2)
M22.2 23:L3(2)× 2 24:S6, 2

5:S5

M23 24:A7, 2
4:(3×A5):2

M24 24.A8, 2
6:3.S6,

26:(L3(2)× S3)
J2 21+4.A5, 2

2+4:(3× S3) A4 ×A5, A5 ×D10

J2.2 L3(2):2× 2 21+4.A5.2, 2
2+4:(3× S3).2 (A4 ×A5):2, (A5 ×D10).2

J3.2 (3×M10):2
HS 4.24.S5 43:L3(2) 24.S6

HS.2 S8 × 2, (2×A6.2.2).2 43.(2× L3(2)), 21+6.S5 25.S6

McL 2.A8 31+4:2.S5 34:M10, 2
4.A7

McL.2 2.S8,M11 × 2 31+4:4.S5 34:(M10 × 2)
Co3 2.S6(2) 31+4:4.S6 35:(2×M11), 24.A8

Co2 21+8:S6(2), (24 × 21+6).A8, 210:M22:2
24+10.(S5 × S3)

He 22.L3(4).S3, 2
6:3.S6

He.2 22.L3(4).D12

Suz 21+6.U4(2), 24+6:3.A6, 3.U4(3):2, 35.M11,
22+8:(A5 × S3) (A4 × L3(4)):2

Suz.2 M12:2× 2, J2:2× 2 21+6.U4(2).2, 24+6:3.S6, 3.U4(3).2.2, 35.(M11 × 2),
22+8:(S5 × S3) (A4 × L3(4):2):2

Fi22 2.U6(2) (2× 21+8):(U4(2):2), 210:M22, 2
6:S6(2),

25+8:(S3 ×A6), U4(3):2× S3

31+6:23+4:32:2
Fi22.2 2.U6(2).2, (2× 21+8:U4(2):2):2, 210:M22:2, 27:S6(2),

O+
8 (2):S3 × 2 25+8:(S3 × S6), U4(3).2.2× S3,

31+6:23+4:32.2.2 35:(2×U4(2):2)
Ru 23+8:L3(2), 21+4+6.S5 26.U3(3).2, (22 × Sz(8)):3
Fi23 2.Fi22, 2

2.U6(2).2 31+8.21+6.31+2.2S4 211.M23

J4 21+12.3.M22:2 211:M24, 2
10:L5(2)

Ly 3.McL:2
Co1 21+8.O+

8 (2), 22+12:(A8 × S3), 3.Suz:2, 211:M24

24+12.(S3 × 3.S6)
HN 2.HS.2
HN.2 4.HS.2
O′N.2 4.L3(4).2.2
Th 25.L5(2)
Fi′24 2.Fi22:2 31+10:U5(2):2 37.O7(3), 211.M24

Fi24 Fi23 × 2, (2× 2.Fi22):2, 31+10:(U5(2):2× 2) 37.O7(3):2, 212.M24

(2× 22.U6(2)):S3

B 2.2E6(2):2 21+22.Co2, 2
9+16.S8(2)

M 2.B
Table 2. Some non-extremely primitive sporadic groups



6 TIMOTHY C. BURNESS, CHERYL E. PRAEGER, AND ÁKOS SERESS

has degree |H|/120. Since |G : H| − 1 > 33|H|/120 we conclude that G is not extremely
primitive. �

Proposition 3.4. The conclusion to Theorem 1 for sporadic groups holds in each of the
remaining cases.

Proof. According to [3], the action of G on Ω is multiplicity-free in each of the remaining
15 cases to be considered. By definition, this means that every irreducible constituent of
the corresponding permutation character 1GH occurs with multiplicity 1. The multiplicity-
free actions of almost simple sporadic groups are classified in [3], and a great deal of
information on these actions is given in [4]. In particular, all the subdegrees have been
calculated and we can combine this information with the known orders of the maximal
subgroups of H (see [17], for example, or take a suitable permutation representation of H
and use Magma to compute the index of every maximal subgroup of H). Note that the
maximal subgroups of O+

8 (3):S3 are determined in [11].

In this way we quickly deduce that none of the remaining possibilities give rise to an
extremely primitive group. Indeed, in each case there is at least one nontrivial subdegree
which does not coincide with the index of a maximal subgroup of H; the smallest subde-
grees with this property are as follows (here we adopt the same ordering of cases used in
(1) above):

109200 107100 19530 4600 257600
− 16632 1539 5040 1539

6384 17199 275264 1570800 1570800
412896 −

For example, if (G,H) = (B,Fi23) then the smallest nontrivial subdegree is 412896 (see
[4], and also [14, Table 2]), but it is easy to check that this is not the index of a maximal
subgroup of H. �

4. Alternating groups

Let G be an almost simple primitive permutation group with socle G0 = An and point
stabilizer H. If n ≤ 12 then the conclusion to Theorem 1 can be easily verified using
Magma [1], so for the remainder we will assume n > 12.

Proposition 4.1. If n > 12 and H is a primitive subgroup of Sn then G is not extremely
primitive.

Proof. The main theorem of [5] implies that b(G) = 2. Now apply Lemma 2.1. �

Proposition 4.2. If H is an intransitive subgroup of type Sk × Sn−k with 1 ≤ k < n/2,
then G is extremely primitive if and only if k = 1.

Proof. Clearly, if k = 1 then G is 2-primitive so let us assume k > 1. If k > 2 then the
socle of H is not a product of isomorphic simple groups, so G is not extremely primitive.
The same argument applies if k = 2 and G = Sn. Finally, suppose k = 2 and G = An, so
H = Sn−2. Take H = GS , where S = {1, 2}, and set S′ = {2, 3}. Then

HS′ = H1,2,3 = An−3 < An−2 = H1,2 < H,

so G is not extremely primitive. �

To complete the proof of Theorem 1 we may assume H is the G-stabilizer of a partition
of {1, . . . , n} into n/k subsets of size k, where 2 ≤ k ≤ n/2.

Proposition 4.3. If H is an imprimitive subgroup of type Sk o Sn/k with 2 ≤ k ≤ n/2,
then G is extremely primitive if and only if k = n/2 and n ≡ 2 (mod 4).
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Proof. Set ` = n/k and take H to be the G-stabilizer of the partition P = {P0, . . . , P`−1},
where Pi = {ik + 1, . . . , (i + 1)k}. Define a new partition P ′ = {P ′0, . . . , P ′`−1}, where
P ′0 = {2, . . . , k + 1}, P ′1 = {1, k + 2, . . . , 2k} and P ′i = Pi for all i > 1. If k = 2 then HP ′

induces the Klein four-group on P0∪P1, while H{P0,P1} induces D8, so HP ′ < H{P0,P1} < H
and thus G is not extremely primitive. Similarly, if k ≥ 3 then HP ′ = ((Sk−1 o S2)× (Sk o
S`−2)) ∩G, which is a proper subgroup of H{P0,P1} if ` ≥ 3.

Finally, suppose ` = 2. If P ′′ = {P ′′0 , P ′′1 } is a partition then the H-orbit of P ′′ is
precisely the set of partitions {A,B} with |P0 ∩ A| = |P0 ∩ P ′′0 |, so the rank of G is
bn/4c+ 1. First assume n/2 is even. We define a new partition P ′′ = {P ′′0 , P ′′1 }, where

P ′′0 = {1, 2, . . . , n/4, 3n/4 + 1, 3n/4 + 2, . . . n}, P ′′1 = {n/4 + 1, . . . , 3n/4}.

Then

HP ′′ = ((Sn/4 × Sn/4 × Sn/4 × Sn/4).22) ∩G < ((Sn/4 o S2) o S2) ∩G < H

and thus G is not extremely primitive. Finally, let us assume n/2 is odd. Suppose
P ′′ = {P ′′0 , P ′′1 } is a partition, where |P0 ∩P ′′0 | = t. Then HP ′′ = ((St×Sn/2−t) oS2)∩G is
a maximal subgroup of H for 0 < t < n/2, whence G is extremely primitive and we record
this case in Table 1. �

This completes the proof of Theorem 1.
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