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Introduction

- group

subgroup of G
field (algebraically closed, char(K) = p > 0)
irreducible KG-module (dim V' > 1)

< X I ®

Definition. (G, H, V) is an irreducible triple if V| is irreducible

Problem. Given G and K, determine all the irreducible triples (G, H, V)
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Symmetric groups: G = S,

If p=0 then V = S is a Specht module, where X is a partition of n.

Saxl, 1987: Determined all irreducible triples (S,, H,S*) when p =0

eg. A= (n—1,1): H is 2-transitive
eg. A=(n—-2,2): (n,H) = (9,TL2(8)), (11,My1),...

Brundan & Kleshchev, 2001: A classification for p > 3

Partial results when p =2,3...
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Algebraic groups

An algebraic group over K is an affine variety G C K™ with a compatible
group structure.

e.g. G=SL,(K)={AeM,y(K)|det(A) —1=0} c K"

G inherits the Zariski topology from K.
G contains a unique maximal closed connected subgroup, denoted GY,

which is normal and has finite index; G is connected iff G = G°.

The simple algebraic groups (no proper nontrivial closed connected
normal subgroup):

Classical: SL,(K), SO2p+1(K), Sps,(K), SO24(K)
Exceptional: Eg(K), E;/(K), Es(K), Fa(K), Ga(K)

aA/27



Irreducible triples for simple algebraic groups

- algebraically closed field of characteristic p > 0
simple algebraic group over K

- closed subgroup of G

< I O X

- nontrivial irreducible KG-module

Dynkin, 1957: H connected, p =0

e.g. G =Sly, =SL(W), H=Sp,,, V= SKW)
e.g. G =SLyy =SL(W), H=Eg, V =N (W)
eg. G=E, H= Gy, V=V
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Irreducible triples for simple algebraic groups

- algebraically closed field of characteristic p > 0
simple algebraic group over K
- closed subgroup of G

< I O X

- nontrivial irreducible KG-module

Dynkin, 1957: H connected, p =0

Seitz, 1987: G classical, H connected, p > 0
Testerman, 1988: G exceptional, H connected, p > 0
Ghandour, 2010: G exceptional, H disconnected and infinite

Our problem. Determine the irreducible triples (G, H, V'), where G is
classical and H is disconnected and infinite
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An application: Subgroup structure

Irreducible triples arise naturally in the study of maximal subgroups of
classical groups:

Question. Let H be a simple group and let ¢ : H — SL(V) be an
irreducible representation.

Is p(H) a maximal subgroup of SL(V') (or Sp(V), SO(V))?

If o(H) is non-maximal, say
o(H) < G < SL(V),

then (G, ¢(H), V) is an irreducible triple.
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Some related work

1. Ford (1996): Determined the irreducible triples (G, H, V'), where

@ G is classical; H is disconnected and infinite
o HO is simple

@ The composition factors of V|0 are p-restricted.

2. Guralnick & Tiep (2008): The triples (G, H, V'), where

G =SL(W), V = SK(W), k > 4 and H is any closed subgroup.

3. Liebeck, Seitz & Testerman (2014): Investigating the triples
(G,H, V), where G is simple, H is connected and V/|y is multiplicity-free.
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A two-step strategy

Our problem. Determine the irreducible triples (G, H, V'), where G is
classical and H is disconnected and infinite

Step 1. H < G is maximal

Step2. H<M< G = (G,M, V) is an irreducible triple determined
in Step 1 (M disconnected) or by Seitz (M connected)

Main ingredients.
@ Chevalley's theory of highest weight representations
o Clifford theory

o Liebeck-Seitz subgroup structure theorem for classical groups
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Weights and representations

Let G be a simple algebraic group over K.

T - maximal torus of G (T = (K*)"
X(T) =Hom(T, K*) character group of T (X(T) =
{a1,...,an} CX(T)®zR simple roots

{M,.. e X(T)ezR

)
z")

fundamental dominant weights

Let V be a finite-dimensional KG-module. Then

V= @ , Vi={veV|t-v=p(t)vforallte T}
peX(T)

and € X(T) is a weight of V if V,, # 0.
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An example: G = SL,.1(K)

Maximal torus: T = {diag(t1,...,ths1) | ti € K*}
Lie algebra: Lie(G) = {A € Mp41(K) | Tr(A) = 0}

Roots: Lie(G) is a KG-module, via x - A = xAx~ L. The roots of G are
the non-zero weights for this module.

e.g. If t =diag(ts,...,thy1) € T, A= E;j € Lie(G) (so i # j), then
t-A=tAt ! = gt 1A
so the map « : t — t,-i.“j_1 is a root.

Simple roots: {«a1,...,an}, where a;(t) = t,-t;l1
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Weights and representations

{ag,...,ap} C X(T)®zR - simple roots
{M,..., A} C X(T)®zR - fundamental dominant weights

Let V be a finite-dimensional irreducible KG-module.

Theorem. There is a unique weight A = ). a;\; of V (with a; € Np)
such that all weights of V are of the form
A — Zi ciaj with ¢; € Ny

We call A the highest weight of V/, and we write V = Lg()\).
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Weights and representations

Theorem. There is a one-to-one correspondence

n
A=Y ai\i +— Lg(})
i=1
between dominant weights and finite-dimensional irreducible KG-modules.

Example. Suppose G = SL(W) = SLp+1(K). Then

Le(M) = W, Le(Mk) = A (W), Lg(kA1) = SK(W), Lg(\n) = W*

Definition. If p > 0and A =), a;\;, then V = Lg()) is p-restricted if
0<aj<pforalli.
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Clifford theory

Theorem (Clifford, 1937) Let G be a group, K a field and let V be an
irreducible KG-module. Let N be a normal subgroup of finite index.

e V/|y is completely reducible, so V|y = V4 @ --- @ V; and the V; are
irreducible KN-modules

e G/N transitively permutes the V;

Let G be a simple algebraic group, V = Lg() an irreducible KG-module,
H a closed subgroup. Suppose V| is irreducible.

e V|no irreducible: Read off (G, H, V) from Seitz's theorem.

@ V/|yo reducible: Apply Clifford’'s theorem to V|y, using the
transitivity of H/HO to severely restrict the possibilities for \.
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Strategy

Our problem. Determine the irreducible triples (G, H, V'), where G is
classical and H is disconnected and infinite.

Step 1. H < G is maximal

Step2. H<M< G = (G,M, V) is an irreducible triple determined
in Step 1 (M disconnected) or by Seitz (M connected)
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Maximal subgroups of classical groups

Let G = CI(W) be a simple classical algebraic group. We define five
collections of infinite closed subgroups of G:

C1
Co
C3
Ca
Ce

Stabilizers of subspaces of W

Stabilizers of orthogonal decompositions W = @, W;
Stabilizers of totally singular decompositions W = Wy & W,
Stabilizers of tensor product decompositions W = ); W;

Classical subgroups (stabilizers of forms on W)

Theorem (Liebeck & Seitz, 1998) Let H be an infinite closed subgroup
of G = CI(W). Then one of the following holds:

@ H is contained in a member of C1 UCs UC3 U Cq U Cq

o HO is simple (modulo scalars) and W is an irreducible KH%-module
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Results: Geometric subgroups

Theorem (B, Ghandour & Testerman, 2013) Let G = SL,41(K) and

let H be an infinite disconnected geometric maximal subgroup of G.
Let V = Lg(A) be a p-restricted irreducible KG-module.

Then V|y is irreducible iff (H, ) is one of the following:

Collection Type of H A Conditions
Ca @Di_; GL«(K).S: 1, Ay 0>21,t>2
D W N A
Cq ®f:1 GLy(K).St A1, An £>23,t>2
A2, Ap—1 £>3,t:2,p7é2
Ce SO,+1(K).2 AL, -eoyAn n>3odd, p#2
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Geometric subgroups: The exotic examples

e Ford’s example: G = SO,+1(K), H=S02,(K).2, p # 2 and
A=aiA1+ -+ ap_1An_1+ An, where

(i) if aj,a; # 0, where i < j < nand ax =0 for all i < k < j, then
aj+aj =i —j(mod p);

(ii) if i < nis maximal such that a; # 0, then 2a; = —2(n—i) — 1
(mod p).

® G =5Spy,(K), H = (Sp,(K) x Sp,(K)).S2 and
A= A1+ a\,

where 0 < a < p and 2a+ 3 =0 (mod p).
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Results: Non-geometric subgroups

Theorem (B, Ghandour, Marion & Testerman, 2013) Let G = CI(W)
be a simple classical algebraic group and let H be an infinite disconnected
non-geometric maximal subgroup of G. Write W = Ly0(9).

Let V = Lg(\) be p-restricted and assume V # W, W*.
Then V|y is irreducible iff (G, H, A) is one of the following:

G H A 0 Conditions
Spyy  SLe.2 A3 03 p#£23
Spyg SLe.2 A2 03 p #2

SO, SL3.2 21 01+d6 p=3

SO14 SL4.2 N6, A7 0 +03 p=2
SOz S505.53 A2, A1z 02 p=2
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Methods

1. Geometric subgroups: A combinatorial analysis of weight restrictions

e HO is reductive and we can describe the embedding of H in G in
terms of the root subgroups of G

e Compute the restriction of T-weights to a maximal torus S < H°

o Identify a T-weight p of V = Lg(\) such that pls is the highest
weight of a composition factor of V/|yo

o If yu|s and A|s are non-conjugate (under the action of H/H?) then
V| is reducible (by Clifford theory)
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Methods
2. Non-geometric subgroups: Parabolic embeddings & induction
o X =H<c {Ay,Dm, Es} and W = Lx(5), where G = CI(W)
@ Bx = Ux Tx ~~ parabolic subgroup of G stabilising the flag
W > [W,Ux] > [[W,Ux],Ux] >--->0
whose quotients are sums of specific Tx-weight spaces of W.

o If H= X.2 then some quotient is 2-dimensional ~~ severe restrictions
on 6, and partial information on the coefficients of A

o Px = QxLx ~ P = QL, where I’ =Ly ---L, is semisimple and
V/[V,Q]=M; ®---® M, is an irreducible KL'-module.

Further conditions on A via the projections 7; : Ly — L;...
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An example

G - SL(W)=SLg=(Usq, |1<i<T7)
H -
s

- maximal torus of X = [H°, HO]

HO:{<ﬂW) xyE6lapnG

X = <Ui0417 Uj:a27 Uj:oz3> X <Uia57 Uiam Uioq) = SL4 X SL4

1 2 3 4 5 6 7

O O

If x = S27_, bi\; then

Stabilizer of a decomposition W = Wj & W> with dim W; = 4
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Set V = Lg(\) with A= Y27_, a;)\;, and assume V|4 is irreducible.

By Seitz, V/|yo is reducible, so Clifford theory implies that
Vo =V1 @ V2

where Vi|x = Lx(\|s), Va|x = Lx(p|s) and

ay an as ds de ar
A | S. o0——o0——o0 oO——O0——0
ds de ar dai an as

,LL‘52 o——o—0 oO——o—0
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Step 1. a4 #0 = x = A — agq is a weight of V, and x|s is the highest
weight of a composition factor of V/|ppo.

Since x = A —ag = A+ A3 — 24 + A5 we have

ai a as ds 96 ar

)\|5. oO——o—0 o——o—0
ds de ar ai =) as

,u|5. o—O0—0 o—O0—o0
A a  a3+1 a+1 a ar
X|5. oO——O0——0 oO——O0——0

so x|s is not equal to A|s nor u|s. This is a contradiction, so as = 0.

Step 2. a, =0, a3 #0 = v|s = (A — a3z — aa)|s is the highest weight
of a composition factor of V|yo. But

ca1 a+l az-—1 as+1 3 ar
V‘s. oO———O0—0 o——O0——=0

In this way, we reduce to the case A = aj\1 + azA7.
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Step 3. A = a1\ + a7 \7 and a3 # 0. Here
X:/\—al—ag—a3—a4:)\—)\1—)\4—1—)\5

is the highest weight of a composition factor of V|0 and we have

a 0 0 0 0 a7

)\|5 : o——O0——=0 O———O0——0

) 0 0 ay ap 0 0

u|5 : o——O0——0 o——O0——0

Car—1 0 0 1 0 ar
X‘S : o——O0——0

Hence (a1,a7) = (1,0), so A=Ay and V = W.

Similarly, if a7 # 0 then (a1, a7) = (0,1) and V = W*.
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Results: Non-maximal subgroups

Theorem (B & Testerman, 2014) Let G = CI(W) be a simple classical

algebraic group and let H be an infinite disconnected subgroup of G,
which is non-maximal.

Let V = Lg(X) be p-restricted and V # W, W*. Assume V| is
irreducible and V|0 is reducible. Then one of the following holds:

@ G=SLpy1, A= (1<k<(n+1)/2), H=T.Y and Y < Sp41 is
k-transitive.

@ G =SO(W) is an orthogonal group, H preserves an orthogonal direct
sum decomposition of W, and V is a spin module.

e rank G < 8 and (G, H, V) is known.
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Results: Irreducible chains

Let G = CI(W) be a simple classical algebraic group and let V be an
irreducible KG-module. An irreducible chain is a sequence of closed
positive-dimensional subgroups

H<Hi_i1< - <Hyy<H =G
such that each V|, is irreducible.

Let (G, V) be the length of the longest such chain.

Theorem (B & Testerman, 2014) One of the following holds:
o V=W, W
e G =SO(W) and V is a spin module
o G =SL(W)and V = A(W),A3(W),N2(W)* or N3(W)*
@ /(G,V)<5

Example. C3.3 < C2.S3 < Dy < D4.2 < Gy, with p =2, V = V¢, ()3)
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