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Introduction

G - group

H - subgroup of G

K - field (algebraically closed, char(K ) = p > 0)

V - irreducible KG -module (dimV > 1)

Definition. (G ,H,V ) is an irreducible triple if V |H is irreducible

Problem. Given G and K , determine all the irreducible triples (G ,H,V )
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Symmetric groups: G = Sn

If p = 0 then V = Sλ is a Specht module, where λ is a partition of n.

Saxl, 1987: Determined all irreducible triples (Sn,H, S
λ) when p = 0

e.g. λ = (n − 1, 1): H is 2-transitive

e.g. λ = (n − 2, 2): (n,H) = (9, ΓL2(8)), (11,M11), . . .

Brundan & Kleshchev, 2001: A classification for p > 3

Partial results when p = 2, 3...
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Algebraic groups

An algebraic group over K is an affine variety G ⊆ Km with a compatible
group structure.

e.g. G = SLn(K ) = {A ∈ Mn(K ) | det(A)− 1 = 0} ⊂ Kn2

G inherits the Zariski topology from Km.

G contains a unique maximal closed connected subgroup, denoted G 0,
which is normal and has finite index; G is connected iff G = G 0.

The simple algebraic groups (no proper nontrivial closed connected
normal subgroup):

Classical: SLn(K ), SO2n+1(K ), Sp2n(K ), SO2n(K )

Exceptional: E8(K ), E7(K ), E6(K ), F4(K ), G2(K )
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Irreducible triples for simple algebraic groups

K - algebraically closed field of characteristic p > 0

G - simple algebraic group over K

H - closed subgroup of G

V - nontrivial irreducible KG -module

Dynkin, 1957: H connected, p = 0

e.g. G = SL2n = SL(W ), H = Sp2n, V = Sk(W )

e.g. G = SL27 = SL(W ), H = E6, V = Λ4(W )

e.g. G = E6, H = G2, V = V27
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Irreducible triples for simple algebraic groups

K - algebraically closed field of characteristic p > 0

G - simple algebraic group over K

H - closed subgroup of G

V - nontrivial irreducible KG -module

Dynkin, 1957: H connected, p = 0

Seitz, 1987: G classical, H connected, p > 0

Testerman, 1988: G exceptional, H connected, p > 0

Ghandour, 2010: G exceptional, H disconnected and infinite

Our problem. Determine the irreducible triples (G ,H,V ), where G is
classical and H is disconnected and infinite
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An application: Subgroup structure

Irreducible triples arise naturally in the study of maximal subgroups of
classical groups:

Question. Let H be a simple group and let ϕ : H → SL(V ) be an
irreducible representation.

Is ϕ(H) a maximal subgroup of SL(V ) (or Sp(V ), SO(V ))?

If ϕ(H) is non-maximal, say

ϕ(H) < G < SL(V ),

then (G , ϕ(H),V ) is an irreducible triple.
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Some related work

1. Ford (1996): Determined the irreducible triples (G ,H,V ), where

G is classical; H is disconnected and infinite

H0 is simple

The composition factors of V |H0 are p-restricted.

2. Guralnick & Tiep (2008): The triples (G ,H,V ), where

G = SL(W ), V = Sk(W ), k > 4 and H is any closed subgroup.

3. Liebeck, Seitz & Testerman (2014): Investigating the triples
(G ,H,V ), where G is simple, H is connected and V |H is multiplicity-free.
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A two-step strategy

Our problem. Determine the irreducible triples (G ,H,V ), where G is
classical and H is disconnected and infinite

Step 1. H < G is maximal

Step 2. H < M < G =⇒ (G ,M,V ) is an irreducible triple determined
in Step 1 (M disconnected) or by Seitz (M connected)

Main ingredients.

Chevalley’s theory of highest weight representations

Clifford theory

Liebeck-Seitz subgroup structure theorem for classical groups
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Weights and representations

Let G be a simple algebraic group over K .

T - maximal torus of G (T ∼= (K ∗)n)

X (T ) = Hom(T ,K ∗) - character group of T (X (T ) ∼= Zn)

{α1, . . . , αn} ⊂ X (T )⊗Z R - simple roots

{λ1, . . . , λn} ⊂ X (T )⊗Z R - fundamental dominant weights

Let V be a finite-dimensional KG -module. Then

V =
⊕

µ∈X (T )

Vµ, Vµ = {v ∈ V | t · v = µ(t)v for all t ∈ T}

and µ ∈ X (T ) is a weight of V if Vµ 6= 0.
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An example: G = SLn+1(K )

Maximal torus: T = {diag(t1, . . . , tn+1) | ti ∈ K ∗}

Lie algebra: Lie(G ) = {A ∈ Mn+1(K ) | Tr(A) = 0}

Roots: Lie(G ) is a KG -module, via x · A = xAx−1. The roots of G are
the non-zero weights for this module.

e.g. If t = diag(t1, . . . , tn+1) ∈ T , A = Ei ,j ∈ Lie(G ) (so i 6= j), then

t · A = tAt−1 = ti t
−1
j A

so the map α : t 7→ ti t
−1
j is a root.

Simple roots: {α1, . . . , αn}, where αi (t) = ti t
−1
i+1
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Weights and representations

{α1, . . . , αn} ⊂ X (T )⊗Z R - simple roots

{λ1, . . . , λn} ⊂ X (T )⊗Z R - fundamental dominant weights

Let V be a finite-dimensional irreducible KG -module.

Theorem. There is a unique weight λ =
∑

i aiλi of V (with ai ∈ N0)
such that all weights of V are of the form

λ−
∑

i ciαi with ci ∈ N0

We call λ the highest weight of V , and we write V = LG (λ).
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Weights and representations

Theorem. There is a one-to-one correspondence

λ =
n∑

i=1

aiλi ←→ LG (λ)

between dominant weights and finite-dimensional irreducible KG -modules.

Example. Suppose G = SL(W ) = SLn+1(K ). Then

LG (λ1) = W , LG (λk) = Λk(W ), LG (kλ1) = Sk(W ), LG (λn) = W ∗

Definition. If p > 0 and λ =
∑

i aiλi , then V = LG (λ) is p-restricted if
0 6 ai < p for all i .
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Clifford theory

Theorem (Clifford, 1937) Let G be a group, K a field and let V be an
irreducible KG -module. Let N be a normal subgroup of finite index.

V |N is completely reducible, so V |N = V1 ⊕ · · · ⊕ Vt and the Vi are
irreducible KN-modules

G/N transitively permutes the Vi

Let G be a simple algebraic group, V = LG (λ) an irreducible KG -module,
H a closed subgroup. Suppose V |H is irreducible.

V |H0 irreducible: Read off (G ,H,V ) from Seitz’s theorem.

V |H0 reducible: Apply Clifford’s theorem to V |H , using the
transitivity of H/H0 to severely restrict the possibilities for λ.
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Strategy

Our problem. Determine the irreducible triples (G ,H,V ), where G is
classical and H is disconnected and infinite.

Step 1. H < G is maximal

Step 2. H < M < G =⇒ (G ,M,V ) is an irreducible triple determined
in Step 1 (M disconnected) or by Seitz (M connected)
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Maximal subgroups of classical groups

Let G = Cl(W ) be a simple classical algebraic group. We define five
collections of infinite closed subgroups of G :

C1 Stabilizers of subspaces of W

C2 Stabilizers of orthogonal decompositions W =
⊕

i Wi

C3 Stabilizers of totally singular decompositions W = W1 ⊕W2

C4 Stabilizers of tensor product decompositions W =
⊗

i Wi

C6 Classical subgroups (stabilizers of forms on W )

Theorem (Liebeck & Seitz, 1998) Let H be an infinite closed subgroup
of G = Cl(W ). Then one of the following holds:

H is contained in a member of C1 ∪ C2 ∪ C3 ∪ C4 ∪ C6
H0 is simple (modulo scalars) and W is an irreducible KH0-module
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Results: Geometric subgroups

Theorem (B, Ghandour & Testerman, 2013) Let G = SLn+1(K ) and
let H be an infinite disconnected geometric maximal subgroup of G .

Let V = LG (λ) be a p-restricted irreducible KG -module.

Then V |H is irreducible iff (H, λ) is one of the following:

Collection Type of H λ Conditions

C2
⊕t

i=1 GL`(K ).St λ1, λn ` > 1, t > 2

λ2, . . . , λn−1 ` = 1, t > 2

C4
⊗t

i=1 GL`(K ).St λ1, λn ` > 3, t > 2

λ2, λn−1 ` > 3, t = 2, p 6= 2

C6 SOn+1(K ).2 λ1, . . . , λn n > 3 odd, p 6= 2
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Geometric subgroups: The exotic examples

Ford’s example: G = SO2n+1(K ), H = SO2n(K ).2, p 6= 2 and

λ = a1λ1 + · · ·+ an−1λn−1 + λn, where

(i) if ai , aj 6= 0, where i < j < n and ak = 0 for all i < k < j , then
ai + aj ≡ i − j (mod p);

(ii) if i < n is maximal such that ai 6= 0, then 2ai ≡ −2(n − i)− 1
(mod p).

G = Sp2n(K ), H = (Spn(K )× Spn(K )).S2 and

λ = λn−1 + aλn

where 0 6 a < p and 2a + 3 ≡ 0 (mod p).
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Results: Non-geometric subgroups

Theorem (B, Ghandour, Marion & Testerman, 2013) Let G = Cl(W )
be a simple classical algebraic group and let H be an infinite disconnected
non-geometric maximal subgroup of G . Write W = LH0(δ).

Let V = LG (λ) be p-restricted and assume V 6= W ,W ∗.

Then V |H is irreducible iff (G ,H, λ) is one of the following:

G H λ δ Conditions

Sp20 SL6.2 λ3 δ3 p 6= 2, 3

Sp20 SL6.2 λ2 δ3 p 6= 2

SO7 SL3.2 2λ1 δ1 + δ2 p = 3

SO14 SL4.2 λ6, λ7 δ1 + δ3 p = 2

SO26 SO8.S3 λ12, λ13 δ2 p = 2
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Methods

1. Geometric subgroups: A combinatorial analysis of weight restrictions

H0 is reductive and we can describe the embedding of H in G in
terms of the root subgroups of G

Compute the restriction of T -weights to a maximal torus S 6 H0

Identify a T -weight µ of V = LG (λ) such that µ|S is the highest
weight of a composition factor of V |H0

If µ|S and λ|S are non-conjugate (under the action of H/H0) then
V |H is reducible (by Clifford theory)
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Methods

2. Non-geometric subgroups: Parabolic embeddings & induction

X = H0 ∈ {Am,Dm,E6} and W = LX (δ), where G = Cl(W )

BX = UXTX  parabolic subgroup of G stabilising the flag

W > [W ,UX ] > [[W ,UX ],UX ] > · · · > 0

whose quotients are sums of specific TX -weight spaces of W .

If H = X .2 then some quotient is 2-dimensional  severe restrictions
on δ, and partial information on the coefficients of λ

PX = QXLX  P = QL, where L′ = L1 · · · Lr is semisimple and
V /[V ,Q] = M1 ⊗ · · · ⊗Mr is an irreducible KL′-module.

Further conditions on λ via the projections πi : L′X → Li ...
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An example

G - SL(W ) = SL8 = 〈U±αi | 1 6 i 6 7〉

H - Stabilizer of a decomposition W = W1 ⊕W2 with dimWi = 4

S - maximal torus of X = [H0,H0]

H0 =

{(
x

y

)
: x , y ∈ GL4

}
∩ G

X = 〈U±α1 ,U±α2 ,U±α3〉 × 〈U±α5 ,U±α6 ,U±α7〉 ∼= SL4 × SL4

1 2 3 4 5 6 7

If χ =
∑7

i=1 biλi then

χ|S :
b1 b2 b3 b5 b6 b7

22 / 27



Set V = LG (λ) with λ =
∑7

i=1 aiλi , and assume V |H is irreducible.

By Seitz, V |H0 is reducible, so Clifford theory implies that

V |H0 = V1 ⊕ V2

where V1|X = LX (λ|S), V2|X = LX (µ|S) and

λ|S :
a1 a2 a3 a5 a6 a7

µ|S :
a5 a6 a7 a1 a2 a3
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Step 1. a4 6= 0 =⇒ χ = λ− α4 is a weight of V , and χ|S is the highest
weight of a composition factor of V |H0 .

Since χ = λ− α4 = λ+ λ3 − 2λ4 + λ5 we have

λ|S :
a1 a2 a3 a5 a6 a7

µ|S :
a5 a6 a7 a1 a2 a3

χ|S :
a1 a2 a3 + 1 a5 + 1 a6 a7

so χ|S is not equal to λ|S nor µ|S . This is a contradiction, so a4 = 0.

Step 2. a4 = 0, a3 6= 0 =⇒ ν|S = (λ− α3 − α4)|S is the highest weight
of a composition factor of V |H0 . But

ν|S :
a1 a2 + 1 a3 − 1 a5 + 1 a6 a7

In this way, we reduce to the case λ = a1λ1 + a7λ7.
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Step 3. λ = a1λ1 + a7λ7 and a1 6= 0. Here

χ = λ− α1 − α2 − α3 − α4 = λ− λ1 − λ4 + λ5

is the highest weight of a composition factor of V |H0 and we have

λ|S :
a1 0 0 0 0 a7

µ|S : 0 0 a7 a1 0 0

χ|S :
a1 − 1 0 0 1 0 a7

Hence (a1, a7) = (1, 0), so λ = λ1 and V = W .

Similarly, if a7 6= 0 then (a1, a7) = (0, 1) and V = W ∗.
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Results: Non-maximal subgroups

Theorem (B & Testerman, 2014) Let G = Cl(W ) be a simple classical
algebraic group and let H be an infinite disconnected subgroup of G ,
which is non-maximal.

Let V = LG (λ) be p-restricted and V 6= W ,W ∗. Assume V |H is
irreducible and V |H0 is reducible. Then one of the following holds:

G = SLn+1, λ = λk (1 < k 6 (n + 1)/2), H = T .Y and Y < Sn+1 is
k-transitive.

G = SO(W ) is an orthogonal group, H preserves an orthogonal direct
sum decomposition of W , and V is a spin module.

rankG 6 8 and (G ,H,V ) is known.
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Results: Irreducible chains

Let G = Cl(W ) be a simple classical algebraic group and let V be an
irreducible KG -module. An irreducible chain is a sequence of closed
positive-dimensional subgroups

H` < H`−1 < · · · < H2 < H1 = G

such that each V |Hi
is irreducible.

Let `(G ,V ) be the length of the longest such chain.

Theorem (B & Testerman, 2014) One of the following holds:

V = W ,W ∗

G = SO(W ) and V is a spin module

G = SL(W ) and V = Λ2(W ),Λ3(W ),Λ2(W )∗ or Λ3(W )∗

`(G ,V ) 6 5

Example. C 3
1 .3 < C 3

1 .S3 < D4 < D4.2 < C4, with p = 2, V = VC4(λ3)
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