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Abstract. Let G be a finite group and let Hp be a Sylow p-subgroup of G. A very recent
conjecture of Lisi and Sabatini asserts the existence of an element x ∈ G such that Hp∩Hx

p

is inclusion-minimal in the set {Hp ∩ Hg
p : g ∈ G} for every prime p. This has been

proved in several special cases, including all sufficiently large symmetric and alternating
groups. For a simple group G, in view of a theorem of Mazurov and Zenkov from 1996, the
conjecture implies the existence of an element x ∈ G with Hp ∩Hx

p = 1 for all p. In turn,
this statement implies a conjecture of Vdovin from 2002, which asserts that if G is simple
and H is a nilpotent subgroup, then H ∩Hx = 1 for some x ∈ G.

In this paper, we adopt a probabilistic approach to prove the Lisi-Sabatini conjecture
for all non-alternating simple groups. By combining this with earlier work of Kurmazov on
nilpotent subgroups of alternating groups, we complete the proof of Vdovin’s conjecture.
Moreover, by combining our proof for groups of Lie type with earlier work of Zenkov on
alternating and sporadic groups, we are able to establish a stronger form of Vdovin’s con-
jecture: if G is simple and A,B are nilpotent subgroups, then A ∩Bx = 1 for some x ∈ G.
In addition, we study the asymptotic probability that a random pair of Sylow p-subgroups
in a simple group of Lie type intersect trivially, complementing recent work of Diaconis et
al. and Eberhard on symmetric and alternating groups.

1. Introduction

Let G be a finite group and let H be a nilpotent subgroup of G. By a theorem of Zenkov
[33], there exist elements x, y ∈ G such that

H ∩Hx ∩Hy 6 F (G),

where F (G) is the Fitting subgroup of G. This result is optimal in the sense that there
exist examples H < G with the property that the intersection of any two conjugates of H
is not contained in F (G) (for instance, if G = S8 and H is a Sylow 2-subgroup of G, then
H ∩ Hx 6= 1 for all x ∈ G). Zenkov’s theorem is just one of many results in a substantial
literature on the intersections of nilpotent subgroups of finite groups, which can be traced
all the way back to work of Passman [30] in the 1960s.

In this paper, we are interested in the special case where G is a (non-abelian) finite simple
group. Since the Fitting subgroup of G is trivial, Zenkov’s theorem implies that for any
nilpotent subgroup H we have H ∩ Hx ∩ Hy = 1 for some x, y ∈ G. In fact, Vdovin has
proposed the following conjecture, which is stated as Problem 15.40 in the Kourovka Notebook
[28]. Here and throughout the paper, whenever we refer to a simple group, we implicitly
assume the group is non-abelian.

Conjecture 1 (Vdovin [28], 2002). Let G be a finite simple group and let H be a nilpotent
subgroup of G. Then H ∩Hx = 1 for some x ∈ G.

This conjecture has been resolved for alternating groups [24] and sporadic groups [35]. In
addition, there are some partial results for certain low rank groups of Lie type (for example,
see [36] for the 2-dimensional linear groups L2(q), and [34] for L3(q) and U3(q)). But in
general, the conjecture remains open for groups of Lie type.

An important special case of Conjecture 1 was established in earlier work of Mazurov and
Zenkov [39].
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Theorem 2 (Mazurov & Zenkov [39], 1996). Let G be a finite simple group and let H be a
Sylow p-subgroup of G. Then H ∩Hx = 1 for some x ∈ G.

In [39], the proof of Theorem 2 for groups of Lie type rests on a representation-theoretic
result of Green [23], which states that if a p-block for a finite group G has defect group D
and H is a Sylow p-subgroup of G, then H ∩ Hx = D for some x ∈ G. This can then be
combined with later work of Michler [29] and Willems [32] in the 1980s, who showed that
every finite simple group of Lie type has a p-block with trivial defect group, for every prime
divisor p of the order of the group.

Remark 3. Recall that a finite group G is almost simple if G0 P G 6 Aut(G0) for some
non-abelian simple group G0, where we identify G0 with its group of inner automorphisms.
It turns out that Theorem 2 does not extend to almost simple groups and we refer the reader
to our recent paper [16], where we extend earlier work of Zenkov to determine all the pairs
(G,H), where G is almost simple, H is a Sylow p-subgroup and H ∩Hx 6= 1 for all x ∈ G.
This of course includes the example highlighted above, where G = S8 and H is a Sylow
2-subgroup.

Remark 4. The statements of Conjecture 1 and Theorem 2 can be rephrased in several
different ways, providing natural connections to other well studied problems.

(a) Let G be a finite group and let H be a core-free subgroup, which allows us to view
G as a transitive permutation group G 6 Sym(Ω) on the set Ω = G/H of cosets
of H in G. Then the base size of G, denoted b(G,H), is defined to be the minimal
size of a subset of Ω with trivial pointwise stabiliser in G. This is a fundamental
and intensively studied invariant in permutation group theory, with an extensive
literature stretching all the way back to the 19th century. In the language of bases,
Zenkov’s main theorem in [33] reveals that b(G,H) 6 3 for every finite transitive
group G with F (G) = 1 and nilpotent point stabiliser H. And similarly, Conjecture
1 asserts that b(G,H) = 2 for every finite simple transitive group G with a nilpotent
point stabiliser H 6= 1.

(b) The previous observation connects with another well-known conjecture of Vdovin,
which is stated as Problem 17.41(b) in [28]. This asserts that b(G,H) 6 5 for every
transitive permutation groupG with trivial soluble radical and soluble point stabiliser
H (the example G = S8 and H = S4 o S2 shows that the purported bound is best
possible). This conjecture is proved for primitive groups in [11], and Vdovin gives
a reduction of the general problem to almost simple groups in [31]. Further work
[3, 10] reduces the problem to groups of Lie type, and Baykalov [4] has made recent
progress towards a proof for the classical groups. But the general problem remains
open, including the special case where G is a simple group.

(c) It also worth highlighting a connection with the notion of the depth of a subgroup H
of a finite group G, denoted dG(H), which was introduced in a 2011 paper by Boltje,
Danz and Külshammer [5]. This is a positive integer defined in terms of the inclusion
of complex group algebras CH ⊆ CG and there has been a focus on studying the
depth of subgroups of simple and almost simple groups (see [9] and the references
therein). The relevant connection arises from the observation that if H is core-free
and b(G,H) = 2, then dG(H) = 3 (see [8, Theorem 6.9]). So in the language of
subgroup depth, Conjecture 1 asserts that every non-trivial nilpotent subgroup of a
simple group has depth 3.

A renewed interest in Conjecture 1 stems from a recent paper of Lisi and Sabatini [27],
where they propose the following far reaching generalisation. In the statement, we write
π(G) for the set of distinct prime divisors of |G|.
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Conjecture 5 (Lisi & Sabatini [27], 2025). Let G be a finite group with π(G) = {p1, . . . , pk}
and let Pi be a Sylow pi-subgroup of G. Then there exists an element x ∈ G such that for
each i, Pi ∩ P xi is inclusion-minimal in the set {Pi ∩ P gi : g ∈ G}.

In [27], the conjecture is proved for all metanilpotent groups of odd order, as well as all
sufficiently large alternating and symmetric groups. In view of Theorem 2, Conjecture 5
takes the following striking form for simple groups.

Conjecture 6. Let G be a finite simple group and let Hp be a Sylow p-subgroup of G. Then
there exists an element x ∈ G such that Hp ∩Hx

p = 1 for all p ∈ π(G).

Since every finite nilpotent group is the direct product of its Sylow subgroups, we im-
mediately observe that Conjecture 6 implies Conjecture 1. As noted above, Conjecture 6
is proved in [27] for all sufficiently large alternating groups. Our main goal in this paper
is to prove it for all simple groups of Lie type and all simple sporadic groups, without any
conditions on the order of the group.

Theorem A. Conjecture 6 is true for all non-alternating finite simple groups.

By combining this result with the main theorem of [24], we immediately obtain the fol-
lowing result, which resolves Vdovin’s conjecture on nilpotent subgroups of simple groups.

Corollary B. Conjecture 1 is true.

And in view of the connections highlighted in Remark 4, we get the following corollary,
which may be of independent interest.

Corollary C. Let G be a finite simple group. Then b(G,H) = 2 and dG(H) = 3 for every
non-trivial nilpotent subgroup H of G.

Remark 7. As noted above, Lisi and Sabatini [27, Theorem 1.4] prove Conjecture 6 for all
sufficiently large alternating groups and their argument relies on recent asymptotic results
due to Diaconis et al. [20] and Eberhard [21]. So in view of Theorem A, we have a proof of
Conjecture 6 for all simple groups, apart from the alternating groups G = An with n 6 N for
some unspecified constant N . It is straightforward to verify the conjecture computationally
for all G = An with n 6 500, but it remains an open problem to prove it for all alternating
groups.

Our proof of Theorem A involves a combination of probabilistic and computational meth-
ods. In order to outline our approach, let G be a non-alternating finite simple group and let
Hp be a Sylow p-subgroup of G for each p ∈ π(G).

Let us first assume G admits a suitable permutation representation from a computational
perspective, which means that the order of G and the degree n of the representation are
not prohibitively large. In this situation, it is entirely straightforward to verify the desired
result by direct computation in Magma [6]. To do this, we work with the given permutation
representation of G and for each p ∈ π(G) we construct a Sylow p-subgroup Hp of G. And
then by random search, we identify an element x ∈ G such that Hp ∩ Hx

p = 1 for all p.
For instance, this direct approach turns out to be effective for 21 of the 26 sporadic simple
groups (see the proof of Theorem 3.1).

In the general setting, our proof of Theorem A relies on a probabilistic argument. Let

Q(G) =
|{x ∈ G : Hp ∩Hx

p 6= 1 for some p ∈ π(G)}|
|G|

be the probability that a uniformly random element x ∈ G does not satisfy the condition in
Conjecture 6. So our goal is to show that Q(G) < 1. To do this, first observe that

Q(G) 6
∑

p∈π(G)

Qp(G),
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where Qp(G) is the probability that Hp ∩Hx
p 6= 1 for a uniformly random x ∈ G. For each

p ∈ π(G), we may view G as a transitive permutation group on Ω = G/Hp, in which case
Qp(G) coincides with the probability that two randomly chosen points in Ω do not form a
base for G. In turn, this implies that

Qp(G) 6
k∑
i=1

|xGi | ·
(
|xGi ∩Hp|
|xGi |

)2

=: Q̂p(G),

where {x1, . . . , xk} is a complete set of representatives of the conjugacy classes in G of
elements of order p (a more general version of this upper bound was first introduced by
Liebeck and Shalev in their proof of [26, Theorem 1.3]).

In this way, the problem is essentially reduced to the derivation of an appropriate upper

bound on Q̂p(G) for each p ∈ π(G). To do this, we can appeal to the extensive literature
on conjugacy classes of prime order elements in simple groups, which reduces the problem
further to estimating |xGi ∩Hp|. For most classes, we will show that the trivial upper bound
|xGi ∩ Hp| < |Hp| is good enough. But further work is often required when xGi is one of
the smallest conjugacy classes of elements of order p and in these cases we typically proceed
by embedding Hp in a specific subgroup L of G, which allows us to work with the upper
bound |xGi ∩Hp| 6 |xGi ∩ L|. Here the subgroup L is chosen so that it is easier to count the
appropriate number of elements of order p in L than in Hp itself.

In the critical case where G is a group of Lie type in characteristic r, the prime divisor
p = r requires special attention. Here NG(Hr) is a Borel subgroup of G with unipotent
radical Hr and by considering the opposite Borel subgroup it is easy to see that Hr∩Hx

r = 1
for some x ∈ G. In turn, this implies that

Qr(G) 6 1− |Hr||NG(Hr)|
|G|

.

Then by setting π′(G) = π(G) \ {r}, it just remains to show that∑
p∈π′(G)

Q̂p(G) <
|Hr||NG(Hr)|

|G|

and this is how we proceed. In particular, this approach allows us to focus entirely on
semisimple elements of prime order.

Remark 8. It is worth noting that our proof of Theorem A is independent of Theorem 2.
In particular, we obtain a new proof of Theorem 2 for simple groups of Lie type, which does
not rely on the earlier work in [23, 29, 32] concerning p-blocks and defect groups. Moreover,
our new proof is quantitative, in the sense that it allows us to draw conclusions concerning
the proportion of elements x ∈ G with H ∩ Hx = 1, which is not possible via the original
existence proof in [39].

Remark 9. Let G = An be an alternating group. Here the main result is [27, Proposition
4.1], which in terms of the above notation gives Q2(G) 6 0.99 and Qp(G) = O(n−1) for all

large n and all odd primes p (in fact, the main theorem of [21] reveals thatQ2(G)→ 1− 3
2e
−1/2

as n tends to infinity; see Theorem 10 below). Then an easy application of the Prime Number
Theorem yields ∑

p∈π(G)

Qp(G) < 1 (1)

for n � 0 and this completes the proof of Conjecture 6 for all sufficiently large alternating
groups. Proving a non-asymptotic version of Conjecture 6 using a probabilistic approach
seems to be a difficult problem and we intend to return to this in future work.

The asymptotic behaviour of the probability Qp(G) is studied in recent papers by Diaconis
et al. [20] and Eberhard [21] in the special case where G is a symmetric or alternating
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group, with several interesting applications highlighted in [20]. Here the main results can be
summarised as follows (part (i) is [20, Theorem 1.1(a)], while (ii) is [21, Theorem 1]).

Theorem 10 (Diaconis et al. [20]; Eberhard [21], 2025). Let p be a prime and let G = Sn
or An.

(i) If p > 2, then Qp(G)→ 0 as n→∞.

(ii) If p = 2, then Qp(G)→ 1− αe−1/2 as n→∞, where α = 1 if G = Sn and α = 3
2 if

G = An.

Our probabilistic proof of Theorem A allows us to establish a strong version of Theorem
10 for groups of Lie type (see the asymptotic statements in Theorems 4.1 and 5.1).

Theorem D. Let G be a finite simple group of Lie type over a field Fq of characteristic r
and set

β(G) =
∑

p∈π(G)\{r}

Qp(G), γ(G) =
∑

p∈π(G)\{2,r}

Qp(G).

Then γ(G)→ 0 as |G| → ∞. In addition, if G 6= L2(q) then β(G)→ 0 as |G| → ∞.

By combining this with Theorem 10, we obtain the following corollary.

Corollary E. Let (Gi, pi) be a sequence of pairs, where Gi is a finite simple group, pi is a
prime and |Gi| → ∞. Then either

Qpi(Gi)→ 0 as i→∞,

or there exists a subsequence of pairs (Gik , pik) such that one of the following holds for all k:

(a) Gik = Ank
and pik = 2;

(b) Gik = L2(qk), qk is odd and pik = 2;

(c) Gik is a group of Lie type defined over a field of characteristic pik .

Remark 11. Let us briefly comment on the special subsequences arising in the statement
of Corollary E. For (a), we refer to Theorem 10(ii). And for (b), observe that if G = L2(q)
and q is a Mersenne prime, then

Q2(G) = 1− s|H2|
|G : H2|

,

where s is the number of regular orbits of H2 = Dq+1 on G/H2. By [15, Lemma 7.9] we have
s = (q − 3)/4 and thus

Q2(G) =
1

2
+

q + 3

2q(q − 1)
.

In particular, if there are infinitely many Mersenne primes (as expected), then there exists
a sequence of groups Gi = L2(qi) such that |Gi| → ∞ and Q2(Gi)→ 1

2 as i tends to infinity.
Finally, in case (c) we refer to [38, Lemma 3.13], which implies that if G is a simple group
of Lie type in characteristic r, and G 6= Sp4(2)′, G2(2)′, 2G2(3)′ or 2F4(2)′, then

Qr(G) = 1− |Hr||NG(Hr)|
|G|

.

So for example, if G = Ln(q) and q = rf then |NG(Hr) : Hr| = 1
d(q−1)n−1 with d = (n, q−1)

and thus

Qr(G) = 1− qn(n−1)/2(q − 1)n−1∏n
i=2(q

i − 1)
→ 1

if q is fixed and n tends to infinity.



6 TIMOTHY C. BURNESS AND HONG YI HUANG

Another interesting feature of our proof of Theorem A is that it allows us to show that (1)
holds for every finite simple group of Lie type, with the single exception of U4(2) ∼= PSp4(3)
(see Theorems 4.1 and 5.1). Putting the special case U4(2) to one side, this immediately
settles Conjecture 6, and hence Conjecture 1, for groups of Lie type. In addition, it allows
us to establish the following generalisation of Conjecture 1 (the conclusion can be checked
directly for U4(2)).

Theorem F. Let G be a simple group of Lie type and let A and B be nilpotent subgroups of
G. Then A ∩Bx = 1 for some x ∈ G.

To see this, let A and B be nilpotent subgroups of G and for each p ∈ π(G) let Ap and
Bp be the unique Sylow p-subgroups of A and B, respectively. Setting

Rp(A,B) =
|{x ∈ G : Ap ∩Bx

p 6= 1}|
|G|

we observe that A∩Bx = 1 for some x ∈ G if
∑

pRp(A,B) < 1. Now if we embed Ap 6 Hp

and Bp 6 Kp, where Hp and Kp are Sylow p-subgroups of G, then

Rp(A,B) 6
|{x ∈ G : Hp ∩Kx

p 6= 1}|
|G|

= Qp(G)

and so the inequality in (1) yields A ∩Bx = 1 for some x ∈ G.
By combining Theorem F with earlier work of Zenkov for alternating groups [37] and

sporadic groups [35] (see Remark 3.3), we obtain the following corollary which can be viewed
as a natural generalisation of Theorem 2 and Corollary B. In the language of [1], this shows
that every pair of nilpotent subgroups of a simple group is regular.

Corollary G. Let G be a finite simple group and let A and B be nilpotent subgroups of G.
Then A ∩Bx = 1 for some x ∈ G.

Remark 12. In view of Conjecture 6, it is natural to ask if there is a stronger form of
Corollary G. For example, if G is simple and {N1, . . . , Nk} is a complete set of representatives
of the conjugacy classes of non-trivial nilpotent subgroups of G, then is there an element
x ∈ G such that Ni ∩Nx

j = 1 for all i, j? The answer is no, in general. For example, G = A6

has 9 conjugacy classes of non-trivial nilpotent subgroups, with representatives as follows:

N1 = 〈(1, 3)(4, 5)〉 N2 = 〈(1, 4, 3)〉
N3 = 〈(1, 3, 2)(4, 6, 5)〉 N4 = 〈(1, 6, 4, 5, 3)〉
N5 = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 N6 = 〈(3, 4, 5), (1, 2, 6)〉
N7 = 〈(1, 4, 3, 2)(5, 6), (1, 3)(2, 4)〉 N8 = 〈(1, 2)(3, 6), (3, 6)(4, 5)〉
N9 = 〈(2, 5)(3, 4), (1, 6)(3, 4), (1, 3)(4, 6)〉.

With the aid of Magma, it is easy to check that there is no element x ∈ G such that
Ni ∩Nx

j = 1 for all i, j. In particular, this example shows that the answer may depend on
the choice of conjugacy class representatives. We are not aware of the existence of a simple
group G that does not have an element x ∈ G and a set of representatives {N1, . . . , Nk} of
the conjugacy classes of nilpotent subgroups of G such that Ni ∩Nx

j = 1 for all i, j.

Notation. Let G be a finite group and let n be a positive integer. We will write Cn, or
just n, for a cyclic group of order n and Gn for the direct product of n copies of G. An
unspecified extension of G by a group H will be denoted by G.H; if the extension splits then
we may write G:H. We will use in(G) for the number of elements of order n in G, and we
will sometimes write [n] for an unspecified soluble group of order n. Throughout the paper,
we adopt the standard notation for simple groups of Lie type from [25]. In addition, we write
(a, b) for the highest common factor of the positive integers a and b. And for a prime p, we
use (n)p to denote the p-part of n. All logarithms in this paper are base 2.

Acknowledgements. The second author thanks the London Mathematical Society for their
support as an LMS Early Career Research Fellow at the University of St Andrews.
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2. Preliminaries

In this section we present a collection of preliminary results, which will be needed in the
proofs of our main theorems.

2.1. Number theory. We will require one or two basic number-theoretic results. Given a
positive integer m and a prime number p, we write (m)p for the largest power of p dividing
m (so for example, (18)3 = 9).

Lemma 2.1. Let t be a prime power, let d be a positive integer and let p be a prime divisor
of t− ε, where ε = ±1.

(i) If p = 2, then

(td − ε)p =

 (t− ε)p if d is odd
(t2 − 1)p(d/2)p if d is even and ε = 1
2 if d is even and ε = −1.

(ii) If p is odd, then

(td − ε)p =

{
1 if d is even and ε = −1
(t− ε)p(d)p otherwise

(td + ε)p =

{
(t− ε)p(d)p if d is even and ε = −1
1 otherwise.

Proof. This is [2, Lemma 2.1(i)]. �

We will also need the following results concerning factorials and odd prime divisors.

Lemma 2.2. Let m be a positive integer and let p be a prime. Then pm(m!)p = ((pm)!)p
and (m!)p < pk, where k = m/(p− 1).

Proof. The first claim is clear. For the second statement, set (m!)p = p` and note that

` =

∞∑
i=1

⌊
m

pi

⌋
< m

∞∑
i=1

p−i =
m

p− 1
. �

Lemma 2.3. Let d be a positive integer. Then d + 1 has at most log d distinct odd prime
divisors.

Proof. We may assume d+ 1 is divisible by an odd prime, so we can write

d+ 1 = 2apa11 · · · p
ak
k ,

where the pi are distinct odd primes and we have a > 0 and ai > 1 for all i. Setting b =
∑

i ai,

we see that d > 2a+b and thus k 6 b 6 log d as required. �

2.2. Probability. Let G be a finite simple group and let π(G) be the set of prime divisors
of |G|. Fix a prime p ∈ π(G) and let Hp be a Sylow p-subgroup of G. In view of Theorem
A, we are interested in the following property:

There exists an element x ∈ G such that Hp ∩Hx
p = 1 for all p ∈ π(G) (?)

and our main goal is to show that (?) holds for all non-alternating simple groups.
Let

Qp(G) =
|{x ∈ G : Hp ∩Hx

p 6= 1}|
|G|

be the probability that Hp ∩Hx
p 6= 1 for a uniformly random element x ∈ G and note that

Qp(G) < 1 by Theorem 2. In fact, the existence of an element x ∈ G with Hp ∩ Hx
p = 1

implies that NG(Hp) has a regular orbit on G/Hp and thus

Qp(G) 6 1− |Hp||NG(Hp)|
|G|

. (2)

The following observation is immediate.
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Lemma 2.4. Property (?) holds if
∑

p∈π(G)

Qp(G) < 1.

For a given prime p ∈ π(G), let us observe that Qp(G) coincides with the probability that
a random pair of cosets in G/Hp do not form a base for G. Then by arguing as in the proof
of [26, Theorem 1.3], it follows that

Qp(G) 6 Q̂p(G) :=
k∑
i=1

|xGi ∩Hp|2

|xGi |
,

where {x1, . . . , xk} is a complete set of representatives of the conjugacy classes in G of
elements of order p. In particular, (?) holds if∑

p∈π(G)

Q̂p(G) < 1. (3)

Remark 2.5. Let us record several observations on the above set-up.

(a) We have

Qp(G) = 1− s|Hp|
|G : Hp|

,

where s is the number of regular Hp-orbits on G/Hp. Equivalently, s is the number
of (Hp, Hp) double cosets in G of size |Hp|2.

(b) Let G be a finite simple group of Lie type defined over a field Fq of characteristic r.
If we exclude the special cases Sp4(2)′, G2(2)′, 2G2(3)′ and 2F4(2)′, then a result of
Zenkov [38, Lemma 3.13] shows that

Qr(G) = 1− |Hr||NG(Hr)|
|G|

,

so the upper bound in (2) is in fact an equality in this situation.
In addition, for each prime divisor p 6= r of |G| we will derive an explicit upper

bound of the form

Q̂p(G) 6 fp(t, q),

where t is the rank of G. Then by combining these estimates, we get∑
p∈π(G)\{r}

Q̂p(G) 6 f(t, q),

which we can use with the upper bound in (2) (with p = r) in order to verify the
inequality in (3), with the possible exception of a handful of special cases that can
be treated directly. This is our basic approach to the proof of Theorem A for groups
of Lie type. In addition, we will see that f(t, q)→ 0 as t or q tends to infinity (unless
G = L2(q) and q is odd) and this is how we will prove Theorem D.

(c) As noted in Section 1, the key inequality
∑

pQp(G) < 1 in Lemma 2.4 implies that
if A and B are nilpotent subgroups of G, then A ∩ Bx = 1 for some x ∈ G. So a
detailed analysis of

∑
pQp(G) for groups of Lie type plays an essential role in our

proof of Theorem F.

The following elementary result will be useful for computing an upper bound on Q̂p(G).

Lemma 2.6. Suppose x1, . . . , xm represent distinct G-classes such that
∑

i |xGi ∩ Hp| 6 a
and |xGi | > b for all i. Then

m∑
i=1

|xGi ∩Hp|2

|xGi |
6 a2b−1.

Proof. This is [12, Lemma 2.1]. �
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3. Sporadic groups

In this section we prove Theorem A for sporadic groups.

Theorem 3.1. Theorem A holds for all sporadic groups.

Proof. Let G be a simple sporadic group and for now let us assume G 6∈ A, where

A = {J4, Ly, Th, B, M}. (4)

In each case, it is entirely straightforward to verify the desired property with the aid of
Magma [6] (working with version V2.28-21). In order to do this, we first use the function
AutomorphismGroupSimpleGroup to construct L = Aut(G) as a permutation group of degree
n, obtaining G as the socle of L. We then construct a Sylow p-subgroup Hp of G for each
p ∈ π(G) and by random search it is very easy to find an element x ∈ G satisfying (?), as
required. To give some indication of timing and memory usage, if G = HN is the Harada-
Norton sporadic simple group, then |G| = 273030912000000, n = 1140000 and the entire
computation takes about 2 minutes, using less than 1GB of memory. For the remainder, we
may assume G ∈ A.

Let π′(G) be the set of odd prime divisors of |G| and note that Lemma 2.6 gives∑
p∈π′(G)

Q̂p(G) <
∑

p∈π′(G)

a2pb
−1
p < η(G),

where ap = |Hp|, bp = min{|xG| : x ∈ G, |x| = p} and

η(G) =



0.26 if G = Ly

0.49 if G = Th

6.8× 10−10 if G = J4

2.4× 10−7 if G = B
5.7× 10−11 if G = M.

So to complete the proof, it suffices to show that Q̂2(G) < 1− η(G).
For G = Ly we have |H2| = 28 and |xG| = 1296826875 for every involution x ∈ G, so

Lemma 2.6 implies that

Q̂2(G) < 216(1296826875)−1 < 5.1× 10−5 < 1− η(G)

as required. Next assume G = J4. Here G has two conjugacy classes of involutions, labelled
2A and 2B in [19], where

|2A| = 3980549947 = d1, |2B| = 47766599364 = d2.

We can embed H2 in a maximal subgroup L = 23+12.(S5 × L3(2)) of G, noting that the
character tables of G and L are available in the GAP Character Table Library [7], together
with the fusion map from L-classes to G-classes. This allows us to compute

|2A ∩ L| = 43067 = c1, |2B ∩ L| = 131524 = c2

and by appealing to Lemma 2.6 once again we deduce that

Q̂2(G) 6 c21d
−1
1 + c22d

−1
2 < 0.83.

Similarly, G = Th has a unique class of involutions, labelled 2A in [19], and we can embed
H2 in a maximal subgroup L = 25.L5(2) of G. We then compute

|2A ∩ L| = i2(L) = 7471 = c1,

which gives Q̂2(G) 6 c21d
−1
1 < 0.06, where d1 = |2A| = 976841775.
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Next suppose G = B. Here G has four classes of involutions and we can embed H2 in a
maximal subgroup L = [235].(S5 × L3(2)). By working with [7], we compute

|2A| = 13571955000 = d1 |2A ∩ L| = 51512 = c1
|2B| = 11707448673375 = d2 |2B ∩ L| = 1172575 = c2
|2C| = 156849238149120000 = d3 |2C ∩ L| = 131022848 = c3
|2D| = 355438141723665000 = d4 |2D ∩ L| = 313463400 = c4

which gives Q̂2(G) 6
∑

i c
2
i d
−1
i < 0.7 < 1 − η(G). Similarly, G = M has two classes of

involutions with

|2A| = 97239461142009186000 = d1, |2B| = 5791748068511982636944259375 = d2.

We can embed H2 in a maximal subgroup L = 23+6+12+18.(3S6 × L3(2)) of G, noting that
[17, Proposition 3.9] gives

|2A ∩ L| = 3573456 = c1, |2B ∩ L| = 4026530095 = c2.

This yields Q̂2(G) 6 c21d
−1
1 + c22d

−1
2 < 1.4× 10−7 and the result follows. �

Remark 3.2. In the same way, it is entirely straightforward to verify Conjecture 6 for all
almost simple sporadic groups.

Remark 3.3. Let G be an almost simple sporadic group and set

α(G) =
∑

p∈π(G)

Qp(G).

Our proof of Theorem 3.1 shows that α(G) < 1 for the groups G ∈ A (see (4)) and it is not
difficult to extend this to all almost simple sporadic groups. For example, if

G ∈ {M11, M12.c, M22.c, M23, M24, J1, J2.c, HS.c, He.c}
with c ∈ {1, 2}, then for each p ∈ π(G) we can use Magma to compute

Qp(G) = 1− s|Hp|
|G : Hp|

,

where s is the number of (Hp, Hp) double cosets in G of size |Hp|2, and we immediately
deduce that α(G) < 1. Similarly, for

G ∈ {J3.c, He.c, McL.c, Suz.c, Ru, Fi22, Fi23, Co1, Co3}

we can compute Q̂p(G) precisely for each p (to do this, we can use the approach described

in the proof of Lemma 4.2) and we get
∑

p Q̂p(G) < 1. The latter inequality does not hold

for the groups G ∈ {Co2, Fi22.2}, but here one checks that

Q2(G) +
∑

p∈π′(G)

Q̂p(G) < 1,

where π′(G) is the set of odd prime divisors of |G|. For all of the remaining groups we can
work with the GAP Character Table Library [7] to show that∑

p∈π(G)

Q̂p(G) 6
∑

p∈π(G)

kp∑
i=1

a2p,ib
−1
p,i < 1,

where
ap,i = min{|Hp|, |xGi ∩ L| : L ∈Mp}, bp,i = |xGi |

with respect to a complete set {x1, . . . , xkp} of representatives of the conjugacy classes in G
of elements of order p and a set Mp of representatives of the conjugacy classes of maximal
overgroups of Hp in G.

This provides an alternative way to prove Theorem A for sporadic groups. In addition,
as explained in the discussion following Theorem F in Section 1, the bound α(G) < 1 also
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gives the conclusion in Corollary G: if A,B are nilpotent subgroups of G, then A ∩ Bx = 1
for some x ∈ G. In this way, we obtain a new proof of the main theorem of [35].

4. Exceptional groups of Lie type

In this section we will prove Theorems A, D and F for all simple exceptional groups of Lie
type; the proofs will be completed in Section 5, where we deal with the classical groups. We
begin by setting up some general notation that we will use for all simple groups of Lie type.

Let G be a finite simple group of Lie type over Fq, where q = rf for some prime r and
integer f . As before, let π(G) be the set of prime divisors of |G| and set

π′(G) = π(G) \ {r}.
Let Hr be a Sylow r-subgroup of G, which means that B = NG(Hr) is a Borel subgroup of G
with unipotent radical Hr. By choosing x ∈ G so that Bx is the opposite Borel subgroup, we
deduce that Hr ∩Hx

r = 1 (without appealing to Theorem 2). So in view of (2) and Lemma
2.4, we observe that (?) holds (see Section 2.2) if Σ(G) < 1, where

Σ(G) = 1− |Hr||NG(Hr)|
|G|

+
∑

p∈π′(G)

Q̂p(G). (5)

The main result of this section is the following, which immediately yields Theorems A, D
and F for exceptional groups.

Theorem 4.1. Let G be a finite simple exceptional group of Lie type and set

α(G) =
∑

p∈π(G)

Qp(G), β(G) =
∑

p∈π′(G)

Qp(G).

Then α(G) < 1. In addition, β(G)→ 0 as |G| → ∞.

It is convenient to handle certain low rank groups defined over small fields by direct
computation in Magma [6]. This is recorded in the following result.

Lemma 4.2. The conclusion to Theorem 4.1 holds when G is one of the following:

G2(2)′, G2(3), G2(4), 2G2(3)′, 2F4(2)′.

Proof. Let r be the defining characteristic. As in the proof of Theorem 3.1, we begin by
using the function AutomorphismGroupSimpleGroup to construct G as a permutation group
of degree n (note that G2(2)′ ∼= U3(3) and 2G2(3)′ ∼= L2(8), so we can work directly with the
classical groups U3(3) and L2(8) in these two special cases). Then for each prime p ∈ π(G)
we construct a Sylow p-subgroup Hp of G. In addition, if p 6= r then we construct a set of
representatives C = {y1, . . . , ys} of the conjugacy classes in Hp of elements of order p, which
we then partition C = C1 ∪ · · · ∪ C` so that yi and yj are in the same subset if and only if
they are conjugate in G. Write Ci = {yi,1, . . . , yi,ki} for i = 1, . . . , `. Then

Q̂p(G) =
∑̀
i=1

|yGi,1|−1
 kj∑
j=1

|yHp

i,j |

2

and in each case we verify the bound Σ(G) < 1. For example, if G = 2F4(2)′ then n = 1755
and we compute

Σ(G) =
346991

449280
,

with the computation taking roughly 1 second and 30MB of memory. �

The following result from [18] will be a useful tool.

Lemma 4.3. Let G 6= G2(2)′, 2F4(2)′, 2G2(3)′ be a simple exceptional group of Lie type over
Fq. Let x2 ∈ G be a semisimple element of odd prime order. In addition, if q is odd then let
x1 ∈ G be an involution. Then |xGi | > `i, where `1 and `2 are given in Table 1.
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G `1 `2
E8(q) q112 (q − 1)q113 G2(q), q > 3 q8 (q − 1)q5

E7(q) 1
2 (q − 1)q53 (q − 1)q53 3D4(q) q16 (q − 1)q17

E6(q) q32 q32 2F4(q), q > 8 – (q − 1)q17
2E6(q) (q − 1)q31 (q − 1)q31 2G2(q), q > 27 (q − 1)q3 1

2q
6

F4(q) q16 (q − 1)q29 2B2(q) – 1
2q

4

Table 1. The lower bounds |xGi | > `i in Lemma 4.3

Proof. This is a special case of [18, Proposition 2.11]. �

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let G be a finite simple exceptional group of Lie type over Fq, where

q = rf is a power of the prime r. Since a very similar argument applies in each case, we will
only give details for the groups 2E6(q), F4(q) and G2(q)

′. It will be convenient to define

β̂(G) =
∑

p∈π′(G)

Q̂p(G).

Case 1. G = 2E6(q)

First assume G = 2E6(q) and note that

|G| = 1

d
q36(q2 − 1)(q5 + 1)(q6 − 1)(q8 − 1)(q9 + 1)(q12 − 1),

where d = (3, q + 1). In addition, we have |NG(Hr) : Hr| = 1
d(q2 − 1)2(q − 1)2 and

|Hr||NG(Hr)|
|G|

=
q72(q2 − 1)2(q − 1)2

d|G|
>
(
1− q−1

)6
,

whence Σ(G) < 1 if

β̂(G) 6
(
1− q−1

)6
. (6)

Fix a prime p ∈ π′(G). For p = 2, Lemma 2.1(i) gives

|H2| = 23((q2 − 1)2)
4((q + 1)2)

2 6 27(q + 1)6 = a1

and Lemma 4.3 states that |xG| > (q−1)q31 = b1 for every involution x ∈ G. So by appealing

to Lemma 2.6 we deduce that Q̂2(G) < a21b
−1
1 .

Now assume p is odd and let m be minimal such that p divides qm − 1, in which case
m ∈ {1, 2, 3, 4, 6, 8, 10, 12, 18}. By carefully considering each possibility for m in turn, it is
straightforward to show that |Hp| 6 33(q + 1)6 = a2. For example, if m = 6 then p > 7 and

|Hp| = (q6 − 1)p(q
9 + 1)p(q

12 − 1)p = ((q2 − q + 1)p)
3.

Since |xG| > (q−1)q31 = b2 for all x ∈ G of order p (see Lemma 4.3), Lemma 2.6 implies that

Q̂p(G) < a22b
−1
2 . Moreover, since each p ∈ π′(G) divides n = (q4 + 1)(q5 + 1)(q9 + 1)(q12− 1),

it follows that |π′(G)| < log n < 31 log q and thus

β̂(G) < (1− δ2,r)a21b−11 + 31 log q · a22b−12 ,

where δ2,r is the usual Kronecker delta (so δ2,r = 1 if r = 2, otherwise δ2,r = 0).
This upper bound immediately implies that β(G) → 0 as q → ∞, so the asymptotic

statement in Theorem 4.1 holds for G = 2E6(q). In addition, it is routine to check that the
inequality in (6) is satisfied for all q > 3.

Finally, suppose q = 2 and p ∈ π′(G). Here |π′(G)| = 7 and |Hp| 6 39 = a. In addition,
by inspecting the character table of G (see [7]) we observe that |xG| > 1319933815200 = b

for all x ∈ G of order p. Therefore, β̂(G) 6 7a2b−1 < 2−6 and the result follows.
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Case 2. G = F4(q)

Now suppose G = F4(q). Here

|G| = q24(q2 − 1)(q6 − 1)(q8 − 1)(q12 − 1)

and |NG(Hr) : Hr| = (q − 1)4, whence Σ(G) < 1 if

β̂(G) 6
(
1− q−1

)4
. (7)

Fix a prime p ∈ π′(G). For p = 2 we compute

|H2| = 23((q2 − 1)2)
4 6 27(q + 1)4 = a1

and we note that |xG| > q16 = b1 for every involution x ∈ G (see Lemma 4.3). This gives

Q̂2(G) < a21b
−1
1 . On the other hand, if p is odd then |Hp| 6 32(q + 1)4 = a2 and Lemma 4.3

gives |xG| > (q − 1)q29 = b2 for all x ∈ G of order p, whence Q̂p(G) < a22b
−1
2 . In addition,

since |π′(G)| 6 20 log q, it follows that

β̂(G) < (1− δ2,r)a21b−11 + 20 log q · a22b−12 .

Once again, it is clear from this bound that we have β(G) → 0 as q → ∞. One can also
check that the inequality in (7) is satisfied for all q 6= 3.

Finally, suppose q = 3. Here |π′(G)| = 6 and by embedding H2 in a maximal subgroup
L = 2.Ω9(3) = Spin9(3), we can use Magma to show that i2(H2) = 1615. The result now
follows since

β̂(G) 6 16152b−11 + 5a22b
−1
2 <

(
2

3

)4

,

where b1, a2 and b2 are defined as above.

Case 3. G = G2(q)
′

Finally, suppose G = G2(q)
′. In view of Lemma 4.2, we may assume q > 5. Since we have

|G| = q6(q2 − 1)(q6 − 1) and |NG(Hr)| = q6(q − 1)2, it follows that Σ(G) < 1 if

β̂(G) 6
(
1− q−1

)2
. (8)

Fix a prime p ∈ π′(G). For p = 2 we have |H2| = ((q2 − 1)2)
2 6 22(q + 1)2 = a1 and

|xG| = q4(q4 + q2 + 1) = b1 for every involution x ∈ G, which yields Q̂2(G) 6 a21b
−1
1 . And for

p > 3 we find that |Hp| 6 3(q+ 1)2 = a2, while Lemma 4.3 shows that |xG| > (q− 1)q5 = b2
for all x ∈ G of order p. Therefore, Q̂p(G) < a22b

−1
2 and since |π′(G)| 6 6 log q we deduce

that

β̂(G) < (1− δ2,r)a21b−11 + 6 log q · a22b−12 <
(
1− q−1

)2
for all q > 19. In addition, we see that β(G) → 0 as q → ∞, so the desired asymptotic
statement holds in this case.

Finally, suppose 5 6 q 6 17. Here it is easy to improve the above estimates in order to
verify the bound in (8). For example, suppose q = 5. Here |H2| = 26 = a1 and |Hp| 6 31 = a2
for all odd primes p ∈ π′(G) = {2, 3, 7, 31}. Therefore,

β̂(G) 6 a21b
−1
1 + 3a22b

−1
2 =

1958753

8137500
<

(
4

5

)2

as required, where b1 and b2 are defined as above. �
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5. Classical groups

In this final section we complete the proofs of Theorems A, D and F by handling the
classical groups. Let G be a finite simple classical group over Fq, where q = rf for a prime
r, and let V be the natural module for G. Due to the existence of exceptional isomorphisms
between some of the low-dimensional classical groups (see [25, Proposition 2.9.1]), we may
assume G is one of the following:

Ln(q) n > 2, with q > 5 if n = 2
Un(q) n > 3
PSpn(q) n > 4 even, (n, q) 6= (4, 2)
Ωn(q) n > 7 odd, q odd
PΩ±n (q) n > 8 even.

As before, set π′(G) = π(G) \ {r} and define

α(G) =
∑

p∈π(G)

Qp(G) β(G) =
∑

p∈π′(G)

Qp(G)

γ(G) =
∑

p∈π′(G)\{2}

Qp(G) β̂(G) =
∑

p∈π′(G)

Q̂p(G)
(9)

In addition, define Σ(G) as in (5) and recall that α(G) < 1 if Σ(G) < 1. Our main result for
classical groups is the following.

Theorem 5.1. Let G be a finite simple classical group over Fq.
(i) If G 6= U4(2), then α(G) < 1.

(ii) We have γ(G)→ 0 as |G| → ∞.

(iii) If G 6= L2(q), then β(G)→ 0 as |G| → ∞.

Remark 5.2. Let us record a couple of comments on the statement of Theorem 5.1.

(a) First note that the group G = U4(2) ∼= PSp4(3) in part (i) is a genuine exception.
Indeed, we have π(G) = {2, 3, 5} and using Magma we compute

Q2(G) =
71

135
, Q3(G) =

79

160
, Q5(G) =

1

1296
,

which means that α(G) = 2645/2592 > 1.

(b) Suppose G = L2(q) with q odd. Here the proof of Lemma 5.6 shows that γ(G)→ 0
as q → ∞. However, the asymptotic behaviour of Q2(G) is rather different and we
are not able to conclude that Q2(G) → 0 as q → ∞. For example, as discussed in
Remark 11, we have

Q2(G) =
1

2
+

q + 3

2q(q − 1)

if q is a Mersenne prime. This explains the condition G 6= L2(q) in part (iii).

Remark 5.3. Let us briefly explain how we establish Theorems A and F in the special case
G = U4(2), where we have π(G) = {2, 3, 5} and α(G) > 1.

(a) In order to verify Conjecture 6, we first use Magma to construct G as a permutation
group of degree 45. We fix a Sylow 5-subgroup H5 of G and we construct the complete
set Γp of Sylow p-subgroups of G for p ∈ {2, 3}. Then for each pair (H2, H3) ∈ Γ2×Γ3

we use random search to find an element x ∈ G such that Hp ∩ Hx
p = 1 for all

p ∈ {2, 3, 5}. This is an entirely straightforward computation and it establishes
Conjecture 6 for G = U4(2).

(b) Similarly, to check Theorem F, we first use the function NilpotentSubgroups to
construct a complete set of representatives of the conjugacy classes of nilpotent sub-
groups of G (there are 48 such classes). Then for each pair (A,B) of representatives
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we use random search to identify an element x ∈ G with A ∩ Bx = 1. Once again,
this is an easy calculation.

For a positive integer m we set

Pm = {p ∈ π′(G) : p 6= 2 is a primitive prime divisor of qm − 1}, (10)

which means that each p ∈ Pm divides qm−1, but it does not divide qi−1 for any 1 6 i < m.
Since every prime divisor p 6= r of |G| is a primitive prime divisor of qm − 1 for some m, it
follows that

β̂(G) = (1− δ2,r)Q̂2(G) +
∑
m>1

∑
p∈Pm

Q̂p(G)

and we define

ρ0 = Q̂2(G), ρ1 =
∑
p∈P1

Q̂p(G), ρ2 =
∑
p∈P2

Q̂p(G), ρ3 =
∑
m>3

∑
p∈Pm

Q̂p(G). (11)

So in terms of this notation, we have

β̂(G) = (1− δ2,r)ρ0 + ρ1 + ρ2 + ρ3.

For each finite simple classical group G over Fq, we will produce an explicit upper bound
of the form ρi 6 fi(n, q) for each i ∈ {0, 1, 2, 3}, where n is the dimension of the natural
module for G. By combining these estimates, we will show that

3∑
i=0

fi(n, q) <
|Hr||NG(Hr)|

|G|

with the possible exception of a handful of special cases, which allows us to conclude that
Σ(G) < 1 and thus α(G) < 1, as in Theorem 5.1(i). In addition, it will be clear in every case
that we have fi(n, q) → 0 as n or q tends to infinity (excluding the special case i = 0 with
G = L2(q) and q odd) and this is how we establish the asymptotic statements in parts (ii)
and (iii) of Theorem 5.1.

In order to derive suitable upper bounds ρi 6 fi(n, q), we need to study the conjugacy
classes of prime order elements in G. With this aim in mind, fix a prime p ∈ π′(G) and let
x ∈ G be an element of order p. We may view x as an element of PGL(V ), where we recall
that V is the natural module for G. In particular, we can write x = x̂Z, where x̂ ∈ GL(V )
and Z is the centre of GL(V ), and it will be useful to define the positive integer

ν(x) = min{dim[V̄ , λx̂] : λ ∈ K×}, (12)

where K is the algebraic closure of Fq and V̄ = V ⊗ K. Notice that ν(x) coincides with
the codimension of the largest eigenspace of x̂ on V̄ , which explains why it is sometimes
referred to as the support of x, in analogy with the more familiar definition of support for
permutations. Bounds on |xG| in terms of ν(x) are given in [13, Section 3]. In addition,
we refer the reader to [14, Chapter 3] for detailed information on the conjugacy classes of
semisimple elements in G of prime order.

We now consider each family of classical groups in turn, beginning with the linear groups.
Throughout this section, we will repeatedly refer to the notation defined in (9), (10), (11)
and (12).

5.1. Linear groups. In this section we assume G = Ln(q) is a linear group. Note that the
low-dimensional groups with n ∈ {2, 3} require special attention and they will be handled
separately in Lemmas 5.5 and 5.6.

Lemma 5.4. The conclusion to Theorem 5.1 holds when G = Ln(q) and n > 4.

Proof. Set d = (n, q − 1) and observe that

|G| = 1

d
q

1
2
n(n−1)

n∏
i=2

(qi − 1), |NG(Hr)| =
1

d
q

1
2
n(n−1)(q − 1)n−1.
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Therefore, the desired bound Σ(G) < 1 holds if

β̂(G) 6
(
1− q−1

)n−1
. (13)

Fix a prime p ∈ π′(G) and let x ∈ G be an element of order p. Define the integer ν(x) as
in (12). We begin by handling the groups with n > 5.

Case 1. n > 5

First assume p = 2, so q is odd. By inspecting [14, Table B.1] we observe that

|xG| > |GLn(q)|
|GLn−2(q)||GL2(q)|

>
1

2
q4n−8 = b2

if ν(x) > 2, otherwise

|xG| = |GLn(q)|
|GLn−1(q)||GL1(q)|

=
qn−1(qn − 1)

q − 1
= b1.

Suppose q ≡ 1 (mod 4). By applying Lemmas 2.1(i) and 2.2 we compute

|H2| =
1

(d)2
((q − 1)2)

n−1(n!)2 6 2n−1(q − 1)n−1 = a2

and we deduce that H2 < L < G, where L is a subgroup of type GL1(q) o Sn. That
is to say, L is the stabiliser in G of a direct sum decomposition V = V1 ⊕ · · · ⊕ Vn of
the natural module for G, where each Vi is a 1-dimensional subspace. If ν(x) = 1 then
replacing x by a suitable conjugate if necessary, we may assume x lifts to a diagonal matrix
x̂ = diag(−In−1, I1) in GLn(q). And then by counting the number of such involutions in the
subgroup GL1(q) o Sn < GLn(q), we deduce that there are no more than

a1 =

(
n

1

)
+

(
n

2

)
|GL1(q)| = n+

1

2
n(n− 1)(q − 1)

involutions x ∈ H2 with ν(x) = 1. So Lemma 2.6 implies that ρ0 < a21b
−1
1 + a22b

−1
2 .

Now assume q ≡ 3 (mod 4). If n = 2` is even then

|H2| =
1

4
((q − 1)2(q

2 − 1)2)
`(`!)2 6 23`−2(q + 1)` = a2

and we note that (q−1)2 6 (n)2, which implies that ν(x) > 2 (see [14, Table B.1]). It follows
that ρ0 < a22b

−1
2 . On the other hand, if n = 2`+ 1 is odd, then

|H2| = ((q − 1)2(q
2 − 1)2)

`(`!)2 6 23`(q + 1)` = a2

and H2 is contained in a subgroup L < G of type (GL2(q) oS`)⊕GL1(q). By considering the
number of involutions x ∈ L with ν(x) = 1, we deduce that ρ0 < a21b

−1
1 + a22b

−1
2 , where

a1 = 1 +

(
`

1

)
|GL2(q)|
|GL1(q)|2

= 1 + `q(q + 1).

To complete the argument for n > 5 we may assume p is odd, in which case p ∈ Pm for
some positive integer m 6 n. Set k = bn/mc and write γ = (4, q − 1) and δ = (4, q + 1).

First assume m > 3, in which case p > 5. By inspecting [14, Section 3.2.1], we see that

|xG| >


|GLn(q)|

|GLn−3(q)||GL1(q3)| if n 6= 6
|GL6(q)|
|GL2(q3)| if n = 6

and thus |xG| > 1
2q

6n−12 = b3 for all n > 5. In addition, by applying Lemmas 2.1(ii) and
2.2, we observe that

|Hp| =
k∏
i=1

(qmi − 1)p = ((qm − 1)p)
k(k!)p < q5n/4 = a3
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since (k!)p < pk/(p−1) < qm(n/4m) = qn/4. This yields Q̂p(G) < a23b
−1
3 . Since there are n− 2

possibilities for m in the range 3 6 m 6 n, and since each qm− 1 has at most n log q distinct
prime divisors, we deduce that

ρ3 < n(n− 2) log q · a23b−13 .

Next assume p ∈ P2, so p divides (q + 1)/δ. Here

|xG| > |GLn(q)|
|GLn−2(q)||GL1(q2)|

>
1

2
q4n−6 = b4

and

|Hp| = ((q + 1)p)
k(k!)p 6

(
1

δ
(q + 1)

)3n/4

= a4,

which means that Q̂p(G) < a24b
−1
4 and ρ2 < log((q + 1)/δ) · a24b

−1
4 .

Finally, suppose p ∈ P1. Here p divides (q − 1)/γ and

|Hp| =
1

(d)p
((q − 1)p)

n−1(n!)p 6

(
1

γ
(q − 1)

)3n/2−1
= a6.

In particular, we notice that Hp is contained in a subgroup L < G of type GL1(q) o Sn.
If ν(x) > 2, then |xG| > 1

2q
4n−8 = b6. Now assume ν(x) = 1, which means that some

G-conjugate of x lifts to a diagonal matrix of the form x̂ = diag(λ, In−1) ∈ GLn(q), where
λ ∈ F×q has order p. It follows that

|xG| = |GLn(q)|
|GLn−1(q)||GL1(q)|

=
qn−1(qn − 1)

q − 1
= b5

and by counting in L we deduce that there are no more than(
n

1

)
(p− 1) 6 n((q − 1)/γ − 1) = a5

such elements in Hp. This yields ρ1 < log((q − 1)/γ) ·
(
a25b
−1
5 + a26b

−1
6

)
.

It is clear in every case that the given upper bound on ρi tends to 0 as n or q tends
to infinity, so the asymptotic statements in parts (ii) and (iii) of Theorem 5.1 hold when
G = Ln(q) and n > 5. In addition, if n > 7 then it is routine to check that the given
estimates imply that the inequality in (13) is satisfied unless (n, q) is one of the following:

(7, 2), (7, 3), (8, 2), (8, 3), (9, 2), (9, 3), (10, 2), (10, 3), (12, 3). (14)

Suppose (n, q) = (7, 2). If p ∈ Pm with m > 3 then |Hp| 6 127 and we note that
|π′(G)| = 5, P2 = {3}, P1 = ∅ and |H3| = 34. Therefore,

β̂(G) < 4a23b
−1
3 + a24b

−1
4 < 2−6

where a3 = 127, a4 = 34 and b3, b4 are defined as above. Similarly, if (n, q) = (7, 3) then
|π′(G)| = 6, P1 = P2 = ∅ and |H2| = 213. In addition, |Hp| 6 1093 for all odd primes
p ∈ π′(G) and thus

β̂(G) < a21b
−1
1 + a22b

−1
2 + 5a23b

−1
3 <

(
2

3

)6

,

where a2 = 213, a3 = 1093 and a1, b1, b2, b3 are defined as above. All of the other cases in
(14) can be handled in an entirely similar fashion.

Now assume n ∈ {5, 6}. Here we observe that |Hp| 6 c((q−1)/γ)n−1 for all p ∈ P1, where
c = 5 if n = 5 and c = 9 if n = 6 (since (5!)p 6 5 and (6!)p 6 32 for all odd primes p). Then
by setting a6 = c((q−1)/γ)n−1, one can check that our previous bounds are sufficient unless
(n, q) is one of the following:

(5, 2), (5, 3), (5, 4), (5, 5), (6, 2), (6, 3).
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All of these special cases can be handled using Magma. For example, if (n, q) = (5, 2) then
we compute

Σ(G) =
4483687

4999680
< 1,

where Σ(G) is defined in (5).

Case 2. n = 4

Now assume n = 4. If p = 2 and q ≡ 1 (mod 4), then ρ0 6 a21b
−1
1 + a22b

−1
2 , where

a1 =

(
4

1

)
+

(
4

2

)
(q − 1), b1 =

|GL4(q)|
|GL3(q)||GL1(q)|

= q3(q + 1)(q2 + 1)

and

a2 = 2(q − 1)3, b2 =
|GL4(q)|

2|GL2(q2)|
=

1

2
q4(q − 1)(q3 − 1),

noting that |H2| 6 a2. Similarly, if p = 2 and q ≡ 3 (mod 4), then ν(x) = 2 (see [14, Table
B.1]) and Lemma 2.6 implies that ρ0 6 a22b

−1
2 , where |H2| 6 8(q+ 1)2 = a2 and b2 is defined

as above.
Now suppose p > 3 is odd and define γ, δ as before. Note that p ∈ Pm with m ∈ {1, 2, 3, 4}.

If m ∈ {3, 4} then |Hp| 6 q2 + q + 1 = a3 and

|xG| > |GL4(q)|
|GL1(q4)|

= q6(q − 1)(q2 − 1)(q3 − 1) = b3,

which means that

ρ3 6 2 log(q2 + q + 1) · a23b−13 .

Similarly, if m = 2 then |Hp| 6 ((q + 1)/δ)2 = a4 and

|xG| > |GL4(q)|
|GL2(q2)|

= q4(q − 1)(q3 − 1) = b4,

which yields ρ2 6 log((q + 1)/δ) · a24b
−1
4 .

Finally, suppose m = 1, so p divides (q − 1)/γ and Hp is contained in a subgroup of type
GL1(q) o S4. In particular, |Hp| 6 3((q − 1)/γ)3 = a6. If ν(x) = 1 then

|xG| = |GL4(q)|
|GL3(q)||GL1(q)|

= q3(q + 1)(q2 + 1) = b5

and by arguing as in Case 1 we see that there are no more than a5 = 4((q − 1)/γ − 1) such
elements in Hp. For ν(x) > 2 we have

|xG| > |GL4(q)|
|GL2(q)|2

= q4(q2 + 1)(q2 + q + 1) = b6

and it follows that ρ1 6 log((q − 1)/γ) · (a25b
−1
5 + a26b

−1
6 ).

As before, it is clear that each upper bound on ρi tends to 0 as q tends to infinity. In
addition, for q > 4 we find that our bounds are good enough to give the desired inequality
in (13) with n = 4. In the two remaining cases we compute Σ(G) = 9799/10080 when q = 2,
whereas Σ(G) = 388757/379080 when q = 3. So this gives the result for q = 2, but further
work is needed when q = 3. In the latter case, we have π(G) = {2, 3, 5, 13} and for each
p ∈ π(G) we can use Magma to compute

Qp(G) = 1− s|Hp|
|G : Hp|

,

where s is the number of (Hp, Hp) double cosets in G of size |Hp|2. This yields

Q2(G) =
829

3645
, Q3(G) =

1351

2080
, Q5(G) =

1

75816
, Q13(G) =

1

155520

and thus α(G) < 1 as required. �
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To complete the proof of Theorem 5.1 for linear groups, it just remains for us to handle
L3(q) and L2(q).

Lemma 5.5. The conclusion to Theorem 5.1 holds when G = L3(q).

Proof. First observe that Σ(G) < 1 if

β̂(G) <
q3

(q + 1)(q2 + q + 1)
. (15)

Fix a prime p ∈ π′(G) and set γ = (4, q − 1) and δ = (4, q + 1) as before. Let x ∈ G be an
element of order p.

First assume p = 2, so q is odd and |xG| = q2(q2 + q+ 1) = b1 for every involution x ∈ G.
If q ≡ 1 (mod 4) then |H2| = 2((q − 1)2)

2 and H2 is contained in a subgroup L < G of type
GL1(q) o S3. By counting in L, we see that i2(H2) 6 3 + 3(q − 1) = 3q = a1. And for q ≡ 3
(mod 4) we have |H2| 6 4(q + 1) = a1. It follows that ρ0 6 a21b

−1
1 for all odd q.

Now assume p ∈ Pm with m ∈ {1, 2, 3}. If m = 3 then

|Hp| = (q2 + q + 1)p 6 q
2 + q + 1 = a2, |xG| = q3(q − 1)(q2 − 1) = b2

and thus ρ3 6 a22b
−1
2 log a2. Similarly, we have ρ2 6 a23b

−1
3 log a3, where a3 = (q + 1)/δ and

b3 = q3(q3 − 1). Finally, suppose m = 1. Here |Hp| 6 3((q − 1)/γ)2 = a5 and we note that
Hp is contained in a subgroup of type GL1(q) oS3. If ν(x) = 1 then |xG| = q2(q2 +q+1) = b4
and there are at most 3((q − 1)/γ − 1) = a4 of these elements in Hp. Otherwise, if ν(x) = 2
then |xG| > 1

3q
3(q + 1)(q2 + q + 1) = b5 and we deduce that

ρ1 6 log((q − 1)/γ) · (a24b−14 + a25b
−1
5 ).

The above estimates show that β(G) → 0 as q → ∞, and they also imply that the
inequality in (15) holds if q > 9. For 3 6 q 6 8, we can use Magma to check that Σ(G) < 1.
Finally, for q = 2 we compute Σ(G) = 121/84, so this case requires further attention. Here
π(G) = {2, 3, 7} and using Magma we get

Q2(G) =
13

21
, Q3(G) =

1

28
, Q7(G) =

1

8
,

which implies that α(G) < 1. �

Lemma 5.6. The conclusion to Theorem 5.1 holds when G = L2(q).

Proof. First observe that |G| = 1
dq(q

2 − 1) and |NG(Hr)| = 1
dq(q − 1), where d = (2, q − 1),

so we have Σ(G) < 1 if

β̂(G) <
q

q + 1
. (16)

Fix a prime p ∈ π′(G). For p = 2 we have H2 = D(q−ε)2 , where q ≡ ε (mod 4) and ε = ±1,

so i2(H2) 6 1
2(q + 3) = a1 and we note that |xG| > 1

2q(q − 1) = b1 for all involutions x ∈ G.
It follows that

ρ0 6 a
2
1b
−1
1 =

(q + 3)2

2q(q − 1)
.

Notice that this estimate does not imply that Q2(G) → 0 as q tends to infinity, which
explains why G = L2(q) is excluded in part (iii) of Theorem 5.1. For example, if q = 2k − 1
is a Mersenne prime, then H2 = Dq+1 and by appealing to [15, Lemma 7.9] we compute

Q2(G) = 1− s|H2|
|G : H2|

=
1

2
+

q + 3

2q(q − 1)
,

where s = (q − 3)/4 is the number of regular orbits of H2 on G/H2. In particular, we
observe that Q2(G) > 1

2 for every Mersenne prime q (and of course, we expect that there are
infinitely many such primes).
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Now assume p > 3 and let x ∈ G be an element of order p. Set γ = (4, q − 1) and
δ = (4, q+ 1). First suppose p divides q− 1. Now G has (p− 1)/2 distinct conjugacy classes
of such elements, with |xG| = q(q + 1) and |xG ∩Hp| = 2 for all x ∈ G of order p, whence

Q̂p(G) =
1

2
(p− 1) · 4

q(q + 1)
=

2(p− 1)

q(q + 1)
6

2(q − 2)

q(q + 1)
.

Similarly, if p divides q + 1, then |xG| = q(q − 1), |xG ∩Hp| = 2 and we get

Q̂p(G) =
1

2
(p− 1) · 4

q(q − 1)
6

2

q − 1
.

It follows that

γ(G) 6 log((q − 1)/γ) · 2(q − 2)

q(q + 1)
+ log((q + 1)/δ) · 2

q − 1

and thus γ(G)→ 0 as q →∞. In addition, we get

β̂(G) 6 (1− δ2,r)
(q + 3)2

2q(q − 1)
+ log((q − 1)/γ) · 2(q − 2)

q(q + 1)
+ log((q + 1)/δ) · 2

q − 1
,

which implies that the inequality in (16) holds for all q > 37. The remaining groups with
5 6 q 6 37 can be checked using Magma. Indeed, for q 6= 7 we compute Σ(G) < 1, while
for q = 7 we have G ∼= L3(2) and so this case has already been handled in Lemma 5.5. �

5.2. Unitary groups. We now turn to the proof of Theorem 5.1 for the unitary groups.
So throughout this section we assume G = Un(q) with n > 3 and (n, q) 6= (3, 2). Our main
result is the following (note that the 3-dimensional groups are handled separately in Lemma
5.8).

Lemma 5.7. The conclusion to Theorem 5.1 holds when G = Un(q) and n > 4.

Proof. Set d = (n, q + 1) and first observe that

|NG(Hr) : Hr| =
1

d
(q2 − 1)b(n−1)/2c(q − 1)e,

where e = 1 if n is even, otherwise e = 0. It follows that Σ(G) < 1 if the bound in (13) is
satisfied.

Case 1. n > 5

Fix a prime p ∈ π′(G) and let x ∈ G be an element of order p. First assume p = 2, so q is
odd and we have

|xG| = |GUn(q)|
|GUn−1(q)||GU1(q)|

=
qn−1(qn − (−1)n)

q + 1
= b1

if ν(x) = 1 (see [14, Table B.1]). Similarly, |xG| > 1
2(q + 1)−1q4n−7 = b2 if ν(x) = 2 and

we have |xG| > 1
4(q + 1)−1q6n−17 = b3 if ν(x) > 3. There are now four cases to consider,

according to the parity of n and the congruence class of q modulo 4.
Suppose n = 2`+ 1 is odd and q ≡ 1 (mod 4). By appealing to Lemma 2.1(i) we compute

|H2| = ((q + 1)2(q
2 − 1)2)

`(`!)2 6 23`(q − 1)` = a2

and it follows that H2 < L < G, where L is of type (GU2(q) o S`) ⊥ GU1(q). Here the
notation indicates that L is the stabiliser in G of an orthogonal decomposition

V = U ⊥W = U1 ⊥ · · · ⊥ U` ⊥W
of the natural module for V , where each Ui is a non-degenerate 2-space and W is a non-
degenerate 1-space. By counting in L, we deduce that there are at most

a1 = 1 +

(
`

1

)
|GU2(q)|
|GU1(q)|2

= 1 + `q(q − 1)
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involutions x ∈ H2 with ν(x) = 1, so Lemma 2.6 yields ρ0 < a21b
−1
1 + a22b

−1
2 .

Next assume n = 2`+ 1 and q ≡ 3 (mod 4). Here

|H2| = ((q + 1)2)
n−1(n!)2 6 2n−1(q + 1)n−1 = a3

and we see that H2 < L < G with L of type GU1(q) oSn. Then by working in L, we calculate
that the number of involutions x ∈ H2 with ν(x) = 1 is at most

a1 =

(
n

1

)
+

(
n

2

)
|GU1(q)| = n+

1

2
n(n− 1)(q + 1). (17)

Similarly, there are at most

a2 =

(
n

2

)
+

(
n

2

)(
n− 2

1

)
|GU1(q)|+

n!

(n− 4)!2!22
|GU1(q)|2

=
1

2
n(n− 1)

(
1 + (n− 2)(q + 1) +

1

4
(n− 2)(n− 3)(q + 1)2

) (18)

involutions in H2 with ν(x) = 2. This implies that

ρ0 < a21b
−1
1 + a22b

−1
2 + a23b

−1
3 . (19)

Now assume n = 2` is even. If q ≡ 1 (mod 4) then ν(x) > 2 (see [14, Table B.1]) and

|H2| =
1

4
((q + 1)2(q

2 − 1)2)
`(`!)2 6 23`−2(q − 1)` = a2,

whence Lemma 2.6 implies that ρ0 < a22b
−1
2 . Finally, suppose q ≡ 3 (mod 4). Here

|H2| =
1

(d)2
((q + 1)2)

n−1(n!)2 6 2n−1(q + 1)n−1 = a3

and thus H2 < L < G with L of type GU1(q) o Sn. Then as above, we calculate that H2

contains at most a1 (respectively, a2) involutions with ν(x) = 1 (respectively, ν(x) = 2),
where a1 and a2 are defined in (17) and (18), and we conclude that (19) holds.

Now assume p > 3 is odd, so p ∈ Pm with m 6 2n . Note that either m 6 bn/2c is odd,
or m 6 n is even, or m = 2i with n/2 < i 6 n odd. In particular, there are precisely n
possibilities for m.

To begin with, let us assume m > 3 and note that p > 5. By considering the possibilities
for |CG(x)| (see [14, Section 3.3.1]), we first observe that

|xG| >


|GUn(q)|

|GUn−3(q)||GU1(q3)| if n 6= 6
|GU6(q)|
|GU2(q3)| if n = 6

and thus |xG| > 1
2(q + 1)−1q6n−11 = b4.

We claim that
|Hp| 6 (q3 + 1)

11
24
n+ 1

3 = a4.

If m ≡ 0 (mod 4), then by applying Lemmas 2.1(ii) and 2.2, we compute

|Hp| =
k∏
i=1

(qmi − 1)p = ((qm/2 + 1)p)
k(k!)p < (qm/2 + 1)

5n
4m 6 (q2 + 1)

5
16
n < a4,

where k = bn/mc. Similarly, if m is odd and k = bn/2mc then

|Hp| =
k∏
i=1

(q2mi − 1)p = ((qm − 1)p)
k(k!)p < q

5
8
n < a4.

Finally, suppose m ≡ 2 (mod 4) and set k = b(n − 1 + e)/mc and ` = b(n − e)/m + 1/2c,
where e = 1 if n is even, otherwise e = 0. Then

|Hp| =
k∏
i=1

(qmi − 1)p ·
∏̀
i=1

(qm(2i−1) − 1)p = ((qm/2 + 1)p)
k+`(k!)p

∏̀
i=1

(2i− 1)p
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and we deduce that

|Hp| 6 (qm/2 + 1)
5
4
k+`+ 1

4
(2`−1) 6 (q3 + 1)

11
24
n+ 1

3 = a4.

This justifies the claim. In addition, since there are n− 2 possibilities for m with m > 3 and
since |Pm| < 1

2n log q for all m (see Lemma 2.3), it follows that

ρ3 <
1

2
n(n− 2) log q · a24b−14 .

Next suppose m = 2, so p divides (q + 1)/δ and

|Hp| =
1

(d)p
((q + 1)p)

n−1(n!)p 6 ((q + 1)/δ)
3
2
n−1 = a7,

where δ = (4, q + 1). In particular, we have Hp < L < G with L of type GU1(q) o Sn. If
ν(x) = 1 then

|xG| = |GUn(q)|
|GUn−1(q)||GU1(q)|

=
qn−1(qn − (−1)n)

q + 1
= b5

and by counting in L we deduce that there are at most(
n

1

)
(p− 1) 6 n((q + 1)/δ − 1) = a5

of these elements in Hp. Similarly, if ν(x) = 2 then |xG| > 1
2(q + 1)−1q4n−7 = b6 and Hp

contains no more than (
n

2

)
(p− 1)2 + δ3,p

n!

(n− 3)!3
|GU1(q)|2

such elements, which in turn is at most

a6 =
1

2
n(n− 1)

(
((q + 1)/δ − 1)2 +

2

3
(n− 2)(q + 1)2

)
.

Since |xG| > 1
2(q + 1)−1q6n−17 = b7 if ν(x) > 3, it follows that

ρ2 < log((q + 1)/δ) · (a25b−15 + a26b
−1
6 + a27b

−1
7 ).

Finally, suppose m = 1 and set γ = (4, q − 1) and k = bn/2c. Then p divides (q − 1)/γ
and

|Hp| = ((q − 1)p)
k(k!)p 6 ((q − 1)/γ)

3
4
n = a8.

In addition, we have

|xG| > |GUn(q)|
|GUn−2(q)||GL1(q2)|

>
1

2

(
q

q + 1

)
q4n−6 = b8

for all x ∈ G of order p, which implies that

ρ1 < log((q − 1)/γ) · a28b−18 .

For each i, it is clear that the above estimates ρi < fi(n, q) have the property that
fi(n, q)→ 0 as either n or q tends to infinity. In particular, β(G)→ 0 as |G| → ∞.

So to complete the proof of the lemma for n > 5, it just remains to show that α(G) < 1.
To do this, it will be convenient to partition our analysis of the above bounds according to
the parity of q.

First assume q is odd. Here it is straightforward to check that the bound

β̂(G) <
3∑
i=0

fi(n, q)

shows that the inequality in (13) is satisfied unless (n, q) is one of the following:

(5, 3), (5, 5), (5, 7), (6, 3), (7, 3), (8, 3).
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For (n, q) = (5, 3) we can use Magma to check that Σ(G) < 1. And in each of the remaining
cases, we can adjust the above estimates to give the desired result. For example, if (n, q) =
(5, 5) then we compute i2(H2) = 51 and π′(G) = {2, 3, 7, 13, 521}, which means that we can
set a2 = 51 in our previous upper bound on ρ0 and we can replace the factor 1

2n(n− 2) log q
in the expression for a4 by 3. It is then straightforward to check that the modified bound is
sufficient.

Now suppose q is even. The case q = 2 will require special attention, so for now let us
assume q > 4. If n > 7 then the bound

β̂(G) <
3∑
i=1

fi(n, q)

is sufficient unless (n, q) = (7, 4). In the latter case, we have P2 = {5} and |H5| = 57, so we
can set a7 = 57 in the expression for f2(n, q) and then check that the corresponding bound

on β̂(G) is sufficient.
Next assume n ∈ {5, 6} and q > 4. If n = 6 then m ∈ {1, 2, 3, 4, 6, 10} and for m > 3 we

observe that |Hp| 6 q4 − q3 + q2 − q + 1 = a4 and p divides

(q2 + 1)(q2 + q + 1)(q2 − q + 1)(q4 − q3 + q2 − q + 1) < q10,

which implies that ρ3 < 10 log q · a24b
−1
4 , where b4 is defined as above. Similarly, if m = 2

then |Hp| 6 5(q + 1)5, so we can set a7 = 5(q + 1)5 in the definition of f2(n, q). With these

modifications, it is easy to check that the corresponding upper bound on β̂(G) is sufficient
for all q > 4.

The case n = 5 is very similar. Here ρ3 < 8 log q · a24b
−1
4 , where a4 = q4 − q3 + q2 − q + 1

and b4 is defined as above. In addition, we can set a7 = c(q + 1)4 in the definition of
f2(n, q), where c = 3 if q ≡ −1 (mod 3), otherwise c = 1. The reader can then check that

the improved upper bound on β̂(G) is sufficient for all q > 8. Finally, if (n, q) = (5, 4) then
π′(G) = {3, 5, 13, 17, 41} and thus

β̂(G) < 3a24b
−1
4 +

8∑
i=5

a2i b
−1
i <

(
3

4

)4

as required.
Finally, let us assume q = 2. If n ∈ {5, 6, 7, 8} then we can use Magma to check that

Σ(G) < 1. For example, for n = 5 we get

Σ(G) =
6566723

6842880
.

So for the remainder, we may assume n > 9. To resolve this case, we need to improve the
upper bound ρ2 6 f2(n, 2) presented above, noting that P2 = {3} and H3 is contained in a
subgroup L of type GU1(2) o Sn.

With this goal in mind, let x ∈ G be an element of order 3 and observe that

|xG| > |GUn(2)|
|GUn−4(2)||GU4(2)|

>
1

2

(
q

q + 1

)
q8n−32 = b9

if ν(x) > 4. Now, if ν(x) = 3 then |xG| > 1
2(q + 1)−1q6n−17 = b7 and by counting in L we

deduce that there are no more than

a7 = 23
(
n

3

)
+

n!

(n− 3)!3
|GU1(2)|2 · 2

(
n− 3

1

)
=

2

3
n(n− 1)(n− 2)(9n− 25)

such elements in H3. Since |H3| < 33n/2−1 = a9, we deduce that

ρ2 < a25b
−1
5 + a26b

−1
6 + a27b

−1
7 + a29b

−1
9 ,
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where the terms a5, b5, a6 and b6 are defined as in the main argument above. By combining

this revised estimate for ρ2 with our previous bound on ρ3, the reader can check that β̂(G) < 1
for all n > 14.

Finally, suppose 9 6 n 6 13. Recall that

|H2||NG(H2)|
|G|

=
2n(n−1)/23b(n−1)/2c∏n

i=2(2
i − (−1)i)

=: f(n)

and it suffices to show that β̂(G) < f(n). One checks that our previous upper bound on

β̂(G) is sufficient if n ∈ {11, 12, 13}, so we may assume n = 9 or 10. Here we can improve
the upper bound on ρ2 by setting

a9 = i3(H3) =

{
104246 if n = 10
28430 if n = 9,

where we have computed the exact values using Magma. One can now check that the revised

estimate for β̂(G) is good enough.

Case 2. n = 4

To complete the proof of the lemma we may assume n = 4. In view of part (i) of Theorem
5.1, we may assume q > 3. And with the aid of Magma we check that Σ(G) < 1 when
q ∈ {3, 4, 5}, so we can assume q > 7. Note that it suffices to show that

β̂(G) <
|Hr||NG(Hr)|

|G|
=

q6

(q3 + 1)(q2 + 1)(q + 1)
. (20)

Fix a prime p ∈ π′(G) and let x ∈ G be an element of order p.
First assume p = 2. If q ≡ 1 (mod 4) then |H2| 6 8(q − 1)2 = a2 and ν(x) = 2, so

|xG| > |GU4(q)|
2|GU2(q)|2

=
1

2
q4(q2 − q + 1)(q2 + 1) = b2

and ρ0 6 a22b
−1
2 . Now assume q ≡ 3 (mod 4). Here |H2| = 2((q+1)2)

3 6 2(q+1)3 = a2 andH2

is contained in a subgroup L of type GU1(q)oS4. If ν(x) = 1 then |xG| = q3(q−1)(q2+1) = b1
and by working in L we calculate that there are at most a1 = 6q + 10 such elements in H2,
so it follows that ρ0 6 a21b

−1
1 + a22b

−1
2 .

Now assume p is odd, so p ∈ Pm with m ∈ {1, 2, 4, 6}. If m ∈ {4, 6} then |Hp| 6 q2+1 = a3
and

|xG| > |GU4(q)|
|GU1(q)||GU1(q3)|

= q4(q2 − 1)(q4 − 1) = b3,

which means that ρ3 6 2 log(q2 + 1) · a23b
−1
3 .

Now suppose m = 2, so p divides (q + 1)/δ with δ = (4, q + 1). Here

|Hp| = ((q + 1)p)
3(4!)p 6 3((q + 1)/δ)3 = a5

and we note that Hp < L < G, where L is a subgroup of type GU1(q) o S4. If ν(x) > 2 then

|xG| > |GU4(q)|
|GU2(q)|2

= q4(q2 − q + 1)(q2 + 1) = b5,

otherwise |xG| = q3(q− 1)(q2 + 1) = b4 and by counting in L we deduce that Hp contains at
most 4(p− 1) 6 4((q + 1)/δ − 1) = a4 such elements. This implies that

ρ2 6 log((q + 1)/δ) · (a24b−14 + a25b
−1
5 ).

Finally, if m = 1 then |Hp| 6 ((q − 1)/γ)2 = a6 and

|xG| > |GU4(q)|
|GL2(q2)|

= q4(q + 1)(q3 + 1) = b6,

where γ = (4, q − 1), and we deduce that ρ1 6 log((q − 1)/γ) · a26b
−1
6 .
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Bringing all of these estimates together, it is straightforward to check that the inequality
in (20) holds for all q > 5 with q 6= 8. And for q = 8 we have P2 = {3}, so we can replace
the factor log((q + 1)/δ) in the upper bound on ρ2 by 1, and then it is easy to check that

the corresponding upper bound on β̂(G) is sufficient. �

Lemma 5.8. The conclusion to Theorem 5.1 holds when G = U3(q).

Proof. This is very similar to the proof of Lemma 5.5. Note that q > 3 (since U3(2) is
soluble) and it suffices to show that

β̂(G) <
q3

q3 + 1
. (21)

Fix a prime p ∈ π′(G) and let x ∈ G be an element of order p.
Suppose p = 2, so q is odd and |xG| = q2(q2 − q + 1) = b1 for every involution x ∈ G.

If q ≡ 3 (mod 4) then |H2| = 2((q + 1)2)
2 and H2 is contained in a subgroup L < G of

type GU1(q) o S3. By counting in L, we see that there are no more than 3q + 6 = a1 such
involutions in H2. On the other hand, if q ≡ 1 (mod 4) then |H2| 6 4(q− 1) = a1. It follows
that ρ0 6 a21b

−1
1 for all odd q.

Now assume p is odd, so p ∈ Pm with m ∈ {1, 2, 6}. Set γ = (4, q − 1) and δ = (4, q + 1).
If m = 6 then

|Hp| = (q2 − q + 1)p 6 q
2 − q + 1 = a2, |xG| = q3(q + 1)(q2 − 1) = b2

and thus ρ3 6 a22b
−1
2 log a2. Similarly, ρ1 6 a23b

−1
3 log a3, where a3 = (q − 1)/γ and b3 =

q3(q3 + 1). Finally, suppose m = 2 and note that

|Hp| = ((q + 1)p)
2(3!)p 6 3((q + 1)/δ)2 = a5,

which means that Hp is contained in a subgroup of type GU1(q) o S3. If ν(x) = 1 then
|xG| = q2(q2 − q + 1) = b4 and there are at most 3((q + 1)/δ − 1) = a4 such elements in Hp.
Otherwise, |xG| > 1

3q
3(q − 1)(q2 − q + 1) = b5 and we deduce that

ρ2 6 log((q + 1)/δ) · (a24b−14 + a25b
−1
5 ).

The above bounds imply that (21) holds if q > 9. And for q 6 8 we can use Magma to
show that Σ(G) < 1 in every case. The result follows. �

5.3. Symplectic groups. In this section we prove Theorem 5.1 for the symplectic groups.
Recall that we may assume G = PSpn(q), where n > 4 is even and (n, q) 6= (4, 2) (the
latter assumption is valid since PSp4(2)′ ∼= L2(9)). As before, we will work closely with the
notation defined in (9), (10), (11) and (12).

Our main result is the following (the 4-dimensional symplectic groups will be handled
separately in Lemma 5.10).

Lemma 5.9. The conclusion to Theorem 5.1 holds when G = PSpn(q) and n > 6.

Proof. Write n = 2` and set d = (2, q − 1). We have

|G| = 1

d
q`

2
∏̀
i=1

(q2i − 1), |NG(Hr)| =
1

d
q`

2
(q − 1)`

and thus Σ(G) < 1 if

β̂(G) 6
(
1− q−1

)`
. (22)

We divide the proof into a number of separate cases.

Case 1. n > 10
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To begin with, we assume n > 10. Fix a prime p ∈ π′(G) and let x ∈ G be an element of
order p. For now, let us assume p = 2, so q is odd and either ν(x) is even or ν(x) = `. By
appealing to Lemma 2.1(i), we compute

|H2| =
1

2
((q2 − 1)2)

`(`!)2 6 2n−1(q + 1)` = a2

and thus H2 is contained in a subgroup L of type Sp2(q) o S`. If ν(x) = 2 then

|xG| = |Spn(q)|
|Spn−2(q)||Sp2(q)|

=
qn−2(qn − 1)

q2 − 1
= b1

and by counting in L we deduce that there are no more than

a1 =

(
`

1

)
+

(
`

2

)
|Sp2(q)| = `+

1

2
`(`− 1)q(q2 − 1)

of these involutions in H2. And if ν(x) > 4 then

|xG| > |Spn(q)|
|Spn−4(q)||Sp4(q)|

>
1

2
q4n−16 = b2

and thus Lemma 2.6 implies that ρ0 < a21b
−1
1 + a22b

−1
2 .

Now assume p is odd, so p ∈ Pm with m 6 n/e, where e = 2 if m is odd, otherwise e = 1.
Set k = bn/mec. First assume m = 4, in which case p divides q2 + 1 and

|xG| > |Spn(q)|
|Spn−4(q)||GU1(q2)|

>
1

2

(
q

q + 1

)
q4n−8 = b3.

In addition, by appealing to Lemma 2.2 (noting that p > 5), we deduce that

|Hp| = ((q4 − 1)p)
k(k!)p 6 (q2 + 1)k · p

k
4 6 (q2 + 1)

5
16
n = a3.

Now suppose m > 3 and m 6= 4. Here |Hp| = ((qm − 1)p)
k(k!)p and

|xG| > |Spn(q)|
|Spn−6(q)||GU1(q3)|

>
1

2

(
q

q + 1

)
q6n−18 = b4.

If m is even, then p divides qm/2 + 1 and we get

|Hp| 6 (qm/2 + 1)k · p
k
4 6 (qm/2 + 1)

5n
4m 6 (q3 + 1)

5
24
n = a4.

Similarly, if m is odd then |Hp| 6 (qm − 1)5n/8m < a4.
Since there are at most n− 3 possibilities for m in the range 3 6 m 6 n with m 6= 4, and

Lemma 2.3 implies that |Pm| < 1
2n log q for all m, we deduce that

ρ3 < log(q2 + 1) · a23b−13 +
1

2
n(n− 3) log q · a24b−14 .

Next assume m = 2, so p divides q + 1 and |Hp| = ((q + 1)p)
`(`!)p, which means that Hp

is contained in a subgroup L of type GU1(q) o S`. If ν(x) = 2 then

|xG| = |Spn(q)|
|Spn−2(q)||GU1(q)|

=
qn−1(qn − 1)

q + 1
= b5

and by counting in L we see that there are no more than(
`

1

)
(p− 1) 6

1

2
nq = a5

such elements in Hp. Otherwise, we have |xG| > 1
2(q + 1)−1q4n−9 = b6 and we observe that

|Hp| < (q + 1)3n/4 = a6. This gives ρ2 < log(q + 1) · (a25b
−1
5 + a26b

−1
6 ).
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The case m = 1 is very similar. Here |Hp| = ((q − 1)p)
`(`!)p < q3n/4 = a8 and thus Hp is

contained in a subgroup of type GL1(q) o S`. If ν(x) = 2, then

|xG| = |Spn(q)|
|Spn−2(q)||GL1(q)|

=
qn−1(qn − 1)

q − 1
= b7

and there are no more than a7 = n(q − 2)/2 of these elements in Hp. On the other hand, if

ν(x) > 4 then |xG| > 1
2q

4n−10 = b8 and thus ρ1 < log(q − 1) · (a27b
−1
7 + a28b

−1
8 ).

For each i ∈ {0, 1, 2, 3} it is clear that the explicit upper bound ρi < fi(n, q) presented
above implies that ρi → 0 as n or q tends to infinity. In particular, this means that β(G)→ 0
as |G| → ∞. In addition, one can check that if q > 3 then the above estimates imply that
the inequality in (22) is satisfied unless (n, q) = (10, 3). To handle the latter case we can
set a2 = |H2| = 217 in the upper bound on ρ0 and then it is easy to check that the previous
bounds are sufficient.

Now assume q = 2. Here P1 = ∅, P2 = {3} and P4 = {5}, which means that

β̂(G) < a23b
−1
3 +

1

2
n(n− 3)a24b

−1
4 + a25b

−1
5 + a26b

−1
6 ,

where the ai, bi terms are defined as above. One checks that this upper bound is sufficient
unless n = 10, in which case we can use Magma to show that Σ(G) < 1.

Case 2. n = 8

Fix a prime p ∈ π′(G) and let x ∈ G be an element of order p. For p = 2 we have
|H2| 6 26(q + 1)4 = a2 and

|xG| > |Sp8(q)|
2|Sp4(q)|2

>
1

4
q16 = b2

if ν(x) = 4. So by arguing as in Case 1 we deduce that ρ0 < a21b
−1
1 + a22b

−1
2 , where a1 =

4 + 6q(q2 − 1) and b1 = q6(q2 + 1)(q4 + 1).
Now assume p > 3 is odd, so p ∈ Pm with m ∈ {1, 2, 3, 4, 6, 8}. For m = 4 we have

|Hp| 6 (q2 + 1)2 = a3 and |xG| > 1
2(q + 1)−1q25 = b3. Similarly, if m ∈ {3, 6, 8} then

|Hp| 6 q4 + 1 = a4 and |xG| > 1
2(q + 1)−1q31 = b4, which allows us to conclude that

ρ3 < log(q2 + 1) · a23b−13 + 3 log(q4 + 1) · a24b−14 .

Next suppose m = 2, in which case |Hp| = ((q + 1)p)
4(4!)p 6 3(q + 1)4 = a6. If ν(x) = 2

then |xG| = q7(q8 − 1)/(q+ 1) = b5 and by arguing as in Case 1 we deduce that there are at
most a5 = 4q such elements in Hp. And if ν(x) > 2, then

|xG| > |Sp8(q)|
|GU4(q)|

>
1

2

(
q

q + 1

)
q20 = b6

and thus ρ2 < log(q+ 1) · (a25b
−1
5 + a26b

−1
6 ). Similarly, ρ1 < log(q− 1) · (a27b

−1
7 + a28b

−1
8 ), where

a7 = 4(q − 2), a8 = 3(q − 1)4, b7 =
q7(q8 − 1)

q − 1
, b8 =

1

2
q20.

Putting these estimates together, it is clear that β(G) → 0 as q → ∞. Furthermore, we
deduce that (22) holds (with ` = 4) if q > 4. Finally, for q ∈ {2, 3} we can use Magma to
check that Σ(G) < 1.

Case 3. n = 6

This is very similar to the previous case. As usual, fix a prime p ∈ π′(G) and let x ∈ G
be an element of order p.

First assume p = 2 and note that |H2| 6 23(q + 1)3 = a2. If ν(x) = 3 then

|xG| > |Sp6(q)|
2|GU3(q)|

>
1

4

(
q

q + 1

)
q12 = b2,
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otherwise |xG| = q4(q4 + q2 + 1) = b1 and as in Case 1 we see that there are at most
a1 = 3 + 3q(q2 − 1) involutions x ∈ H2 with ν(x) = 2. Therefore, ρ0 < a21b

−1
1 + a22b

−1
2 .

Now assume p > 3 is odd, so p ∈ Pm with m ∈ {1, 2, 3, 4, 6}. If m = 4 then |Hp| 6 q2+1 =
a3 and |xG| > 1

2(q + 1)−1q17 = b3. Similarly, if m ∈ {3, 6} then |Hp| 6 q2 + q + 1 = a4 and

|xG| > 1
2(q + 1)−1q19 = b4, which allows us to conclude that

ρ3 < log(q2 + 1) · a23b−13 + 2 log(q2 + q + 1) · a24b−14 .

Next suppose m = 2, in which case |Hp| = ((q+1)p)
3(3!)p 6 3(q+1)3 = a6. If ν(x) = 2 then

|xG| = |Sp6(q)|
|Sp4(q)||GU1(q)|

=
q5(q6 − 1)

q + 1
= b5

and by arguing as in Case 1 we deduce that there are at most a5 = 3q such elements in Hp.
Otherwise, we have |xG| > 1

2(q + 1)−1q13 = b6 and we conclude that

ρ2 < log(q + 1) · (a25b−15 + a26b
−1
6 ).

Similarly, ρ1 < log(q − 1) · (a27b
−1
7 + a28b

−1
8 ), where

a7 = 3(q − 2), a8 = 3(q − 1)3, b7 =
q5(q6 − 1)

q − 1
, b8 =

1

2
q12.

It is clear that each upper bound ρi < fi(q) given above has the property that fi(q)→ 0
as q → ∞, whence G satisfies the asymptotic statement in Theorem 5.1. In addition, one
checks that the given estimates imply that Σ(G) < 1 if q > 4. Finally, for q ∈ {2, 3} we can
use Magma to show that Σ(G) < 1. �

Lemma 5.10. The conclusion to Theorem 5.1 holds when G = PSp4(q).

Proof. We may assume q > 4 since PSp4(2)′ ∼= L2(9) and PSp4(3) ∼= U4(2). Note that we
have Σ(G) < 1 if

β̂(G) <
q4

(q + 1)2(q2 + 1)
. (23)

Fix a prime p ∈ π′(G) and let x ∈ G be an element of order p.
Suppose p = 2, so q is odd and G has two conjugacy classes of involutions; in the notation

of [22, Table 4.5.1], x is either a type t1 involution, or x is of type t2 (if q ≡ 1 (mod 4)) or t′2
(if q ≡ 3 (mod 4)). If x is a t1 involution, then

|xG| = |Sp4(q)|
2|Sp2(q)|2

=
1

2
q2(q2 + 1) = b1

and the proof of [16, Proposition 3.6] shows that there are at most a1 = q+2 such involutions
in H2. On the other hand, if x is a t2 or t′2 involution then

|xG| > |Sp4(q)|
2|GU2(q)|

=
1

2
q3(q − 1)(q2 + 1) = b2

and we note that |H2| 6 4(q + 1)2 = a2. This implies that ρ0 6 a21b
−1
1 + a22b

−1
2 .

For the remainder, we may assume p is odd, in which case p ∈ Pm with m ∈ {1, 2, 4}. If
m = 4 then p divides q2 + 1 and we have |Hp| 6 q2 + 1 = a3 and

|xG| = |Sp4(q)|
|GU1(q2)|

= q4(q2 − 1)2 = b3,

whence ρ3 6 log(q2 + 1) · a23b
−1
3 . Similarly, if m = 2 then we have |Hp| 6 (q + 1)2 = a4

and |xG| > q3(q − 1)(q2 + 1) = b4, while for m = 1 we see that |Hp| 6 (q − 1)2 = a5 and
|xG| > q3(q + 1)(q2 + 1) = b5. Therefore,

ρ2 6 log(q + 1) · a24b−14 , ρ1 6 log(q − 1) · a25b−15 .
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Bringing these estimates together, it is clear that β(G) → 0 as q → ∞. In addition, we
deduce that the inequality in (23) holds if q > 9. Finally, for q ∈ {4, 5, 7, 8} we can use
Magma to verify the bound Σ(G) < 1. �

5.4. Orthogonal groups. To complete the proof of Theorem 5.1, we may assume G is an
orthogonal group. As before, we continue to work with the notation defined in (9), (10),
(11) and (12).

We begin by handling the odd-dimensional groups of the form G = Ωn(q), where n > 7 is
odd and q is odd.

Lemma 5.11. The conclusion to Theorem 5.1 holds when G = Ωn(q) and n > 7.

Proof. Write n = 2` + 1 and note that q is odd. It is easy to check that Σ(G) < 1 if (22)
holds, so our main aim is to verify the bound in (22). Fix a prime p ∈ π′(G) and let x ∈ G
be an element of order p.

Suppose p = 2 and write q ≡ ε (mod 4) with ε = ±1. Then

|H2| = 2`−1((q − ε)2)`(`!)2 6 22`−1(q + 1)` = a3

and we note that H2 < L < G, where L is of type (Oε
2(q) o S`) ⊥ O1(q). If ν(x) = 1 then

|xG| > |SOn(q)|
2|SO−n−1(q)|

=
1

2
q`(q` − 1) = b1

and by counting in L we deduce that there are at most

1 +

(
`

1

)
(q − ε) 6 1 + `(q + 1) = a1

such involutions in H2. Similarly, if ν(x) = 2 then

|xG| > |SOn(q)|
2|SOn−2(q)||SO−2 (q)|

=
qn−2(qn−1 − 1)

2(q + 1)
= b2

and we see that H2 contains no more than(
`

1

)
(1 + q − ε) +

(
`

2

)
(|Oε

2(q)|+ (q − ε)2) 6 `(q + 2) +
1

2
`(`− 1)(q + 1)(q + 3) = a2

such elements. Finally, if ν(x) > 3 then

|xG| > |SOn(q)|
2|SO−n−3(q)||SO3(q)|

=
q

1
2
(3n−9)(q

1
2
(n−3) − 1)(qn−1 − 1)

2(q2 − 1)
= b3

and we conclude that

ρ0 6 a
2
1b
−1
1 + a22b

−1
2 + a23b

−1
3 .

Now assume p is odd and write p ∈ Pm. Note that m 6 (n − 1)/e, where e = 2 if m is
odd, otherwise e = 1. Set k = b(n− 1)/mec. If m = 4 then p divides (q2 + 1)/2 and we have

|Hp| = ((q4 − 1)p)
k(k!)p 6 ((q2 + 1)/2)

5
16

(n−1) = a4

and

|xG| > |SOn(q)|
|SOn−4(q)||GU1(q2)|

>
1

2

(
q

q + 1

)
q4n−12 = b4.

Similarly, if m > 3 and m 6= 4, then |Pm| < 1
2(n− 1) log q (see Lemma 2.3) and we compute

|Hp| = ((qm − 1)p)
k(k!)p 6 ((q3 + 1)/2)

5
24

(n−1) = a5

and

|xG| > |SOn(q)|
|SOn−6(q)||GU1(q3)|

>
1

2

(
q

q + 1

)
q6n−24 = b5.
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This implies that

ρ3 < log(q2 + 1) · a24b−14 +
1

2
(n− 1)(n− 3) log q · a25b−15 .

Now assume m = 2, so p divides (q + 1)/2 and we have k = `. Here

|Hp| = ((q + 1)p)
`(`!)p 6 ((q + 1)/2)3`/2 = a7

and we see that Hp < L < G, where L is a subgroup of type (O−2 (q) oS`) ⊥ O1(q). If ν(x) = 2
then

|xG| = |SOn(q)|
|SOn−2(q)||GU1(q)|

=
qn−2(qn−1 − 1)

q + 1
= b6

and by counting in L we deduce that there are at most a6 = `q such elements in Hp. On the
other hand, if ν(x) > 2 then

|xG| > |SOn(q)|
|SOn−4(q)||GU2(q)|

>
1

2

(
q

q + 1

)
q4n−14 = b7

and it follows that
ρ2 < log((q + 1)/2) · (a26b−16 + a27b

−1
7 ).

Similarly, we have ρ1 < log((q − 1)/2) · (a28b
−1
8 + a29b

−1
9 ) with

a8 = `(q − 2), a9 = ((q − 1)/2)3`/2, b8 =
qn−2(qn−1 − 1)

q − 1
, b9 =

1

2
q4n−14.

It is clear to see that the above estimates imply that β(G)→ 0 as |G| → ∞. We also deduce
that the inequality in (22) holds if q > 5, or if q = 3 and n > 21. If q = 3 and 11 6 n 6 19
then by setting a3 = |H2| it is easy to check that the above bounds are sufficient. Finally,
for (n, q) = (9, 3), (7, 3) we can use Magma to verify the bound Σ(G) < 1. �

Lemma 5.12. The conclusion to Theorem 5.1 holds when G = PΩ+
n (q) and n > 10.

Proof. Write n = 2` and set d = (4, q` − 1). Since |NG(Hr)| = 1
dq
`(`−1)(q − 1)`, it follows

that Σ(G) < 1 if (22) holds. Fix a prime p ∈ π′(G) and let x ∈ G be an element of order p.
Suppose p = 2, so q is odd and either ν(x) is even or ν(x) = `. Note that if ν(x) = 2 then

|xG| > |SO+
n (q)|

2|SO−n−2(q)||SO−2 (q)|
=
qn−2(q(n−2)/2 − 1)(qn/2 − 1)

2(q + 1)
= b1,

otherwise we have

|xG| > |SO+
n (q)|

2|SO−n−4(q)||SO−4 (q)|
>

1

4
q4n−16 = b2

if n > 14, and

|xG| > |SO+
n (q)|

2|GUn/2(q)|
>

1

4

(
q

q + 1

)
q

1
4
(n2−2n) = b2

if n ∈ {10, 12}.
First assume q ≡ 1 (mod 4). Then by applying Lemma 2.1(i), we compute

|H2| =
1

4
2`−1((q − 1)2)

`(`!)2 6 2n−3(q − 1)` = a2

and H2 < L < G with L of type O+
2 (q) o S`. By counting in L we deduce that there are at

most

a1 = `+

(
`

2

)(
(q − 1)2 + 2(q − 1)

)
involutions x ∈ H2 with ν(x) = 2.

Now assume q ≡ 3 (mod 4). If ` is even then

|H2| =
1

4
2`−1((q + 1)2)

`(`!)2 6 2n−3(q + 1)` = a2
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and H2 < L < G with L of type O−2 (q) o S`. And by working in L we calculate that H2

contains no more than

a1 = `+

(
`

2

)(
(q + 1)2 + 2(q + 1)

)
involutions with ν(x) = 2. Similarly, if ` is odd then

|H2| =
1

2
2`−1((q + 1)2)

`−1((`− 1)!)2.2 6 2n−2(q + 1)`−1 = a2

and H2 is contained in a subgroup L of type (O−2 (q) o S`−1) ⊥ O+
2 (q). By counting in L, we

calculate that the number of involutions x ∈ H2 with ν(x) = 2 is at most

a1 = 1 + (`− 1)((q2 − 1) + 1) +

(
`− 1

2

)(
(q + 1)2 + 2(q + 1)

)
.

So for all odd q we deduce that ρ0 < a21b
−1
1 + a22b

−1
2 , where the precise expressions for a1

and a2 depend on the congruence classes of n and q modulo 4, as defined above.
Now assume p > 3 is odd, so p ∈ Pm for some m 6 n − 2. Set k = b(n − 2)/mec, where

e = 2 if m is odd, otherwise e = 1. If m = 4 then p divides q2 + 1 and we have

|xG| > |SO+
n (q)|

|SO−n−4(q)||GU1(q2)|
>

1

2

(
q

q + 1

)
q4n−12 = b3.

In addition, since p > 5 and (qn/2 − 1)p 6 1
8n(q2 + 1) by Lemma 2.1, we compute

|Hp| = ((q4 − 1)p)
k(k!)p · (qn/2 − 1)p 6 (q2 + 1)

5
16

(n−2) · 1

8
n(q2 + 1)

=
1

8
n(q2 + 1)

1
16

(5n+6) = a3.

Similarly, if m > 3 and m 6= 4, then

|xG| > |SO+
n (q)|

|SO−n−6(q)||GU1(q3)|
>

1

2

(
q

q + 1

)
q6n−24 = b4

and
|Hp| = ((qm − 1)p)

k(k!)p · (qn/2 − 1)p.

If m > 6 is even, then p divides qm/2 + 1 and thus

|Hp| < (qm/2 + 1)
5(n−2)

4m · q
1
2
n 6 (q3 + 1)

5
24

(n−2) · q
1
2
n = a4,

while we get

|Hp| < q
5
4
mk+ 1

2
n = q

5
8
(n−2)+ 1

2
n < a4

if m > 3 is odd. This allows us to conclude that

ρ3 < log(q2 + 1) · a23b−13 +
1

2
n(n− 5) log q · a24b−14 .

Next assume m = 2, so p divides q + 1. First observe that if ` is even then

|Hp| = ((q + 1)p)
`(`!)p 6 (q + 1)

3
4
n = a6

and Hp < L < G with L of type O−2 (q) o S`. Similarly, if ` is odd then

|Hp| = ((q + 1)p)
`−1((`− 1)!)p < a6

and Hp is contained in a subgroup L of type (O−2 (q) o S`−1) ⊥ O+
2 (q). If ν(x) = 2 then

|xG| = |SO+
n (q)|

|SO−n−2(q)||GU1(q)|
=
qn−2(q(n−2)/2 − 1)(qn/2 − 1)

q + 1
= b5,

otherwise we have

|xG| > |SO+
n (q)|

|SO+
n−4(q)||GU2(q)|

>
1

2

(
q

q + 1

)
q4n−14 = b6.
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And by counting in L, we deduce that there are at most a5 = `q elements x ∈ Hp of order p

with ν(x) = 2. It follows that ρ2 < log(q + 1) · (a25b
−1
5 + a26b

−1
6 ).

Finally, suppose m = 1. Here

|Hp| = ((q − 1)p)
`(`!)p 6 (q − 1)

3
4
n = a8

and Hp < L < G with L of type O+
2 (q) o S`. If ν(x) = 2 then

|xG| = |SO+
n (q)|

|SO+
n−2(q)||GL1(q)|

=
qn−2(q(n−2)/2 + 1)(qn/2 − 1)

q − 1
= b7

and by working in L we see that there are no more than a7 = `(q − 2) of these elements in
Hp. And for ν(x) > 2 we have |xG| > 1

2q
4n−14 = b8, so ρ1 < log(q − 1) · (a27b

−1
7 + a28b

−1
8 ).

It is easy to see that each of the above bounds ρi < fi(n, q) has the property that fi(n, q)→
0 as n or q tends to infinity. In particular, this implies that β(G) → 0 as |G| → ∞. In
addition, the above estimates imply that Σ(G) < 1 unless (n, q) is one of the following:

(10, 2), (10, 3), (12, 2), (12, 3), (14, 2).

For (n, q) = (10, 2) we can use Magma to compute

Σ(G) =
11219267305357

11749647974400
< 1

as required. And in each of the remaining cases, we can slightly modify our previous estimates
in order to obtain the desired conclusion. For example, suppose (n, q) = (10, 3). Here we
compute i2(H2) = 2063 and π′(G) = {5, 7, 11, 13, 41}, so we can set a2 = 2063 in the upper
bound on ρ0, and we can also replace the term 1

2n(n− 5) log q in the upper bound on ρ3 by
4. One can then check that the revised estimates imply that Σ(G) < 1. �

Lemma 5.13. The conclusion to Theorem 5.1 holds when G = PΩ+
8 (q).

Proof. As in the proof of the previous lemma, we observe that Σ(G) < 1 if the inequality in
(22) holds (with ` = 4). For q = 3, we can directly verify the bound Σ(G) < 1 with the aid
of Magma. However, for q = 2 we get

Σ(G) =
6518753

6220800
> 1.

To resolve the latter case, we use Magma to compute

Qp(G) = 1− s|Hp|
|G : Hp|

for each p ∈ π(G) = {2, 3, 5, 7}, where s is the number of (Hp, Hp) double cosets in G of size
|Hp|2. In this way, we obtain

Q2(G) =
38429

42525
, Q3(G) =

4307

89600
, Q5(G) =

31

435456
, Q7(G) =

1

4147200

and thus α(G) < 1 as required.
For the remainder, we may assume q > 4. As usual, fix a prime p ∈ π′(G) and let x ∈ G

be an element of order p.
If p = 2 then |H2| 6 16(q + 1)4 = a1 and

|xG| > |SO+
8 (q)|

2|GU4(q)|
=

1

2
q6(q − 1)(q2 + 1)(q3 − 1) = b1,

so we have ρ0 6 a21b
−1
1 .

Now assume p is odd, so p ∈ Pm with m ∈ {1, 2, 3, 4, 6}. If m ∈ {3, 4, 6} then we have
|Hp| 6 (q2 + 1)2 = a2 and

|xG| > |SO+
8 (q)|

|GU2(q2)|
= q10(q2 − 1)2(q6 − 1) = b2,



ON THE INTERSECTIONS OF NILPOTENT SUBGROUPS IN SIMPLE GROUPS 33

which gives ρ3 6 3 log(q2 + q+ 1) · a22b
−1
2 . Similarly, if m = 2 then |Hp| 6 3(q+ 1)4 = a3 and

|xG| > |SO+
8 (q)|

|GU4(q)|
= q6(q − 1)(q2 + 1)(q3 − 1) = b3,

whereas |Hp| 6 3(q − 1)4 = a4 and

|xG| > |SO+
8 (q)|

|GL4(q)|
= q6(q + 1)(q2 + 1)(q3 + 1) = b4

if m = 1. It follows that

ρ2 6 log(q + 1) · a23b−13 , ρ1 6 log(q − 1) · a24b−14 .

It is clear from the above estimates that β(G) → 0 as q → ∞. Furthermore, we deduce
that (22) holds (with ` = 4) if q > 8, so it just remains to handle the groups with q ∈ {4, 5, 7}.

If q = 7 then using Magma we compute i2(H2) = 2831 and by setting a1 = 2831 in the
previous estimate for ρ0 it is easy to check (22) holds. And similarly if q = 5, noting that
i2(H2) = 495. Finally, suppose q = 4. Here π′(G) = {3, 5, 7, 13, 17} with P1 = {3} and
P2 = {5}, so by defining ai, bi as above for i ∈ {2, 3, 4} we get

β̂(G) 6 3a22b
−1
2 + a23b

−1
3 + a24b

−1
4 <

(
3

4

)4

and the result follows. �

Lemma 5.14. The conclusion to Theorem 5.1 holds when G = PΩ−n (q) and n > 8.

Proof. Write n = 2`, d = (4, q` + 1) and note that |NG(Hr) : Hr| = 1
d(q2 − 1)(q − 1)`−2,

which means that Σ(G) < 1 if the bound in (22) is satisfied. Fix a prime p ∈ π′(G) and let
x ∈ G be an element of order p. To begin with, we will assume n > 10.

Case 1. n > 10

First assume p = 2. If ν(x) = 2 then

|xG| > |SO−n (q)|
2|SO+

n−2(q)||SO−2 (q)|
=
qn−2(q(n−2)/2 + 1)(qn/2 + 1)

2(q + 1)
= b1,

otherwise |xG| > b2, where b2 = 1
4q

4n−16 if n > 14 and b2 = 1
4(q + 1)−1qc if n ∈ {10, 12},

with c = 21 if n = 10 and c = 31 if n = 12.
Suppose q ≡ 1 (mod 4). Then

|H2| =
1

2
2`−1((q − 1)2)

`−1((`− 1)!)2.2 6 2n−2(q − 1)`−1 = a2

and we observe that H2 is contained in a subgroup L < G of type (O+
2 (q) o S`−1) ⊥ O−2 (q).

By counting in L we see that there are no more than

a1 = 1 +

(
`− 1

1

)(
1 + (q2 − 1)

)
+

(
`− 1

2

)(
(q − 1)2 + 2(q − 1)

)
involutions x ∈ H2 with ν(x) = 2.

Now assume q ≡ 3 (mod 4). If ` is even, then

|H2| =
1

2
2`−1((q + 1)2)

`−1((`− 1)!)2.2 6 2n−2(q + 1)`−1 = a2

and thus H2 < L < G with L of type (O−2 (q) o S`−1) ⊥ O+
2 (q). By working in L we deduce

that H2 contains at most

a1 = 1 +

(
`− 1

1

)(
1 + (q2 − 1)

)
+

(
`− 1

2

)(
(q + 1)2 + 2(q + 1)

)
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involutions x with ν(x) = 2. Similarly, if ` is odd then

|H2| =
1

4
2`−1((q + 1)2)

`(`!)2 6 2n−3(q + 1)` = a2

and H2 is contained in a subgroup L of type O−2 (q) o S`, which allows us to see that the
number of involutions x ∈ H2 with ν(x) = 2 is at most

a1 =

(
`

1

)
+

(
`

2

)(
(q + 1)2 + 2(q + 1)

)
.

So for all odd q, we conclude that ρ0 < a21b
−1
1 + a22b

−1
2 , where the expressions for a1 and a2

depend on the congruence classes of n and q modulo 4, as defined above.
Now assume p > 3 is odd, so p ∈ Pm for some m 6 n. Set k = b(n− 2)/mec, where e = 2

if m is odd, otherwise e = 1. If m = 4 then p divides q2 + 1 and

|xG| > |SO−n (q)|
|SO+

n−4(q)||GU1(q2)|
>

1

2

(
q

q + 1

)
q4n−12 = b3.

Since p > 5 and (qn/2 + 1)p 6 1
4n(q2 + 1) (see Lemma 2.1), we compute

|Hp| = ((q4 − 1)p)
k(k!)p · (qn/2 + 1)p 6

1

4
n(q2 + 1)

1
16

(5n+6) = a3.

Similarly, if m > 3 and m 6= 4, then |xG| > 1
2(q + 1)−1q6n−23 = b4 and

|Hp| = ((qm − 1)p)
k(k!)p · (qn/2 + 1)p 6 (q3 + 1)

1
24

(9n−10) = a4.

This implies that

ρ3 < log(q2 + 1) · a23b−13 +
1

2
n(n− 4) log q · a24b−14 .

Next suppose m = 2. If ` is odd then

|Hp| = ((q + 1)p)
`(`!)p 6 (q + 1)

3
4
n = a6

and Hp < L < G with L of type O−2 (q) o S`. On the other hand, if ` is even, then

|Hp| = ((q + 1)p)
`−1((`− 1)!)p < a6

and Hp is contained in a subgroup L of type (O−2 (q) o S`−1) ⊥ O+
2 (q). If ν(x) = 2 then

|xG| = |SO−n (q)|
|SO+

n−2(q)||GU1(q)|
=
qn−2(q(n−2)/2 + 1)(qn/2 + 1)

q + 1
= b5,

otherwise we have |xG| > 1
2(q + 1)−1q4n−13 = b6. By counting in L, we calculate that there

are at most a5 = `q elements x ∈ Hp of order p with ν(x) = 2 and it follows that

ρ2 < log(q + 1) · (a25b−15 + a26b
−1
6 ).

Finally, suppose m = 1. Here

|Hp| = ((q − 1)p)
`−1((`− 1)!)p 6 (q − 1)

3
4
(n−2) = a8

and Hp < L < G with L of type (O+
2 (q) o S`−1) ⊥ O−2 (q). If ν(x) = 2 then

|xG| = |SO−n (q)|
|SO−n−2(q)||GL1(q)|

=
qn−2(q(n−2)/2 − 1)(qn/2 + 1)

q − 1
= b7,

and by working in L we see that there are no more than a7 = (`−1)(q−1) of these elements
in Hp. Otherwise |xG| > 1

2q
4n−14 = b8 and we conclude that

ρ1 < log(q − 1) · (a27b−17 + a28b
−1
8 ).

The above estimates ρi < fi(n, q) immediately imply that β(G) → 0 as |G| → ∞. More-
over, we deduce that Σ(G) < 1 unless (n, q) is one of the following:

(10, 2), (10, 3), (12, 2), (12, 3), (14, 2).
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For (n, q) = (10, 2) we can use Magma to verify the bound Σ(G) < 1, and in the remaining
cases we can modify our previous estimates. For example, suppose (n, q) = (12, 2). Here
|π′(G)| = 7, |H3| = 36 and we see that P1 = ∅, P2 = {3}, P4 = {5}. Therefore,

β̂(G) < a23b
−1
3 + 5a24b

−1
4 + a25b

−1
5 + a26b

−1
6 < 2−6,

where a6 = 36 and the remaining ai, bi are defined as above.

Case 2. n = 8

To complete the proof, we may assume n = 8. We can use Magma to show that Σ(G) < 1
when q = 2, 3, so we may assume q > 4. Fix a prime p ∈ π′(G) and let x ∈ G be an element
of order p.

If p = 2 then |H2| 6 16(q + 1)3 = a1 and

|xG| > |SO−8 (q)|
2|SO+

6 (q)||SO−2 (q)|
=

1

2
q6(q2 − q + 1)(q4 + 1) = b1,

so we have ρ0 6 a21b
−1
1 .

Now assume p is odd, so p ∈ Pm with m ∈ {1, 2, 3, 4, 6, 8}. If m > 3 then |Hp| 6 q4+1 = a2
and

|xG| > |SO−8 (q)|
|SO+

4 (q)||GU1(q2)|
= q10(q4 + 1)(q6 − 1) = b2,

which gives ρ3 6 4 log(q4 + 1) · a22b
−1
2 . For m = 2 we observe that |Hp| 6 3(q + 1)3 = a3 and

|xG| > |SO−8 (q)|
|SO+

6 (q)||GU1(q)|
= q6(q2 − q + 1)(q4 + 1) = b3,

whereas |Hp| 6 3(q − 1)3 = a4 and

|xG| > |SO−8 (q)|
|SO−6 (q)||GL1(q)|

= q6(q2 + q + 1)(q4 + 1) = b4

if m = 1. It follows that

ρ2 6 log(q + 1) · a23b−13 , ρ1 6 log(q − 1) · a24b−14 .

It is clear that the above estimates imply that β(G) → 0 as q tends to infinity. Further-
more, we deduce that (22) holds (with ` = 4) for all q > 4. �

This completes the proof of Theorem 5.1. In Remark 5.3(a) we checked that Conjecture
6 holds in the special case G = U4(2), so by combining Theorem 5.1 with Theorems 3.1 and
4.1, we deduce that the proofs of Theorems A and D are complete. In addition, Corollary B
follows by combining Theorem A with the main theorem of [24], and we note that Corollary C
is an immediate consequence. In view of Theorem 10, Corollary E follows immediately from
Theorem D. Similarly, Theorem F follows from Theorems 4.1 and 5.1 (referring to Remark
5.3(b) for the special case G = U4(2)), which we then combine with the main theorems of
[35, 37] to deduce Corollary G.
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