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ABSTRACT. Let G be a finite group, let p be a prime and let Pr,(G) be the probability that
two random p-elements of G’ commute. In this paper we prove that Pr,(G) > (p*>+p—1)/p? if
and only if G has a normal and abelian Sylow p-subgroup, which generalizes previous results
on the widely studied commuting probability of a finite group. This bound is best possible
in the sense that for each prime p there are groups with Pr,(G) = (p*> +p — 1)/p® and we
classify all such groups. Our proof is based on bounding the proportion of p-elements in G
that commute with a fixed p-element in G\ O,(G), which in turn relies on recent work of
the first two authors on fixed point ratios for finite primitive permutation groups.

1. INTRODUCTION

The commuting probability of a finite group G is the probability that two random elements
of G commute, namely

H(z,y) € G x G : xy = yx}|
|G|? '

A celebrated, but elementary, result of Gustafson [11] asserts that Pr(G) > 5/8 if and only if
G is abelian, which is best possible since Pr(Dg) = 5/8. This concept has been widely studied
in recent years and some natural analogues for infinite groups have also been investigated
(see, for instance, [11 6], 10, 13, 17, 20]). In addition, the commuting variety of elements in Lie
algebras and algebraic groups has been a subject of great interest for several decades. This
was originally introduced by Motzkin and Taussky [16] and further studied by Richardson
[19], Ginzburg [9], Premet [I8] and others.

In this paper, we pursue a local version of Gustafson’s theorem, which turns out to be
significantly more challenging.

Pr(G) =

Definition. Let G be a finite group, let p be a prime and let G}, be the set of p-elements in
G (that is, the set of elements in G of order p™ for some m > 0). Then

z,y) € G, x Gy xy =yx

is the probability that two random p-elements of G commute. Note that Pr,(G) = 1 if and
only if G has a normal and abelian Sylow p-subgroup.
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Local versions of the commuting probability have also been studied in the context of
algebraic groups and Lie algebras. In particular, Premet [18] identified the irreducible com-
ponents of the commuting variety of nilpotent elements of a reductive Lie algebra defined
over an algebraically closed field of good characteristic (and similarly, as an immediate con-
sequence, for unipotent elements in the corresponding reductive algebraic groups). The set
of commuting r-tuples of elements of order p (or commuting nilpotent elements of nilpotence
degree p in a p-restricted Lie algebra) has also been studied for its connection to problems
in representation theory (see [5]). For finite groups, a generating function is presented in [7]
for counting the number of commuting pairs of p-elements in some finite classical groups in
good characteristic.

In this paper we consider arbitrary finite groups. Given a prime number p, set

2 _
f(p) = w

3
p
Our first main result is the following.

Theorem A. Let G be a finite group and let p be a prime. Then Pr,(G) > f(p) if and only
if G has a normal and abelian Sylow p-subgroup.

In particular, if G is a nonabelian finite simple group and |G| is divisible by p, then
Pr,(G) < f(p). We can say more in this situation.

Theorem B. Let G be a nonabelian finite simple group and let p be a prime divisor of |G|.
Then Pry(G) = f(p) if and only if p > 5 and G is isomorphic to PSLa(p).

In fact, we can classify all the finite groups G' with G = O (G) and Pr,(G) = f(p), where
Op,(G) is the subgroup of G generated by G). See Theorem for a precise statement.
In particular, we observe that there is no nonsolvable group with Pry(G) = 5/8 and no
nonsolvable group G = 0% (G) with Pr3(G) = 11/27. In addition, if G is given as in
Theorem B with p a fixed prime, then Pr,(G) tends to 0 as |G| tends to infinity; we refer
the reader to the end of Section [{] for further details.

Our next result, which may be of independent interest, is a key ingredient in the proof of
Theorem A. Recall that O,(G) denotes the largest normal p-subgroup of G.

Theorem C. Let G be a finite group and let p be a prime. Then
Cqol(zx
Co(n),| _1
‘Gp’ p
for every p-element x € G\ Op(G).

This can be extended as follows.

Theorem D. Let G be a finite group and let p be a prime. If x € G is a p-element and
Col@),l 1
|Gp| p’
then x € Z(0,(G)).

Remark 1. It is easy to see that the converse of Theorem D is false. For example, if
G = Dg(am+1), then [Cq(w),|/|Ga| = 1/(2m +2) if x € Z(O2(G)) has order 4. On the other
hand, in Examples (p odd) and (p = 2) we present a family of examples (G, p, ),
where z € Z(0O,(G)) is nontrivial and |Cg(z),|/|Gp| tends to 1 as p tends to infinity.

Remark 2. Let G be a finite group with O,(G) = 1. Then the conclusions in Theorems
A and C are still valid if we work with elements of order p instead of all p-elements (with
essentially no change in the proofs). And similarly for Theorem which includes Theorem
B as a special case.



ON THE COMMUTING PROBABILITY OF p-ELEMENTS IN A FINITE GROUP 3

The proofs of our main results depend upon the classification of finite simple groups.
However, it is worth noting that our proof of Theorem C does not require the classification
if we assume that x normalizes, but does not centralize, some normal p’-subgroup of G. This
implies that the classification is not required for Theorem A under the assumption that the
generalized Fitting subgroup of G is a p’-group (and so in particular, if G is p-solvable). In
order to handle the general case, we use a recent result of the first two authors [2] on fixed
point ratios of elements of prime order in primitive permutation groups (see Theorem [3.4)).

Remark 3. Let us observe that
Cal@)l _ W)
|Gyl (1)’
where W is the permutation character for the action of G on its p-elements by conjugation.
In the language of permutation groups, this number coincides with the fixed point ratio of

with respect to this action, which explains why the main theorem of [2] will be an important
ingredient in the proof of Theorem C.

2. SOME PRELIMINARY RESULTS
For the remainder of this paper, all groups are finite and p is a prime number. We will
frequently use the elementary fact that if G is a group and H, K < G are subgroups, then
|H: HNK|<|G: K| (1)
with equality if and only if G = HK.
Lemma 2.1. Let G be a finite group and let N be a normal p-subgroup.
(i) If x € G is a p-element, then
Cale), /Gy < [Cayn (Na) | /[(G/N) .
(ii) Prp(G) < Prp(G/N).
Proof. Both parts quickly follow from the fact that |Gp| = [(G/N),||N|. O

Remark 2.2. In the previous lemma, the assumption that N is a p-subgroup is essential.
For example, there is a semidirect product G = Cs5:D15 with a normal subgroup IV of order
3 such that G/N = Dyp x D14 and we compute

211 11

(Here G is SmallGroup(420,30) in the GAP Small Groups library [8].) One can check that
this is the smallest finite group with Pr,(G) > Pr,(G/N) for some prime p.

Pry(G)

There is a special case where quotients by normal subgroups of order prime to p do not
change the proportions.

Lemma 2.3. Let G be a finite group and let N be a central p’-subgroup.
(i) If x € G is a p-element, then
1Ca(2),|/1Gpl = [Can(Nx) |/[(G/N)yp-
(ii) If N is central in G, then Pr,(G) = Pr,(G/N).
Proof. Let x € G be a p-element and suppose that [z, y] € N for some y € G. Since [z, N] =1
it follows that [zP,y] = [z, y]?, so [z,y] = 1. In addition, if y is a p-element, then y is the

only p-element in the coset Ny and so (i) follows. Now (ii) follows from (i), noting that G
and G/N both have the same number of p-elements. g
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Lemma 2.4. Let P be a p-group acting on a p’-group K and let L be a P-invariant subgroup
of K. If
|ICk(P): Cr(P)|
|K : L]

<1, (2)

then
Ck(P): Cu(P) _ 1
|K : L] Tp+1

Proof. Let C = Cg(P) and note that K # CL in view of the inequality in . For any
prime g, let Lg be a P-invariant Sylow g-subgroup of L, which is contained in a P-invariant
Sylow g-subgroup K, of K (see [12, Corollary 3.25]). Thus K,NL = L,. By coprime action,
Cq := CNK, and CN Ly are Sylow g-subgroups of C' and C'N L, respectively (see [12, Lemma
3.32], for example). In view of (2) we have
H |Cq:CqN L] |C:CNL|
q

= <1
| Ky : Lyl |K : Lj

and we note that

|Cq: CgN L _ |Cq : Cq N Ly 1
[Kq : Lg| [Kq : Lg|
for every prime ¢ (see (|1])). Therefore,
|C:CNL| |Cy:CyNn L
<

|K : L |Kq : Lg|

for every ¢, so the bound in implies that
|Cq : CyN L

|Kq : Ly

<1

for some q. As a consequence, we are free to assume that K is a g-group.

Arguing by induction on |K : L|, we may assume that L is a maximal P-invariant subgroup
of K. Then L is normal in K and K/L does not have any proper nontrivial P-invariant
subgroups, whence implies that C' = Cg(P) = C(P). If |Ck(y) : Cr(y)| = |K : L] for
every y € P, then P acts trivially on K/L and thus K = CL, which is incompatible with
(2). Therefore, we may assume that P = (y) is cyclic. Then the action of P on K/L is a
Frobenius action, which implies that if z € K\ L, then {L, Lz* : z € P} is a set of distinct
cosets of L in K. Therefore |K : L| > |P|+ 1 > p+ 1, as required. O

Next we record the following well known result.

Lemma 2.5. Let G be a finite group, let x,y € G and let K < G be a subgroup normalized
by z and y. If Kz = Ky and |K| is coprime with o(x)o(y), then x and y are K -conjugate.

Proof. We may assume G = K (z,y) and thus K is normal in G. Since Kz = Ky, it follows
that K(z) = K(y) = G. Now, K N (zx) = K N (y) = 1 and we also note that o(x) = o(y)
and (x), (y) are Hall m-subgroups of G, where 7 is the set of primes dividing o(z). By the
Schur-Zassenhaus theorem, we have (z)¥ = (y) for some k € K and thus 2* = y" for some
integer n. Now, Ky = Ko = KzF = Ky™ and y"y~! € KN (y) = 1, so y™ = y and the result
follows. O

We shall need one more well known fact about coprime actions, which follows from [12]
Theorem 3.27].

Lemma 2.6. Let G and A be finite groups with coprime orders and suppose that A acts on
G by automorphisms. Set C = Cg(A). Then G = C[A, G| and [A,[A,G]] = [A,G].
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3. PROOFS OoF THEOREMS C AND D

In this section we prove Theorems C and D. We begin by handling a special case of
Theorem C, which relies on the following proposition. In part (i), we write (Ky), for the set
of p-elements in the coset Ky, where p is a fixed prime throughout this section.

Proposition 3.1. Let G be a finite group and let K be a normal p'-subgroup of G. Let x € G
be an element of order p such that K = [z, K| and let y € G be a p-element with [z,y] = 1.

(i) If [y, K] # 1, then the proportion of elements in y* = (Ky), which commute with
x is at most 1/(p+1).

(i) If L = (K, x), then the proportion of p-elements in the coset Ly which commute with
x s at most 1/p.

Proof. First consider (i). Since K is a p’-group, Lemma implies that y¥€ is precisely the
set of p-elements in the coset Ky. Next observe that y N Cg(z) = (yK), N Cq(z) = (Ay)p,
where A = Cg(z), and another application of Lemma gives (Ay), = y. Therefore, the
proportion of elements in y* which commute with z is equal to

y" NCq(z)] _ |Ck(z): Ck(z) N Ck(y)]
Y& |K : Ck(y)|

If every element in y® commutes with z, then [y, K] < Cg(z). But then the three subgroups
lemma implies that y centralizes [z, K] = K, which is incompatible with the condition
[y, K] # 1 in (i). Therefore, the proportion in is less than 1 and by applying Lemma
(with L = Ck(y) and P = (x)) we deduce that it is at most 1/(p + 1) as required.

We now prove (ii). For 0 < i < p, let a; be the number of p-elements in Kx'y commuting
with z and let b; = [(Kz'y),|, so @ = >, a;/ >, b; is the proportion of p-elements in Ly
which commute with 2. If [x%y, K] # 1 for all 4, then (i) implies that a;/b; < 1/(p + 1) and
we immediately deduce that o < 1/(p+1). Therefore, we may assume [y, K] = 1 (otherwise
replace y by x'y for some 7). For 1 < i < p it follows that [z'y, K] # 1 (since [z, K] = K)
and thus a;/b; < 1/(p+ 1). Since |y®| = 1 we have ag = by = 1 and we deduce that

3)

L p
a < + ,
p+1 (p+1)m
where m = |(Ly),|. Finally, we note that b; > (p+ 1)a; > p+ 1 for 1 < i < p (since
r'y € Ka'y is a p-element commuting with ), so m > 14 (p — 1)(p + 1) = p? and we
conclude that a < 1/p. O

We are now ready to prove a special case of Theorem C.

Theorem 3.2. Let G be a finite group and let x € G be an element of order p. If there
exists a normal p'-subgroup K of G with [z, K] # 1, then

Ca(z), < 1 (1)
|Gp| p
Proof. By Lemma we may assume that O,(G) = 1. We can also assume that G =
KCg(x) and we may replace K by any proper normal subgroup of G contained in K that
does not centralize x. In particular, by Lemma we can replace K by [z, K] and so we
may assume that K = [z, K].

Set L = (K, z) and let y € G be a p-element. It suffices to show that the proportion of
p-elements in the coset Ly which commute with x is at most 1/p. Clearly, if no p-element
in Ly commutes with x, then this proportion is 0, so we may assume [z, y] = 1. Now apply

Proposition [3.1(ii). O
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Remark 3.3. Let F*(G) be the generalized Fitting subgroup of G. If F*(G) is a p’-group,
then O,(G) = 1 and the statement of Theorem holds for every nontrivial p-element x
because we can replace z by an element of order p in (z). Of course, if the upper bound in
holds for all elements in G of order p (modulo O,(G)), then the same bound holds for

every nontrivial p-element in G.

Recall that if G is a permutation group on a finite set §2, then the fized point ratio of an
element z € GG, denoted fpr(z, (), is the proportion of points in € fixed by z. It is easy to
see that if G is transitive and H is a point stabilizer, then

|ZGOH|

pr‘(Z,Q) = ’ZG|

The following is a simplified version of the main theorem of [2].
Theorem 3.4. Let G < Sym(R2) be a finite primitive permutation group with point stabilizer
H. If z € G has prime order p, then either
1
p+1

or one of the following holds (up to permutation isomorphism):

fpr(z,Q) <

(i) G is almost simple and either
(a) G =S, or A, acting on k-element subsets of {1,...,n} with 1 <k <n/2; or
(b) (G, H, z,1pr(z,9Q)) is known.
(ii) G is an affine group, F*(G) = F(G) = (Cp)?, 2z € GL4(p) is a transvection and
fpr(z, Q) = 1/p.
(iii) G < ALS; is a product type group with its product action on Q =T"* and z € A'NG,
where A < Sym(T") is one of the almost simple primitive groups in part (i).

We will also need the following corollary to Theorem in the almost simple setting (see
[2, Corollary 3]). Recall that the socle of an almost simple group G is its unique minimal
normal subgroup, which coincides with F*(G).

Corollary 3.5. Let G < Sym(2) be a finite almost simple primitive permutation group with
socle J. If z € G has prime order p, then either

1
fpr(z,Q) < —,
(2,9) ,

or one of the following holds (up to permutation isomorphism):

(i) J = A, and Q is the set of k-element subsets of {1,...,n} for some 1 <k <n/2;
(ii) (va) = (PSL2(Q)7Q - 1)7 (Sp6(2)7 3)7 (PSU4(2)7 2)7 (Spn(2)7 2) or (92(2)7 2)'

We will now use Theorem [3.4] and Corollary to handle two more special cases of
Theorem C, which will then be applied to obtain the result in full generality. In the following
proposition, the components of K are the quasisimple groups referred to in the statement.

Proposition 3.6. Let K be a central product of quasisimple groups with Op(K) =1 and
let z,y € Aut(K) be nontrivial p-elements such that x does not normalize any component
of K. Assume that the simple quotients of the components of K are isomorphic. Then the
proportion of elements in y* which commute with x is at most 1/(p +1).

Proof. We may assume that [z,y] = 1 and x has order p. Let K7, ..., K; be the components of
K and set L; = K;/Z(K;) = L. Note that t is a multiple of p since = acts fixed point freely on
the set of components. We can now view = and y as commuting automorphisms of the direct
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product J := L!, with o(z) = p and o(y) = p™ for some m > 1. Set G = (J,z,y) < Aut(J)
and note that J is the unique minimal normal subgroup of G. Now

[y’ N Ca()| _ |27 N Cq(y)]
ly”| ||

and it suffices to show that

[z N Ca(y)| 1
oWl o~ (5)
|z p+1

Let M be a maximal subgroup of G containing Cg(y) and observe that M does not
contain J since G = JCg(y). This allows us to view G acting primitively on the set of
cosets Q2 = G/M and we note that

[+ 0 Cow)| _ 1% 0 M|
@ S 1

Then by applying Theorem noting that = ¢ Aut(L)! N G by hypothesis, it follows that
fpr(z,Q) < 1/(p+ 1) and thus (5)) holds. O

= fpr(z, Q).

Next we seek a version of Proposition in the special case where K is quasisimple (see
Propositions and [3.12)). In order to do this, we will need the following elementary result.

Lemma 3.7. Let G be a finite group, let x € G\ Op(G) be a p-element and set
D ={yeG : (y) is G-conjugate to (z)}.
Then |D| = p* — 1.

Proof. Without loss of generality, we may assume that O,(G) = 1 and x has order p.
Consider the natural action of G on the set C of conjugates of (x) and note that |D| =
(p—1)|C], so it suffices to show that |C| > p+ 1. Note that x fixes (x) € C, so it has at least
one fixed point on C. If z acts trivially on C, then x centralizes each of its conjugates and
thus, by Baer’s theorem, z € O,(G), which is a contradiction. Therefore, x acts nontrivially
on C' and we conclude that |C| > p + 1. O

Remark 3.8. Let G, D and p be given as in Lemma Then |D| = p? — 1 if and only if
|Gp| = p* and the groups with this property are determined in Lemma

We also need the following result, which is a corollary of Theorem [3.4]

Lemma 3.9. Let G be an almost simple group with socle J and assume J is not isomorphic
to an alternating group. Let p be a prime divisor of |J| and suppose x € G has order p. Then
there exists an element y € J of order p such that
[y“ N Ca ()] 1
€] S :
v p+1

Proof. We may assume G = (J, x) and we may embed Cg(z) in a core-free maximal subgroup
H of G, so
G G
‘y N ?;G(m)’ < |y 2H| _ fpr(y, G/H)
ly] ly]

for every element y € J of order p. Clearly, the desired conclusion holds if there exists
such an element with fpr(y,G/H) < 1/(p + 1), so we may assume otherwise, in which case
(G, H,y) is one of the special cases arising in part (i)(b) of Theorem More precisely, [2]
Theorem 1] implies that either G is a classical group in a subspace action (and the special
cases that arise are recorded in [2 Table 6]), or G = Magg:2, H = PSL3(4).22 and p = 2. In
the latter case one can check that fpr(y, G/H) = 3/11 if y € J is an involution, so we may
assume G is a classical group in a subspace action. We now inspect the cases in [2, Table 6].
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If J is a unitary, symplectic or orthogonal group, then it is easy to check that in every
case (G, H) there exists an element y € J of order p such that fpr(y,G/H) < 1/(p+1). For
example, if J = PSp,,(¢) with n > 4, H = P; is the stabilizer of a 1-space and p = ¢, then
we can take y = (J22, J{“4), where J; denotes a standard unipotent Jordan block of size 1.

To complete the proof, let us assume J = PSL,,(¢) is a linear group and note that H = P}
is the stabilizer of a 1-space. If n > 4 then once again it is straightforward to see that there
is an element y € J of order p with fpr(y,G/H) < 1/(p + 1), so we may assume n € {2,3}.
Suppose n = 3. If p = ¢ > 3 then we can choose y = (J3), while for ¢ = 2 we must take
y = (Ja2,J1) and one can use GAP [§] to verify the desired bound in the statement of the
lemma. Similarly, if p = ¢ — 1 > 3 then we can take y to be the image (modulo scalars)
of a diagonal matrix (w,w™', 1), where w € F has order p. And if (¢,p) = (3,2) then
y = (=12, 1I1) is the only option and the result can be checked using GAP.

Finally, suppose J = PSLa(q), so ¢ > 7 since PSLy(4) and PSLy(5) are both isomorphic
to As. If p = ¢ — 1 then |y“| = ¢(¢ + 1) and |Cg(z)| < ¢, so the desired bound holds.
Now assume ¢ = p. Here both x and y are regular unipotent elements and we compute
ly%| = (p*> —1)/2 and |y“ N Cg(x)| = (p — 1)/2, which implies that

y9NCa(z)| _ 1
|y p+1
The result follows. O

Proposition 3.10. Let K be a quasisimple group such that O,(K) =1 and K/Z(K) is not
isomorphic to an alternating group. Let x € Aut(K) be a nontrivial p-element.

(i) There is a normal subset D of nontrivial p-elements in K such that |D| > p? — 1
and the proportion of elements in D which commute with x is at most 1/(p + 1).
(ii) Let y € Aut(K) be a nontrivial p-element.
(a) The proportion of elements in y® which commute with x is at most 1/p, unless
K =Q7%(2),n>8, p=2 and both x and y are transvections, in which case the
proportion is 1/2 +1/2(22 —1).
(b) The proportion of elements in (Ky), which commute with = is at most 1/p.

Proof. We may assume x has order p. Set J = K/Z(K) and view z as an automorphism of
J of order p. Set G = (J,z). By Lemma there exists an element y € J of order p such
that

J G 1
ly”| ly] p+1
If we write y for the corresponding element in K, then by applying Lemma [3.7] we deduce
that the normal subset

D ={z € K : (z) is K-conjugate to (y)} = U 2K

contains at least p? — 1 elements. Moreover, @ implies that the proportion of elements in
2K which commute with x is at most 1/(p + 1) for 1 <4 < t and thus part (i) follows.

Now let us turn to part (ii). We may assume [z,y] = 1 and we may view y as an
automorphism of J with o(y) = p® for some a > 1. Set G = (J,z,y) < Aut(J) and embed
Cc(y) in a core-free maximal subgroup H of G, which allows us to view G as an almost
simple primitive permutation group on Q = G/H.

For now, let us exclude the special cases (J,p) in Corollary [3.5(ii). Then Corollary
implies that

v’ N Ce(a)| _ |+ NCaly)l _ [+ N H|
ly”| /] e

= fpr(z,G/H) < (7)

SR
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and thus the proportion of elements in y® which commute with z is at most 1/p.

Next consider the coset Ky. Write (Ky), = yi U---UyX as a disjoint union of K-classes.
If Ky # K then each y; is a nontrivial p-element and so the proportion of elements in le
commuting with = is at most 1/p by and the desired result follows. A very similar
argument applies when Ky = K, but here we have to account for the identity element. To
do this, write K, = {1}UD U 2K U---U 2K where D is the normal subset in (i) and each
z; is nontrivial. Set ag = |D N Ck(x)| + 1, bg = |D| + 1, a; = |25 N Ck(z)| and b; = |2
for i > 1. As above, we have a;/b; < 1/p for i > 1, so it suffices to show that ag/by < 1/p.
If we write D = yf U--- UyK, then |y% N Ck(2)|/|y%| < 1/(p+ 1) for each i and thus

ao 1 P
— < + ;
bo p+1 m(p + 1)
where m = |D| + 1. Since m > p? we deduce that ag/by < 1/p and the result follows.

To complete the proof of (ii), it remains to consider the special cases (J,p) in Corollary
3.5|(i1). In each of these cases, G is an almost simple classical group in a subspace action
with point stabilizer H and there exists an element z € G of order p with fpr(z, G/H) > 1/p.
The possibilities for (G, H, z) are recorded in [2] Table 1]. By inspection, we observe that
either

(a) Cg(z) is contained in a maximal subgroup M of G such that fpr(z/,G/M) < 1/p
for all 2’ € G of order p; or

(b) G = Of(2), n > 8, p =2, H is the stabilizer of a nonsingular 1-space and z =
(JQa J{L_Q)'

So excluding the special case in (b), the previous argument goes through. In particular, the
previous argument applies if y € K (note that in case (b), z is contained in O} (2) \ J).

We have now reduced to the case where G = O} (2), p = 2 and both x and y are transvec-
tions. Here y/ = y“ and Cg(z) = H is the stabilizer of a nonsingular 1-space, so [2, Theorem
1] gives

ly/ N Ca(z)| 1 1
e =g 2(25 — 1)
for the proportion of elements in 4 commuting with 2. So this is an exception to the main
bound in (ii)(a), but we still claim that the proportion of 2-elements in Ky commuting with
x is at most 1/2.

To see this, write (Ky)s = y® Uy U---UyX as a disjoint union. By [2, Theorem 1], the
proportion of elements in yZK which commute with x is at most 1/3 for each 1 <i < r. As
a consequence, we deduce that the proportion of 2-elements in Ky commuting with x is at
most 1/2 so long as

But this inequality clearly holds since [2¢| > 2271(22 — 1) for every nontrivial 2-element
zeG. O

Remark 3.11. Let us observe that the upper bound in Proposition [3.10[ii)(b) is best pos-
sible. For example, let K = PSLy(p) and let x and y be inner automorphisms of K of order
p. Then |(Ky),| = p? and |Ck(z)| = p, so the relevant proportion is exactly 1/p.

We need a different result to handle alternating and symmetric groups.

Proposition 3.12. Let L = S, and J = A,,, where n > 5. Let x € L be an element of
prime order p and let y € L be a transposition.

(i) If p is odd, then the proportion of p-elements in J which commute with x is at most
1/p.
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(ii) If p = 2 and x is not a transposition, then the proportion of 2-elements in J or Jy
which commute with = is at most 1/2.

(iii) If p = 2 and z is a transposition, then the proportion of 2-elements in L which
commute with x is at most 1/2.

Proof. First assume p is odd and [supp(x)| = m > 5 with respect to the natural action of L
on {1,...,n}. Note that p divides m and it suffices to work inside H := A, x A, _,, since
H contains Cj(x),. In particular, we may assume that m = n. The result is clear if m = p,
so assume m > p. Here C () is contained in an imprimitive subgroup K = A, A, , and

so if we write J, = 2 U -+ U] with zg = 1, then
t
1C ()| < Ky _ T+ i 6
|7l ol 14+ 3 b

where a; = |z7 N K| and b; = |2]|. Now Theoremimplies that a;/b; < 1/(p+1) for all ¢
and we deduce that
Co@l _ 1

~X —"_ Y
] p+1  (p+1)ec
where ¢ = |.J,|. Since ¢ > p? (for example, this follows from Lemma we conclude that
this proportion is at most 1/p, as required.

So to complete the proof of (i), it remains to handle the special case where = = (1,2, 3)
is a 3-cycle. Set d = |(Sn—3)3| and note that |C;(z)s| = 3d. If a = (1,2,4) € J with i > 4,
then for each 3-element b € J fixing 1, 2 and i we see that a*bh € J \ Cy(x) is a 3-element.

Therefore, |J3| > 2d(n — 3) + 3d and thus
Cylx)s] 3 _1

|J3]  ~2n—-3 3
for n > 6. The case n = 5 can be handled directly.

For the remainder, let us assume p = 2 and write |supp(z)| = 2m. For m > 4 we can
essentially repeat the argument in (i). Write Cp(z) = (S20S,) X Sp—2m and let a; and ag be
the number of even and odd 2-elements in S20.5,,, respectively. Similarly, let b1 = |(An—2m)2|
and bg == |(Sn72m \ An,Qm)2|. Then

|CJ(.%')2| = a1b1 + asgbos, |CL($)2ﬂJy’ = a1bg + asby.
We claim that ) )
a; < §|(A2m)2|7 az < §|(Szm\A2m)2\- (8)

To see this, set K = Agy, and H = (S20Sp,) N K, so a; = |Hz|. By [2, Theorem 1], we
observe that [z N H|/|2%| < 1/3 for every nontrivial 2-element z € K and by arguing as in
case (i) we deduce that |Ha|/|K2| < 1/2. This justifies the first inequality in and a very
similar argument establishes the second. As an immediate consequence, we deduce that

1 1
Cs(@)2] < S1(S2m X Sp—2m)2 N J], |Cr(2)2N Jy| < 5l(S2m X Sn-2m)2 N Jy|

and thus the proportion of 2-elements in J and Jy commuting with z is at most 1/2. In the
same way, if m = 3 then we can reduce to the case n = 6 and here we can check the result
directly.

Next assume m = 2, say =z = (1,2)(3,4). Set d = |(Sp—4)2| and note that
|Cy(x)2| = |CL(z)2 N Jy| = 4d.
Fix 7,7 with 4 < i < j. Let Z(i,7) (respectively, W (i, 7)) be the set of elements in L of the
form uv, where u is a 4-cycle (respectively, a double transposition different from (1,2)(i, 7))
on {1,2,i,7} and v is a 2-element fixing each of these 4 points. Then |Z(i,j)| = 6d and

|W(i,7)| = 2d, so there are at least 2d distinct 2-elements of each parity in Z(7,j) U W (i, j),
none of which commute with z. Since there are (n — 4)(n — 5)/2 choices for {i,j}, and the
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corresponding sets of 2-elements are pairwise disjoint, this implies that the proportion of
2-elements in each coset commuting with x is at most

4
< =
44 (n—4)(n—5) 2
for n > 7. The cases n = 5,6 can be handled directly.

—_

Finally, let us assume x = (1,2) is a transposition. Set d = |(S,—2)2| and note that
|CrL(x)2] = 2d. For each j € {3,...,n}, let Z; denote the set of 2-elements in L which
interchange 1 and j. Note that the Z; are pairwise disjoint sets of size d and no element in
Z; commutes with z. Therefore, |Ly| > nd and we conclude that the proportion of 2-elements
in L centralizing z is at most 2/n. O

Remark 3.13. One can show that the conclusion in part (ii) of Proposition also holds
when z is a transposition. But the proof is more involved and we do not require the stronger
result.

Remark 3.14. In the proof of Theorem C, we will need to extend Proposition [3.12]to central
extensions K of A, with O,(K) = 1. This follows by Lemma [2.3| unless an element of order
p does not centralize Z(K). This only occurs when p = 2 and K is a 3-fold cover of A,. One
can check the result directly for these cases.

Finally, we are now ready to complete the proof of Theorem C.

Proof of Theorem C. Let G be a finite group and let z € G \ O,(G) be a p-element. Let
F(G) and F*(G) denote the Fitting and generalized Fitting subgroups of G, respectively,
and note that x € F(G). By Lemma we may assume that O,(G) = 1. Without loss of
generality, we may assume o(z) = p.

If x does not centralize O,/ (G), then the result follows by Theorem (3.2l Therefore, we
may assume ¢ € Cg(F(G)) and thus G is nonsolvable. Since z is not in O,(G), x acts
faithfully on F*(G) and therefore it must act faithfully on some subgroup K, which is a
central product of quasisimple components (each with order divisible by p). We may assume
that K is a minimal such subgroup, which implies that G acts transitively on the components
of K. Note that O,(K) = 1.

We can further assume that G = KCg(z) since both G and KCg(z) contain the same
number of p-elements commuting with z. Therefore, C(z) acts transitively on the compo-
nents of K, so either

(a) every orbit of z on the components of K has size p; or

(b) x normalizes each component of K, inducing the same automorphism (up to conju-
gacy) on each component.

For each y € Cg(x), it suffices to show that the proportion of p-elements in the coset
Ky which commute with z is at most 1/p. Fix such an element y and observe that we may
assume that G = (K, x,y). In addition, by repeating the argument above, we can reduce to
the case where (z,y) acts transitively on the components of K. We now consider cases (a)
and (b) in turn.

First assume (a) holds, so x does not normalize any component of K. Let z € Ky be a
nontrivial p-element. Then by Proposition the proportion of elements in 2 commuting
with x is at most 1/(p + 1). Therefore, if Ky # K then the proportion of p-elements in
Ky which commute with = is at most 1/(p 4+ 1). Similarly, if Ky = K then Lemma
implies that | K| > p? and by expressing K, as a union of K-classes we quickly deduce that
|ICk(x)p|/|Kp| < 1/p as required.

Finally, let us assume (b) holds, in which case y must act transitively on the components
of K. If K has two or more components, then y is nontrivial and we can just interchange
x and y in the argument above (noting that any element in Ky still acts transitively on
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the set of components). This allows us to reduce to the case where K is quasisimple. The
result now follows by applying Propositions [3.10{ii)(b) and except for the case where
K/Z(K) = A, is an alternating group, p = 2 and x acts as a transposition on K. In this case,
set L = (K, z) = S, and note that it suffices to show that the proportion of 2-elements in the
coset Ly which commute with x is at most 1/2. This follows from Proposition ii). O

Theorem D now follows by combining Theorem C with the following result.
Proposition 3.15. Let G be a finite group and let x € Op(G) \ Z(O,(G)). Then

C
Ca(z), 1

|Gl h p

Proof. Set @ = O,(G) and note that we may assume G = QCg(x). Let y € Cg(x) be a p-
element and note that (Qy), = Qy. Then the number of elements in the coset Qy commuting
with z is equal to |Cg(z)|, which is at most |Q|/p since = ¢ Z(Q). Therefore, the proportion
of p-elements in Qy commuting with x is at most 1/p and the result follows. O

To close this section, we present a family of examples to show that there exist finite groups
G with a p-element z such that
1 |Cql(a),
- < NP <1
p |Gp|
Note that Theorem D implies that such an element x must be in Z(O,(G)). In fact, our
examples have the property that this ratio tends to 1 as |G| tends to infinity.
We consider the cases p odd and p = 2 separately.

Example 3.16. Fix an odd prime p and consider the semidirect product H = A:B, where
A= (C’p)3 is elementary abelian and a generator b for B = C), acts on A with a single Jordan
block. Let a € A be a generator for A as a module for B. Note that A contains a normal
subgroup K of H with |K| = p?. Fix an element x € K \ H.

Let r be a prime with » = 1 (mod p) and fix a scalar u € F* of order p. Let V = (F,)? be
a p-dimensional vector space over F, and consider the semidirect product G = V:H, where
K acts trivially on V, a acts as (p, ..., u) and b acts via (1,4, ..., uP~1). We now compute

ICa(x)p| = (0* = p*)r? + 1%, |Gyl = (p* — p*)r? + (p* — p*)rP =1 + p*. (9)

This follows by counting the p-elements in each coset Vh of V, noting that if h centralizes
7, then the entire coset does as well. Here it is also helpful to observe that |(hV),| = |hY],
where |hY| =P if h € A\ K and |hY| =71 for h € H\ A.

Finally, let us observe that both expressions in @ are polynomials in r of degree p, with
the same leading coefficient, whence |Cq(z),|/|Gp| tends to 1 as r tends to infinity.

Similarly, we can present a family of examples for p = 2.

Example 3.17. Let H = (a,b) = Dig, where o(a) = 8 and o(b) = 2. Fix an odd prime r and
let V' be a 2-dimensional vector space over F,.. Consider the semidirect product G = V:H,
where a acts as (—1,—1) on V and b acts as (—1,1). Let z € H be an element of order 4.
Since

|Ca(x)a| = 4% + 4, |Ga| = 4r* + 8r + 4,

we conclude that the ratio |Cg(x)2|/|G2| tends to 1 as r tends to infinity.
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4. PROOF OF THEOREM A

In this section we prove Theorem A. We begin with some general observations. As always,
G is a finite group and p is a prime. As in Section [I] we set
2
p+p—1
fp)=—5—-.
(p) po
Lemma 4.1. If G/N is a p'-group, then Pr,(G) = Pr,((G,p)) = Prp(N).
Proof. This is clear because G, = (Gp)p = Np. O

We need the following elementary generalization of Gustafson’s theorem [I1] on the com-
muting probability Pr(G). This result explains the presence of the term f(p) in Theorem A
and it extends [13| Lemma 1.3].

Lemma 4.2. Let p be the smallest prime divisor of |G|. If Pr(G) > f(p), then G is abelian.

Proof. Recall that Pr(G) = k(G)/|G|, where k(G) is the number of conjugacy classes in G
(see [11]). Seeking a contradiction, let us assume G is nonabelian. Let Ki,..., K, be the
non-central conjugacy classes of G and note that |K;| > p for every i, so we have

G| = |+Z|K! G)|+rp

and thus r < (|G| —|Z(G)|)/p. Therefore,

K(G) = 1Z(G)| +r < <pl> z(e) + 19
p p
and thus ( 1) L 1) )
p— p p— p
Pr(@) < ’G:Z(G”eré PR fp),
where we have used the fact that G/Z(G) is not cyclic in the last inequality. This is a
contradiction. O

We now prove Theorem A. Note that if F*(G) is a p’-group, then the proof does not
require the classification of finite simple groups.

Proof of Theorem A. Let G be a finite group and let P be a Sylow p-subgroup of G. As
previously noted, if P is both normal and abelian, then Pr,(G) = 1.

Now assume Pr,(G) > f(p). We need to show that P is a normal abelian subgroup of G.
To do this, we first use induction on |G| to show that P is normal.

By Lemma Pr,(G/O,(G)) > f(p). If Oy(G) # 1, then the inductive hypothesis
implies that G/O,(G) has a normal Sylow p-subgroup, so O,(G) is a Sylow p-subgroup of
G and we are done. Now assume O,(G) = 1. By Theorem C, we have

G, 1
)= jap 2 (e, WIG+ ) )' (10)

z€Gy

Prp

Counsider the real-valued function

1 x—1 1 1\ 1
sop(fﬂ)=<1+ >=(1—)+,
z p T p) P

which is a decreasing function for x > 0. Seeking a contradiction, assume that P is not
normal. Then |Gp| > p? (this is clear if |P| > p?, and for |P| = p it follows from the fact
that G has at least p + 1 Sylow p-subgroups by Sylow’s theorem). Hence,

@mqw<%@%=;(u;)+;:ﬂm
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and we conclude that
Pr,(G) < ¢p(|Gpl) < f(p),
a contradiction. Therefore, P is a normal subgroup of G.

Finally, Lemma [4.1] yields
Pr(0,(G)) = Prp(0,(G)) = Prp(G) > f(p)
and thus Lemma [4.2] implies that O,(G) is abelian. O

5. PROOF OoF THEOREM B

In this final section we determine the finite groups G with Pr,(G) = f(p), which will allow
us to prove Theorem B as a special case. We will need the following auxiliary result.

Lemma 5.1. Let p be a prime and let G be a finite group such that G = Op,(G) and G has
a Sylow p-subgroup of order p. If Pry(G) = f(p), then either

(i) G is isomorphic to PSLa(p) or SLa(p); or

(ii) p=2"—12> 7 is a Mersenne prime and G = (C3)":C,, where C), acts as a Singer
cycle on (Cy)".

Proof. If x € G is a nontrivial p-element, then |Cg(x),| = p and we easily deduce that
Pr,(G) = f(p) if and only if |G,| = p?, or equivalently if G has precisely p + 1 Sylow p-
subgroups. Let P be a Sylow p-subgroup and let K be the largest normal subgroup of G
normalizing each Sylow p-subgroup of G. Then K is a p’-group and so [K, P] < KNP = 1.
Therefore, K is centralized by every p-element in G, so the condition G = O (@) implies
that K < Z(G) and G/K is a doubly transitive subgroup of S,11. Moreover, each point
stabilizer in this action is the normalizer of a Sylow p-subgroup and thus |G/K| < p(p* —1).

If p =2, then G/K = S3 and it is easy to check that G = S3 = PSL9(2) is the only
possibility. Similarly, if p = 3 then G/K = Ay and G = A4 = PSL2(3) or SLy(3) = Qg:Cs
are the only options. For the remainder we may assume that p > 5.

Suppose p is not a Mersenne prime. Then G/K is nonsolvable and by inspecting the list
of doubly transitive groups [4, Theorem 5.3] we see that G/K = PSLa(p). Since PSLa(p)
is perfect and K is central in G, by considering the Schur multiplier of PSLy(p) we deduce
that G = PSLa(p) or SLa(p).

Finally, let us assume p = 2" —1 > 7 is a Mersenne prime, so r is an odd prime. If G/K is
almost simple, we deduce as above that G = PSLa(p) or SLa(p). The other possibility is that
G/K has a normal elementary abelian 2-subgroup of order p+1 = 2". Thus G/K < AGL,(2).
Here each element in AGL,(2) of order p corresponds to a Singer cycle in GL,(2) and by
considering the overgroups of such elements (noting that G/K is generated by p-elements
and that a point stabilizer has order at most p(p — 1)) we deduce that G/K = (C3)":C),.
Since G is the normal closure of P, it follows that K is a 2-group. But since r is an odd
prime, we deduce that K =1 is the only possibility. Il

We can now classify all the finite groups with Pr,(G) = f(p), which yields Theorem B as
an immediate corollary.

Theorem 5.2. Let p be a prime and G a finite group with G = OP' (G) and Pr,(G) = f(p).
Let Q = Op(G) and let k be a positive integer. Then one of the following holds:
(i) G is a p-group with |G : Z(G)| = p>.
(ii) p = 5, Q is abelian and G = SLa(p) x @ or PSLa(p) x Q.
(iii) p=2"—1 > 3 is a Mersenne prime and G = (Cy)":C,
Singer cycle of order p on (C2)" and A < Q is abelian.
(iv) p=3 and G = Qs:Cqr. X A, where A < Q is abelian.

r X A, where Cpr acts as a
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(v) p=2 and G = C3:Cor x A, where A < Q is abelian.

Proof. Set Q@ = O,(G). If G/Q is abelian, then G is a p-group and by arguing as in the
proof of Lemmaﬁ we see that Pr,(G) = f(p) if and only if |G : Z(G)| = p*.

For the remainder, we may assume G/@ is nonabelian and thus Pr,(G) = Pr,(G/Q) by
Lemma This implies that if z,y € G, commute modulo @, then [z,y] = 1, which in
turn implies that Q < Z(G).

First assume that () = 1. Let P be a Sylow p-subgroup of G' and let n, be the number of
Sylow p-subgroups of G. As noted in the proof of Theorem A (see (10])), we have

Pr,(G) < — <1 + ‘GP—1> )
p

If |Gp| > p? then

= p2 +1 p3
so we may assume |G| < p? and thus P is abelian. If |P| = p?, then P is normal and abelian

and so Pry(G) = 1, a contradiction. So we can reduce further to the case where |P| = p and
n, =p+ 1. Now apply Lemma [5.1] to conclude.

Finally, let us assume @) # 1 and note that G/Q is one of the groups described in Lemma
First assume G/Q is nonsolvable, so p > 5 and G is a central extension of PSLy(p) or
SLa(p) by Q. Here (ii) holds since every p-central extension of one of these groups is split.

Suppose that p is a Mersenne prime with p > 7. Let T be a Sylow 2-subgroup of G. Then
T is elementary abelian and K :=T(Q =T x (. Thus, T is normal in G and G = T'P with P
a Sylow p-subgroup of G. Since P/K has order p, P is abelian and so P = (z) x A where A
is central and z induces an automorphism of order p on T', whence (iii) holds. If p = 3, the
same argument applies except that T is either elementary abelian of order 4 or a quaternion
group of order 8, leading to (iv).

If p = 2, the same argument applies with T' = ('35 a Sylow 3-subgroup of G. This leads to
(v). O

Corollary 5.3. Let G be a finite group such that Pr,(G) = f(p).
(i) If p=2, then G is solvable and O% (G) is metabelian.
(ii) If p = 3, then O%(Q) is solvable.

Finally, we turn to the asymptotic behaviour of Pr,(G) with respect to a fixed prime p
and a sequence of simple groups of order divisible by p. Set

Ip(G) =max{fy(z) : 1 #z € Gp},
where f,(x) = |Cq(x)p|/|Gp|. Note that

o) = G 32 B0 < i (- 1g) 50>

Proposition 5.4. Fiz a prime p and let G = A, be the alternating group of degree n. Then
Pr,(G) — 0 as n — co.

Proof. Since |G)p| tends to infinity with n, it suffices to show that f,(G) tends to 0. Let
y € S, be a nontrivial p-element. It is a straightforward exercise to check that for n large
enough, |Cg, (y),| is maximal when y is a p-cycle. Let us also observe that S, contains an
equal number of even and odd 2-elements commuting with a given 2-element z € S,, (this
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is because O3(Cg, (2)) contains odd permutations when z is nontrivial). Therefore, if n is
large enough we have

Cote)y
TN

with « = (1,...,p) € S, a p-cycle. For each integer p < j < n, let y; € S, be a p-cycle with
an orbit {1,...,p—1,j} and let Z; be the set of p-elements in Cg, (y;) that act nontrivially
on {1,...,p—1,7}. Note that the Z; are pairwise disjoint.

If p is odd, then |Z;| = (p— 1)!|(An—p)p| and we have |Cq(z),| = p|Z;|/(p—1)! = 2|Z;]/3,
whence
Cola)yl _ 2
Gl S 30-p)
and this upper bound tends to 0 as n tends to infinity. Similarly, if p = 2 then
1Zj| = [(Sn—2)2| = [Ca(x)|
and the result follows. O

It is possible to establish an analogous result for simple groups of Lie type, but the details
are more complicated and they will be given elsewhere. Here we just sketch some of the
main ideas. Fix a prime p. Let G be a simple group of Lie type over F, of (untwisted) rank
r and assume p divides |G|. As before, it suffices to show that f,(G) — 0 as |G| — oc.

First suppose that ¢ is increasing. Let = € G be a nontrivial p-element such that f,(x) =
fp(G) and note that we may assume z has order p. Let y € G be a nontrivial p-element and
observe that

[y“ N Co()|
|y©|
is the probability that  commutes with a random conjugate of y. By the main theorem of
[14], this ratio goes to 0 as ¢ tends to infinity. Since this is true for every nontrivial conjugacy
of p-elements, and since the number of p-elements in G tends to infinity as ¢ increases (recall
that we are assuming p divides |G|), we conclude that f,(G) — 0.

Now suppose ¢ is fixed and r is increasing, so we may assume G is a classical group
and we note that p divides |G| if r > p. First assume p divides ¢, so we are considering
unipotent elements. By a result of Steinberg (see [15, Lemma 2.16], for example) we have
|Gp| = ¥ ™ X~7 where X is the ambient simple algebraic group. By inspecting [I5], it is
easy to see that |Cg(z),| is maximal when z is a long root element and the result follows
easily.

Finally, let us assume that p does not divide ¢ and so x is a semisimple element. This
situation is somewhat more complicated, but there are several ways to proceed and much
stronger results can be established. For example, [3, Theorem 16] implies that if p is odd and
r > 2 then the probability that two random elements of order p generate G tends to 1 as |G|
tends to infinity (in particular, the probability that two such elements commute tends to 0).
With some additional work, this can be extended to p-elements, including the case p = 2 (of
course, a pair of involutions will not generate GG, but the probability that they commute still
goes to 0 as r increases). This stronger result implies that Pr,(G) — 0 as r tends to infinity.

It is interesting to consider some extensions of this problem. For example, suppose G is a
finite group such that 0,(G) =1 and G = OF'(G). Do we have Pr,(G) — 0 as |G| — oo?
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