
LOCALLY ELUSIVE CLASSICAL GROUPS

TIMOTHY C. BURNESS AND MICHAEL GIUDICI

Abstract. Let G be a transitive permutation group of degree n with point stabiliser
H and let r be a prime divisor of n. We say that G is r-elusive if it does not contain
a derangement of order r. The problem of determining the r-elusive primitive groups
can be reduced to the almost simple case, and the purpose of this paper is to complete
the study of r-elusivity for almost simple classical groups. Building on our earlier work
for geometric actions of classical groups, in this paper we handle the remaining non-
geometric actions where H is almost simple and irreducible. This requires a completely
different approach, using tools from the representation theory of quasisimple groups.

1. Introduction

Let G 6 Sym(Ω) be a transitive permutation group on a finite set Ω of size at least 2.
By the Orbit-Counting Lemma, G contains elements that act fixed-point-freely on Ω. Such
elements are called derangements, and their existence turns out to have some interesting
applications in many areas of mathematics, such as number theory and topology (see
Serre’s article [34]).

By a theorem of Fein, Kantor and Schacher [12], G contains a derangement of prime
power order (the proof requires the Classification of Finite Simple Groups). In fact, in
most cases, G contains a derangement of prime order, but there are some exceptions,
such as the 3-transitive action of the smallest Mathieu group M11 on 12 points. The
transitive permutation groups with this property are called elusive groups, and they have
been extensively studied in recent years (see [11, 14, 15, 16, 37], for example).

A local notion of elusivity was introduced in [10]. For a prime divisor r of |Ω|, we say
that G is r-elusive if it does not contain a derangement of order r (so G is elusive if and
only if it is r-elusive for all such primes r). In [10], the O’Nan-Scott theorem is used to
essentially reduce the problem of determining the r-elusive primitive groups to the almost
simple case, and the examples with an alternating or sporadic socle are identified in [10].
Therefore, it remains to determine the r-elusive primitive almost simple groups of Lie type
and our goal in this paper is to complete the picture for classical groups (the locally elusive
exceptional groups of Lie type will be the subject of a future paper).

Let G 6 Sym(Ω) be a primitive almost simple classical group over Fq with socle T and

point stabiliser H. Let V be the natural module for T and write n = dimV and q = pf ,
where p is a prime. Note that H is a maximal subgroup of G with G = HT . Roughly
speaking, Aschbacher’s subgroup structure theorem [1] states that either H belongs to
one of eight natural, or geometric, subgroup collections (denoted by C1, . . . , C8), or H is
almost simple and acts irreducibly on V . The geometric subgroups include the stabilisers
of appropriate subspaces and direct sum and tensor product decompositions of V (see [9,
Table 1.4.2] for a brief description of the subgroups in each Ci collection). We write S for
the collection of almost simple irreducible subgroups arising in Aschbacher’s theorem (see
Definition 2.10 for the precise definition of S), and we say that the action of G on Ω is an
S-action if H ∈ S. We will write S for the socle of a subgroup H ∈ S.
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A detailed analysis of the structure, maximality and conjugacy of the geometric sub-
groups of G is provided in [25]. This is used extensively in our study of the r-elusive
geometric actions of almost simple classical groups in [9] (see [9, Section 1.5] for a sum-
mary of the main results), which is organised according to Aschbacher’s theorem. This
approach relies on the fact that there is a concrete description of the embedding of each
geometric subgroup H in G, which permits a detailed study of the fusion of the conjugacy
classes of H in G. This sort of information is not readily available when H ∈ S is a
non-geometric subgroup of G, so a different approach is required. For example, it is not
even possible to list all the subgroups in S of a given classical group, in general (of course,
we do not even know the dimensions of all irreducible representations of simple groups).
However, detailed information is available for the low-dimensional groups with n 6 12 (see
[4]), which we use in [9, Section 6.3] to determine the r-elusive S-actions for n 6 5. In
this paper, our aim is to complete the study of S-actions initiated in [9] by extending the
analysis to all classical groups.

In order to state our main result (Theorem 1 below), we need to introduce two subcol-
lections of S, which we denote by the symbols A and B. A subgroup H ∈ S with socle
S belongs to the collection A if and only if S is an alternating group, q = p is prime and
V is the fully deleted permutation module for S over Fp (see Table 1). The collection
B is recorded in Table 2. We need to highlight these specific cases in order to state an
important theorem of Guralnick and Saxl [18, Theorem 7.1] on irreducible subgroups of
classical groups (see Theorem 2.11), which plays a key role in our proof of Theorem 1.

Remark 1. Let us make a couple of comments on the cases in Tables 1 and 2.

(i) Consider Case (A1) in Table 1. Here S = Ad and T = PΩε
n(p), where d > 8, p is

an odd prime and n = d − δ, with δ = 2 if p divides d, otherwise δ = 1. If n is
even then ε = + if and only if(

n+ 1

p

)
= (−1)

1
4
n(p−1)

(see Section 3).

(ii) In Table 2 we write L(λ) for the unique irreducible FqŜ-module of highest weight

λ (up to quasiequivalence, where Ŝ denotes the full covering group of S), and we
follow Bourbaki [3] in labelling the fundamental dominant weights λi. We also
note that the conditions recorded in the final column of Table 2 are necessary, but
not always sufficient, for the existence and maximality of H in G; for the precise
conditions, we refer the reader to the relevant tables in [4, Section 8.2].

Let r 6= p be a prime and let i > 1 be minimal such that r divides qi − 1. As above, let
n be the dimension of the natural module for T and set

c =

 2i if i is odd and T 6= PSLn(q)
i/2 if i ≡ 2 (mod 4) and T = PSUn(q)
i otherwise

(1)

as in [9]. We also introduce the following notation:

κ(T, r) is the number of conjugacy classes of subgroups of order r in T (2)

and we highlight the following conditions

r 6= p, r > 2, r divides |H ∩ T | and either c > n/2, or c = n/2 and T = PΩ−n (q). (?)

Note that if r divides |Ω| and all the conditions in (?) hold then κ(T, r) = 1 and thus T is
r-elusive (see Lemma 2.4 and Corollary 2.7).
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Case T Conditions

(A1)

{
PΩε

d−1(p) if (d, p) = 1

PΩε
d−2(p) otherwise

d > 8, p 6= 2

(A2) Spd−2(2) d > 10, d ≡ 2 (mod 4), p = 2

(A3)

{
Ω+
d−2(2) if d ≡ 0 (mod 8)

Ω−d−2(2) if d ≡ 4 (mod 8)
d > 12, d ≡ 0 (mod 4), p = 2

(A4)

{
Ω+
d−1(2) if d ≡ ±1 (mod 8)

Ω−d−1(2) if d ≡ ±3 (mod 8)
d > 9, d odd, p = 2

Table 1. The collection A, S = Ad

Case T S Conditions

(B1) PSp10(p) PSU5(2) p 6= 2

(B2) PΩ+
8 (q)

{
Ω7(q) p > 2

Sp6(q) p = 2

(B3) PΩ+
8 (q) 3D4(q0) q = q3

0

(B4) PΩ+
8 (p) Ω+

8 (2) p 6= 2

(B5) PSLε7(p) PSU3(3) p ≡ ε (mod 3), p > 5

(B6)

{
Ω7(q) p > 2

Sp6(q) p = 2
G2(q) q > 2, V = L(λ1)

(B7) Ω7(q) G2(q) p = 3, V = L(λ2)

(B8) Ω7(p) Sp6(2) p 6= 2

(B9) PSLε6(q) PSLε3(q) p 6= 2, V = L(2λ1)

(B10) PSLε6(q) A7 q 6 p2, p ≡ ε (mod 3), p > 5

(B11) PSLε6(q) A6 q 6 p2, p ≡ ε (mod 3), p > 5

(B12) PSLε6(p) PSL3(4) p ≡ ε (mod 3), p > 5

(B13) PSLε6(p) PSU4(3) p ≡ ε (mod 3), p > 5

(B14) PSL6(3) M12

(B15) PSU6(2) PSU4(3)

(B16) PSU6(2) M22

(B17) PSp6(q) J2 q 6 p2, p > 3

(B18) PSp6(p) PSU3(3) p 6= 3

Table 2. The collection B

Theorem 1. Let G 6 Sym(Ω) be a primitive almost simple classical group with socle T
and point stabiliser H ∈ S. Let S denote the socle of H and let n be the dimension of the
natural T -module. Let r be a prime divisor of |Ω|. Then T is r-elusive if and only if one
of the following holds:

(i) n < 6 and (T, S, r) is one of the cases recorded in Table 3;

(ii) n > 6, H ∈ A and one of the following holds:

(a) r = 2, p 6= 2, T = Ωn(p) and
(

(n+1)/2
p

)
= 1;

(b) r = 2, p 6= 2, T = PΩε
n(p), n ≡ 2 (mod 4) and p ≡ 5ε (mod 8);

(c) r 6= p, r > 2, r divides |H ∩ T | and c = r − 1;

(iii) n > 6, H ∈ B and (T, S, r) is one of the cases recorded in Table 4;
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(iv) n > 6, H 6∈ A ∪ B and all the conditions in (?) hold.

Remark 2. As previously remarked, the r-elusive S-actions with n < 6 are determined
in [9, Proposition 6.3.1]. The relevant cases are listed in Table 3, where the final column
records necessary and sufficient conditions for the r-elusivity of T (in particular, the given
conditions ensure that r divides |Ω|). These are additional to the conditions needed for
the existence and maximality of H in G, which can be read off from the relevant tables in
[4, Section 8.2], or from [9, Table 6.3.1]. Similarly, we refer the reader to Remark 4.2 for
further information on the conditions recorded in the final column of Table 4.

Remark 3. Note that r2 must divide qc − 1 if (T, S, r) is an example arising in part
(iv) of Theorem 1. It is easy to see that there are genuine examples. For example, take
T = PΩ+

12(p), S = PSL2(11) and r = 11, where p is a prime such that p ≡ −1 (mod 605),
so c = 10 and [4, Table 8.83] indicates that S is a maximal subgroup of T . Note that there
are infinitely many primes of this form by Dirichlet’s theorem.

T S r Conditions

PSLε5(q) PSU4(2) 2

5 q2 ≡ −1 (mod 25)

PSL2(11) 5 q2 ≡ −1 (mod 25)

11 q 6≡ ε (mod 11), q5 ≡ ε (mod 121)

M11 11 (ε, q) = (+, 3)

PSLε4(q) PSU4(2) 2 q 6≡ ε (mod 8)

3 q ≡ ε (mod 9)

5 q2 ≡ −1 (mod 25)

A7 2 q ≡ 5ε (mod 8)

3 q ≡ −ε (mod 9)

5 q2 ≡ −1 (mod 25)

7 q(q + ε) ≡ −1 (mod 49)

PSL2(7) 2 q ≡ 5ε (mod 8)

7 q(q + ε) ≡ −1 (mod 49)

PSL3(4) 2 (ε, q) = (−, 3)

PSp4(q)′ A6 2 q ≡ ±1 (mod 12)

3 q2 ≡ 1 (mod 9)

5 q2 ≡ −1 (mod 25)

A7 5 q = 7

PSLε3(q) PSL2(7) 2

3 q ≡ 4ε, 7ε, 8ε (mod 9)

7 q ≡ −ε (mod 49) or q(q + ε) ≡ −1 (mod 49)

A6 2 (ε, q) 6= (−, 5)

5 q ≡ −ε (mod 25)

A7 2 (ε, q) = (−, 5)

PSL2(q) A5 2 q ≡ ±1 (mod 8)

3, 5 q ≡ ±1 (mod r2)

Table 3. The r-elusive S-actions, n < 6

Corollary 1. Let G 6 Sym(Ω) be a primitive almost simple classical group with socle T
and point stabiliser H ∈ S. Let S denote the socle of H and let n be the dimension of the
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Case T S r Conditions

(B1) PSp10(p) PSU5(2) 2 p ≡ ±1 (mod 8)

11 p2 6≡ 1 (mod 11), p5 ≡ ±1 (mod 121)

(B4) PΩ+
8 (p) Ω+

8 (2) 2 p > 7

3 p2 ≡ 1 (mod 9)

5 p2 ≡ −1 (mod 25)

7 p2 6≡ 1 (mod 7), p3 ≡ ±1 (mod 49)

(B5) PSLε7(p) PSU3(3) 7 p2 6≡ 1 (mod 7), p3 ≡ −ε (mod 49)

(B8) Ω7(p) Sp6(2) 2 p > 7

3 p2 ≡ 1 (mod 9)

5 p2 ≡ −1 (mod 25)

7 p2 6≡ 1 (mod 7), p3 ≡ ±1 (mod 49)

(B10) PSLε6(q) A7 5 q2 ≡ −1 (mod 25)

7 q2 6≡ 1 (mod 7), q3 ≡ −ε (mod 49)

(B11) PSLε6(q) A6 5 q2 ≡ −1 (mod 25)

(B12) PSLε6(p) PSL3(4) 2 p ≡ −5ε (mod 24)

5 p2 ≡ −1 (mod 25)

7 p2 6≡ 1 (mod 7), p3 ≡ −ε (mod 49)

(B13) PSLε6(p) PSU4(3) 2 p ≡ ε (mod 12)

5 p2 ≡ −1 (mod 25)

7 p2 6≡ 1 (mod 7), p3 ≡ −ε (mod 49)

(B14) PSL6(3) M12 2, 11

(B15) PSU6(2) PSU4(3) 2

(B17) PSp6(q) J2 2 q2 ≡ 1 (mod 8)

5 q2 ≡ −1 (mod 125)

7 q2 6≡ 1 (mod 7), q3 ≡ ±1 (mod 49)

(B18) PSp6(p) PSU3(3) 2 p ≡ ±1 (mod 12)

7 p2 6≡ 1 (mod 7), p3 ≡ ±1 (mod 49)

Table 4. The r-elusive S-actions, H ∈ B

natural T -module. Let r be a prime dividing |Ω| and |H ∩T |, and define κ(T, r) as in (2).
Then T is r-elusive if and only if one of the following holds:

(i) κ(T, r) = 1;

(ii) r > 5, r 6= p, H ∈ A and c = r − 1;

(iii) r ∈ {2, 3} and (T, S, r) is one of the cases recorded in Table 5.

In particular, if n > 10 then T is r-elusive only if κ(T, r) = 1 or H ∈ A.

This corollary is easily deduced from Theorem 1. To see this, first recall that κ(T, r) = 1
if the conditions in (?) hold, and one checks that the same is true for all the cases in Tables
3 and 4 with r > 5. To determine the examples appearing in Table 5 we include the two
cases with H ∈ A and r = 2 in Theorem 1(ii), and we exclude those in Tables 3 and 4
with r ∈ {2, 3} and κ(T, r) = 1.

Notice that there are genuine examples arising in parts (i) and (ii) of Corollary 1. For
(i), see Remark 3. For an example in (ii), take T = Ω15(p), S = A16 and r = 7, where p
is a prime such that p(p− 1) ≡ −1 (mod 49) (here T is r-elusive and κ(T, r) = 2).
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T S r Conditions

Ωd−δ(p) Ad 2 p 6= 2, d− δ odd,
(

(d−δ+1)/2
p

)
= 1

PΩε
d−δ(p) Ad 2 p 6= 2, (d− δ) ≡ 2 (mod 4), p ≡ 5ε (mod 8)

PSp10(p) PSU5(2) 2 p ≡ ±1 (mod 8)

PΩ+
8 (p) Ω+

8 (2) 2 p > 7

3 p2 ≡ 1 (mod 9)

Ω7(p) Sp6(2) 2 p > 7

3 p2 ≡ 1 (mod 9)

PSLε6(q) PSL3(4) 2 p ≡ −5ε (mod 24)

PSU4(3) 2 p ≡ ε (mod 12)

M12 2 (ε, q) = (+, 3)

PSU6(2) PSU4(3) 2

PSp6(q) J2 2 q2 ≡ 1 (mod 8)

PSU3(3) 2 q = p ≡ ±1 (mod 12)

PSLε5(q) PSU4(2) 2

PSLε4(q) PSU4(2) 2 q ≡ −ε (mod 4)

3 q ≡ ε (mod 9)

PSLε4(q) A7 3 q ≡ −ε (mod 9)

PSp4(q)′ A6 2 q ≡ ±1 (mod 12)

3 q2 ≡ 1 (mod 9)

δ = 2 if p divides d, otherwise δ = 1

Table 5. The r-elusive S-actions with r ∈ {2, 3} and κ(T, r) > 2

Remark 4. We can immediately determine the r-elusive S-actions with r = 2 or 3 from
Theorem 1 (there are no examples if H 6∈ A and n > 10). It is also worth noting that the
only p-elusive S-action, where p is the defining characteristic, is the case labelled (B15) in
Table 2 with T = PSU6(2) and S = PSU4(3).

Let us briefly describe the proof of Theorem 1. First, recall that we may assume n > 6,
where n is the dimension of the natural module for T . We start by considering the
collections A and B, which are handled directly in Sections 3 and 4, respectively. In order
to complete the proof, we may assume that H 6∈ A ∪ B and it remains to show that T is
r-elusive if and only if all the conditions in (?) hold.

To do this, we first apply a key theorem of Guralnick and Saxl (see Theorem 2.11),
which provides an important reduction to the situation where

r 6= p, r > 2, r divides |H ∩ T | and c > max{2,
√
n/2}

with c the integer defined in (1). This is the content of Proposition 5.1 and it essentially
reduces the problem to showing that T contains a derangement of order r whenever r 6= p
is an odd prime such that

max{2,
√
n/2} < c 6 n/2

(see Proposition 5.2 for the precise statement).

Not surprisingly, most of the work in this final part of the argument arises when S is
a simple group of Lie type. Here the analysis naturally splits into two cases, according
to whether or not S ∈ Lie(p), where Lie(p) is the set of simple groups of Lie type in the
defining characteristic p (the case S 6∈ Lie(p) is studied in Section 5.3 and the proof is
completed in Section 5.4). A similar approach applies in both cases; either we identify
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a specific derangement of order r (this is often an element x ∈ T of order r with the
largest possible 1-eigenspace on the natural module), or we argue by estimating, and then
comparing, the number of conjugacy classes of elements (or subgroups) of order r in T
and H ∩ T , respectively. For S 6∈ Lie(p), the analysis relies heavily on the well known
bounds of Landazuri and Seitz [27] on the dimensions of irreducible representations. In
the defining characteristic, we use the highest weight theory of irreducible representations
of quasisimple groups and the ambient simple algebraic groups. Work of Hiss and Malle
[19] and Lübeck [31] also plays an important role.

We conclude by presenting several corollaries that are obtained by combining Theorem
1 with the main results of [9] on geometric actions of classical groups. We follow [25] in
labelling the geometric subgroup collections C1, . . . , C8 (see [9, Table 1.4.2]).

Corollary 2. Let G 6 Sym(Ω) be a primitive almost simple classical group over Fq, where
q = pa with p prime. Let T and H be the socle and point stabiliser of G, and let r be a
prime divisor of |Ω|.

(i) If H ∈ C1 ∪ C2, r = p > 2 and T is r-elusive, then (G,H) belongs to a known list
of cases.

(ii) If H ∈ S then T is r-elusive if and only if (G,H, r) satisfies the conditions in
Theorem 1.

(iii) In all other cases, T is r-elusive if and only if (G,H, r) belongs to a known list of
cases.

Remark 5. In part (i) of Corollary 2, we refer the reader to [9, Theorems 4.1.4 and 5.1.2]
for further details. Similarly in (iii), if H ∈ Ci then the relevant cases are recorded in
[9, Theorem 5.i.1]. It is important to note that we are not claiming to have a complete
classification of all the r-elusive classical groups. Indeed, in [9] we are unable to determine
necessary and sufficient conditions for p-elusivity in all cases when p is odd and H ∈ C1∪C2.

Next we extend [9, Theorem 1.5.3] to give a complete description of the 2-elusive almost
simple primitive classical groups (note that κ(T, 2) > 2 if n > 6, where n is the dimension
of the natural module for T ).

Corollary 3. Let G 6 Sym(Ω) be a primitive almost simple classical group over Fq with
socle T and point stabiliser H. Then T is 2-elusive if and only if |Ω| is even and one of
the following holds:

(i) H ∈ C1 and (G,H) is one of the cases in [9, Table 4.1.3];

(ii) H ∈ S and (G,H) is one of the cases in Tables 3 or 5 (with r = 2);

(iii) H 6∈ C1 ∪ S and (G,H) is one of the cases in [9, Table 5.1.2].

Finally, by combining Corollary 1 with the main results in [9, Sections 5.3-5.9] we obtain
Corollary 4 below. Notice that we omit the Ci-actions with i ∈ {1, 2} since it is not possible
to state a definitive result in these cases when r = p (and the required conditions when
r 6= p are rather complicated); we refer the reader to the relevant discussion in [9, Chapter
4 and Section 5.1]). In order to state the result, let us say that a partition λ = (λ1, . . . , λt)
of a positive integer is p-bounded (with p prime) if λi 6 p for all i. In addition, set
d(λ) = gcd{λ1, . . . , λt}.

Corollary 4. Let G 6 Sym(Ω) be a primitive almost simple classical group over Fq, where
q = pa with p prime. Let T and H be the socle and point stabiliser of G, respectively, and
let n denote the dimension of the natural T -module. Let r > 5 be a prime divisor of |Ω|
and assume n > 5 and H 6∈ C1 ∪ C2. Define κ(T, r) as in (2). Then T is r-elusive if and
only if one of the following holds:
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(i) κ(T, r) = 1;

(ii) r 6= p, H ∈ A and c = r − 1;

(iii) H ∈ C5 is a subfield subgroup over Fq0 with q = qk0 for an odd prime k and either
r = k, or r = p and the following conditions hold if T = PSLεn(q):
(a) (d(λ), q − ε) = (d(λ), q0 − ε) for every p-bounded partition λ of n;

(b) If there is a partition λ in (a) with (d(λ), q − ε) > 1, then either k > p or
(k, (n, q0 − ε)) = 1.

(iv) r = p, T = PSLn(q), H ∈ C8 is of type GUn(q0) with q = q2
0, n is odd and

(d(λ), q − 1) = (d(λ), q0 + 1) for every p-bounded partition λ of n.

See [9, Sections 5.5 and 5.8] for an explanation of the number-theoretic conditions
appearing in parts (iii) and (iv) of Corollary 4. Notice that there are genuine p-elusive
examples in these cases. For instance, in (iii) we see that T = PSL6(q) is p-elusive when
p > 7 and k > 5. Similarly in (iv), if we take p > 7 then T = PSL7(q) is p-elusive.

Notation. We adopt the notation of [9, 25] for classical groups, so for example we
write PSL+

n (q) = PSLn(q) and PSL−n (q) = PSUn(q). We also use the standard notation
for labelling involution class representatives presented in [17] and [2], in the odd and
even characteristic settings, respectively. We use the notation in [9] for representatives of
conjugacy classes of elements of odd prime order, which is recalled in Section 2.2. Finally,
if n is a positive integer then Zn (or just n) denotes a cyclic group of order n.

Acknowledgments. We thank an anonymous referee for helpful comments on an earlier
version of the paper. The second author is supported by the Australian Research Council
Grant DP160102323.

2. Preliminaries

In this section we record some preliminary results which will be needed in the proof of
Theorem 1.

2.1. Derangements. We begin with a useful lemma on derangements in the socle of a
primitive almost simple group.

Lemma 2.1. Let G 6 Sym(Ω) be an almost simple primitive group with socle T and
point stabiliser H. Set H0 = H ∩ T and let Ω0 be the set of right cosets of H0 in T . Then
∆(T ) = ∆0(T ), where ∆(T ) and ∆0(T ) denote the set of derangements in T on Ω and
Ω0, respectively. In particular, if r is a prime divisor of |Ω| then T is r-elusive on Ω if
and only if T is r-elusive on Ω0.

Proof. First observe that |Ω| = |Ω0|. Suppose x ∈ ∆(T ). If x has a fixed point on Ω0 then
x ∈ Ht

0 for some t ∈ T , so x ∈ Ht and thus x fixes a point of Ω, which is a contradiction.
Therefore, ∆(T ) ⊆ ∆0(T ). Now assume y ∈ ∆0(T ) and suppose y fixes a point of ∆, so
y ∈ Hg ∩ T for some g ∈ G. Since G = HT , we can write g = ht for some h ∈ H, t ∈ T ,
so y ∈ Ht ∩ T = Ht

0, but this contradicts the fact that y is a derangement on Ω0. The
result follows. �

Corollary 2.2. Let G 6 Sym(Ω) be an almost simple primitive group with socle T and
point stabiliser H. Let r be a prime divisor of |Ω| and set H0 = H ∩ T . Suppose there
are more T -classes of elements (or subgroups) of order r in T than there are H0-classes
of such elements (or subgroups) in H0. Then T is not r-elusive on Ω.
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2.2. Conjugacy classes. The conjugacy classes of elements of prime order in the almost
simple classical groups are studied in [9, Chapter 3], which brings together earlier work of
Wall [36], Aschbacher and Seitz [2], Liebeck and Seitz [28], Gorenstein, Lyons and Solomon
[17] and others. In order to highlight some of the results and the relevant notation, let us
focus on conjugacy in the general linear group G = GLn(q), where q = pf with p a prime.
Let V be the natural module.

Let x ∈ G be an element of prime order r. If r 6= p then x is diagonalisable over Fqi ,
but not over any proper subfield, where i = Φ(r, q) is the integer

Φ(r, q) = min{i ∈ N : r divides qi − 1}. (3)

In other words, r is a primitive prime divisor of qi − 1. By Maschke’s Theorem, x fixes a
direct sum decomposition

V = U1 ⊕ · · · ⊕ Um ⊕ CV (x),

where each Uj is an i-dimensional subspace on which x acts irreducibly, and CV (x) denotes

the 1-eigenspace of x. The eigenvalues of x on Uj⊗Fqi are of the form Λ = {λ, λq, . . . , λqi−1}
for some nontrivial r-th root of unity λ ∈ Fqi . In total, there are t = (r− 1)/i possibilities
for Λ, say Λ1, . . . ,Λt (these are simply the orbits on the set of nontrivial r-th roots of
unity in Fqi under the permutation ω 7→ ωq). Following [9], if aj denotes the multiplicity
of Λj in the multiset of eigenvalues of x on V ⊗ Fqi , then we will write

x = [Λa11 , . . . ,Λ
at
t , Ie],

where e = dimCV (x). This convenient notation is justified by [9, Lemma 3.1.7], which
states that two elements of order r in G are conjugate if and only if they have the same
multiset of eigenvalues (in Fqi).

There is a similar description of the semisimple conjugacy classes of elements of prime
order in the other classical groups, with some suitable modifications. For instance, if
x ∈ Spn(q) and ir is odd, then t = (r − 1)/i = 2s is even and the Λj can be labelled so

that Λ−1
j = Λs+j for 1 6 j 6 s (where Λ−1

j = {λ−1 : λ ∈ Λj}). Then the fact that x
preserves a symplectic form on V implies that aj = as+j for each j, so we can write

x = [(Λ1,Λ
−1
1 )a1 , . . . , (Λs,Λ

−1
s )as , Ie].

Once again, two elements of order r are conjugate if and only if they have the same
eigenvalues. We refer the reader to [9, Chapter 3] for further details.

Remark 2.3. Let T be a simple classical group over Fq with natural module V and let
x ∈ T be an element of odd prime order r 6= p. Set n = dimV , i = Φ(r, q) and assume
c > 2, where c is the integer in (1). By [9, Lemma 3.1.3] we may write x = x̂Z, where
x̂ ∈ GL(V ), Z = Z(GL(V )) and x̂ has order r. Here x̂ is conjugate to a block-diagonal
matrix of the form [Xa1

1 , . . . , Xas
s , Ie], where s = (r − 1)/c and the Xj are distinct c × c

matrices with distinct eigenvalues in Fqi (here aj denotes the multiplicity of Xj as a
diagonal block of x̂). For example, if T = PSLn(q) then c = i and Xj is irreducible with
eigenvalues Λj as above. In particular, there exists an element x ∈ T of order r such that
dimCV (x̂) = n−c (and the nontrivial eigenvalues of such an element (in Fqi) are distinct).

Now suppose x ∈ G has order r = p. Here we can write

x = [J
ap
p , J

ap−1

p−1 , . . . , J
a1
1 ], (4)

where Ji is a standard unipotent Jordan block of size i, and ai denotes the multiplicity of
Ji in the Jordan form of x on V . In GLn(q), two elements of order p are conjugate if and
only if they have the same Jordan form. There is a similar description of the conjugacy
classes of elements of order p in the other classical groups (again, we refer the reader to
[9, Chapter 3]).
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In the proof of Theorem 1, we will often establish the existence of a derangement of
order r by comparing the number of T -classes of subgroups (or elements) in T with the
number of such H0-classes in H0 (recall that if the former is greater than the latter, then T
contains a derangement of order r by Corollary 2.2). Therefore, it will be helpful to have
some general bounds on the number of such classes. With this aim in mind, the following
notation will be useful.

Notation. Let G be a finite group and let m be a positive integer. We write κ(G,m) for
the number of conjugacy classes of subgroups of order m in G.

Lemma 2.4. Let T be a simple classical group over Fq, let n be the dimension of the
natural module and let r 6= p be an odd prime divisor of |T |. Set m = bn/cc, where c is
the integer in (1). Assume c > 2.

(i) κ(T, r) = 1 if and only if m = 1, or T = PΩ−n (q) and c = n/2.

(ii) If m = 2, with c 6= n/2 if T = PΩ+
n (q), then κ(T, r) 6 (r − 1)/c+ 1.

(iii) κ(T, r) > m − δ, where δ = 1 if T is an orthogonal group and n = mc, otherwise
δ = 0. In particular, κ(T, r) > bn/(r − 1)c − 1.

Proof. First consider (i). If m > 2 (and c 6= n/2 if T = PΩ−n (q)) then 〈[X1, In−c]Z〉 and
〈[X2

1 , In−2c]Z〉 represent two distinct T -classes of subgroups of order r, so κ(T, r) > 2.
For the converse, let us assume m = 1, or T = PΩ−n (q) and c = n/2. We claim that
κ(T, r) = 1.

Let x ∈ T be an element of order r. By replacing x with a suitable conjugate, if
necessary, we may assume that x = x̂Z with x̂ = [Xa1

1 , . . . , Xas
s , Ie] as in Remark 2.3 (so

s = (r − 1)/c). Suppose T 6= PΩ±n (q). Since each Xj has size c we have x̂ = [Xj , In−c] for
some j, hence T has s conjugacy classes of elements of order r. Now the eigenvalues of
Xj coincide with the eigenvalues of a suitable power of X1, so 〈x〉 is T -conjugate to 〈y〉,
where y = ŷZ ∈ T and ŷ = [X1, In−c], so κ(T, r) = 1 as claimed.

Now assume T = PΩε
n(q) with ε = ±. If n/2 < c < n then the above argument goes

through unchanged. If c = n/2 then ε = − and CV (x̂) has to be nontrivial (see [9, Remark
3.5.5(iii)]), so x̂ = [Xj , In/2] and the same argument applies. Finally, suppose c = n. There
are two cases to consider:

(a) T = PΩ+
n (q), n ≡ 2 (mod 4) and r is a primitive prime divisor of qn/2 − 1.

(b) T = PΩ−n (q) and r is a primitive prime divisor of qn − 1.

Here x̂ = [Xj ] and for each choice of j there are two T -classes of elements of this form,
which are fused in POε

n(q) (see [9, Proposition 3.5.8]). In both cases, we observe that a

Sylow r-subgroup of Ωε
n(q) is contained in a cyclic maximal torus of Oε

n(q) of order qn/2−ε.
In particular, the Sylow r-subgroups of T are cyclic and we conclude that κ(T, r) = 1.

Now let us turn to (ii). As in (i), if T = PΩ−n (q) and c = n/2 then T has a unique
class of subgroups of order r, so for the remainder we may assume that c 6= n/2 if T
is an orthogonal group. Let 〈x〉 be a subgroup of T of order r. Since m = 2, it is
easy to see that 〈x〉 is T -conjugate to one of 〈[X1, In−c]Z〉 or 〈[X1, Xj , In−2c]Z〉 for some
j ∈ {1, . . . , (r − 1)/c}. The result follows.

Finally, consider (iii). Clearly, none of the subgroups 〈[Xa
1 , In−ac]Z〉 are T -conjugate,

where 1 6 a < m. In addition, if either n > mc, or n = mc and T is not an orthogonal
group, then 〈[Xm

1 , In−mc]Z〉 represents an additional class of subgroups of order r. �

Remark 2.5. The definition of δ in part (iii) of Lemma 2.4 can be explained as follows.
Let T = PΩε

n(q) and set i = Φ(r, q) as in (3), so c = 2i if i is odd, otherwise c = i. Suppose
i = r − 1 and n = mi = mc. If ε = (−)m−1 then CV (x̂) is nontrivial for all x ∈ T of
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order r (see [9, Remark 3.5.5]), so the subgroups 〈[Xa
1 , In−ac]Z〉 with 1 6 a < m form a

complete set of representatives of the T -classes of subgroups of order r.

Remark 2.6. Observe that the inequality in Lemma 2.4(ii) need not be equality since
〈[X1, Xj , In−2c]Z〉 and 〈[X1, Xk, In−2c]Z〉 may be conjugate for j 6= k. For example, sup-
pose T = PSL4(16) and r = 17, so c = m = 2 and Xi has eigenvalues {ωi, ωr−i} for some
r-th root of unity ω. Then [X1, X2]8 and [X1, X8] are T -conjugate (they have the same
set of eigenvalues), so 〈[X1, X2]Z〉 and 〈[X1, X8]Z〉 are conjugate subgroups.

The next result follows immediately from part (i) of Lemma 2.4; in the statement, we
refer to the conditions recorded in (?) (see p.2).

Corollary 2.7. Let G 6 Sym(Ω) be an almost simple primitive classical group over Fq
with socle T and point stabiliser H. Let n be the dimension of the natural T -module and
let r be a prime divisor of |Ω|. If all of the conditions in (?) hold, then T is r-elusive.

Lemma 2.8. Let T1 and T2 be finite simple classical groups over Fq, where q = pf and
p is a prime. Let n1 and n2 be the dimensions of the respective natural modules and let
r 6= p be an odd prime divisor of |T1| and |T2|. Set i = Φ(r, q) and

cj =

 2i if i is odd and Tj 6= PSLnj (q)
i/2 if i ≡ 2 (mod 4) and Tj = PSUnj (q)
i otherwise

and assume that c1 > c2 > 2 and n2 > 2n1. Then κ(T2, r) > κ(T1, r).

Proof. First assume c1 = c2 = c and set s = (r − 1)/c. Let {〈xj〉 : 1 6 j 6 κ(T1, r)} be a
set of representatives of the T1-classes of subgroups of order r. Write xj = x̂jZ with

x̂j = [X
a1,j
1 , . . . , X

as,j
s , Iej ] (5)

(up to conjugacy). By relabelling, if necessary, we may assume that there is an integer
` > 0 such that ej > 0 if and only if j > `.

Define elements yj , zk ∈ T2 of order r by setting

ŷj = [X
a1,j
1 , . . . , X

as,j
s , Iej+n2−n1 ] 1 6 j 6 κ(T1, r)

ẑk = [X
2a1,k
1 , . . . , X

2as,k
s , In2−2n1 ] 1 6 k 6 `.

Note that the 1-eigenspaces of ŷj and ẑk are nontrivial, so yj and zk are indeed elements
of T2. Then none of the following subgroups

{〈yj〉, 〈zk〉 : ` < j 6 κ(T1, r), 1 6 k 6 `} (6)

are T2-conjugate, so κ(T2, r) > κ(T1, r). The desired result now follows because it is easy
to see that T2 has some additional classes of subgroups of order r. For example, if we take
x = x̂Z ∈ T2 with

x̂ =

 [X
2bn1/cc−1
1 , In2−c(bn2/cc−1)] bn1/cc > 1

[X2
1 , In2−2c] bn1/cc = 1, n1 > c

[X1, In2−c] n1 = c

then 〈x〉 is not T2-conjugate to any of the subgroups in (6).

Now assume c1 > c2, in which case one of the following holds:

(a) T1 6= PSLn1(q), T2 = PSLn2(q), i > 3 is odd, c1 = 2i, c2 = i;

(b) T1 6= PSUn1(q), T2 = PSUn2(q), i ≡ 2 (mod 4), i > 6, c1 = i, c2 = i/2.
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Set s = (r − 1)/c1 and t = (r − 1)/c2, so t = 2s. As before, let {〈xj〉 : 1 6 j 6 κ(T1, r)}
be a set of representatives of the T1-classes of subgroups of order r, where xj = x̂jZ and
x̂j is given in (5). Now every element y ∈ T2 of order r is of the form y = ŷZ with

ŷ = [Y a1
1 , . . . , Y as

s , Y
as+1

s+1 , . . . , Y at
t , Ie′ ].

Without loss of generality, we may assume that for each j ∈ {1, . . . , s}, the set of eigen-
values of Xj (in Fqi) is the union of the eigenvalues of Yj and Ys+j . We can now repeat
the argument for the case c1 = c2, replacing each Xm by Ym. The result follows. �

Lemma 2.9. Let T = PSLεn(q) and let r > 5 be a prime divisor of q2 − 1. Define c as in
(1).

(i) If (n, c) = (3, 1) then κ(T, r) 6 r − 1.

(ii) If (n, c) = (4, 1) then κ(T, r) 6 (r2 − 3r + 6)/2.

(iii) If (n, c) = (6, 2) then κ(T, r) 6 (r2 + 15)/8.

Proof. Write PGLεn(q) = GLεn(q)/Z and let ω ∈ Fq2 and x ∈ T be elements of order r.
Since r > 5 and n ∈ {3, 4, 6} we have (r, n) = 1 so we may write x = x̂Z with x̂ ∈ GLεn(q)
of order r (see [7, Lemma 3.11]).

First assume (n, c) = (3, 1). By replacing x by a suitable conjugate, we may assume
x̂ = [1, λ1, λ2] ∈ GLε3(q), where λ1 6= λ2 and λ2 6= 1. Clearly, if λ1 = 1 then 〈x〉 is
T -conjugate to 〈[1, 1, ω]Z〉. On the other hand, if λ1 6= 1 then 〈x〉 is T -conjugate to
〈[1, ω, ωj ]Z〉 for some 1 < j < r. The result follows. Similarly, if (n, c) = (4, 1) then any
subgroup of T of order r is conjugate to one of the following:

〈[1, 1, 1, ω]Z〉, 〈[1, 1, ω, ωj ]Z〉, 〈[1, ω, ωk, ωk′ ]Z〉,
where 1 6 j < r and 1 < k < k′ < r. Therefore, there are at most

1 + (r − 1) +

(
r − 2

2

)
= (r2 − 3r + 6)/2

such classes. Finally, suppose (n, c) = (6, 2). Set s = (r − 1)/2 and write

x̂ = [Xa1
1 , . . . , Xas

s , Ie]

as in Remark 2.3. Then the T -classes of subgroups of order r are represented by

〈[X1, I4]Z〉, 〈[X1, Xj , I2]Z〉, 〈[X2
1 , Xj ]Z〉, 〈[X1, Xk, Xk′ ]Z〉,

where 1 6 j 6 (r − 1)/2 and 1 < k < k′ 6 (r − 1)/2. Therefore, there are at most

r +

(
(r − 3)/2

2

)
= (r2 + 15)/8

such classes, as claimed. �

2.3. Subgroup structure. Let G be an almost simple classical group over Fq with socle
T and natural module V . Set n = dimV and let H be a maximal subgroup of G with
G = HT . Recall that Aschbacher’s subgroup structure theorem states that either H
belongs to one of eight geometric subgroup collections, or H is almost simple and acts
irreducibly on V . The latter collection of non-geometric subgroups is denoted by S, and
the formal definition of this collection is as follows (see [25, p.3]). Note that the various
conditions are designed to ensure that a subgroup in S is not contained in one of the
geometric subgroup collections.

Definition 2.10. A subgroup H of G belongs to the collection S if and only if it satisfies
the following conditions:

(i) The socle S of H is a nonabelian simple group and S 6∼= T .



LOCALLY ELUSIVE CLASSICAL GROUPS 13

(ii) If Ŝ is the full covering group of S, and if ρ : Ŝ → GL(V ) is a representation of Ŝ

such that, modulo scalars, ρ(Ŝ) = S, then ρ is absolutely irreducible.

(iii) ρ(Ŝ) cannot be realised over a proper subfield of F, where F = Fq2 if T = PSUn(q),
otherwise F = Fq.

(iv) If ρ(Ŝ) fixes a nondegenerate quadratic form on V then T = PΩε
n(q).

(v) If ρ(Ŝ) fixes a nondegenerate alternating form on V , but no nondegenerate qua-
dratic form, then T = PSpn(q).

(vi) If ρ(Ŝ) fixes a nondegenerate hermitian form on V then T = PSUn(q).

(vii) If ρ(Ŝ) does not fix a form as in (iv), (v) or (vi) then T = PSLn(q).

Let x ∈ G∩PGL(V ) be a nontrivial element and write x = x̂Z, where V is the natural
module for T , x̂ ∈ GL(V ) and Z = Z(GL(V )). Set V̄ = V ⊗ F̄q, where F̄q is the algebraic
closure of Fq, and define

ν(x) = min{dim[V̄ , λx̂] : λ ∈ F̄×q } (7)

where [V̄ , λx̂] is the subspace 〈v − vλx̂ | v ∈ V̄ 〉. Note that ν(x) is the codimension of the
largest eigenspace of x̂ on V̄ .

The following theorem is a special case of [18, Theorem 7.1] (recall that the subgroups
in the collections A and B are recorded in Tables 1 and 2, respectively).

Theorem 2.11. Let G be a finite almost simple classical group with socle T and let H ∈ S
be a subgroup of G. Let n be the dimension of the natural module for T , and assume that
n > 6 and H 6∈ A ∪ B. Then

ν(x) > max{2,
√
n/2}

for all nontrivial x ∈ H ∩ PGL(V ).

This result plays a central role in our proof of Theorem 1. First we handle the excluded
cases; the relevant r-elusive groups with n < 6 were determined in [9] (see Table 3), and
the groups with a point stabiliser in A or B will be handled in the next two sections. At
this point we are in a position to apply Theorem 2.11, which immediately implies that
any element x ∈ T of order r with ν(x) 6 max{2,

√
n/2} is a derangement. In this way,

we quickly reduce to the case r 6= p, r > 5 and c > max{2,
√
n/2}, where c is the integer

in (1). Moreover, we may assume that r divides |H ∩T |. If c > n/2 then T is r-elusive by
Corollary 2.7, so we can assume that

max{2,
√
n/2} < c 6 n/2

and our goal will be to show that T contains a derangement of order r. This final step
will be carried out in Section 5.

3. The collection A

Let G 6 Sym(Ω) be an almost simple primitive classical group over Fq with socle T and
point stabiliser H ∈ S. Let S denote the socle of H and let V be the natural T -module.
Recall that V is absolutely irreducible as an Ŝ-module, where Ŝ is an appropriate covering
group of S. In this section we investigate the special case where H belongs to the collection
A. Here S = Ad is the alternating group of degree d and V is the fully deleted permutation
module for S over Fp. The relevant cases that arise are recorded in Table 1.

We begin by recalling the construction of V . Let p be a prime, let d > 5 be an integer
and consider the permutation module Fdp for Sd. Define subspaces

U = {(a1, . . . , ad) :
d∑
i=1

ai = 0}, W = {(a, . . . , a) : a ∈ Fp}
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of Fdp, and observe that U and W are the only nonzero proper Ad-invariant submodules

of Fdp. Then V = U/(U ∩W ) is the fully deleted permutation module for Ad, which is
an absolutely irreducible Ad-module over Fp. Set n = dimV and note that n = d − 2
if p divides d, otherwise n = d − 1. Note that Ad preserves the symmetric bilinear form
B′ : U × U → Fp defined by

B′((a1, . . . , ad), (b1, . . . , bd)) =

d∑
i=1

aibi

and thus B′ induces a symmetric bilinear form B on V . By [25, Proposition 5.3.5], if
d > 10 then V has the smallest dimension of all nontrivial irreducible Ad-modules over
Fp.

Suppose p is odd. In this situation, the Ad-module V affords an embedding of Ad into
an orthogonal group Ωε

n(p). By choosing a suitable basis for V it is straightforward to
compute the determinant of the Gram matrix of B, and subsequently the discriminant
D(Q) ∈ {�,�} of the corresponding quadratic form Q on V (which is defined by Q(v) =
1
2B(v, v) for v ∈ V ).

For example, suppose d is even and p divides d, so n = d − 2 and U ∩W = W . Let
{v1, . . . , vd} be the standard basis for Fdp and set ei = (vi − vi+1) +W , 1 6 i 6 n. Then

β = {e1, . . . , en} (8)

is a basis for V and

Jβ =


2 −1
−1 2 −1

. . .

−1 2 −1
−1 2


is the corresponding Gram matrix of B. Therefore det(Jβ) = n+ 1, so D(Q) = � if n+ 1
is a square in Fp, otherwise D(Q) = �.

In general, if p is odd and n is even then using [25, Proposition 2.5.10] we calculate that
ε = + if and only if (

n+ 1

p

)
= (−1)

1
4
n(p−1)

where the term on the left is the Legendre symbol (which takes the value 1 if n + 1 is a
quadratic residue modulo p, 0 if p divides n+ 1, and −1 in the remaining cases; here n+ 1
is indivisible by p, so it is always nonzero). Note that if d is even and p divides d then(

n+ 1

p

)
=

(
−1

p

)
= (−1)

1
2

(p−1) (9)

and thus ε = − if and only if d ≡ 2 (mod 4) and p ≡ 3 (mod 4).

Now assume p = 2 so n is even. Let u = (a1, . . . , ad) ∈ U . We define a map Q′ : U → F2

by setting Q′(u) = 1 if the number of nonzero ai is congruent to 2 modulo 4, otherwise
Q′(u) = 0. Then Q′ is an Ad-invariant quadratic form on U with associated bilinear form
B′. If d 6≡ 2 (mod 4) then Q′ induces a nondegenerate quadratic form Q on V , so in this
case we obtain an embedding Ad 6 Ωε

n(2) where ε is given in Table 1 (see [25, p.187]). On
the other hand, if d ≡ 2 (mod 4) then Ad does not fix a nondegenerate quadratic form on
V , so we have an embedding Ad 6 Spd−2(2).

The specific irreducible embeddings that arise in this way are listed in Table 1. Note that
the conditions on d in the final column ensure that S = Ad is simple and not isomorphic
to T . For the remainder of this section we set H0 = H ∩ T .
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Lemma 3.1. We have H0 = Sd if and only if T = Spn(2), or np is odd and
(

(n+1)/2
p

)
= 1.

Proof. Let x be the transposition (1, 2) in Sd. If p = 2 then x has Jordan form [J2, J
n−2
1 ]

on V , so x ∈ T if and only if T is a symplectic group. Now assume p is odd, so T is an
orthogonal group. Up to conjugacy, x acts on V as a diagonal matrix [−I1, In−1] (modulo
scalars), so x ∈ T only if n is odd. In terms of the above basis β for V (see (8)), x maps e1

to −e1, e2 to e1 +e2, and it fixes all the other basis vectors. Then E = 〈e1 +2e2, e3, . . . , en〉
is the 1-eigenspace of x, which is a nondegenerate (n− 1)-space of type ε′. To determine
whether or not x ∈ T we need to calculate ε′.

It is straightforward to check that the Gram matrix of the induced bilinear form on E
has determinant (n+ 1)/2, so [25, Proposition 2.5.10] implies that ε′ = + if and only if(

(n+ 1)/2

p

)
= (−1)

1
4

(n−1)(p−1)

If ε′ = + (respectively, ε′ = −) then x ∈ SOn(p) is an involution of type t(n−1)/2 (respec-
tively, t′(n−1)/2) in the notation of [9, 17], and the desired result follows by inspecting [17,

Table 4.5.1]. For example, if ε′ = + then we find that an involution in SOn(p) of type
t(n−1)/2 is in T if and only if

p
1
2

(n−1) ≡ 1 (mod 4),

whence H0 = Sd if and only if
(

(n+1)/2
p

)
= 1. �

In the statement of the next lemma, we use the notation in (4) for expressing the Jordan
form of an element of order p.

Lemma 3.2. Let x ∈ Sd be an element of order p with cycle-shape (ph, 1s). Then the
Jordan form of x on V is as follows:

(i) [Jhp , J
s−1
1 ] if s > 1 and (p, d) = 1;

(ii) [Jhp , J
s−2
1 ] if s > 1 and p divides d;

(iii) [Jh−1
p , Jp−2] if s = 0 and (p, h) = 1;

(iv) [Jh−2
p , J2

p−1] if s = 0, p divides h, and h 6= 2;

(v) [J2] if s = 0 and p = h = 2.

Proof. Up to conjugacy, we may assume that

x = (1, . . . , p) · · · ((h− 1)p+ 1, . . . , hp).

Suppose first that s > 1. Then for each i ∈ {0, . . . , h− 1},

Ei = {eip+1 − ed + (U ∩W ), . . . , e(i+1)p − ed + (U ∩W )}

is a set of p linearly independent vectors in V , which are cyclically permuted by x, and
E0 ∪ . . . ∪ Eh−1 is a linearly independent set of hp vectors. Therefore, [9, Lemma 5.2.6]
implies that x has Jordan form [Jhp , J

s−1
1 ] if (p, d) = 1 and [Jhp , J

s−2
1 ] if p divides d.

For the remainder, let us assume that s = 0, so n = d− 2, U ∩W = W and x cyclically
permutes the p vectors

{e1 − e2 +W, . . . , ep−1 − ep +W, ep − e1 +W}.

If h = 1 then V is spanned by this set of vectors and the first p−2 form a basis for V . Thus
x has Jordan form [Jp−2] on V . Suppose now that h > 2. Then for each i ∈ {1, . . . , h− 1}
the set

Ei = {e1 − eip+1 +W, e2 − eip+2 +W, . . . , ep − e(i+1)p +W}
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is a set of p linearly independent vectors cyclically permuted by x. If (p, h) = 1 then
E1 ∪ . . . ∪ Eh−1 is an x-invariant set of linearly independent vectors and by Lemma [9,
Lemma 5.2.6], the Jordan form of x on the span of these vectors is [Jh−1

p ]. By [33, Lemma
4.3], the 1-eigenspace of x on V has dimension h, so it follows that x has Jordan form
[Jh−1
p , Jp−2] on V .

Now assume p divides h. If p = h = 2 then dimV = 2 and x acts nontrivially on
V , so x has Jordan form [J2]. Now assume h > 3. Note that E1 ∪ . . . ∪ Eh−1 is linearly
dependent, whereas E = E1 ∪ . . . ∪ Eh−2 is linearly independent. Let Y be the span of E .
Now x cyclically permutes the p vectors

{e(h−1)p+1 − e(h−1)p+2 +W, . . . , e(h−1)p+p+1 − ehp +W, ehp − e(h−1)p+1 +W}

which span a (p − 1)-dimensional subspace Z of V such that Y ∩ Z = 0. Moreover, the
Jordan form of x on Z is [Jp−1]. By [33, Lemma 4.3], the 1-eigenspace of x on V is

h-dimensional, and so x has Jordan form [Jh−2
p−1 , J

2
p−1] on V . �

Lemma 3.3. Let x ∈ Sd be an element of prime order r 6= p with cycle-shape (rh, 1s) and
consider the action of x on V̄ = V ⊗ F, where F = F̄p. Then every nontrivial r-th root of
unity occurs as an eigenvalue of x on V̄ with multiplicity h.

Proof. Let Fd be the permutation module for Sd over F and set Ū = U⊗F and W̄ = W⊗F.
Let ω ∈ F be a nontrivial r-th root of unity. By [9, Lemma 5.2.6], ω occurs as an eigenvalue
of x on Fd with multiplicity h. If p does not divide d then Fd = Ū ⊕ W̄ , V̄ = Ū and W̄ is
contained in the 1-eigenspace of x on Fd. Therefore, ω has multiplicity h as an eigenvalue
of x on V̄ .

Now assume p divides d, so W̄ 6 Ū and V̄ = Ū/W̄ . Now x has a fixed point and
without loss of generality we may assume that x fixes the standard basis element vd ∈ Fd.
Since Fd = Ū ⊕ 〈vd〉 and vd is a 1-eigenvector for x, it follows that ω has multiplicity h as
an eigenvalue of x on Ū . Since W̄ is also contained in the 1-eigenspace of x we conclude
that ω has multiplicity h as an eigenvalue of x on V̄ . �

We are now ready to state the main result of this section. In the proof of the proposition,
we freely use the notation for prime order elements introduced in Section 2.2, which is
consistent with the notation adopted in [9]. In part (ii) of the statement, we define the
integer c as in (1).

Proposition 3.4. Let G 6 Sym(Ω) be a primitive almost simple classical group over Fq
with socle T and point stabiliser H ∈ A. Let r be a prime divisor of |Ω| and assume that
n > 6. Set H0 = H ∩ T and note that q = p is a prime. Then T is r-elusive if and only if
one of the following holds:

(i) r = 2, p 6= 2 and either

(a) T = Ωn(p) and
(

(n+1)/2
p

)
= 1; or

(b) T = PΩε
n(p), n ≡ 2 (mod 4) and p ≡ 5ε (mod 8).

(ii) r 6= p, r > 2, r divides |H0| and c = r − 1.

Proof. Here H0 ∈ {Ad, Sd} and d > 5. If r = p > 2 then [J2
2 , J

n−4
1 ] ∈ T is a derangement

by Lemma 3.2. Now assume r = p = 2 and note that by Lemma 3.2, x = (1, 2)(3, 4) ∈ H0

has Jordan form [J2
2 , J

n−4
1 ] on V . Moreover, in terms of the Aschbacher-Seitz [2] notation,

we identify x as a c2-type involution since

B(e3 + e4, (e3 + e4)x) = B(v3 + v5, v4 + v5) = 1.

We conclude that the a2-type involutions in T are derangements.
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Next suppose r 6= p and r > 2. Let i = Φ(r, p) (see (3)), so i is the smallest positive
integer such that r divides pi − 1. Clearly, if r fails to divide |H0| then every element in
T of order r is a derangement, so let us assume r divides |H0|. Let x ∈ H0 be an element
of order r and write x = x̂Z, where x̂ ∈ GLn(p) has order r. By Lemma 3.3, the multiset
of eigenvalues of x̂ on V̄ = V ⊗ F̄q contains every nontrivial r-th root of unity with equal
multiplicity. Therefore, if i is even and i < r−1 then [Λ, In−i] is a derangement. Similarly,
if i is odd and i < (r − 1)/2 then [Λ,Λ−1, In−2i] has the desired property. Now assume i
is even and i = r − 1, so x̂ is conjugate to an element of the form [Λh, In−h(r−1)] for some
h > 1 with hr 6 n. There is a unique T -class of such elements for each value of h, and
xT ∩H consists of the permutations in H0 with cycle-shape (rh, 1d−hr). In particular, T
is r-elusive. An entirely similar argument applies if i = (r − 1)/2 is odd.

To complete the proof of the proposition, we may assume that r = 2 and p 6= 2, so T is
an orthogonal group (see Table 1). By Lemma 3.3, if x ∈ Sd has cycle-shape (2h, 1s) then
the (−1)-eigenspace of x on V has dimension h 6 d/2.

Suppose first that T = PΩ+
n (q). If n ≡ 0 (mod 4) then T contains involutions of

type tn/2 or t′n/2, and these elements are derangements because they do not have −1 as

an eigenvalue (see [9, Sections 3.5.2.10 and 3.5.2.11]). Now assume n ≡ 2 (mod 4). If
p ≡ 1 (mod 8) then the same argument implies that involutions of type tn/2 in T are
derangements. If p ≡ 3 (mod 4) then T contains two classes of involutions (namely, t1
and t′1) with a 2-dimensional (−1)-eigenspace and so one of these classes must consist of
derangements. This leaves p ≡ 5 (mod 8), in which case H0 = Ad by Lemma 3.1. Here
every involution in T has a 2`-dimensional (−1)-eigenspace for some 1 6 ` < n/4 (see [9,
Table B.10]), and there is a unique class of such involutions for each `. We conclude that
T is 2-elusive. A very similar argument applies if T = PΩ−n (q) and we omit the details.

Finally, suppose T = Ωn(p) with n odd. Here every involution in T is of the form
[−I2`, In−2`], and there is a unique such class for each 1 6 ` 6 (n − 1)/2 (see [9, Table
B.8]). Now, if H0 = Ad then H0 does not contain a transposition, so any involution in T
of the form [−In−1, I1] is a derangement. On the other hand, if H0 = Sd then it is easy
to see that every involution in T has fixed points, so T is 2-elusive. Note that H0 = Sd if

and only if
(

(n+1)/2
p

)
= 1 (see Lemma 3.1). �

4. The collection B

In this section we turn our attention to the case where H ∈ S is a subgroup in the
collection B (see Table 2). Recall that these cases arise naturally as exceptions in the
statement of Theorem 2.11, so n > 6 and

ν(x) 6 max{2,
√
n/2}

for some nontrivial element x ∈ H ∩PGL(V ). Our main result is the following (note that
Table 4 is located in the introduction).

Proposition 4.1. Let G 6 Sym(Ω) be a primitive almost simple classical group with socle
T and point stabiliser H ∈ B. Let r be a prime divisor of |Ω| and let S denote the socle
of H. Then T is r-elusive if and only if (T, S, r) is one of the cases listed in Table 4.

Remark 4.2. The conditions recorded in the final column of Table 4 are needed to ensure
that every element in T of order r has fixed points, and they also imply that r divides
the degree of G. Note that these conditions are additional to the ones given in Table 2,
which are needed for the existence and maximality of H in G. We refer the reader to
the tables in [4, Section 8.2] for the precise conditions required for maximality, and for a
detailed description of the structure of H0 = H ∩ T . Further information on these cases
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can be found in [8, Section 2.3]. Also note that the relevant covering group Ŝ is given in
the statement of [18, Theorem 7.1].

Lemma 4.3. Proposition 4.1 holds in Case (B1) of Table 2.

Proof. Here T = PSp10(p), S = PSU5(2) and p 6= 2. According to [4, Table 8.65], we have
H0 = S.2 if and only if p ≡ ±1 (mod 8). Let r be a prime divisor of |Ω|. If r does not
divide |H0| then any element in T of order r is a derangement, so we may as well assume
that r also divides |H0|, hence r ∈ {2, 3, 5, 11}.

If r = p then H0 has at most six classes of elements of order r, but T has at least seven
by [9, Proposition 3.4.10] and thus T is not r-elusive by Corollary 2.2. Now assume r 6= p.
Set i = Φ(r, p) as in (3) and define ν(x) for x ∈ T as in (7). Let χ be the corresponding
Brauer character of H0 (this is available in GAP [13], for example). One observes that
{χ(x) : x ∈ H0, |x| = 3} = {−5,−2, 1, 4}, which implies that every x ∈ T of order 3
with ν(x) = 2 is a derangement (indeed, over F̄p such an element has eigenvalues ω, ω2

and 1 (the latter with multiplicity 8), so χ(x) = 7). In the same way, we deduce that the
elements x ∈ T of order 5 with ν(x) = 4 are derangements. If r = 11 then i ∈ {1, 2, 5, 10}
and by considering χ we see that T is 11-elusive if and only if i > 2 (in fact, we need the
condition p5 ≡ ±1 (mod 121) to ensure that |Ω| is divisible by 11).

Finally, let us assume r = 2. By inspecting the values of χ we deduce that the involutions
x ∈ T with ν(x) < 5 have fixed points, whereas those with ν(x) = 5 have fixed points if
and only if H0 = S.2 (in this situation, H0 contains an involutory graph automorphism γ of
S such that ν(γ) = 5). We conclude that T is 2-elusive if and only if p ≡ ±1 (mod 8). �

Lemma 4.4. Proposition 4.1 holds in Case (B2) of Table 2.

Proof. Here T = PΩ+
8 (q) and H0 = Ω7(q) if q is odd, otherwise H0 = Sp6(q). This

embedding arises by restricting an irreducible spin representation of Ω+
8 (q) to the stabiliser

of a 1-dimensional nonsingular subspace of the natural Ω+
8 (q)-module. Let r be a prime

divisor of |H0| and |Ω|.
First assume q is even, so H0 = Sp6(q). By inspecting the proof of [8, Lemma 2.7], we

deduce that every c2-type involution in T is a derangement (here we are using the standard
Aschbacher-Seitz [2] notation for involutions). Now assume r is odd. Let i = Φ(r, q), so
i ∈ {1, 2, 4}. If i ∈ {1, 2} then the proof of [8, Lemma 2.7] indicates that every element
x ∈ T of order r with ν(x) = 2 is a derangement. Similarly, if i = 4 then the elements
with ν(x) = 4 are derangements.

A very similar argument applies when q is odd. For example, the proof of [8, Lemma
2.7] shows that [J3, J

5
1 ] and [−I2, I6] are derangements in T of order p and 2, respectively.

Finally, if r 6= p and r > 2 then we can proceed as above in the q even case. �

Lemma 4.5. Proposition 4.1 holds in Case (B3) of Table 2.

Proof. Here T = PΩ+
8 (q) and H0 = CT (ψ) = 3D4(q0), where q = q3

0 and ψ is a triality
graph-field automorphism of T . In view of the proof of [8, Lemma 2.12], this characteri-
sation of H0 implies that if p 6= 2 then unipotent elements with Jordan form [J3, J

5
1 ] are

derangements of order p, and so are involutions of type a4 when p = 2. Similarly, if p 6= 2
then the involutions of type [−I2, I6] are also derangements.

Let r 6= p be an odd prime divisor of |Ω| and |H0|. Set i = Φ(r, q) and note that
i ∈ {1, 2, 4}. Let x ∈ T be an element of order r with ν(x) = α, where α = 2 if i ∈ {1, 2},
otherwise α = 4. Then x is not centralised by ψ (see [7, Proposition 3.55(iv)]), so x is a
derangement. For example, if i ∈ {1, 2} and ν(x) = 2 then ν(xψ) = 4. �

Lemma 4.6. Proposition 4.1 holds in Case (B4) of Table 2.
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Proof. Here T = PΩ+
8 (p), H0 = Ω+

8 (2) and p 6= 2 (see [4, Table 8.50]). Let r be a prime
divisor of |Ω| and |H0|, so r ∈ {2, 3, 5, 7}. If r = p then H0 has at most five classes of
subgroups of order r, whereas T has at least six (see [9, Proposition 3.5.12]). Now assume
r 6= p and note that p > 7 (indeed, if p ∈ {3, 5} then p is the only prime dividing |Ω| and
|H0|). Set i = Φ(r, p).

Suppose p = 7, so r ∈ {2, 5}. If r = 5 then i = 4 and we deduce that T is 5-elusive by
considering the values of the corresponding Brauer character χ of 2.Ω+

8 (2). Now assume
r = 2. The involutions in T are of type t′1, t2, t

′
3 and t′4, in terms of the notation in [17, 9].

By inspecting χ we see that the t′1 elements have fixed points, and so do the involutions in
at least one of the other classes. Since H0 is normalised by a triality graph automorphism
τ of T , and τ permutes the T -classes represented by the elements t′1, t

′
3, t
′
4, we conclude

that every involution in T has fixed points, so T is 2-elusive.

Now assume p > 7. As above, T is 2-elusive. By considering χ we see that every element
of order 3 has fixed points, and we note that |Ω| is divisible by 3 if and only if p2 ≡ 1
(mod 9). Similarly, if r ∈ {5, 7} then T is r-elusive if and only if i > 2. �

Lemma 4.7. Proposition 4.1 holds in Cases (B6) and (B7) of Table 2.

Proof. Here H0 = G2(q) and T = Ω7(q) or Sp6(q), according to the parity of p. If p = 3
then G2(q) admits an involutory graph automorphism that interchanges the two irre-
ducible 7-dimensional modules L(λ1) and L(λ2), so we only need to consider the standard
embedding, labelled (B6). Let r be a prime divisor of |Ω| and |H0|.

If r = p > 2 then the proof of [8, Lemma 2.13] implies that [J3, J
4
1 ] is a derangement of

order r. Similarly, every involution x ∈ T with ν(x) = 1 is a derangement.

Finally, suppose r 6= p and r > 2. Set i = Φ(r, q) and note that i ∈ {1, 2}. Let x ∈ T
be an element of order r with ν(x) = 2. Let H̄ = G2 and Ḡ = B3 (or C3 if p = 2) be the
ambient simple algebraic groups over the algebraic closure F̄q, and note that x is contained
in a maximal rank subgroup A2 of H̄. If V̄ denotes the natural module for Ḡ, then

V̄ ↓ A2 =

{
V3 ⊕ V ∗3 p = 2
V3 ⊕ V ∗3 ⊕ 0 p 6= 2

where V3 and 0 denote the natural and trivial A2-modules, respectively. It follows that
each y ∈ A2 of order r has a repeated nontrivial eigenvalue on V̄ . Since the two nontrivial
eigenvalues of x are distinct, we conclude that x is a derangement. �

Lemma 4.8. Proposition 4.1 holds in each of the remaining cases in Table 2.

Proof. The remaining cases are similar so we only give details in case (B13). Here T =
PSLε6(p) and S = PSU4(3), where p ≡ ε (mod 6) and p > 5. More precisely, H0 = S or
S.2, with H0 = S.2 if and only if p ≡ ε (mod 12) (see [4, Tables 8.25 and 8.27]). Let r
be a prime divisor of |Ω| and |H0|, so r ∈ {2, 3, 5, 7}. Let χ be the corresponding Brauer
character of 6.PSU4(3) or 6.PSU4(3).2 (according to the value of p).

If r = p then r ∈ {5, 7} and T is not r-elusive since H0 has at most two classes of
elements of order r. Next assume r 6= p and r > 2. Set i = Φ(r, p). If r = 3 then H0

has at most four classes of elements of order 3, but there are at least five in T (see [9,
Propositions 3.2.2 and 3.3.3], for example). Now assume r = 5. By inspecting χ we see
that ν(y) = 4 for all y ∈ H0 of order 5, whence T is 5-elusive if and only if i = 4 (in fact,
we need p2 ≡ −1 (mod 25) so that |Ω| is divisible by 5). Similarly, T is 7-elusive if and
only if i = 3(3 + ε)/2 (here we need the condition p3 ≡ −ε (mod 49)).

Finally, let us assume r = 2. If H0 = S then H0 has a unique class of involutions,
but T has two such classes and thus T is not 2-elusive. Now assume that H0 = S.2, so
p ≡ ε (mod 12) and T has three classes of involutions, with representatives labelled t1, t2
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and t3 (see [17, Table 4.5.1]). Note that H0 is an extension of S by an involutory graph
automorphism of type γ1 (see [9, Sections 3.2.5 and 3.3.5]). By considering the Brauer
character χ we deduce that the two classes of graph automorphisms in H0 fuse to the
T -classes represented by t1 and t3, while the involutions in S are T -conjugate to t2. We
conclude that T is 2-elusive. �

This completes the proof of Proposition 4.1.

5. The proof of Theorem 1

As in the statement of Theorem 1, let G 6 Sym(Ω) be a primitive almost simple classical
group over Fq with socle T and point stabiliser H ∈ S. Set H0 = H ∩ T and write q = pf

with p a prime. Let S denote the socle of H and let n be the dimension of the natural
T -module V . Let r be a prime divisor of |Ω|.

If n < 6 then [9, Proposition 6.3.1] states that T is r-elusive if and only if (T, S, r) is
one of the cases in Table 3, so we may assume that n > 6. Similarly, if H ∈ A ∪ B then
the conclusion to Theorem 1 follows from our work in Sections 3 and 4 (see Propositions
3.4 and 4.1). In addition, Corollary 2.7 implies that T is r-elusive if all of the conditions
in (?) hold.

Therefore, in order to complete the proof of Theorem 1 we may assume that n > 6 and
H 6∈ A ∪ B; our aim is to show that T is r-elusive only if all the conditions in (?) hold.
Proposition 5.1 below is a first step towards achieving this goal. In order to state this
result, recall the definition of i and c in (1), and let (3) denote the following conditions:

r 6= p, r > 2, r divides |H0| and c > max{2,
√
n/2}. (3)

Proposition 5.1. Let G 6 Sym(Ω) be a primitive almost simple classical group with socle
T and point stabiliser H ∈ S. Let r be a prime divisor of |Ω| and let S denote the socle
of H. Assume that n > 6 and H 6∈ A ∪ B. Then T is r-elusive only if the conditions in
(3) hold.

Proof. We apply Theorem 2.11. For example, any element in T with Jordan form [J2
2 , J

n−4
1 ]

is a derangement of order p. Similarly, if p is odd then involutions in T of type [−I2, In−2]
are also derangements.

Now assume r 6= p and r > 2. Clearly, T contains derangements of order r if |H0| is
indivisible by r, so let us assume r divides |H0|. If 1 < c 6 max{2,

√
n/2} then let x ∈ T

be an element of order r with dimCV (x) = n − c (see Remark 2.3). Here ν(x) = c, so
Theorem 2.11 implies that x is a derangement. Similarly, if c = 1 then any element x ∈ T
of order r with dimCV (x) = n− 2 is a derangement. We conclude that T is r-elusive only
if c > max{2,

√
n/2}. �

To complete the proof of Theorem 1, it remains to show that T contains a derangement
of order r when the following conditions are satisfied:

n > 6, H 6∈ A ∪ B, r 6= p, r > 2, r divides |H0| and

max{2,
√
n/2} < c 6 n/2,

with c < n/2 if T = PΩ−n (q).

(�)

Proposition 5.2. Let G 6 Sym(Ω) be a primitive almost simple classical group with
socle T and point stabiliser H ∈ S. Let r be a prime divisor of |Ω| and assume that the
conditions in (�) are satisfied. Then T contains a derangement of order r.
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As in Sections 3.4 and 4.1, in order to prove Proposition 5.2 we will either identify a
specific derangement of order r, or we will establish the existence of such an element by
comparing the number of T -classes of subgroups (or elements) in T of order r with the
number of such H0-classes in H0. As before, we will write κ(T, r) to denote the number of
T -classes of subgroups of order r in T (and similarly κ(H0, r)). Note that the conditions
in (�) imply that κ(T, r) > 2 (this quickly follows from Lemma 2.4(iii)), so the desired
conclusion follows immediately if κ(H0, r) = 1.

Before we begin the proof of Proposition 5.2, let us record a couple of useful observations.
Suppose the conditions in (�) hold. First observe that r > 5 since c > 3. Also note that
r divides qr−1− 1 by Fermat’s Little Theorem, so i divides r− 1. In particular, if i is odd
then 2i divides r − 1. It follows that c divides r − 1 and thus

r > c+ 1 >
⌈√

n/2
⌉

+ 1. (10)

5.1. Sporadic groups. We begin the proof of Proposition 5.2 by considering the special
case where S is a sporadic group.

Proposition 5.3. Proposition 5.2 holds if S is a sporadic group.

Proof. This is a straightforward calculation, using the character table of S and lower
bounds on the dimensions of irreducible representations. To illustrate the general ap-
proach, we will consider the cases S ∈ {M11, J2,M}. Set i = Φ(r, q) as in (3).

If S = M11 then r ∈ {5, 11} and the result follows since κ(H0, r) = 1. Next suppose
S = M is the Monster. Here r 6 71 and by inspecting the character table of H0 = S
(specifically, the associated power maps) we deduce that κ(H0, r) 6 2. But n > 196882
(see [23]) and thus κ(T, r) > b196882/70c − 1 = 2811 by Lemma 2.4(iii). Now apply
Corollary 2.2.

Finally, let us assume that S = J2, so r ∈ {5, 7}. From the character table we see that
κ(S, 5) = 2 and κ(S, 7) = 1. Therefore we may assume that r = 5, so i = 4 since c > 3.
If n > 13 then κ(T, 5) > 3 by Lemma 2.4(iii), so we can assume n 6 12. By inspecting
[20, Table 2] (or [4, Section 8.2]), it follows that T = PSp6(q) is the only possibility,
and either q = p ≡ ±1 (mod 5) or q = p2 > 4 and p ≡ ±2 (mod 5). Clearly, neither of
these conditions on q are compatible with the fact that i = 4, so this case does not arise.
(Alternatively, observe that this is the case labelled (B17) in Table 2, so we can discard it
since we are assuming that H 6∈ B.)

The remaining cases are very similar and we leave the reader to check the details. �

5.2. Alternating groups. Next assume S = Ad is an alternating group. Since we are
assuming H 6∈ A, it follows that V is not the fully deleted permutation module for S.
Note that r 6 d since r divides |H0|. The following lemma gives a useful lower bound on
n in terms of d.

Lemma 5.4. If d > 15 then n > d(d− 5)/4.

Proof. First observe that Ŝ = 2.S is the full covering group of S. If Z(Ŝ) acts nontrivially

on V then p 6= 2 and the main theorem of [26] implies that n > 2b(d−3)/2c and the result
follows. Therefore, we may assume that S acts linearly on V , in which case the desired
bound follows from [22, Theorem 7]. �

Proposition 5.5. Proposition 5.2 holds if S is an alternating group.

Proof. First assume d > 15. Now κ(S, r) = bd/rc and a combination of Lemmas 2.4(iii)
and 5.4 implies that

κ(T, r) > bn/(r − 1)c − 1 > bd(d− 5)/4(r − 1)c − 1 > bd/rc.
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We conclude that T contains derangements of order r.

Finally, let us assume that 5 6 d 6 14. If d 6 9 then r ∈ {5, 7} and the result follows
since κ(S, r) = 1. If d ∈ {10, 11, 12} then we may assume that r = 5, in which case
κ(S, r) = 2 (if r > 5, then κ(S, r) = 1). By inspecting [19, Table 3], we see that n > 16
and thus κ(T, r) > 3 by Lemma 2.4(iii). The result follows. A similar argument applies if
d ∈ {13, 14}, using the fact that n > 32 (see [19]). �

5.3. Groups of Lie type: Cross-characteristic. Let S be a simple group of Lie type
over Ft, where t = `e and ` 6= p is a prime. Set H0 = H ∩ T . By (10) we have

r > max{5,
⌈√

n/2
⌉

+ 1}. (11)

We will make extensive use of the Landazuri-Seitz bounds in [27]. We consider each of
the possibilities for S in turn, starting with the classical groups.

5.3.1. Linear groups.

Lemma 5.6. Proposition 5.2 holds if S = PSL2(t) and (t, p) = 1.

Proof. If t ∈ {4, 9} then r = 5 and κ(H0, r) = 1, so for the remainder we may assume that
t > 5 and t 6= 9, hence n > (t− 1)/(2, t− 1) by the main theorem of Landazuri and Seitz
[27]. In particular, (11) implies that

r > d
√
n/2e+ 1 >

⌈
1

2

√
(t− 1)/(2, t− 1)

⌉
+ 1. (12)

Suppose x ∈ H0 \ S has order r. Then x is a field automorphism and thus r divides
e = log` t. If t > 27 then (12) implies that r > e, so t ∈ {25, 27} and one checks that
H0 = PΓL2(t) has a unique class of subgroups of order r.

For the remainder, we may assume that every element in H0 of order r is contained in
S. If r 6= ` then κ(S, r) = 1, so we may assume that r = `. Note that κ(S, r) 6 2 since
S has two classes of elements of order r. In fact, if e = 1 then κ(S, r) = 1 by Sylow’s
Theorem, so we may assume e > 2. By Lemma 2.4(iii) we have

κ(T, r) > bn/(`− 1)c − 1 > b(`e − 1)/2(`− 1)c − 1.

This reduces us to the case t = 52. Here n > 12 and r = 5, so κ(T, r) > 3 (note that T is
symplectic if n = 12 – see [19, Table 2(b)]). �

Lemma 5.7. Proposition 5.2 holds if S = PSLd(t) and (t, p) = 1.

Proof. We may assume d > 3. If (d, t) = (3, 2) or (3, 4) then r ∈ {5, 7} and κ(H0, r) = 1.
In each of the remaining cases we have n > td−1 − 1 by [27] and thus

r > d
√
n/2e+ 1 >

⌈
1

2

√
td−1 − 1

⌉
+ 1 (13)

In particular, r > e so we only need to consider elements in PGLd(t).

Suppose r = `, so t > 5. If d > 4 then (13) implies that r > t, so we must have d = 3.
Then S has at most four conjugacy classes of elements of order r (see [9, Section 3.2.3],
for example), but Lemma 2.4(iii) implies that T has at least

bn/(r − 1)c − 1 > b(t2 − 1)/(t− 1)c − 1 = t

such classes.

For the remainder, we may assume that r 6= `. Set j = Φ(r, t) (so j is the smallest
positive integer such that r divides tj − 1). If j > d/2 then κ(S, r) = 1 (see Lemma
2.4(i)), so we may assume that j 6 d/2. Now the lower bound in (13) implies that
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r > t(d−3)/2, so j > (d − 3)/2. Therefore, either d is odd and j = (d − 1)/2, or d is even
and j ∈ {d/2− 1, d/2}.

First assume d = 3, so j = 1 and r divides t− 1. By Lemma 2.9(i) we have κ(S, r) < r,
but Lemma 2.4(iii) implies that

κ(T, r) > bn/(r − 1)c − 1 > b(t2 − 1)/(t− 2)c − 1 > t > r,

so T contains derangements of order r.

Next suppose d > 5 is odd. Here j = (d− 1)/2, so bd/jc = 2 and Lemma 2.4(ii) implies
that

κ(S, r) 6 (r − 1)/j + 1 = 2(r − 1)/(d− 1) + 1 < r.

Since r divides t(d−1)/2 − 1, by applying Lemma 2.4(iii) we deduce that

κ(T, r) > bn/(r − 1)c − 1 > b(td−1 − 1)/(t(d−1)/2 − 2)c − 1 > t(d−1)/2 > r

and the result follows.

Next assume d > 8 is even. Here bd/jc = 2 and thus

κ(S, r) 6 (r − 1)/j + 1 6 2(r − 1)/(d− 2) + 1.

Now r divides (tj − 1)/(t− 1), so r− 1 6 α where α = (td/2− 1)/(t− 1)− 1. Therefore, if
t > 2 then

κ(T, r) > bn/(r − 1)c − 1 > b(td−1 − 1)/αc − 1 > α > r − 1 > 2(r − 1)/(d− 2) + 1.

Similarly, if t = 2 then

κ(T, r) > b(2d−1 − 1)/αc − 1 = 2d/2−1 >
1

2
(2d/2 − 1)− 1

2
>

1

2
(r − 1)

and once again the desired result follows.

Finally, let us assume that d ∈ {4, 6}. First assume d = 4 so j ∈ {1, 2}. If j = 1 then
r 6 t− 1 and thus t > 7. Moreover, κ(S, r) 6 (r2 − 3r + 6)/2 (see Lemma 2.9(ii)) and

κ(T, r) > bn/(r − 1)c − 1 > b(t3 − 1)/(t− 2)c − 1 > (t2 − 5t+ 10)/2 > (r2 − 3r + 6)/2.

Similarly, if j = 2 then t > 4, κ(S, r) 6 (r − 1)/2 + 1 = (r + 1)/2 and

κ(T, r) > bn/(r − 1)c − 1 > b(t3 − 1)/tc − 1 > (t+ 2)/2 > (r + 1)/2.

Now assume d = 6, so j ∈ {2, 3}. If j = 2 then t > 4 and κ(S, r) 6 (r2 + 15)/8 by
Lemma 2.9(iii), whereas Lemma 2.4(iii) implies that

κ(T, r) > bn/(r − 1)c − 1 > b(t5 − 1)/tc − 1 > (r2 + 15)/8.

Finally, if j = 3 then r 6 (t3−1)/(t−1) = t2 +t+1 and κ(S, r) 6 (r−1)/3+1 = (r+2)/3.
However,

κ(T, r) > bn/(r − 1)c − 1 > b(t5 − 1)/t(t+ 1)c − 1 > (r + 2)/3

and the desired result follows. �

5.3.2. Unitary groups.

Lemma 5.8. Proposition 5.2 holds if S = PSUd(t) and (t, p) = 1.

Proof. In view of Lemma 5.6, we may assume that d > 3. If d = 4 and t 6 3 then
r ∈ {5, 7} and κ(H0, r) = 1, so we may assume that t > 3 if d = 4. Therefore, [27] implies
that

n >

{
t(td−1 − 1)/(t+ 1) d odd
(td − 1)/(t+ 1) d even

(14)

and thus

r > d
√
n/2e+ 1 >

⌈
1

2

√
t(td−1 − 1)/(t+ 1)

⌉
+ 1 > log` t.
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Therefore, every element of order r in H0 is contained in PGUd(t). In fact, the same
bound implies that r > t if d > 4, so r = ` only if d = 3.

Suppose r = `, so S = PSU3(t) and t > 5. Now κ(S, r) 6 4 and by combining the lower
bound on n in (14) with Lemma 2.4(iii), we see that κ(T, r) > t − 1. Therefore, we may
assume that t = 5 and thus n > 20. If n = 20 then T is a symplectic group (see [20, Table
2]), so Lemma 2.4(iii) implies that κ(T, r) > 5 and the result follows.

For the remainder we may assume r 6= `. Set j = Φ(r, t) and

c′ =

 j j ≡ 0 (mod 4)
j/2 j ≡ 2 (mod 4)
2j j odd.

Note that κ(S, r) = 1 if c′ > d/2 (see Lemma 2.4(i)), so we may assume that c′ 6 d/2.

First consider the special case t = 2, so d > 4 (since PSU3(2) is not simple). The cases
with d 6 9 can be checked directly. For example, suppose S = PSU9(2). If r > 5 then
c′ > 5 and thus κ(S, r) = 1. If r = 5 then κ(S, r) = 2 and (14) implies that n > 170, so
κ(T, r) > b170/4c − 1 = 41. Now assume d > 10, so

r >

⌈
1

2

√
2(2d−1 − 1)/3

⌉
+ 1 > 2(d−4)/2 + 1

and thus j > (d− 4)/2. If j ≡ 0 (mod 4) then r divides 2j/2 + 1 and d− 3 6 j = c′ 6 d/2,
which is absurd since d > 10. Similarly, if j is odd then (d − 4)/2 < j 6 d/4 and once
again we reach a contradiction. Finally, suppose j ≡ 2 (mod 4). Here d − 3 6 j 6 d and
c′ = j/2, so bd/c′c = 2 since d > 10. Therefore, κ(S, r) 6 (r− 1)/c′ + 1 by Lemma 2.4(ii),
whereas T has at least

bn/(r − 1)c − 1 >

⌊
2(2d−1 − 1)/3

2d/2 + 1

⌋
− 1 >

1

d
2d/2+1 + 1 >

1

j
2j/2+1 + 1 >

r − 1

c′
+ 1

classes of subgroups of order r. The result follows.

Finally, let us assume t > 3. First observe that

r >

⌈
1

2

√
t(td−1 − 1)/(t+ 1)

⌉
+ 1 > t(d−3)/2 + 1.

If j ≡ 0 (mod 4) then 4 6 j = c′ 6 d/2, so d > 8. Moreover, r divides tj/2 + 1 and thus
d − 2 6 j = c′ 6 d/2, but this is incompatible with the bound d > 8. Next assume j is
odd, so 2 6 2j = c′ 6 d/2 and d > 4. Since (d− 3)/2 < j 6 d/4, it follows that d ∈ {4, 5}
and j = 1, so r 6 t− 1. In particular, κ(S, r) 6 (r + 1)/2 (see Lemma 2.4(ii)) and

κ(T, r) > bn/(r − 1)c − 1 >

⌊
(t4 − 1)/(t+ 1)

t− 2

⌋
− 1 > t/2 > (r + 1)/2,

so the result follows.

To complete the proof of the lemma, we may assume that t > 3 and j ≡ 2 (mod 4), in

which case t(d−3)/2 +1 < r 6 tj/2 +1 and thus d−2 6 j 6 d. In particular, d 6≡ 1 (mod 4).
For now, we will assume that d > 6, so bd/c′c = 2 and Lemma 2.4(ii) implies that

κ(S, r) 6 (r − 1)/c′ + 1 = 2(r − 1)/j + 1.

If d ≡ 0 (mod 4) and d > 8 then j = d− 2 and

κ(T, r) > bn/(r − 1)c − 1 >

⌊
(td − 1)/(t+ 1)

td/2−1

⌋
− 1 >

2td/2−1

d− 2
+ 1 >

2(r − 1)

j
+ 1.

Similarly, if d ≡ 3 (mod 4) and d > 7, then j = d−1 and we see that κ(T, r) > 2(r−1)/j+1.

Now assume d ≡ 2 (mod 4), so d > 6 and j = d. Here r divides (td/2 + 1)/(t + 1), so
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r − 1 6 (td/2 + 1)/(t+ 1)− 1 = α and thus

κ(T, r) > bn/(r−1)c−1 >

⌊
(td − 1)/(t+ 1)

α

⌋
−1 >

2

d

(
td/2 + 1

t+ 1
− 1

)
+1 >

2(r − 1)

d
+1.

Therefore, to complete the proof we may assume that d ∈ {3, 4}, in which case j = 2
and r divides t+ 1, so t > 4. If d = 4 then κ(S, r) 6 (r2 − 3r + 6)/2 (see Lemma 2.9(ii))
and

κ(T, r) > bn/(r − 1)c − 1 >

⌊
t4 − 1

(t+ 1)t

⌋
− 1 >

1

2
(t2 − t+ 4) >

1

2
(r2 − 3r + 6).

Finally suppose d = 3, so κ(S, r) < r by Lemma 2.9(i). If r < t+ 1 then r 6 (t+ 1)/2
and by applying Lemma 2.4(iii) we deduce that κ(T, r) > 2t− 1 > r. Therefore, we may
assume that r = t + 1, so t > 4 is even. If S = PSU3(4) then r = 5 and κ(S, r) = 2,
whereas κ(T, r) > 3 since n > 12 (note that T is a symplectic group if n = 12; see [20,
Table 2]). Now assume t > 16 and let ω ∈ Ft2 be a primitive r-th root of unity. As
noted in the proof of Lemma 2.9(i), any subgroup of PGU3(t) of order r is conjugate to a
subgroup of the form 〈[1, 1, ω]Z〉 or 〈[1, ω, ωk]Z〉 for some 1 < k < r, where Z denotes the
centre of GU3(t). In fact, we can exclude k ∈ {2, 4, 8} since

[1, ω, ω2](t+2)/2 ∼ [1, ω, ω(t+2)/2], [1, ω, ω4](3t+4)/4 ∼ [1, ω, ω(3t+4)/4]

and

[1, ω, ω8](7t+8)/8 ∼ [1, ω, ω(7t+8)/8],

where ∼ denotes GU3(t)-conjugacy. Therefore, κ(S, r) 6 t− 3 and Lemma 2.4(iii) implies
that κ(T, r) > t− 2. This completes the proof of the lemma. �

5.3.3. Symplectic groups.

Lemma 5.9. Proposition 5.2 holds if S = PSp4(t)′ and (t, p) = 1.

Proof. If t ∈ {2, 3} then r = 5 and κ(S, r) = 1, so for the remainder we may assume that
t > 4. By [27] we have

n >

{
1
2(t2 − 1) t odd
1
2 t(t− 1)2 t even

(15)

Suppose t = 4, so r ∈ {5, 17} and n > 18. Now κ(S, 5) = 3 and κ(S, 17) = 1, so the
result follows from the lower bound on κ(T, r) in Lemma 2.4(iii). Next assume t = 5,
so r ∈ {5, 13} and n > 12. Since κ(S, 5) = 4 and κ(S, 13) = 1, we may assume r = 5.
If n > 13 then by inspecting [20, Table 2] we deduce that n > 40 and thus κ(T, 5) > 5.
Therefore, we may assume that n ∈ {12, 13}. By considering the corresponding Frobenius-
Schur indicator in [20, Table 2] we see that T = PSp12(q) or Ω13(q). Set i = Φ(r, q) as
before and note that i ∈ {1, 2, 4}. In fact, i = 4 is the only possibility since c > 3, so
q2 ≡ −1 (mod 5). However, by inspecting the irrationalities of the corresponding Brauer
character in [20, Table 2], we see that q2 ≡ 1 (mod 5), which is a contradiction.

For the remainder we may assume that t > 7, in which case (10) implies that

r >

⌈
1

2

√
(t2 − 1)/2

⌉
+ 1 > log` t

and thus every element in H0 of order r is contained in S.

First assume r = `, so t is odd. According to [9, Proposition 3.4.10], S has six classes
of elements of order r, and Lemma 2.4(iii) implies that

κ(T, r) > bn/(t− 1)c − 1 > b(t+ 1)/2c − 1 = (t− 1)/2.
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Therefore, we may assume that t ∈ {7, 11, 13}. In each of these cases one checks that
κ(S, r) = 4, so we can assume r = t = 7 and c ∈ {3, 6}. Note that n > 24. If c = 3 then
κ(T, r) > b24/3c − 1 = 7, so we can assume c = 6. If n > 25 then n > 126 (see [20, Table
2]) and the desired result follows, so let us assume that n ∈ {24, 25}. Suppose x ∈ S has
order 7 and let χ be the corresponding Brauer character. Since c = 6, each nontrivial 7-th
root of unity occurs as an eigenvalue of x with equal multiplicity (in terms of the action of
x on V̄ = V ⊗K, where K is the algebraic closure of Fq), so χ(x) is an integer. However,
[20, Table 2] indicates that χ has a b7 irrationality in the standard Atlas notation, which
means that χ(x) is not an integer for some x ∈ S of order 7. Therefore, c 6= 6 when
n ∈ {24, 25} and the result follows.

Now assume r 6= `. Set j = Φ(r, t) and note that j ∈ {1, 2, 4}. If j = 4 then κ(S, r) = 1,
so we may assume that j ∈ {1, 2}, in which case r 6 t + 1 and κ(S, r) 6 (r + 1)/2 (see
Lemma 2.4(ii)). If t is even then a combination of (15) and Lemma 2.4(iii) implies that
κ(T, r) > t/2 + 1. Similarly, if t is odd then r 6 (t + 1)/2 and the same conclusion
holds. �

Lemma 5.10. Proposition 5.2 holds if S = PSp6(t) and (t, p) = 1.

Proof. If t = 2 then r ∈ {5, 7} and κ(S, r) = 1. For the remainder we may assume that
t > 3, in which case [27] gives

n >

{
1
2(t3 − 1) t odd
1
2 t

2(t2 − 1)(t− 1) t even
(16)

In particular, r > d1
2

√
(t3 − 1)/2e+ 1 > log` t. In fact, the same bound implies that r > t

if t > 7, so if r = ` then t = 5 is the only possibility. Now S = PSp6(5) has 13 classes of
elements of order 5, but T has at least b62/(5− 1)c = 15 since n > 62.

Now assume r 6= `. Set j = Φ(r, t) and note that j ∈ {1, 2, 3, 4, 6}. If j > 2 then
κ(S, r) = 1 and the result follows. Now assume that j ∈ {1, 2}, so r 6 t + 1. By arguing
as in the proof of Lemma 2.9(iii) we see that κ(S, r) 6 (r2 + 15)/8 and in the usual way,
via (16) and Lemma 2.4, it is easy to check that κ(T, r) > κ(S, r). �

Lemma 5.11. Proposition 5.2 holds if S = PSpd(t)
′ and (t, p) = 1.

Proof. We may assume d > 8. By [27] we have

n >

{
1
2(td/2 − 1) t odd
1
2 t
d/2−1(td/2−1 − 1)(t− 1) t even

(17)

and (10) implies that r > t(d−4)/4 + 1. In particular, r 6= ` and every element in H0 of
order r is contained in S. Let j = Φ(r, t) and set c′ = 2j if j is odd, and c′ = j if j is even.

If j is odd and j > d/4 then c′ > d/2 and thus κ(S, r) = 1. The same conclusion holds

if j is even and j > d/2. Note that if j is even then r divides tj/2 + 1, so the bound

r > t(d−4)/4 + 1 implies that j > (d − 4)/2. Therefore, we may assume that one of the
following holds:

(a) j odd: Either d ≡ 4 (mod 8) and j = d/4, or d ≡ 6 (mod 8) and j = (d− 2)/4.

(b) j even: Either d ≡ 0 (mod 4) and j = d/2, or d ≡ 2 (mod 4) and j = (d− 2)/2.

First assume that j is odd and d ≡ 4 (mod 8), so d > 12, c′ = d/2 and r divides td/4−1.
Since bd/c′c = 2, Lemma 2.4(ii) implies that κ(S, r) 6 2(r − 1)/d + 1, whereas T has at
least

bn/(r − 1)c − 1 >

⌊
(td/2 − 1)/2

td/4 − 2

⌋
− 1 >

1

2
td/4 − 1 >

1

2
(r − 1) > 2(r − 1)/d+ 1

such classes. A similar argument applies if j is odd and d ≡ 6 (mod 8).



LOCALLY ELUSIVE CLASSICAL GROUPS 27

Next assume j is even and d ≡ 2 (mod 4), so d > 10, c′ = (d − 2)/2 and r divides

t(d−2)/4 + 1. In addition, since bd/c′c = 2 we have κ(S, r) 6 2(r − 1)/(d − 2) + 1. By
applying Lemma 2.4(iii) and the lower bound on n given in (17), it is easy to check that

κ(T, r) > t(d−2)/4. The desired result follows since t(d−2)/4 > r− 1 > 2(r− 1)/(d− 2) + 1.

Finally, suppose that j is even and d ≡ 0 (mod 4), in which case d > 8, c′ = d/2 and

r divides td/4 + 1. In particular, κ(S, r) 6 2(r − 1)/d + 1. We claim that κ(T, r) > td/4,

which is sufficient since td/4 > r − 1 > 2(r − 1)/d + 1. If t is even, this follows in the

usual way via Lemma 2.4(iii) and (17). If t is odd then td/4 + 1 is even and thus r divides

(td/4 + 1)/2, whence Lemma 2.4(iii) implies that

κ(T, r) > bn/(r − 1)c − 1 >

⌊
(td/2 − 1)/2

(td/4 − 1)/2

⌋
− 1 = td/4

as claimed. �

5.3.4. Orthogonal groups.

Lemma 5.12. Proposition 5.2 holds if S = PΩε
d(t) and (t, p) = 1.

Proof. We may assume that d > 7, with t odd if d is odd. If S = Ω7(3) then r ∈ {5, 7, 13}
and κ(S, r) = 1. Next assume S = Ω+

8 (2). Here r ∈ {5, 7} with κ(S, 5) = 3 and κ(S, 7) = 1.
By [27] we have n > 8. If n = 8 then T = PΩ+

8 (p) and this is the case labelled (B4) in
Table 2. Therefore, we may assume that n > 8, in which case n > 28 (see [20, Table 2])
and thus Lemma 2.4(iii) implies that κ(T, 5) > 6.

In each of the remaining cases, the Landazuri-Seitz [27] bounds imply that

n >

{
(t(d−2)/2 + 1)(t(d−4)/2 − 1) d even

t(d−3)/2(t(d−3)/2 − 1) d odd.

Suppose d is odd. Then

r > d
√
n/2e+ 1 >

⌈
1

2

√
t(d−3)/2(t(d−3)/2 − 1)

⌉
+ 1 > t(d−1)/4 + 1

and thus r 6= ` and every element in H0 of order r is contained in S. Set j = Φ(r, t) and
c′ = 2j if j is odd, otherwise c′ = j. Note that the above lower bound on r implies that
j > (d − 1)/4. If j is odd then c′ > (d − 1)/2 and thus c′ > (d + 1)/2 and κ(S, r) = 1.

Similarly, if j is even then r divides tj/2 + 1, so c′ > (d − 1)/2 and the same conclusion
holds.

Finally, let us assume d is even. The cases with d = 8 and t ∈ {2, 3} can be checked
directly. For example, if S = PΩ+

8 (3) then r ∈ {5, 7, 13}. If r ∈ {7, 13} then c′ = 6 and
thus κ(S, r) = 1. If r = 5 then c′ = 4 and κ(S, r) = 2, but n > 224 and thus κ(T, r) > 2.
In all of the remaining cases we have

r > d
√
n/2e+ 1 >

⌈
1

2

√
(t(d−2)/2 + 1)(t(d−4)/2 − 1)

⌉
+ 1 > td/4 + 1

and by arguing as in the d odd case we deduce that κ(S, r) = 1. �

5.3.5. Exceptional groups.

Lemma 5.13. Proposition 5.2 holds if S ∈ {E7(t), E8(t)} and (t, p) = 1.

Proof. First assume S = E8(t). Here n > t27(t2 − 1) by [27], so (10) implies that

r > d
√
n/2e+ 1 >

⌈
1

2

√
t27(t2 − 1)

⌉
+ 1 > t13.
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Therefore r divides |S|, r 6= ` and by considering the order of S we deduce that j =

Φ(r, t) ∈ {14, 18, 20, 24, 30}. Hence r divides tj/2 + 1, so j = 30 is the only possibility.
However, if j = 30 then r divides (t15+1)/(t5+1) = t10−t5+1, which is incompatible with
the bound r > t13. The case S = E7(t) is entirely similar, using the bound n > t15(t2− 1)
from [27]. �

Lemma 5.14. Proposition 5.2 holds if S ∈ {E6(t), 2E6(t)} and (t, p) = 1.

Proof. Here n > t9(t2 − 1) (see [25, Table 5.3.A]) and we deduce that r > t4 + 1. Set
j = Φ(r, t) and first assume S = E6(t). Since r > t4 + 1 and r divides |S|, it follows that
j ∈ {9, 12}. If j = 12 then r divides (t6 + 1)/(t2 + 1) = t4 − t2 + 1, which contradicts the
bound r > t4 +1. Now assume j = 9, in which case r divides (t9−1)/(t3−1) = t6 + t3 +1.
By inspecting the structure of the maximal tori in S (see [24, Section 2.7], for example), it
follows that every subgroup of S of order r is contained in a cyclic maximal torus of order
t6 + t3 + 1. Since S has a unique class of such maximal tori, we deduce that κ(S, r) = 1
and the result follows.

A very similar argument applies if S = 2E6(t). Here j ∈ {10, 12, 18} and we can rule
out j = 12 as above. Similarly, if j = 10 then r divides (t5 + 1)/(t + 1), but this is not
possible since r > t4 + 1. Finally, if j = 18 then r divides t6 − t3 + 1, which implies that
every subgroup of S of order r is contained in a cyclic maximal torus of order t6 − t3 + 1.
Once again we deduce that κ(S, r) = 1 since S has a unique class of such tori. �

Lemma 5.15. Proposition 5.2 holds if S ∈ {F4(t), 2F4(t)′} and (t, p) = 1.

Proof. First assume that S = F4(2), so r ∈ {5, 7, 13, 17} and n > 44 (see [27]). If
r ∈ {5, 13, 17} then the character table of S indicates that κ(S, r) = 1, so we may assume
r = 7. Now S has two classes of subgroups of order 7, but Lemma 2.4(iii) implies that T
has at least b44/6c − 1 = 6 such classes. The result follows.

Next suppose that S = F4(t) and t > 3. Here n > t6(t2 − 1) (see [25, Table 5.3.A]) and
thus

r >

⌈
1

2

√
t6(t2 − 1)

⌉
+ 1 > t3 + 1.

Set j = Φ(r, t). Since r divides |S| and r > t3 + 1, it follows that j ∈ {8, 12}. If j = 12
then r divides (t6 + 1)/(t2 + 1) = t4 − t2 + 1 and we deduce that every subgroup of S of
order r is contained in a cyclic maximal torus of order t4 − t2 + 1. But there is a unique
conjugacy class of such tori, whence κ(S, r) = 1. An entirely similar argument applies if
j = 8, using the fact that S has a unique class of cyclic maximal tori of order t4 + 1.

Now assume S = 2F4(t)′, so t = 22m+1 with m > 0. If t = 2 then r ∈ {5, 13} and by
inspecting the character table of S we deduce that κ(S, r) = 1. Now assume t > 8. Here

[27] gives n > t4(t − 1)
√
t/2, which implies that r > t2 + 1. Set j = Φ(r, t) and observe

that j ∈ {6, 12}. If j = 6 then r divides (t3 + 1)/(t + 1) = t2 − t + 1, which contradicts
the bound r > t2 + 1. Now assume j = 12, in which case r divides

t6 + 1

t2 + 1
= (t2 −

√
2t3 + t−

√
2t+ 1)(t2 +

√
2t3 + t+

√
2t+ 1).

Since r > t2 + 1 it follows that r divides t2 +
√

2t3 + t +
√

2t + 1 and we deduce that
every subgroup of S of order r is contained in a cyclic maximal torus in S of order

t2 +
√

2t3 + t +
√

2t + 1. The result now follows since S has a unique conjugacy class of
such tori and thus κ(S, r) = 1. �

Lemma 5.16. Proposition 5.2 holds if S ∈ {2B2(t), G2(t)′, 2G2(t)′} and (t, p) = 1.
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Proof. First assume S = 2B2(t), so t = 22m+1 and m > 1. If t = 8 then r ∈ {5, 7, 13} and

κ(S, r) = 1. Now assume t > 32, so n > (t− 1)
√
t/2 by [27]. Therefore r > log2 t by (10),

so every element in H0 of order r is contained in S. The maximal tori of S are cyclic of
order t − 1, t +

√
2t + 1 and t −

√
2t + 1, and S has a unique class of tori of each order.

Since these orders are pairwise coprime, it follows that κ(S, r) = 1 and the result follows.

Next assume that S = G2(t)′. If t ∈ {2, 3} then r ∈ {7, 13} and κ(S, r) = 1. If t = 4
then n > 12 (see [25, Table 5.3.A]) and r ∈ {5, 7, 13}. We have κ(S, r) = 1 if r ∈ {7, 13},
so we may assume r = 5 and thus κ(S, r) = 2. The result now follows from Lemma 2.4(iii)
since T is a symplectic group when n = 12 (see [20, Table 2]). Now assume t > 5. Here
[27] gives n > t(t2 − 1) and thus

r >

⌈
1

2

√
t(t2 − 1)

⌉
+ 1 > t+ 1.

Set j = Φ(r, t) and note that j ∈ {3, 6} since r divides |S| and r > t + 1. If j = 3 then
r divides t2 + t + 1 and we deduce that every subgroup of S of order r is contained in a
cyclic maximal torus of order t2 + t + 1. Since S has a unique class of such tori, we see
that κ(S, r) = 1. An entirely similar argument applies if j = 6.

Finally, let us assume S = 2G2(t)′, where t = 32m+1 and m > 0. If t = 3 then r = 7
and κ(S, r) = 1. Now assume t > 27. By [27] we have n > t(t− 1) and thus

r >

⌈
1

2

√
t(t− 1)

⌉
+ 1 >

1

2
(t+ 1)

so r > log3 t. Set j = Φ(r, t) and observe that j ∈ {1, 2, 6}. If j = 1 then r divides
(t − 1)/2, which is incompatible with the bound r > (t + 1)/2. Similarly, if j = 2 then r
divides (t + 1)/2 and once again we have reached a contradiction. Finally, suppose that
j = 6, in which case r divides

t3 + 1

t+ 1
= t2 − t+ 1 = (t+

√
3t+ 1)(t−

√
3t+ 1).

If r divides t+
√

3t+1 then every subgroup of S of order r is contained in a cyclic maximal
torus of order t +

√
3t + 1; there is a unique class of such tori, so κ(S, r) = 1. A very

similar argument applies if r divides t−
√

3t+ 1. �

Lemma 5.17. Proposition 5.2 holds if S = 3D4(t) and (t, p) = 1.

Proof. Here [27] gives n > t3(t2− 1). First assume t = 2, so r ∈ {7, 13} and n > 24. Since
κ(S, 7) = 2 and κ(S, 13) = 1, the result follows from Lemma 2.4(iii).

Next assume t = 3, so r ∈ {7, 13, 73} and n > 216. If r = 73 then κ(S, r) = 1 by
Sylow’s Theorem. Similarly, if r ∈ {7, 13} then the Sylow r-subgroups of S are isomorphic
to Zr × Zr, which implies that κ(S, r) 6 r + 1. But Lemma 2.4(iii) implies that T has
at least b216/12c − 1 = 17 such classes, so the result follows. The case t = 4 is entirely
similar (here r ∈ {5, 7, 13, 241} and n > 960).

To complete the proof of the lemma, we may assume that t > 5. First observe that

r >

⌈
1

2

√
t3(t2 − 1)

⌉
+ 1 > t2 + 1.

In particular, j = Φ(r, t) ∈ {3, 6, 12}. If j = 6 then r divides (t3 + 1)/(t+ 1) = t2 − t+ 1,
but this contradicts the bound r > t2 + 1. Next suppose that j = 12, so r divides
(t6 + 1)/(t2 + 1) = t4 − t2 + 1. Every subgroup of S of order r is contained in a cyclic
maximal torus of order t4 − t2 + 1; since S has a unique class of such tori, it follows that
κ(S, r) = 1.
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Finally, let us assume that j = 3, so r divides (t3 − 1)/(t − 1) = t2 + t + 1. If t > 7

then the bound r >
⌈√

t3(t2 − 1)/2
⌉

+ 1 implies that r > t2 + t + 1, so we may assume

that t = 5 and thus r = 31. The Sylow 31-subgroups of S are isomorphic to Z31 ×Z31, so
κ(S, 31) 6 32. But n > 3000 so Lemma 2.4(iii) implies that κ(T, 31) > 99. �

This completes the proof of Proposition 5.2 in the case where S is a simple group of Lie
type in non-defining characteristic.

5.4. Groups of Lie type: Defining characteristic. In this final section we complete
the proof of Proposition 5.2 by considering the case where S is a simple group of Lie type
over Fpe , for some positive integer e.

Let K be the algebraic closure of Fp, let M be a KŜ-module affording a representation

ρ and let γ be an automorphism of Ŝ. Following [25, p.192], we write Mγ for the space

M with Ŝ-action given by the representation γρ (acting on the right) and we say that the

KŜ-modules M and Mγ are quasiequivalent. In particular, if γ is a field automorphism
of Ŝ induced by the map λ 7→ λp on K then we will write Mγz = M (z) for all z ∈ N.

By a theorem of Steinberg [35], the irreducible KŜ-modules are parameterised by an
appropriate set of weights for the ambient simple algebraic group S̄ over K, with respect
to a fixed set of fundamental dominant weights. We will write {λ1, . . . , λk} for the latter
weights, where we adopt the standard labelling given in Bourbaki [3]. In addition, L(λ) will
denote the irreducible KS̄-module with highest weight λ. Note that if M is an irreducible
KŜ-module and γ is an automorphism of Ŝ, then the highest weight of Mγ can be read
off from [25, Proposition 5.4.2]. Similarly, the highest weight of the dual module M∗

is described in [25, Proposition 5.4.3]. We refer the reader to [25, Section 5.4] and the
references therein for further details.

5.4.1. S is untwisted. To begin with, we will assume S is an untwisted simple group of
Lie type over Fpe . Recall that T is a finite simple classical group over Fq with natural

module V , where q = pf . Set q′ = pf
′
, where f ′ = 2f if T = PSUn(q), otherwise f ′ = f .

Also recall that V is an absolutely irreducible Fq′Ŝ-module which cannot be realised over
a proper subfield of Fq′ (see Definition 2.10). By applying [25, Proposition 5.4.6(i)] we

deduce that f ′ divides e and there exists an irreducible KŜ-module M such that

V̄ = V ⊗K ∼= M ⊗M (f ′) ⊗M (2f ′) ⊗ · · · ⊗M (e−f ′) (18)

(with e/f ′ factors) as KŜ-modules. Set ` = dimM and note that ` > 2 and n = `e/f
′
.

We need a couple of preliminary lemmas.

Lemma 5.18. Let J be a finite group and let V1 and V2 be faithful finite dimensional
KJ-modules, where K is an algebraically closed field and dimVi > 2, i = 1, 2. Let x ∈ J
be a nontrivial element such that the action of x on V1 has a repeated eigenvalue. Then x
has a nontrivial repeated eigenvalue on V1 ⊗ V2.

Proof. This is an easy exercise. �

Lemma 5.19. Let S̄ = SLd(K), where d > 6 and K is an algebraically closed field of
characteristic p > 0. Let V̄ = L(λ) be an n-dimensional irreducible self-dual KS̄-module
with n 6 4d2. Then either V̄ is the adjoint module, or

(d, λ) ∈ {(6, λ3), (6, 2λ3), (8, λ4), (10, λ5)} (19)

up to quasiequivalence.
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Proof. We follow the proof of [5, Proposition 2.5]. Write λ =
∑d−1

j=1 ajλj where each aj
is a non-negative integer. By self-duality, we have aj = ad−j for all j. To begin with, let
us assume that λ is p-restricted (that is, aj < p for all j). If d 6 18 then the result can
be checked by inspecting the relevant tables in [31], so we may assume that d > 19. Let
W ∼= Sd be the Weyl group of S̄, which acts naturally on the set of weights of V̄ .

Suppose a2 6= 0. By arguing as in the proof of [5, Proposition 2.5] we see that the
W-stabiliser of λ is contained in a parabolic subgroup of type A1 ×Ad−5 ×A1 and thus

n > |W · λ| = |W :Wλ| >
|Sd|

|S2|2|Sd−4|
=

1

4
d(d− 1)(d− 2)(d− 3) > 4d2,

where W · λ denotes the W-orbit of λ. Therefore a2 = ad−2 = 0. In this way, we quickly
reduce the problem to the case where

λ =

{
aλ1 + aλd−1 d odd
aλ1 + bλd/2 + aλd−1 d even

If d is even and b 6= 0 then the W-stabiliser of λ is contained in a parabolic subgroup
of type Ad/2−1 × Ad/2−1 and thus n > d!/((d/2)!2) > 4d2. Finally, we can repeat the
argument in the proof of [5, Proposition 2.5] to see that a = 1 is the only option, so
λ = λ1 + λd−1 and thus V̄ is the adjoint module.

Finally, let us relax the assumption that λ is p-restricted. Write λ = µ0 + pµ1 + · · · +
pe−1µe−1, where each µi is p-restricted, so by Steinberg’s tensor product theorem we have

V̄ = L(λ) ∼= L(µ0)⊗ L(µ1)(1) ⊗ · · · ⊗ L(µe−1)(e−1).

If three or more of the µi are nonzero then n > d3 > 4d2, which is a contradiction. Next
suppose two are nonzero, say λ = piµi + pjµj with i 6= j, so n = dimL(µi) · dimL(µj).
The self-duality of V̄ implies that L(µi) and L(µj) are also self-dual and thus the result
in the p-restricted case rules out this situation for dimension reasons. Finally, if λ = piµi
then µi is self-dual and V̄ is quasiequivalent to L(µi). The result follows. �

Lemma 5.20. Proposition 5.2 holds if S is untwisted and e > f ′.

Proof. First assume ` > 2, where ` denotes the dimension of M in (18). Fix an element
x ∈ T of order r with ν(x) = c, where r 6= p and r > 2 (see Remark 2.3). We claim that
x is a derangement. In order to see this, we need to show that if g ∈ H0 has order r, then
g is not T -conjugate to x. For instance, it suffices to show that ν(g) 6= c, or that g has a
nontrivial repeated eigenvalue on V̄ .

Let g ∈ H0 be an element of order r. If g is a field automorphism then it must induce a
fixed point free permutation on the e/f ′ factors in the tensor product decomposition (18)
(in particular, r divides e/f ′). This implies that g has nontrivial repeated eigenvalues on
V̄ , so it is not conjugate to x. To complete the argument, we may assume that g is an
inner-diagonal automorphism (recall that r > 5) and thus g stabilises each of the tensor
factors in (18). Let ν1(g) and ν(g) denote the codimension of the largest eigenspace of g
on M and V̄ , respectively. By applying [30, Lemma 3.7], we deduce that

ν(g) > ν1(g)n/`. (20)

If ν1(g) < ` − 1 then Lemma 5.18 implies that g has a nontrivial repeated eigenvalue on
V̄ , so we may assume that ν1(g) = ` − 1. Then (20) gives ν(g) > n/2 and thus g is not
T -conjugate to x (since ν(x) = c 6 n/2).

Now assume ` = 2, so S = PSL2(pe) is the only possibility. The previous argument
shows that the element x ∈ T above is a derangement if c < n/2, so we may assume that
c = n/2. Here (10) implies that

r > c+ 1 = n/2 + 1 = 2e/f
′−1 + 1 > e/f ′,
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so every element in H0 of order r is contained in S (indeed, if g ∈ H0 \ S has order r,
then g is a field automorphism and r divides e/f ′, as noted above). Since S has a unique
conjugacy class of subgroups of order r, we conclude that T contains derangements of
order r. �

Lemma 5.21. Proposition 5.2 holds if S is untwisted and e = f ′.

Proof. Set q′ = pf
′

as before, so f ′ = 2f if T = PSUn(q), otherwise f ′ = f . Here V̄ ∼= M

for some irreducible KŜ-module M , which is not quasiequivalent to the natural module
for Ŝ (see Definition 2.10). Note that every element of order r in H0 is inner-diagonal.

First assume T = PSUn(q), in which case M ∼= (M∗)(f), where M∗ denotes the dual of
M (see [25, Lemma 2.10.15(ii)], for example). By considering this isomorphism at the level
of highest weights, and by applying Steinberg’s tensor product theorem, we deduce that M
is isomorphic to a tensor product of two or more nontrivial irreducible KŜ-modules. For
example, if S = PSL3(q2) and M has highest weight λ1 + qλ2, then M ∼= L(λ1)⊗L(λ2)(f)

is 9-dimensional and M ∼= (M∗)(f), so this yields an embedding of S in PSU9(q). By
expressing M as a tensor product in this way, we can repeat the argument in the proof of
Lemma 5.20 to see that every element x ∈ T of order r with ν(x) = c is a derangement.

For the remainder of the proof we may assume that T 6= PSUn(q), so q = q′. We
will start by assuming S is a classical group, with a d-dimensional natural module. Set
i = Φ(r, q) and

c′ =

 2i if i is odd and S 6= PSLd(q)
i/2 if i ≡ 2 (mod 4) and S = PSUd(q)
i otherwise

(21)

Note that if c′ > d/2 then κ(S, r) = 1 by Lemma 2.4(i), so we may assume that c′ 6 d/2.
In addition, note that if c′ > c and n > 2d then Lemma 2.8 implies that κ(T, r) > κ(S, r)
and thus T contains derangements of order r.

Case 1. S = PSpd(q), d > 4

First observe that V is self-dual and thus T is a symplectic or orthogonal group (see
[25, Lemma 2.10.15(i) and Proposition 5.4.3]). In particular, c′ = c is even, so c′ > 4 and
thus d > 8 since we are assuming that c′ 6 d/2. If d > 12 then [31, Theorems 4.4 and
5.1] imply that n > (d2− d− 4)/2 > 2d and the result follows from Lemma 2.8. Similarly,

if d ∈ {8, 10} then n > 2d/2 (see [31, Tables A.33 and A.34]) and we reduce to the case
d = 8 with n = 16. Here c′ = c = 4 and it is easy to see that κ(S, r) < κ(T, r).

Case 2. S ∈ {PΩ+
d (q),Ωd(q)}, d > 7

First assume that V is self-dual, so T is symplectic or orthogonal, and c′ = c is even.
In particular, note that d > 8. Suppose d is even. If n > (d2 − d − 4)/2 then n > 2d
and the result follows as in Case 1. Therefore, by applying [31, Theorems 4.4 and 5.1],

we may assume that d ∈ {8, 12} and n = 2d/2−1. If d = 12 then n > 2d and the result
follows as before. We can discard the case d = 8 since S 6∼= T . Now assume d > 9 is odd.
By arguing as above we may assume that n < (d2 − d− 4)/2, so d 6 23 by [31, Theorem
5.1]. In each of the remaining cases it is easy to check that n > 2d by inspecting the
relevant tables in [31, Appendix A], unless d = 9 and n = 16. In the latter case, c′ = c = 4
and κ(S, r) < κ(T, r). Finally, if V is not self-dual then S = PΩ+

d (q) with d ≡ 2 (mod 4)
(see [25, Proposition 5.4.3]) and T = PSLn(q). Here c′ > c and the above argument goes
through.

Case 3. S = PSLd(q), d > 2
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If d = 2 then κ(S, r) = 1 so we may assume that d > 3. If V is not self-dual, then
T = PSLn(q), c′ = c = i and d > 6. By applying [31, Theorems 4.4 and 5.1] we see that
n > d(d − 1)/2 > 2d. Similarly, if V is self-dual and i is even, then c′ = c = i 6 d/2 and
n > d2 − 2 > 2d. In both cases, the desired result follows from Lemma 2.8.

Finally, let us assume V is self-dual and i is odd. Here c′ = i < 2i = c so we cannot
appeal to Lemma 2.8. First observe that i > 3 and thus d > 6. Also recall that c >

√
n/2

and c′ 6 d/2, hence n 6 4d2 and the possibilities for V are recorded in Lemma 5.19.

First let us consider the exceptional cases in (19). Suppose (d, V̄ ) = (6, L(λ3)). Here i =
3 and V = Λ3(W ) is 20-dimensional, where W is the natural S-module. A straightforward
calculation shows that ν(y) > 8 for all y ∈ S of order r (see [6, Section 7], for example), so
every element x ∈ T of order r with ν(x) = 6 is a derangement. A very similar argument
applies if (d, V̄ ) = (8, L(λ4)) or (10, L(λ5)). Finally, suppose (d, V̄ ) = (6, L(2λ3)), so p = 3
and n = 141 (see [31, Table A.9]). Again, i = 3 and thus 6 divides r−1. Set a = (r−1)/6

and observe that S has 4a +
(

2a
2

)
conjugacy classes of elements of order r. If r = 7 then

T has b141/6c = 23 > 5 such classes, so we may assume that r > 13. It is easy to check
that T has at least 2a + 22

(
a
2

)
such classes, and the result follows by applying Corollary

2.2. (To obtain the latter lower bound, we simply count class representatives of the form

[X1, I135], [X2
1 , I129] and [Xj

1 , X2, I141−6(j+1)] with 1 6 j 6 22.)

Now assume V is the adjoint module, so n = d2 − 1 or d2 − 2 (according to whether
or not p divides d). Let X be the Lie algebra of S̄ = SLd(K), so V̄ is the nontrivial
irreducible constituent of X. Now dimCX(y) = dimCS̄(y) for every nontrivial semisimple
element y ∈ S̄ (see [21, Section 1.10]) and thus [6, Proposition 2.9] implies that

dimCX(y) = dimCS̄(y) 6 d2 − 2d+ 1.

It follows that the dimension of the 1-eigenspace of any element in S of order r on V is at
most d2 − 2d+ 1. But if x ∈ T is an element of order r with ν(x) = c, then

dimCV (x) = n− c > d2 − d− 2 > d2 − 2d+ 1

and we conclude that x is a derangement.

Case 4. S = E8(q)

As before, H0 does not contain any field automorphisms, so by considering the order of
S we deduce that c 6 30 and thus n 6 3600 since we have c >

√
n/2. By inspecting [31,

Table A.53], we deduce that n = 248 is the only possibility, so V is the adjoint module.
In particular, since V̄ is the Lie algebra of S̄ = E8(K) we have

dimCV̄ (y) = dimCS̄(y) 6 136

for all nontrivial semisimple elements y ∈ S̄. Therefore, every x ∈ T of order r with
ν(x) = c is a derangement.

Case 5. S = E7(q)

Here c 6 18 and thus n 6 1296. Suppose c ∈ {14, 18}. By inspecting the structure of
the maximal tori in S (see [24, Section 2.9], for example), we deduce that every element in
S of order r belongs to a unique conjugacy class of maximal tori, which are cyclic. Since
such a torus has a unique subgroup of order r, it follows that κ(S, r) = 1 and thus T
contains derangements of order r.

By inspecting the order of S, we may assume that c 6 12 and thus n 6 576. By [31,
Table A.52], it follows that n ∈ {56, 132, 133}, so V is either the minimal or adjoint module
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for S. Suppose V is the adjoint module and let X be the Lie algebra of S̄ = E7(K). Then

dimCX(y) = dimCS̄(y) 6 79

for all nontrivial semisimple elements y ∈ S̄, so every x ∈ T of order r with ν(x) = c is
a derangement. Finally, suppose n = 56 and consider the restriction of V̄ to a maximal
rank subgroup A7 of S̄. By [29, Proposition 2.3] we have

V̄ ↓ A7 = L(λ2)⊕ L(λ2)∗ = Λ2(W )⊕ Λ2(W )∗,

where W is the natural A7-module. By calculating directly with the exterior square Λ2(W )
we find that dimCL(λ2)(y) 6 21 for all nontrivial semisimple elements y ∈ A7, so the 1-
eigenspace of any element in S of order r on V has dimension at most 42. Since c 6 12,
we conclude that each x ∈ T of order r with ν(x) = c is a derangement.

Case 6. S = E6(q)

This is very similar to the previous case. First observe that c 6 12 and thus n 6 576.
If c ∈ {9, 12} then by considering the maximal tori of S we deduce that κ(S, r) = 1
and the result follows. In view of |S|, we may assume that c 6 8, so n 6 256 and thus
n ∈ {27, 77, 78} by [31, Table A.51]. If n ∈ {77, 78} then V is the adjoint module and
we see that every x ∈ T of order r with ν(x) = c is a derangement since dimCX(y) =
dimCS̄(y) 6 46 for all nontrivial semisimple elements y ∈ S̄ (where X is the Lie algebra
of S̄ = E6(K)).

Finally, let us assume c 6 8 and n = 27, so V is the minimal module for S. Once again
we claim that every element x ∈ T of order r with ν(x) = c is a derangement. To see this,
first observe that

V̄ ↓ A1A5 = (L(λ1)⊗ L(λ1))⊕ (0⊗ L(λ4)) = U1 ⊕ U2,

where 0 denotes the trivial A1-module (see [29, Proposition 2.3]). Let y = y1y2 ∈ A1A5 be
a nontrivial semisimple element. If one yj is trivial then it is clear that y has a repeated
nontrivial eigenvalue on V̄ . On the other hand, if both y1 and y2 are nontrivial then we
calculate that dimCU1(y) 6 6 and dimCU2(y) 6 10 (note that U2

∼= Λ2(W )∗, where W is
the natural A5-module), so dimCV̄ (y) 6 16. This justifies the claim.

Case 7. S = F4(q)

Here c 6 12 and thus n 6 576. If c ∈ {8, 12} then by considering the structure of the
maximal tori of S we see that κ(S, r) = 1, so we may assume that c 6 6. In particular,
n 6 144 and thus n ∈ {25, 26, 52} (see [31, Table A.50]). We claim that each x ∈ T of
order r with ν(x) = c is a derangement.

If n = 52 then V̄ is the Lie algebra of S̄ = F4(K), so dimCV̄ (y) 6 36 and the claim
follows. Finally, if n ∈ {25, 26} then the proof of [6, Lemma 7.4] implies that ν(y) > 7 for
all nontrivial semisimple elements y ∈ S̄, and once again the claim holds.

Case 8. S = G2(q)

Since c > 3 and |S| = q6(q2 − 1)(q6 − 1), we see that c = 6 is the only possibility. By
inspecting the maximal tori of S, we deduce that κ(S, r) = 1 and the result follows. �

5.4.2. S is twisted. To complete the proof of Proposition 5.2 (and hence the proof of
Theorem 1), we may assume that S is a twisted group of Lie type over Fpe .

For now, let us assume that S is of type PSUd(p
e) (with d > 3), PΩ−d (pe) (with d > 8)

or 2E6(pe). In each of these cases, the ambient simple algebraic group admits a graph au-
tomorphism τ of order 2, which induces a symmetry of the corresponding Dynkin diagram.
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We will also write τ to denote the restriction of this automorphism to the corresponding
twisted group Ŝ. Recall that if M is a KŜ-module affording the representation ρ, then
M τ denotes the space M with Ŝ acting via τρ.

As before, set q = pf and q′ = pf
′
, where f ′ = 2f if T = PSUn(q), otherwise f ′ = f .

Since V is an absolutely irreducible Fq′Ŝ-module which cannot be realised over a proper
subfield of Fq′ , [25, Proposition 5.4.6(ii)] implies that one of the following occurs:

(a) f ′ divides e and there is an irreducible KŜ-module M such that M τ ∼= M and
(18) holds.

(b) f ′ divides 2e, but f ′ does not divide e. Moreover, if we write V̄ = V ⊗ K then

there is an irreducible KŜ-module M such that M τ 6∼= M and

V̄ ∼= M ⊗ (M τ )(f ′/2) ⊗M (f ′) ⊗ (M τ )(3f ′/2) ⊗ · · · ⊗ (M τ )(e−f ′) ⊗M (e−f ′/2) (22)

(with 2e/f ′ factors) as KŜ-modules.

Set ` = dimM and note that ` > 3. Also note that n = `e/f
′

in (a), and n = `2e/f
′

in (b).

Lemma 5.22. Proposition 5.2 holds if S is of type PSUd(p
e), PΩ−d (pe) or 2E6(pe).

Proof. First let us assume that we are in case (a) above, so f ′ divides e and (18) holds

with respect to an irreducible KŜ-module M such that M τ ∼= M . If f ′ < e then the proof
of Lemma 5.20 goes through unchanged (note that we always have ` > 2) and we deduce
that every element x ∈ T of order r with ν(x) = c is a derangement.

Now assume that (a) holds and f ′ = e. Here V̄ ∼= M ∼= M τ , so V is self-dual (see [25,
Proposition 5.4.3]). In particular, T is either symplectic or orthogonal, and q = q′. Also
note that every element in H0 of order r is inner-diagonal. Set i = Φ(r, q) as before and
note that c = 2i if i is odd, otherwise c = i. Define the integer c′ as in (21). As noted in
the proof of Lemma 5.21, we may assume that c′ 6 d/2. In addition, Lemma 2.8 implies
that if c′ > c then it suffices to show that n > 2d.

Suppose S = PSUd(q) with d > 3. First assume that i 6≡ 2 (mod 4), so 3 6 c = c′ 6 d/2
and [31] implies that n > d(d−1)/2 > 2d as required. Now assume i ≡ 2 (mod 4), so c = i
and c′ = i/2. Since c > 3 and c′ 6 d/2 we have i, d > 6. In addition, since c >

√
n/2 we

deduce that n 6 4d2. The rest of the argument is now identical to the analysis in Case 3
in the proof of Lemma 5.21. The reader can check the details.

Next assume S = PΩ−d (q) and d > 8. Here c′ = c and we can repeat the argument in
Case 2 in the proof of Lemma 5.21. Finally, let us assume that S = 2E6(q). By inspecting
the order of S we see that c 6 18. If c > 8 then by considering the structure of the
maximal tori of S we deduce that κ(S, r) = 1 and the result follows. Now assume c 6 8
so n 6 256. By inspecting [31, Table A.51] we see that n ∈ {27, 77, 78} and we can now
repeat the argument presented in Case 6 in the proof of Lemma 5.21.

To complete the proof of the lemma we may assume that (b) holds so f ′ divides 2e,

but f ′ does not divide e, and there is an irreducible KŜ-module M such that M τ 6∼= M
and (22) holds. Note that n = `2e/f

′
, where ` = dimM . If f ′ < 2e then the argument in

the proof of Lemma 5.20 goes through, so we may assume that f ′ = 2e and thus V̄ ∼= M .
Also note that V (e) ∼= V τ (see [25, Proposition 5.4.6(ii)]).

First assume S = PSUd(p
e) and d > 3. Here V (e) ∼= V τ ∼= V ∗ and thus (V ∗)(e) ∼= V , so

T = PSUn(q), f ′ = 2f and S = PSUd(q). In particular, c′ = c, d > 6 and n > d(d−1)/2 >
2d, so the result follows from Lemma 2.8.

Next assume S = PΩ−d (pe) with d > 8. Suppose d ≡ 0 (mod 4). Then V is self-dual (see

[25, Proposition 5.4.3]), so T is a symplectic or orthogonal group and thus S = PΩ−d (q0)

with q = q2
0. Note that n > d (if n = d then V is the natural module for Ŝ, which is
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defined over a proper subfield of Fq). Set i = Φ(r, q) and i0 = Φ(r, q0), so i = i0/2 if i0 is
even, otherwise i = i0. Also set c′ = 2i0 if i0 is odd, otherwise c′ = i0. Then c′ = 2i > c
and by arguing as in Case 2 in the proof of Lemma 5.21 we deduce that n > 2d.

Now suppose S = PΩ−d (pe), where d > 10 and d ≡ 2 (mod 4). In this situation, V is

not self-dual. In fact, (V ∗)(e) ∼= V and thus T = PSUn(q) and S = PΩ−d (q). Therefore
c′ > c and once again it is easy to check that n > 2d.

Finally, let us assume that S = 2E6(pe). As in the previous case, we have T = PSUn(q)
and S = 2E6(q). Note that every element of order r in H0 is contained in S. If c > 8 then
c ∈ {9, 12}, i ∈ {12, 18} and thus κ(S, r) = 1. On the other hand, if c 6 8 then n 6 256
and we can proceed as in Case 6 in the proof of Lemma 5.21. �

We now complete the proof of Proposition 5.2 by dealing with the remaining twisted
groups.

Lemma 5.23. Proposition 5.2 holds if S is of type 3D4(pe), 2B2(2e), 2G2(3e) or 2F4(2e).

Proof. Set q = pf and note that V is self-dual (see [25, p.192]), so T = PSpn(q) or PΩε
n(q).

As usual, we set H0 = H ∩ T and i = Φ(r, q). We partition the proof into several cases.

Case 1. S = 3D4(pe)

Set t = pe and note that |S| = t12(t8 + t4 +1)(t6−1)(t2−1). Since r > 5, every element
in H of order r is contained in S.〈ϕ〉, where ϕ is a field automorphism of order r. There
are r − 1 distinct S-classes of field automorphisms of order r in Aut(S), represented by
the elements ϕj with 1 6 j < r (this follows from the fact that every element of order r
in the coset Sϕj is S-conjugate to ϕj – see [17, Proposition 4.9.1(d)]). Therefore, there is
at most one S-class of subgroups of order r with elements in H0 \ S, so we may assume
that r divides |S|. As noted in [25, Remark 5.4.7(a)], either f divides e, or f divides 3e
(and f does not divide e).

First assume f divides e, so t = qe/f . According to [25, Remark 5.4.7(a)], there exists

an irreducible KŜ-module M such that M τ ∼= M and

V̄ = V ⊗K ∼= M ⊗M (f) ⊗M (2f) ⊗ · · · ⊗M (e−f),

where τ denotes a triality graph automorphism of Ŝ of order 3. Note that the condition
M τ ∼= M implies that dimM > 26 (see [31, Table A.41], for example), so n > 26e/f .

Suppose r divides t8 + t4 + 1. Since r divides q12e/f − 1 it follows that i divides 12e/f .
Therefore,

12e/f > c > d
√
n/2e > d

√
26e/f/2e

and thus e/f 6 2. In particular, e/f is indivisible by r, so H0 does not contain any field
automorphisms of order r. By inspecting the structure of the maximal tori of S (see [24,
Section 2.4]) we deduce that κ(S, r) = 1 and the result follows.

Next assume r divides t6 − 1. Here c 6 6e/f and by arguing as above we deduce that
e/f 6 2. If e/f = 2 then 12 > c > d26/2e = 13, which is absurd, so we may assume
that e/f = 1, hence i ∈ {3, 6} and c = 6. Moreover, the bound 6 > d

√
n/2e implies that

n 6 144. By inspecting [31, Table A.41], using the fact that the highest weight of M is
fixed under the induced action of τ on weights, it follows that n = 28− 2δ2,p and V is the
adjoint module. Let X be the Lie algebra of S̄ = D4 and observe that

dimCX(y) = dimCS̄(y) 6 16

for all nontrivial semisimple elements y ∈ S̄ (indeed, the proof of [6, Proposition 2.9]

implies that dim yS̄ > 12). We immediately deduce that every element x ∈ T of order r
with ν(x) = c is a derangement.
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To complete the analysis of the case S = 3D4(pe) we may assume that f divides 3e, but

f does not divide e. Here there is an irreducible KŜ-module M such that M τ 6∼= M and

V ⊗K ∼= M ⊗ (M τ )(f/3) ⊗ (M τ2)(2f/3) ⊗M (f) ⊗ · · ·
(with 3e/f factors in total). Note that dimM > 8.

Suppose r divides t8 + t4 + 1, in which case r divides q12e/f − 1 and thus

12e/f > c > d
√
n/2e > d

√
83e/f/2e

since n > 8. This implies that 3e/f = 1 or 2. In particular, r does not divide 3e/f ,
so κ(H0, r) = 1 and the result follows. Finally, let us assume that r divides t6 − 1, so
c 6 6e/f and we deduce that 3e/f 6 2 since n > 8. If 3e/f = 1 then c = 2, which is a
contradiction. If 3e/f = 2 then c = 4 and n = 8 is the only possibility, but this can be
ruled out by inspecting the relevant tables in [4, Section 8.2].

Case 2. S = 2B2(2e)

Set t = 2e, where e > 3 is odd, and note that |S| = t2(t2 +1)(t−1) and Aut(S) = S.〈φ〉,
where φ is a field automorphism of order e. Now S has exactly three conjugacy classes
of maximal tori, all of which are cyclic. By considering the orders of the maximal tori,
we deduce that κ(S, r) = 1 for every odd prime divisor r of |S|. As in the previous case,
there is at most one S-class of subgroups of order r with elements in H0 \ S, whence
κ(H0, r) 6 2. The desired result follows immediately if κ(H0, r) = 1, so we may assume
that r divides |S|.

Write q = 2f and note that f divides e and n = dimV > 4e/f (see [25, Remark 5.4.7(b)]).

Since r divides |S|, it divides either t− 1 or t2 + 1. Suppose r divides t− 1 = qe/f − 1, so
i divides e/f and thus i is odd, so

2e/f > 2i = c > d
√
n/2e > 2e/f−1

and it follows that e/f = 1 or 3. But we are assuming that c > 3, so e/f = 3 and thus

i = 3 and c = 6. Since n > 4e/f = 64, we deduce that κ(T, r) > 3 and thus T contains
derangements of order r. A similar argument applies when r divides t2 +1. Here r divides
q2e/f + 1 and thus i divides 4e/f . If i is odd then i divides e/f , so r divides qe/f − 1,
which is not possible. Therefore, i is even and thus

4e/f > i = c > d
√
n/2e > 2e/f−1,

so e/f ∈ {1, 3, 5}. If e/f = 3 or 5 then the bound n > 4e/f quickly implies that κ(T, r) >
3. Finally, if e/f = 1 then c = 4 and n > 16 (indeed, every absolutely irreducible
representation of S over a field of characteristic 2 has dimension 4m for some m; see [32,
Lemma 1], for example) and once again we conclude that κ(T, r) > 3.

Case 3. S = 2G2(3e)

Write t = 3e, where e > 3 is odd, and note that |S| = t3(t3 + 1)(t − 1). By inspecting
the structure of the maximal tori of S, we deduce that κ(S, r) = 1 for every prime r > 5
dividing |S|. As in the previous case, we may assume that r divides |S| and it suffices to

show that κ(T, r) > 3. By [25, Remark 5.4.7(b)], f divides e and n > 7e/f .

First assume r divides t−1, so i divides e/f and thus c = 2i 6 2e/f and e/f > 3. Since

2e/f > c > d
√
n/2e > d

√
7e/f/2e

we deduce that e/f = 3 is the only possibility, so c = 6, n > 73 and we clearly have
κ(T, r) > 3. Now assume r divides t3 + 1, so i divides 6e/f . If i is odd then r divides

q3e/f − 1 and q3e/f + 1, which is absurd, so i = c is even. If c 6 2e/f then the previous
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argument shows that e/f = 3, so n > 73 and the result follows as above. Finally, suppose
that c = 6e/f . By the usual argument we deduce that e/f 6 3. If e/f = 3 then c = 18,
n > 73 and we see that κ(T, r) > 3. Now assume e/f = 1, so c = 6 and n > 12 (since
c 6 n/2). By inspecting [31, Table A.49], noting that p = 3, we deduce that n > 27 and
the desired result follows.

Case 4. S = 2F4(2e)

Set t = 2e and note that |S| = t12(t6 + 1)(t4 − 1)(t3 + 1)(t− 1), where e > 1 is odd. As

noted in [25, Remark 5.4.7(b)], f divides e and n > 26e/f , where q = 2f . As in the previous
cases, there is at most one S-class of subgroups of order r containing elements in H0 \ S,
so we may assume that r divides |S|. Set j = Φ(r, t) and note that j ∈ {1, 2, 4, 6, 12}.

First assume that j = 12, so r divides t4 − t2 + 1. By considering the structure of the
maximal tori of S we deduce that κ(S, r) = 1 so it suffices to show that κ(T, r) > 3. Since

c 6 12e/f and n > 26e/f , it follows that 12e/f > d
√

26e/f/2e, so e/f = 1, c = 12 and
n 6 576. By inspecting [31, Table A.50], noting that p = 2, we deduce that n = 26 is

the only possibility and thus V is the minimal module for S. Since V 6∼= V (z) for any
positive integer z < f , it follows that H0 does not contain any field automorphisms, so
κ(H0, r) = 1 and the result follows.

Next assume j = 6, so r divides t3 + 1. Once again, we see that κ(S, r) = 1. Since

c 6 6e/f and n > 26e/f we deduce that e/f = 1 is the only possibility, so c = 6, n > 26

and κ(T, r) > 3 as required. If j 6 2 then c 6 2e/f < d
√

26e/f/2e, so this case does not
arise.

Finally, let us assume j = 4. Here 4e/f > c > d
√

26e/f/2e and thus e/f = 1, so c = 4
and n 6 64. From [31, Table A.50], we deduce that n = 26 and thus V is the minimal
module for S. Set S̄ = F4(K) and V̄ = L(λ1) (or L(λ4)), so V̄ is a minimal module. From
the proof of [6, Lemma 7.4], we see that ν(y) > 8 for all nontrivial semisimple elements
y ∈ S̄ (with respect to the action of S̄ on V̄ ). We conclude that every element x ∈ T of
order r with ν(x) = 4 is a derangement. �

This completes the proof of Proposition 5.2. By combining this result with Corollary
2.7 and Propositions 3.4, 4.1 and 5.1, we conclude that the proof of Theorem 1 is complete.
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permutation groups without semiregular subgroups, J. London Math. Soc. 66 (2002), 325–333.



LOCALLY ELUSIVE CLASSICAL GROUPS 39

[12] B. Fein, W.M. Kantor and M. Schacher, Relative Brauer groups II, J. Reine Angew. Math. 328 (1981),
39–57.

[13] The GAP Group, GAP – Groups, Algorithms and Programming, Version 4.4, 2004.
[14] M. Giudici, Quasiprimitive groups with no fixed point free elements of prime order, J. London Math.

Soc. 67 (2003), 73–84.
[15] M. Giudici and S. Kelly, Characterizing a family of elusive permutation groups, J. Group Theory 12

(2009), 95–105.
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