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Abstract. Let G 6 Sym(Ω) be a finite transitive permutation group and recall that an
element in G is a derangement if it has no fixed points on Ω. Let ∆(G) be the set of
derangements in G and define δ(G) = |∆(G)|/|G| and ∆(G)2 = {xy : x, y ∈ ∆(G)}. In
recent years, there has been a focus on studying derangements in simple groups, leading to
several remarkable results. For example, by combining a theorem of Fulman and Guralnick
with recent work by Larsen, Shalev and Tiep, it follows that δ(G) > 0.016 and G = ∆(G)2

for all sufficiently large simple transitive groups G. In this paper, we extend these results in
several directions. For example, we prove that δ(G) > 89/325 and G = ∆(G)2 for all finite
simple primitive groups with soluble point stabilisers, without any order assumptions, and
we show that the given lower bound on δ(G) is best possible. We also prove that every finite
simple transitive group can be generated by two conjugate derangements, and we present
several new results on derangements in arbitrary primitive permutation groups.
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1. Introduction

Let G be a finite transitive permutation group on a set Ω with |Ω| > 2 and point stabiliser
H = Gα. Recall that an element of G is a derangement if it has no fixed points on Ω. We
write ∆(G) for the set of derangements in G (sometimes we will use ∆(G,Ω) or ∆(G,H),
if we need to specify Ω or H). By a classical theorem of Jordan [52], published in 1872, we
know that ∆(G) is non-empty. This elementary observation leads naturally to a wide range
of problems and applications that have been intensively studied in recent years (for instance,
see Serre’s article [71] for interesting applications in number theory and topology).

In one direction, there is an extensive literature concerning the existence of derangements
with specified properties. A well known theorem of Fein, Kantor and Schacher [32], which
relies on the Classification of Finite Simple Groups (CFSG), shows that every group G as
above contains a derangement of prime power order, which in turn has important number-
theoretic applications concerning the structure of Brauer groups of global field extensions
(see [32]). However, transitive groups with no derangements of prime order do exist. For
example, the smallest Mathieu group M11, viewed as a primitive permutation group of degree
12, does not contain a prime order derangement. These so called elusive groups have been the
subject of numerous papers and they are closely related to some interesting open problems,
such as the Polycirculant Conjecture in algebraic graph theory (see the survey article [1] and
[17, Section 1.3] for further details).
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In a different direction, it is natural to consider the proportion of derangements in G,

δ(G) = δ(G,Ω) = δ(G,H) =
|∆(G)|
|G|

,

which one can view as the probability that a uniformly random element in G has no fixed
points. This has been widely studied since the 1990s and there has been a special interest in
determining lower bounds. For example, a theorem of Cameron and Cohen [21] shows that
δ(G) > |Ω|−1, with equality if and only if G is sharply 2-transitive. And by applying CFSG,
the groups with δ(G) < 2|Ω|−1 have been determined by Guralnick and Wan [48], motivated
by applications to curves over finite fields in arithmetic geometry.

Perhaps the most striking result on the proportion of derangements is the following deep
theorem of Fulman and Guralnick, which establishes a conjecture of Boston and Shalev from
the 1990s (see [8]). The proof is presented in the sequence of papers [35, 36, 37, 38].

Theorem 1 (Fulman & Guralnick). There is an absolute constant ε > 0 such that δ(G) > ε
for every finite simple transitive permutation group G.

The constant ε is undetermined, although [38, Theorem 1.1] states that one can take
ε = 0.016 for all sufficiently large simple groups.

Since ∆(G) is a normal subset, it is also natural to consider the analogous problem for
conjugacy classes. Here recent work of Eberhard and Garzoni [30] shows that the proportion
of conjugacy classes consisting of derangements in simple transitive groups of Lie type is
also bounded away from zero (it is easy to see that the conclusion is false for alternating
groups). It is interesting to note that the latter result extends to almost simple groups of
Lie type, whereas examples can be constructed to show that δ(G) can be arbitrarily small
in the almost simple setting (we will return to this below).

In order to state our first result, it will be convenient to define

α(G) = min{δ(G,H) : H < G core-free},

so Theorem 1 implies that there is an absolute (and undetermined) constant ε > 0 such that
α(G) > ε for every simple group G. In Theorem 2, we show that ε = 1/e is asymptotically
the best possible constant for alternating groups, and we determine the optimal constant for
every sporadic group. Note that Table 1 is presented in Section 2.2. Throughout this paper,
whenever we use the term “simple group”, we implicitly assume the group is non-abelian.

Theorem 2. Let G be a simple alternating or sporadic group.

(i) If G = An, then α(G)→ 1/e as n→∞.

(ii) If G is a sporadic group, then α(G) is recorded in Table 1. In particular, we have
α(G) > 2197/7425, with equality if and only if G = McL.

Remark 3. Let us record some comments on the statement of Theorem 2.

(a) To prove part (i), we will show that

α(An) =

n∑
j=2

(−1)j

j!
− (−1)n(n− 1)

n!
=

[n!/e]

n!
− (−1)n(n− 1)

n!

for all sufficiently large n, where [x] denotes the nearest integer to x. In addition,
we conjecture that this formula for α(An) holds for all n > 9, which would imply
that ε = 13/45 is the optimal constant in Theorem 1 as we range over all simple
alternating groups (see Conjecture 2.6).

(b) The key step in the proof of (i) is to show that δ(G) is minimal when k = 1 or n− 1
with respect to the action of G = An on the set of k-element subsets of {1, . . . , n}
(see Proposition 2.2).
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(c) The proof for sporadic groups relies on computational methods, working closely with
the information on character tables and fusion maps available in the GAP Character
Table Library [11].

Our next result gives an effective and best possible version of Theorem 1 for simple prim-
itive groups with soluble point stabilisers.

Theorem 4. Let G be a finite simple primitive permutation group with soluble point stabiliser
H. Then

δ(G) >
89

325
,

with equality if and only if G = 2F4(2)′ and H = 22.[28].S3.

Remark 5. Some comments on the statement of Theorem 4 are in order.

(a) For sporadic groups, the given lower bound is valid for all transitive actions with
soluble point stabilisers. In fact, we prove that δ(G) > 21/55, with equality if and
only if G = M11 and H = U3(2).2 or 2.S4 (see Proposition 4.3).

(b) In order to establish Theorem 6 below, we require a slightly more general version
of Theorem 4. So we will actually prove that δ(G) > 89/325 for every finite simple
transitive group G with soluble point stabiliser H, where H = G ∩ M for some
maximal subgroup M of an almost simple group with socle G.

(c) We conjecture that ε = 89/325 is the optimal constant for all transitive groups with
soluble point stabilisers. In fact, we speculate that this is the best possible constant
in Theorem 1, without any additional assumptions.

As noted above, Theorem 1 does not extend to almost simple groups. For example, as
explained in [35, Section 6], if we take G = Aut(L2(pr)) = PGL2(pr):〈ϕ〉 and Ω = ϕG, where
p and r are primes with (r, p(p2 − 1)) = 1 and ϕ is a field automorphism of order r, then
every element in G \ PGL2(pr) has a fixed point and thus

δ(G) 6
|PGL2(pr)|
|G|

=
1

r

can be arbitrarily small.
In this example, notice that δ(G) < 3/ log n if p = 2 and r > 5, where n = |Ω| is the degree

of G and log is the natural logarithm. This shows that [35, Theorem 1.5] is essentially best
possible since it states that there exists an absolute constant γ > 0 such that δ(G) > γ/ log n
for all almost simple primitive permutation groups G of degree n (moreover, this extends
to all non-affine primitive groups). Here we use Theorem 1 to establish another natural
extension to primitive permutation groups (recall that the socle of G is the product of its
minimal normal subgroups).

Theorem 6. Let G be a finite primitive group with socle N and point stabiliser H. Then
the following hold:

(i) δ(N) > ε, where ε is the constant in Theorem 1.

(ii) If H is soluble, then δ(N) > 89/325, with equality if and only if N = 2F4(2)′ and
H ∩N = 22.[28].S3.

Further motivation for studying derangements for simple groups stems from a theorem of
Larsen, Shalev and Tiep [54]. In order to set the scene, letG be a finite transitive permutation
group and recall that ∆(G) is a normal subset of G. We define the derangement width of G,
denoted w(G), to be the minimal positive integer k such that G = ∆(G)k, where

∆(G)k = {x1 · · ·xk : xi ∈ ∆(G) for all i},
setting w(G) =∞ if G 6= ∆(G)k for all k. Notice that if G is simple then G = 〈∆(G)〉 and
w(G) is simply the diameter of the corresponding Cayley graph Cay(G,∆(G)).
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There is an extensive literature on so-called width problems for finite groups, and for finite
simple groups and normal subsets in particular (we refer the reader to Liebeck’s excellent
survey article [59]). One of the main open problems in this area is a conjecture from the
1980s attributed to John Thompson, which asserts that every finite simple group G has a
conjugacy class C such that G = C2. This has turned out to be a very difficult problem,
but there has been significant progress in recent years. For instance, through the work of
several authors, the problem has been reduced to groups of Lie type defined over fields with
at most 8 elements. It also worth noting that Thompson’s conjecture immediately implies
a famous conjecture of Ore from 1951, which asserts that every element in a finite simple
group is a commutator. The proof of the latter was completed by Liebeck et al. in [60] using
character-theoretic methods.

It is therefore natural to study the derangement width of finite simple groups and the
main result here is the following theorem from [54].

Theorem 7 (Larsen, Shalev & Tiep). Let G be a finite simple transitive group.

(i) If |G| is sufficiently large, then G = ∆(G)2.

(ii) If G = An, then G = ∆(G)2 for all n.

It is conjectured in [54] that the condition on |G| in part (i) is not needed.

Conjecture 8 (Larsen, Shalev & Tiep). We have G = ∆(G)2 for every finite simple tran-
sitive group G.

It seems difficult to approach this conjecture for groups of Lie type with the character-
theoretic methods adopted in [54], so we focus on some special cases of interest in Theorems
9 and 12 below. Note that ∆(G) is inverse-closed, so ∆(G)2 always contains the identity
element. In part (ii), recall that the rank one groups of Lie type are the following:

L2(q), q > 4; U3(q), q > 3; 2B2(q), q > 8; 2G2(q)′, q > 3 (1)

Theorem 9. Let G 6 Sym(Ω) be a finite simple transitive group with point stabiliser H.

(i) If G is an alternating group, a sporadic group, or a rank one group of Lie type, then
there exist conjugacy classes C,D of derangements such that

G =

{
C2 ∪ CD if G = L2(7) and H = S4

{1} ∪ CD otherwise.
(2)

(ii) If G is primitive and H is soluble, then G = ∆(G)2.

Remark 10. Let us record some comments on Theorem 9.

(a) It is easy to show that G = ∆(G)2 if δ(G) > 1/2 (see Lemma 3.22), so there is a
natural connection between Theorem 4 and part (ii) of Theorem 9.

(b) For groups of Lie type, we rely heavily on earlier work of Guralnick and Malle [45, 46],
where character-theoretic methods are used to show that G = {1} ∪ CD for certain
conjugacy classes C and D. For example, in proving part (ii) for exceptional groups,
we show that there exist classes C,D of derangements with G = {1} ∪ CD.

(c) In part (i), if G = An and n > 9 then we combine work of Bertram [6], Brenner [10]
and Larsen and Tiep [55] to prove that either G = C2 for some conjugacy class C
of derangements, or n ≡ 3 (mod 4) and Ω = {1, . . . , n} is the natural permutation
domain. In the latter case, [55, Theorem 1] gives G = {1}∪D2 where D is a class of
n-cycles, and we conjecture that G = C2 for the class C of elements with cycle-type
(n− 4, 22), which we have checked computationally for n 6 23.

(d) If G is a sporadic group, then we use a computational approach to show that G = CD
for conjugacy classes C,D of derangements. Moreover, we can take C = D unless
(G,H) is one of the cases in Table 2 (see Section 3.1), and in the latter cases it is
easy to check that G = {1} ∪ C2.



ON DERANGEMENTS IN SIMPLE PERMUTATION GROUPS 5

(e) Suppose G = L2(7) and H is a maximal subgroup isomorphic to S4 (there are two
conjugacy classes of such subgroups). Then ∆(G) = C ∪D, where C and D are the
two conjugacy classes of elements of order 7, and we get

C2 = D2 = {x ∈ G : |x| 6= 1, 4}, CD = {x ∈ G : |x| 6= 2},
which means that G 6= {1} ∪ C2, G 6= {1} ∪ CD and G = C2 ∪ CD. In addition, if
we consider the action of G on G/K for any proper subgroup K of H, then it is easy
to show that G = E2 for some conjugacy class E of derangements.

(f) The property G = ∆(G)2 also extends to some almost simple groups. For instance,
in Theorem 3.8 we generalise [54, Theorem B] by showing that G = ∆(G)2 for every
faithful transitive action of G = Sn with n > 4. However, it is worth noting that
there exist almost simple primitive groups with infinite derangement width, even
under the assumption that the point stabilisers are soluble. For example, if we take
G = Aut(L2(3r)) = PGL2(3r):〈ϕ〉 and Ω = ϕG, where r > 5 is a prime, then
H = PGL2(3)×〈ϕ〉 is soluble and every derangement in G is contained in PGL2(3r).
In particular, we have ∆(G)k ⊆ PGL2(3r) < G for every positive integer k.

It is easy to show that there are infinitely many simple transitive groups G such that
G 6= {1} ∪ C2 for every conjugacy class C of derangements. For example, if G = L2(q), q is
even and H is a Borel subgroup, then

∆(G) = {x ∈ G : x 6= 1, |x| divides q + 1} =

k⋃
i=1

xGi

and we have (xGi )2 = {x ∈ G : |x| 6= 2} for all i. However, in this case we can show that
G = {1}∪ (xG1 )(xG2 ). And as far as we are aware, the special case (G,H) = (L2(7), S4) is the
only one with G 6= {1} ∪ CD for all classes C,D of derangements. This leads us to propose
the following stronger form of Conjecture 8.

Conjecture 11. Let G be a finite simple transitive group with point stabiliser H. Then
there exist conjugacy classes C and D of derangements such that (2) holds.

In addition to the groups recorded in part (i) of Theorem 9, our proof of Theorem 9(ii)
shows that Conjecture 11 also holds for every non-classical simple primitive group with
soluble point stabilisers (see Remark 10).

By combining a result of Malle, Saxl and Weigel [67, Theorem 2.1] with the main theorems
of Lev [57] and Guralnick et al. [47], we can prove a special case of Conjecture 8 for linear
groups of arbitrary rank. In the statement, Pk denotes the stabiliser in G of a k-dimensional
subspace of the natural module.

Theorem 12. Let G = Ln(q) be a finite simple transitive group with point stabiliser H.

(i) If n = 3 and q > 3, then G = {1} ∪C2 for some conjugacy class C of derangements.

(ii) If n > 4 and H 66 P1, Pn−1, then G = ∆(G)2.

Remark 13. Some comments on the statement of Theorem 12:

(a) As recorded in Theorem 9(i), if G = L3(2) ∼= L2(7) then there exist classes C,D of
derangements such that

G =

{
C2 ∪ CD if H = P1 or P2

{1} ∪ CD otherwise.

(b) In part (ii), we work with a slightly stronger form of [54, Theorem 2.4(i)] to show that
either G = {1}∪CD for classes C,D of derangements (in agreement with Conjecture
11), or q = 2, H = Spn(2) and n 6 28.

(c) We refer the reader to Remark 3.17 for comments on the special case excluded in
(ii), where n > 4 and H is contained in a P1 or Pn−1 parabolic subgroup.
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Let G 6 Sym(Ω) be a finite primitive permutation group with socle N and as before,
let ∆(N) be the set of derangements contained in N . If G is almost simple, then N is
simple and transitive, so Conjecture 8 asserts that N = ∆(N)2. If we assume the veracity
of this conjecture, then we can use the O’Nan-Scott theorem to establish the following
generalisation.

Theorem 14. Let G 6 Sym(Ω) be a finite primitive permutation group with socle N and
|Ω| > 3. If Conjecture 8 holds, then N = ∆(N)2.

Our final result concerns the generation properties of finite simple transitive groups. It is
well known that every finite simple group is 2-generated (the proof requires CFSG) and there
is a vast literature on the properties and distribution of generating pairs. For example, a
theorem of Guralnick and Kantor [43] states that every finite simple group G has a conjugacy
class C with the property that for all nontrivial x ∈ G, there exists an element y ∈ C such that
G = 〈x, y〉 (in this situation, we call C a witness). The proof of this theorem uses probabilistic
methods, based on fixed point ratio estimates. Using similar methods, we prove that every
finite simple transitive permutation group is generated by two derangements. Moreover, we
can always find a generating pair of conjugate derangements.

Theorem 15. Let G be a finite simple transitive group. Then there exist conjugate derange-
ments x, y ∈ G such that G = 〈x, y〉.

Let G be a finite simple group and suppose that C = xG and D = yG are witnesses, as
defined above. It is easy to see that the conclusion in Theorem 15 follows if no maximal
overgroup of x is conjugate to a maximal overgroup of y. Indeed, if this property holds, then
either x or y is a derangement and the result follows since G = 〈x, xa〉 = 〈y, yb〉 for some
a, b ∈ G. So in the proof of Theorem 15 we are often interested in identifying witnesses C
and D with the property that the maximal overgroups of their respective representatives are
severely restricted. Along the way, with this aim in mind, we prove that every conjugacy
class of Singer cycles in a simple classical group is a witness (see Proposition 5.14), which
may be of independent interest.

Notation. Our notation is standard. For a finite group G and positive integer n, we write
Cn, or just n, for a cyclic group of order n and Gn for the direct product of n copies of G.
An unspecified extension of G by a group H will be denoted by G.H; if the extension splits
then we may write G:H. We use [n] for an unspecified soluble group of order n. Throughout
the paper, we adopt the standard notation for simple groups of Lie type from [53] (so for
example, we write Ln(q) = L+

n (q) and Un(q) = L−n (q) for the groups PSLn(q) and PSUn(q),
respectively). In addition, for positive integers a and b, we use the familiar Kronecker delta
symbol δa,b (so δa,b = 1 if a = b, otherwise δa,b = 0) and we write (a, b) for the highest
common factor of a and b.

Organisation. Let us briefly outline the structure of the paper. We begin in Section 2 by
studying the proportion of derangements in transitive actions of alternating and sporadic
groups, culminating in a proof of Theorem 2. We also establish part (i) of Theorem 6, which
gives a natural extension of Theorem 1 to primitive groups. In Section 3 we turn to the
derangement width of simple transitive groups, proving part (i) of Theorem 9. We also
establish our main result on linear groups (Theorem 12) and we present a short proof of
Theorem 14, which assumes the veracity of Conjecture 8. Next, in Section 4 we focus on
primitive simple groups with soluble point stabilisers and our main goal is to prove Theorem
4. Here we also complete the proofs of Theorems 6 and 9. Finally, in Section 5 we study the
2-generation of simple groups and we prove Theorem 15.

Acknowledgements. TCB thanks Bob Guralnick, Martin Liebeck, Frank Lübeck, Gunter
Malle, Eamonn O’Brien and Pham Tiep for helpful discussions. MF thanks Marco Barbieri
and Kamilla Rekvényi for their help and support, as well as the School of Mathematics at
the University of Bristol for hosting a 4-month research visit in 2024.
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2. Proportions

In this section we prove Theorem 2 and part (i) of Theorem 6. Recall that if G 6 Sym(Ω)
is a finite transitive permutation group with point stabiliser H, then ∆(G) denotes the set
of derangements in G and we write

δ(G) = δ(G,Ω) = δ(G,H) =
|∆(G)|
|G|

for the proportion of derangements in G. For easy reference we state the Fulman-Guralnick
theorem, which is proved in the sequence of papers [35, 36, 37, 38].

Theorem 2.1. There exists an absolute constant ε > 0 such that δ(G) > ε for every finite
simple transitive group G.

We begin by proving Theorem 2, handling the alternating and sporadic groups in Sections
2.1 and 2.2, respectively. We will establish Theorem 6(i) in Section 2.3.

2.1. Alternating groups. Let G = An be an alternating group with n > 5 and recall that
α(G) is defined to be the minimal value of δ(G,H) over all proper subgroups H of G. Here
our goal is to prove that

lim
n→∞

α(An) =
1

e
.

First observe that we only need to consider δ(G,H) when H is a maximal subgroup of G.
In addition, by appealing to a well known theorem of  Luczak and Pyber [66], we observe that
the proportion of elements in G that are contained in a proper transitive subgroup tends
to 0 as n tends to infinity. As a consequence, we may assume H = (Sk × Sn−k) ∩ G for
some 1 6 k < n/2, which allows us to identify Ω = G/H with the set of k-element subsets
of [n] = {1, . . . , n}. Let f(n, k) = 1 − δ(G) be the proportion of elements in G that fix a
k-element subset of [n].

An easy application of the inclusion-exclusion principle shows that the proportion of de-
rangements in Sn with respect to the natural action on [n] is given by the expression

n∑
j=0

(−1)j

j!

and thus

f(n, 1) = 1− [n!/e]

n!
+

(−1)n(n− 1)

n!
for all n > 5, where [x] denotes the nearest integer to x (see [8, Corollary 2.6]). Clearly,
f(n, 1)→ 1− 1/e as n→∞, so Theorem 2(i) is a consequence of the following result.

Proposition 2.2. We have f(n, k) 6 f(n, 1) for all 1 6 k < n/2 and all n > 5.

In order to prove Proposition 2.2, we need to introduce some additional notation. For
integers n > 5 and 1 6 k 6 n we define

a(n, k) =
|A(n, k)|
|An|

, b(n, k) =
|B(n, k)|
|An|

, c(n, k) = max{a(n, k), b(n, k)},

where A(n, k) (respectively, B(n, k)) is the set of even (respectively, odd) elements in Sn
fixing a k-element subset of [n]. Note that c(k, k) = 1 and c(n, k) = c(n, n− k). By arguing
as in the proof of [28, Lemma 2(i)], it is straightforward to show that

c(n, k) 6
1

n

k +
n−k∑
j=k+1

c(n− j, k)

 . (3)

Lemma 2.3. We have c(n, 1) 6 2/3 for all n > 5.
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Proof. First observe that

a(n, 1) = 1− δ(An), b(n, 1) = 2(1− δ(Sn))− a(n, 1)

with respect to the natural actions of An and Sn on [n]. By [8, Corollary 2.6] we have

δ(An) = δ(Sn)− (−1)n(n− 1)

n!
, δ(Sn) =

[n!/e]

n!

and it is easy to check that c(n, 1) 6 2/3 for all n > 5. �

Lemma 2.4. We have c(n, 2) 6 0.63 for all n > 7.

Proof. First we compute c(3, 2) = 1, c(4, 2) = 1/2, c(5, 2) = 3/5, c(6, 2) = 2/3 and

c(7, 2) =
38

63
, c(8, 2) =

7

12
, c(9, 2) =

3691

6480
.

In addition, we check that c(n, 2) 6 0.63 for n = 10, 11, 12. Now assume n > 13 and suppose
we have c(m, 2) 6 0.63 for all 7 6 m 6 n− 1. Then (3) gives

c(n, 2) 6
1

n

2 +

9∑
m=2

c(m, 2) +

n−10∑
j=3

c(n− j, 2)

 6 1

n

(
341233

45360
+

63

100
(n− 12)

)
< 0.63

and the result follows. �

Lemma 2.5. We have c(n, k) 6 0.63 for all 3 6 k < n/2.

Proof. First assume k = 3, so n > 7 and we compute

c(4, 3) =
3

4
, c(5, 3) =

3

5
, c(6, 3) =

3

8
, c(7, 3) =

18

35
, c(8, 3) =

25

48
.

Suppose n > 9 and c(m, 3) 6 0.63 for all 5 6 m 6 n− 1. Then by applying the upper bound
in (3), we deduce that

c(n, 3) 6
1

n

3 + 1 +
3

4
+
n−5∑
j=4

c(n− j, 3)

 6 1

n

(
19

4
+

63

100
(n− 8)

)
< 0.63.

The case k = 4 is very similar.
Finally, let us assume k > 5. By Lemmas 2.3 and 2.4 we have c(k+1, k) = c(k+1, 1) 6 2/3

and c(k+ 2, k) = c(k+ 2, 2) 6 0.63. Let us assume c(m, k) 6 0.63 for all k+ 2 6 m 6 n− 1.
Then (3) gives

c(n, k) 6
1

n

(
k + 1 +

2

3
+

63

100
(n− 2k − 2)

)
=

63

100
− 39k − 61

150n
< 0.63

and the result follows. �

We are now in a position to prove Proposition 2.2. As explained above, this completes
the proof of Theorem 2(i).

Proof of Proposition 2.2. The cases n ∈ {5, 6} can be checked directly, so let us assume
n > 7. Then Lemmas 2.4 and 2.5 imply that f(n, k) 6 0.63, so

f(n, 1) = 1− [n!/e]

n!
+

(−1)n(n− 1)

n!
> 0.63

and the result follows. �

It seems difficult to prove a non-asymptotic version of Theorem 2(i), but computations
with the low degree alternating groups lead us to propose the following conjecture. In
particular, this would imply that 13/45 is the optimal constant for alternating groups in
Theorem 2.1.

Conjecture 2.6. Let G = An be a finite simple transitive group with point stabiliser H.
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G H α(G)

M11 M10 23/66

M12 M11 107/288
M22 A7 119/352

M23 M22 877/2415

M24 M23 1699/4608
J1 D6 ×D10 573/1463

J2 3.A6.2 979/2100

J3 (3×A6).2 971/2907
McL 2.A8 2197/7425

HS U3(5).2 13301/42240

He 22.L3(4).S3 23423/46648
Ru 21+4+6.S5 26967/65975

Co3 McL.2 47621/149040

Co2 21+8:Sp6(2) 350303/759000
Fi22 Ω7(3) 934573/2365440

Fi23 PΩ+
8 (3).S3 4624523/11561088

Suz G2(4) 6579421/13471920

O′N 4.L3(4).2 5402647/14286195
HN 21+8.(A5 ×A5).2 13680272/24688125

Th 21+8.A9 13838827/39073671

Ly 2.A11 23715556/63400425

Co1 21+8.Ω+
8 (2) 7948916279/15664849200

J4 23+12.(S5 × L3(2)) 20243299027/43786049417
Fi′24 Fi23 765137684779/1654006894848

B 2.2E6(2).2 94738750847635861/167684218416000000

M 21+24.Co1 26707770823339783801504/49722462258718251877875

Table 1. The values of α(G) for sporadic simple groups

(i) We have δ(G) > 13/45, with equality if and only if G = A8 and H = AGL3(2).

(ii) If n > 9, then

δ(G) >
[n!/e]

n!
− (−1)n(n− 1)

n!
,

with equality if and only if H = An−1.

2.2. Sporadic groups. Next we use a computational approach to study the proportion of
derangements for transitive actions of sporadic groups, working with GAP (version 4.13.0)
and Magma (version V2.28-8). The following result completes the proof of Theorem 2.

Proposition 2.7. Let G be a finite simple transitive sporadic group with point stabiliser H.

(i) We have δ(G) > α(G), where α(G) is recorded in Table 1. In addition, δ(G) = α(G)
if and only if H is conjugate to the maximal subgroup of G listed in the second column
of the table.

(ii) We have δ(G) > 2197/7425, with equality if and only if G = McL and H = 2.A8.

Proof. Part (ii) follows immediately from the information in Table 1, so we just need to
consider part (i). As before, we may assume G is primitive, which means that H is a
maximal subgroup of G.

To begin with, let us assume G is not the Monster group M. Then in each case, the
character tables of G and H are available in the GAP Character Table Library [11]. In
addition, the corresponding fusion map from H-classes to G-classes is also available, with
the single exception of the case where G = B is the Baby Monster and H = (22 × F4(2)):2.
Putting the latter case to one side for now, we can use the fusion map to determine the
G-classes comprising ∆(G), which in turn allows us to compute δ(G) precisely. We can then
read off the minimum over all maximal subgroups, which gives the value of α(G) recorded
in Table 1.

Now assume G = B and H = (22×F4(2)):2. Here we use the function PossibleClassFusions
to produce a list of 64 candidate fusion maps and one checks that each candidate map
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produces the same permutation character χ = 1GH . So once again we can calculate δ(G)
precisely and the result follows.

Finally, let us assume G = M is the Monster. By the main theorem of [27], there are
46 conjugacy classes of maximal subgroups of G. For 31 of these classes, we can access the
character tables of G and a representative H via the GAP function NamesOfFusionSources,
as well as the corresponding fusion maps. So in each of these cases we can compute δ(G)
precisely, just as we did above. In particular, ifM1 denotes this specific collection of maximal
subgroups, then

min{δ(G,H) : H ∈M1} =
26707770823339783801504

49722462258718251877875
= γ,

with equality if and only if H = 21+24.Co1. So in order to complete the proof, we need to
show that δ(G,H) > γ for all of the remaining maximal subgroups H. To do this, let ω(H)
be the spectrum of H, which is simply the set of element orders in H, and consider the crude
lower bound

δ(G) >
|{x ∈ G : |x| 6∈ ω(H)}|

|G|
. (4)

First assume H is one of the following maximal subgroups:

L2(13):2, L2(19):2, L2(29):2, U3(4):4, (L2(11)× L2(11)).4, 112:(5× 2A5),

72:SL2(7), 38.PΩ−8 (3).2, 33+2+6+6.(L3(3)× SD16), 32+5+10.(M11 × 2S4),

(32:2× PΩ+
8 (3)).S4, 23+6+12+18.(L3(2)× 3S6), 22+11+22.(M24 × S3).

In each of these cases, a permutation representation of H is given in the Web Atlas [80] and
with the aid of Magma [7] it is easy to determine ω(H). We can then verify the desired
bound via (4). For example, if H = 23+6+12+18.(L3(2) × 3S6) then the Web Atlas provides
a representation of H on 1032192 points and we can use Magma to compute

ω(H) =

{
1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 16, 20, 21, 24,

28, 30, 32, 35, 40, 42, 48, 56, 60, 70, 84, 105

}
.

And then by inspecting the character table of G, the bound in (4) yields

δ(G) >
74617454008173302577265307

105784031083359216398221125
> γ

and the result follows.
Finally, let us assume H = 25+10+20.(S3×L5(2)) or 210+16.Ω+

10(2). In these two cases, the
Web Atlas does not provide a permutation representation of H and so we need to modify
the argument. In the first case, one can check that the trivial bound

δ(G) >
|{x ∈ G : |H| is indivisible by |x|}|

|G|
(5)

is sufficient, so we may assume H = 210+16.Ω+
10(2). Here the same bound yields δ(G) > 1/2,

but we need to work a little bit harder to force δ(G) > γ.
To do this, we first observe that

{n ∈ ω(G) : n - |H|} =

{
11, 13, 19, 22, 23, 26, 29, 33, 38, 39, 41, 44, 46, 47, 52,
55, 57, 59, 66, 69, 71, 78, 87, 88, 92, 94, 95, 104, 110

}
= A

In addition, with the aid of Magma, we compute

ω(Ω+
10(2)) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 17, 18, 20, 21, 24, 30, 31, 42, 45, 51, 60}.

Since H/N = Ω+
10(2) for some normal 2-subgroup N , it follows that every element in G of

order 93, 105 and 119 is a derangement. So if we now set B = A ∪ {93, 105, 119}, then

δ(G) >
|{x ∈ G : |x| ∈ B}|

|G|
> γ

and the proof is complete. �
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Remark 2.8. It is easy to extend the above analysis to all almost simple sporadic groups.
Let G 6 Sym(Ω) be such a group with point stabiliser H and assume G is non-simple. Then
δ(G) > 2516/7425, with equality if and only if G = McL.2 and H = 2.S8.

2.3. Primitive groups. In this section we extend our analysis of δ(G) to primitive permu-
tation groups and we prove Theorem 6(i). The proof of Theorem 6(ii) requires Theorem 4
and the details will be presented in Section 4.5.

Let G 6 Sym(Ω) be a finite primitive permutation group with socle N . Recall that N is
the subgroup of G generated by the minimal normal subgroups of G, and recall that N is
a direct product N = T1 × · · · × Tk, where each Ti is isomorphic to a fixed simple group T .
The O’Nan-Scott theorem (see [61]) describes the primitive groups in terms of the structure
and action of the socle, which leads to the following division into five families (recall that a
transitive subgroup of G is regular if every nontrivial element is a derangement):

(a) Affine: N = (Cp)
k is abelian and regular, p prime, k > 1, G 6 AGLk(p)

(b) Twisted wreath: N is non-abelian and regular

(c) Almost simple: N = T is non-abelian simple, G 6 Aut(T )

(d) Diagonal type: N = T k is non-abelian, k > 2, G 6 N.(Out(T )× Sk)
(e) Product type: N = T k is non-abelian, k = ab with a > 1, b > 2, G 6 L o Sb with L

primitive of type (c) or (d).

Proof of Theorem 6(i). Let G 6 Sym(Ω) be a finite primitive permutation group with socle
N = T k, where T is simple. The possibilities for G and N are described by the O’Nan-Scott
theorem and we will refer to the five types briefly described above. Our goal is to prove that
δ(N) > ε, where ε > 0 is the constant in Theorem 2.1.

Of course, if G is an affine group or a twisted wreath product, then N is regular and thus

δ(N) =
∆(N)

|N |
= 1− 1

|N |
>

1

2
.

And if G is almost simple then N is a simple transitive permutation group on Ω and thus
Theorem 2.1 implies that δ(N) > ε.

Next assume G is a diagonal type group, so k > 2. Let

D = {(t, . . . , t) ∈ N : t ∈ T}

be the diagonal subgroup of N and note that we may identify Ω with the set N/D of right
cosets of D in N . Given x = (x1, . . . , xk) ∈ N and ω = D(t1, . . . , tk) ∈ Ω, we have ωx = ω if
and only if (t1x1t

−1
1 , . . . , tkxkt

−1
k ) ∈ D. Therefore, x is a derangement if and only if at least

two of the components of x are not T -conjugate and thus

δ(N) =
|N | −

(∑m
i=1 |tTi |k

)
|N |

= 1−
m∑
i=1

|CT (ti)|−k > 1−
m∑
i=1

|CT (ti)|−2,

where {t1, . . . , tm} is a complete set of representatives of the conjugacy classes in T . Since
|CT (ti)| > 3 for all i (recall that a finite group with a self-centralising involution is soluble),
we conclude that

δ(N) > 1− 1

3

m∑
i=1

|CT (ti)|−1 =
2

3
.

Finally, let us assume G is a product type group. Here G 6 L o Sb, where L 6 Sym(Γ)
is a primitive group with socle S = T a, b > 2 and L is either almost simple or diagonal
type. Then N = Sb = T ab and G acts on Ω = Γb with the product action. In particular, if
x = (x1, . . . , xb) ∈ N , where each xi is contained in S, then

(γ1, . . . , γb)
x = (γx11 , . . . , γxbb )
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for all ω = (γ1, . . . , γb) ∈ Ω. It follows that x is a derangement on Ω if and only if at least
one xi is a derangement on Γ, whence

δ(N) >
|∆(S,Γ)||S|b−1

|S|b
= δ(S,Γ). (6)

If L is almost simple, then Theorem 2.1 implies that δ(N) > ε. And if L is a diagonal type
group, then our previous argument gives δ(N) > 2/3. �

3. Derangement width

Let G 6 Sym(Ω) be a finite transitive permutation group, let k be a positive integer and
recall that

∆(G)k = {x1 · · ·xk : xi ∈ ∆(G) for all i}.
In [54], Larsen, Shalev and Tiep prove that G = ∆(G)2 for all sufficiently large simple
transitive groups, and they propose the following conjecture.

Conjecture 3.1. We have G = ∆(G)2 for every finite simple transitive group G.

This conjecture is proved for alternating groups in [54, Theorem B]. In this section we
establish a strong form of Conjecture 3.1 for all sporadic groups and all rank one groups of
Lie type, and we revisit the problem for alternating groups. In particular, we prove part
(i) of Theorem 9. We also establish an extension of [54, Theorem B] for symmetric groups
(see Theorem 3.8) and we prove Theorem 12, which settles Conjecture 3.1 for all the linear
groups Ln(q) under a mild additional assumption on the point stabilisers. At the end of the
section, we present a proof of Theorem 14.

3.1. Sporadic groups. Here we establish a strong form of Conjecture 3.1 for sporadic
groups. We will need the following result, which will also be useful later on.

Lemma 3.2. Let G be a finite group with conjugacy classes Ci = gGi for i = 1, 2. For an
element x ∈ G, let N(x) be the number of solutions to the equation x = y1y2 with yi ∈ Ci.
Then

N(x) =
|C1||C2|
|G|

∑
χ∈Irr(G)

χ(g1)χ(g2)χ(x)

χ(1)
,

where Irr(G) is the set of complex irreducible characters of G.

Proof. This is a special case of a well known formula of Frobenius, which follows from the
familiar orthogonality relations satisfied by the character table of G. �

Remark 3.3. Note that G = C1C2 if and only if N(xi) > 0 for all i, where {x1, . . . , xk} is
a complete set of representatives of the conjugacy classes in G.

Proposition 3.4. Let G be a transitive sporadic simple group with point stabiliser H.

(i) We have G = CD, where C and D are conjugacy classes of derangements.

(ii) Moreover, either G = C2 for some class C of derangements, or (G,H) is one of the
cases in Table 2 and

G = CD = {1} ∪ C2 = {1} ∪D2

for the classes C and D of derangements indicated in the table.

Proof. Let C(G) be the set of conjugacy classes C in G with G = C2. Using the GAP
Character Table Library [11] and Lemma 3.2, it is easy to determine all of the conjugacy
classes in C(G). For example, if G = M is the Monster, then 146 of the 194 conjugacy classes
in G are contained in C(G).

First assume G 6= B,M. In each of these cases, we can use the GAP function Maxes
to access the character table of every maximal subgroup H of G, together with the fusion
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G H C D

M11 S5 11A 11B

M22 24:A6, 24:S5 11A 11B

M23 M22, L3(4).2, 24:A7, M11, 24:(3×A5).2 23A 23B

24:A6, 24:S5 (two classes), 24.(15:4)

M24 M12.2 23A 23B

Table 2. The pairs (G,H) in Proposition 3.4(ii)

map from H-classes to G-classes. This allows us to determine all the conjugacy classes of
derangements for the action of G on G/H and it is a routine exercise to check whether or
not one of these classes is contained in C(G). We find that there is always at least one such
class, unless (G,H) is one of the following:

M11: H = S5

M22: H = 24:A6 or 24:S5

M23: H = M22, L3(4).2, 24:A7, M11 or 24:(3×A5).2
M24: H = M12.2

(7)

In each of these cases, we first check that we can always find two classes of derangements
C and D with G = CD, which is easy to verify using GAP and Lemma 3.2. In addition, we
check that G = {1} ∪ C2 = {1} ∪D2.

So to complete the proof for G 6= B,M, we just need to inspect the special cases (G,H) in
(7) in order to determine whether or not H has a proper subgroup K that meets every class
in C(G). To do this, we use Magma to construct G = Mn and H in the natural permutation
representation on n points and we inspect the maximal subgroups of H. In this way, we
deduce that if G = M11, M22 or M24, then every proper subgroup of H fails to intersect at
least one of the classes in C(G). Now assume G = M23. Here G has four maximal subgroups

H ∈ {M22, L3(4).2, 24:A7, 2
4:(3×A5).2}

with a maximal subgroup K < H meeting every class in C(G). These second maximal
subgroups of G are recorded in the second row for G = M23 in Table 2, up to conjugacy in
G. In turn, one checks that if J < K is maximal then J ∩ C is empty for at least one class
C ∈ C(G), so no further examples arise.

Next assume G = B is the Baby Monster. As above, we can use the GAP function Maxes
to access the character table of each maximal subgroup H of G. And as explained in the
proof of Proposition 2.7, we can also compute the corresponding permutation character 1GH ,
which allows us to check that there is always at least one class of derangements in C(G).

Finally, suppose G = M is the Monster. Recall that G has 46 conjugacy classes of maximal
subgroups (see [27]). Now G has a unique class C of elements of order 41 and our earlier
computation shows that C ∈ C(G). By inspecting [27, Table 1], we deduce that the only
maximal subgroups intersecting C are 38.PΩ−8 (3).2 and 41:40. In addition, G has a unique
class D of elements of order 19 and D ∈ C(G), so the result follows since neither 38.PΩ−8 (3).2
nor 41:40 contains elements in D. �

3.2. Alternating groups. The main result of this section is the following, which establishes
a stronger version of [54, Theorem B].

Proposition 3.5. Let G = An be a simple transitive group with point stabiliser H.

(i) There exists a conjugacy class C of derangements such that G = {1} ∪ C2.

(ii) Moreover, either G = C2, or one of the following holds:

(a) (G,H) = (A5, A4), (A5, S3) or (A8, 2
4:(S3 × S3)).

(b) n > 27, n ≡ 3 (mod 4) and H = An−1.

(iii) If n > 6 then G = CD for classes C,D of derangements.
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Remark 3.6.

(a) The special cases in part (ii)(a) of Proposition 3.5 are genuine exceptions in the sense
that G 6= C2 for every class C of derangements. For the two cases with G = A5 we
have

G = {1} ∪ CD = {1} ∪ C2 = {1} ∪D2,

where C and D are the two classes of elements of order 5. And for G = A8 we get

G = CD = {1} ∪ C2 = {1} ∪D2 (8)

if we take C and D to be the two classes of 7-cycles.

(b) We expect that the case recorded in (ii)(b) is not a genuine exception. Here [55,
Theorem 1] gives G = {1} ∪ D2 where D is a class of n-cycles, and we conjecture
that G = C2 for the class C of elements with cycle-type (n − 4, 22). We have used
Magma [7] to check the latter claim computationally for n ∈ {7, 11, 15, 19, 23}, which
explains why we include the condition n > 27.

(c) For n > 11, the proof of [54, Theorem B] combines a technical result [54, Proposition
7.1] with the main theorem of [6] to show that either G = C2 for some Sn-class C of
derangements in G, or n is even and Ω = {1, . . . , n}. In the latter case, the authors
apply an inductive argument to show that G = ∆(G)2.

Our proof of Proposition 3.5 relies heavily on Proposition 3.7 below, which combines
results from [6, 10, 55]. In order to state the proposition, let ` 6 n be a positive integer and
let C` be the Sn-class of the `-cycle x = (1, . . . , `). And if ` is odd, set D` = xAn and note
that D` = C` unless ` = n or n− 1.

Proposition 3.7. Let G = An with n > 5.

(i) If 3
4n 6 ` 6 n, then G = C2

` .

(ii) If n > 9 and n ≡ 1 (mod 4), then G = D2
n.

(iii) Let D = xSn, where x = (1, . . . , `1)(`1 + 1, . . . , `1 + `2) with `1, `2 > 2 and `1 + `2 >
3
4n+ 3. Then G = D2.

Proof. Part (i) is the main theorem of [6], while part (ii) is a recent result of Larsen and
Tiep [55, Theorem 5(i)]. Finally, part (iii) is due to Brenner [10]. �

We are now ready to prove Proposition 3.5.

Proof of Proposition 3.5. The groups with 5 6 n 6 18 can be checked using Magma [7].
To do this, we first construct the character table of G and we use the Frobenius formula
(see Lemma 3.2) to determine the set C(G) of conjugacy classes C with G = C2. Next we
construct a representative H of each conjugacy class of maximal subgroups of G and it is
straightforward to check that every class in C(G) meets H if and only if (G,H) is one of the
cases recorded in part (ii)(a) of Proposition 3.5. And in each of these cases, it is routine to
check that if K < H is any maximal subgroup, then there exists a class C ∈ C(G) such that
C ∩K is empty. For the remainder, we will assume n > 19.

Suppose H acts intransitively on [n] = {1, . . . , n}, so H 6 (Sk×Sn−k)∩G for some positive
integer k 6 n/2. If n is even then by applying parts (i) and (iii) of Proposition 3.7 we deduce
that G = D2

n−3 if k > 4 and G = D2 if k 6 3, where D = xG and x = (1, . . . , 4)(5, . . . , n). If

n ≡ 1 (mod 4), then Proposition 3.7(ii) gives G = D2
n, so we may assume n ≡ 3 (mod 4). If

k > 3 then every (n− 2)-cycle in G is a derangement and we have G = D2
n−2 by Proposition

3.7(i). And if k = 2 then Proposition 3.7(iii) implies that G = D2, where D = xG and
x = (1, . . . , 4)(5, . . . , n−1). Finally, suppose k = 1. As above, let C = xG with x = (1, . . . , n)
and set D = (x−1)G 6= C. Then [55, Theorem 1] implies that (8) holds.

Next assume H is imprimitive, so H 6 (Sa oSb)∩G, where n = ab and a, b > 2. If n is odd
then a > 3 and every (n− 2)-cycle is a derangement because it does not preserve a partition
of [n] into b blocks of size a. The result follows since G = D2

n−2 by Proposition 3.7(i). Now
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assume n is even and set ` = 5 if a = 3, and ` = 3 otherwise. Then every (n − `)-cycle is
a derangement and the desired conclusion holds since G = D2

n−` (note that if a = 3 then
n > 21 and thus n− 5 > 3n/4).

Finally, let us assume H acts primitively on [n]. Fix an odd integer ` such that 3n/4 6
` 6 n− 3. Then Proposition 3.7(i) gives G = D2

` and the main theorem of [51] implies that
every `-cycle in G is a derangement (indeed, no proper primitive subgroup of G contains an
`-cycle). The result follows. �

3.3. Symmetric groups. Here we apply work of Brenner [10] to prove a strong form of
[54, Theorem B] for symmetric groups.

Theorem 3.8. Let G = Sn be a transitive group on a set Ω with point stabiliser H, where
n > 4.

(i) We have G = ∆(G)2.

(ii) Moreover, if Ω 6= {1, . . . , n} then there exist conjugacy classes C and D of derange-
ments such that G = C2 ∪ CD.

Set L = An and observe that if C and D are conjugacy classes in G = Sn, then C2 ⊆ L
and either CD ⊆ L or CD ⊆ G \ L, according to whether or not the elements comprising
C and D have the same parity. In particular, G 6= {1} ∪ C2 and G 6= {1} ∪ CD, so the
conclusion G = C2 ∪ CD in part (ii) of Theorem 3.8 is essentially best possible. Clearly, in
order to prove Theorem 3.8 we may assume that H is maximal in L or G. (Note that G may
contain a non-maximal subgroup H that is not contained in a core-free maximal subgroup
of G, such as H = AGL3(2) in G = S8. But in this situation, H is always maximal in L.)

Remark 3.9. We expect that the conclusion G = C2∪CD for classes C,D of derangements
is still valid when Ω = {1, . . . , n}. Indeed, we conjecture that we can take C = xG and
D = yG, where x = (1, . . . , n) and y = (1, 2)(3, . . . , n). We have used Magma to check this
for 4 6 n 6 20.

It will be convenient to handle the low degree groups computationally.

Lemma 3.10. The conclusion to Theorem 3.8 holds for n 6 15.

Proof. This is a straightforward computation. First we use Magma [7] to construct the
character table of G and we then apply Lemma 3.2 to determine the set C′(G) of pairs
of classes (C,D) such that G = C2 ∪ CD. We then construct a representative H of each
conjugacy class of core-free maximal subgroups in An and G, and in each case it is easy to
check that there is at least one pair (C,D) ∈ C′(G) such that C ∩ H and D ∩ H are both
empty (including the special case Ω = {1, . . . , n}). �

For the remainder, we may assume n > 16. The main ingredient in the proof of Theorem
3.8 is the following. The statement is a combination of special cases of two results due to
Brenner [10].

Proposition 3.11. Let G = Sn with n > 16 and set C = xG and D = yG, where

(i) x = (1, . . . , `) and y = (1, . . . , `+ 1), with n− 4 6 ` < n; or

(ii) x = (1, 2, 3)(4, 5, . . . , n− 1) and y = (1, 2, 3)(4, 5, . . . , n).

Then G = C2 ∪ CD.

Proof. Suppose x ∈ G has n − t fixed points and c nontrivial orbits on {1, . . . , n}. Then
t+ c 6 3n/2 and the condition n > 16 allows us to appeal to Theorems 2.02 and 4.02 in [10],
which immediately give L = C2 and G \ L = CD in both (i) and (ii). �

We will also need the following elementary lemma.

Lemma 3.12. Let G = Sn with n > 4. Then for all x ∈ G, there exists an n-cycle y ∈ G
such that xy has no fixed points on {1, . . . , n}.
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Proof. We may assume x is nontrivial. Since the set of derangements on {1, . . . , n} is a
normal subset of G, it suffices to show that some conjugate of x has the desired property.
By considering the disjoint cycle decomposition of x, it is easy to see that there exists a
conjugate z of x such that nz 6= 1 and iz 6= i+ 1 for all i ∈ {1, . . . , n− 1}. Then z(n, . . . , 1)
has no fixed points on {1, . . . , n} and the result follows. �

We are now in a position to prove Theorem 3.8.

Proof of Theorem 3.8. In view of Lemma 3.12, we may assume n > 16. Also recall that we
may assume H is maximal in L = An or G = Sn. Set [n] = {1, . . . , n}.

First assume H is intransitive on [n], which means that we may assume H = Sk × Sn−k
with 1 6 k < n/2 and we identify Ω with the set of k-element subsets of [n]. If k = 1 then
Lemma 3.12 implies that G = ∆(G)C, where C is the class of n-cycles, and the result follows
since every n-cycle is a derangement. And for k > 2 we can define C and D as in part (i) of
Proposition 3.11 with ` = n− 1. Then the elements in C and D are derangements, and the
proposition gives G = C2 ∪ CD, as required.

Next suppose H is transitive and imprimitive on [n]. Here we may assume H = Sa o Sb
for integers a and b with n = ab and a > 2. If a > 3 then every (n − 2)-cycle and every
(n − 1)-cycle is a derangement, and Proposition 3.11 yields G = C2 ∪ CD, where C and D
are defined as in part (i) of the proposition, with ` = n − 2. And if a = 2 then the same
conclusion holds if we define C and D as in part (ii) of Proposition 3.11.

Finally, let us assume H acts primitively on [n]. By the main theorem of [51], every
(n − 4)-cycle and every (n − 3)-cycle is a derangement. So the result follows by defining C
and D as in part (i) of Proposition 3.11 with ` = n− 4. �

3.4. Groups of Lie type. In this section we consider the derangement width of simple
groups of Lie type. We begin by stating our main result for rank one groups (see (1)),
which completes the proof of Theorem 9(i). Recall that 2G2(3)′ is isomorphic to L2(8), so
we assume q > 27 when considering G = 2G2(q) in Theorem 3.13, and also in Proposition
3.14 below.

Theorem 3.13. Let G be a finite transitive simple rank one group of Lie type with point
stabiliser H. Then there exist conjugacy classes C and D of derangements such that

G =


C2 if G = 2B2(q) or 2G2(q)
{1} ∪ C2 if G = U3(q)
{1} ∪ CD if G = L2(q) and (G,H) 6= (L2(7), S4)
C2 ∪ CD if (G,H) = (L2(7), S4).

In particular, we have G = ∆(G)2.

The main ingredient in the proof of Theorem 3.13 is the following result. Note that
L2(5) ∼= L2(4), so we assume q > 7 if G = L2(q) with q odd.

Proposition 3.14. Let G be a rank one finite simple group of Lie type and set C = xG and
D = yG, where the order of x and y is given in Table 3.

(i) If G ∈ {2B2(q), 2G2(q),L2(q) (q > 7 odd)}, then G = C2 = D2.

(ii) If G = U3(q) then G = {1} ∪ C2.

(iii) If G = L2(q) with q even, then G = C2 = {1} ∪ AB, where A = zG, B = (z2)G and
|z| = q + 1.

(iv) If G = L2(7) then G = A2 ∪ AB = B2 ∪ AB, where A and B are the two classes of
elements of order 7.

Proof. Parts (i) and (ii) follow immediately from [45, Theorem 7.1], noting that every
semisimple conjugacy class in 2B2(q) and 2G2(q) is real (for example, this follows from
Lemma 4.7). Now assume G = L2(q) with q even. Here [45, Theorem 7.1] gives G = C2, so
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G Conditions |x| |y|
2B2(q) q > 8 q +

√
2q + 1 q −

√
2q + 1

2G2(q) q > 27 q +
√

3q + 1 q −
√

3q + 1
U3(q) q > 3 (q2 − q + 1)/(3, q + 1) (q2 − 1)/(3, q + 1)

L2(q) q > 5 odd (q + 1)/2 (q − 1)/2

q > 4 even q − 1

Table 3. The classes C = xG and D = yG in Proposition 3.14

it just remains to show that G = {1} ∪AB, where A is the conjugacy class of a Singer cycle
z and B is the conjugacy class of z2. Note that both z and z2 have order q + 1.

Given a nontrivial element g ∈ G, let N(g) be the number of solutions to the equation
g = ab with a ∈ A and b ∈ B and recall Lemma 3.2, which states that

N(g) =
|A||B|
|G|

∑
χ∈Irr(G)

χ(z)χ(z2)χ(g)

χ(1)

where Irr(G) is the set of complex irreducible characters of G. By inspecting the character
table of G (see [29, Section 38], for example), it is a straightforward exercise to show that

N(g) =

 q if |g| = 2
q − 1 if |g| divides q − 1
q + 1 or 1 if |g| divides q + 1

and we conclude that |N(g)| > 1 for all 1 6= g ∈ G (this can also be checked computationally,
using the GAP package Chevie [41]). Therefore, G = {1} ∪AB as claimed. �

Remark 3.15. For G = L2(q), Garion [40] gives a complete classification of the conjugacy
classes C with G = C2. In particular, [40, Theorem 2(ii)] shows that if q is even and C = xG

with |x| dividing q + 1, then C2 = {y ∈ G : |y| 6= 2}.

Proof of Theorem 3.13. As usual, we may assume H is a maximal subgroup. For now let us
assume G 6= L2(q) if q is even (we will handle this special case at the end of the proof) and
define the classes C = xG and D = yG as in Table 3. In view of Proposition 3.14, it suffices
to show that either x or y is a derangement.

Suppose G = 2B2(q). Here NG(〈x〉) is the unique maximal overgroup of x, so x is a
derangement unless H = (q +

√
2q + 1).4. And in the latter case, y is a derangement since

|H| is indivisible by |y| and the result follows. An entirely similar argument handles the
groups G = 2G2(q) with q > 27.

Next assume G = U3(q) with q > 3, and note that 1 6∈ C2 ∪D2 since neither C nor D are
real classes. Suppose q 6∈ {3, 5}. Since x is a Singer cycle, the main theorem of [5] implies
that x is a derangement unless H is a field extension subgroup of type GU1(q3). But in the
latter case, y is a derangement and once again the result follows. Finally, if q = 3 then x is
a derangement unless H = L2(7), in which case y is a derangement. Similarly, if q = 5 then
x is a derangement unless H is isomorphic to A7 (there are three conjugacy classes of such
subgroups), and in the latter situation it is clear that y is a derangement.

Now suppose G = L2(q) with q > 7 odd. If q > 11, then [5] implies that x is a derange-
ment unless H = Dq+1 is a field extension subgroup of type GL1(q2), in which case y is a
derangement. If q = 9 then x is a derangement unless H = A5 (there are two classes of
such subgroups). But in the latter case, H does not contain any elements of order |y| = 4,
so y is a derangement. Now assume q = 7, so |x| = 4, |y| = 3 and C,D are the unique
conjugacy classes in G containing elements of order 4, 3, respectively. If H = 7:3 then x is a
derangement. However, if H = S4 (there are two such classes), then x and y both have fixed
points. Indeed, ∆(G) = A∪B is the union of the two conjugacy classes of elements of order
7. It is easy to check that

A2 = B2 = {z ∈ G : |z| 6= 1, 4}, AB = {z ∈ G : |z| 6= 2}



18 TIMOTHY C. BURNESS AND MARCO FUSARI

and thus G is not equal to {1} ∪A2, {1} ∪B2 nor {1} ∪AB, but we do get G = A2 ∪AB =
B2∪AB as required. Moreover, if we consider the action of G on G/K, where K is a proper
subgroup of H, then it is easy to check that either x or y is a derangement, so we have
G = E2 for some conjugacy class E of derangements.

To complete the proof, we may assume G = L2(q) with q > 4 even. Set C = xG and
A = zG, B = (z2)G, where |x| = q − 1 and |z| = q + 1, so Proposition 3.14(iii) implies
that G = C2 = {1} ∪ AB. By [5], z and z2 are derangements unless H = D2(q+1) is a field

extension subgroup of type GL1(q2), and in the latter case we see that x is a derangement.
The result follows. �

To conclude this section, we briefly consider Conjecture 3.1 for groups of Lie type of rank
two or more, focussing on the linear groups Ln(q) with n > 3. Note that L3(2) ∼= L2(7), so
we may assume q > 3 in part (i) of the following result. In part (ii), we write Pk for the
stabiliser of a k-dimensional subspace of the natural module for G.

Theorem 3.16. Let G = Ln(q) be a transitive simple group on a set Ω with point stabiliser
H and assume n > 3.

(i) If n = 3 and q > 3, then G = {1} ∪C2 for some conjugacy class C of derangements.

(ii) If n > 4 and H 66 P1, Pn−1, then G = ∆(G)2. Moreover, if q > 3 or H 66 Spn(2),
then G = {1} ∪ CD for classes C,D of derangements.

Remark 3.17. Suppose n > 4 and H is contained in a P1 or Pn−1 parabolic subgroup. If
n > 33, then the two classes C,D in [54, Theorem 2.4(i)] are derangements and we have
G = {1}∪CD. And the same conclusion holds if n > 7 and q > 7481 by [54, Theorem 2.4(ii)].
So the open cases here are when 4 6 n 6 6 (for all q at most some unspecified constant) and
when 7 6 n 6 32 with q 6 7481.

We will need the following lemma in the case where G = Ln(2) = GLn(2) and n > 30.
For an integer 2 6 k < n/2, let zk ∈ G be a regular semisimple element of the form
zk = diag(A,B), where A ∈ GLk(2) and B ∈ GLn−k(2) are Singer cycles, so we have

|zk| = lcm(2k − 1, 2n−k − 1). (9)

Lemma 3.18. Let G = Ln(2) with n > 30 and let x, y ∈ G be regular semisimple elements
of the form x = z2 and y = z3. Then G = {1} ∪ CD, where C = xG and D = yG.

Proof. This follows from [54, Theorem 2.4(i)] if n > 33. By slightly tweaking some of the
estimates in the proof of this result, we will show that the same argument also works for
n = 30, 31 and 32.

In view of Lemma 3.2, we need∣∣∣∣∣∣
∑

χ∈Irr(G)

χ(x)χ(y)χ(g)

χ(1)

∣∣∣∣∣∣ > 0

for each non-identity element g ∈ G. As explained in the proof of [54, Theorem 2.4(i)], it
suffices to show that

8∑
i=2

|χi(g)|
χi(1)

< 1,

where the χi are the non-principal unipotent characters of G listed in [54, (2.3)]. By repeating
the argument in the proof of [54, Theorem 2.4(i)], setting q = 2 and applying [54, Lemma
2.3] and [44, Theorem 1.6(i)], we get

4∑
i=2

|χi(g)|
χi(1)

<
2n−1 + 4

2n − 2
+ 0.1254 +

1.76

2(4n−15)/n
< 0.781
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for all n > 30. As in [54, (2.8)], the combined contribution from the four remaining unipotent
characters is at most

4 · 2(21−n)/2 < 0.177,

so
8∑
i=2

|χi(g)|
χi(1)

< 0.781 + 0.177 < 1

and the result follows. �

First we handle the case n = 3.

Lemma 3.19. The conclusion to Theorem 3.16 holds for n = 3.

Proof. Here G = L3(q) with q > 3 and we set d = (3, q − 1). By [45, Theorem 7.3] we
have G = {1} ∪ C2 = {1} ∪D2, where C = xG and D = yG with |x| = (q2 + q + 1)/d and
|y| = (q2 − 1)/d. Note that x is a Singer cycle.

For q 6= 4, the main theorem of [5] implies that x is a derangement unless H is a field
extension subgroup of type GL1(q3). But in the latter case, y is clearly a derangement and
the result follows. Finally, if q = 4 then |x| = 7, |y| = 5 and one checks that no maximal
subgroup of G has order divisible by 35, so in each case either x or y is a derangement. �

Now assume n > 4. The following result is part of [67, Theorem 2.1].

Proposition 3.20. Let G = Ln(q) with n > 4 and set d = (n, q − 1) and e = (2, q − 1).
Then G = {1} ∪ CD, where C = xG, D = yG and

|x| =
{

(qn/2 + 1)/e if n is even
(qn − 1)/d(q − 1) if n is odd,

|y| =
{

(qn−1 − 1)/d if n is even

q(n−1)/2 + 1 if n is odd.

Thompson’s conjecture for the linear groups Ln(q) was first proved by Lev in [57], where
he established several additional results on conjugacy classes and their products. We will
use Proposition 3.21 below, which is a special case of [57, Theorem 1]. In order to state this
result, we need to introduce some notation.

Suppose n > 3 and n1, . . . , nk are positive integers such that n = 2+
∑

i ni. For a positive
integer m and scalar λ ∈ F×q , let

Jm(λ) =


λ 1

λ 1
. . .

. . .

λ 1
λ

 ∈ GLm(q)

be a standard m × m Jordan block with eigenvalue λ (for λ = 1 we will often write Jm,
rather than Jm(1)). Then for an irreducible matrix A ∈ GL2(q), let

x = (A, Jn1(λ1), . . . , Jnk(λk)) ∈ PGLn(q)

denote the image of the block-diagonal matrix diag(A, Jn1(λ1), . . . , Jnk(λk)) ∈ GLn(q). Note
that x ∈ Ln(q) if

∏
i λ

ni
i = det(A)−1.

Proposition 3.21. Let G = Ln(q) with n > 3 and set C = xG, where x ∈ G is defined

x =

{
(Jn) if q = 2
(A, Jn1(λ1), . . . , Jnk(λk)) if q > 3,

and the λi are distinct elements of F×q . Then G = C2.

Proof. If q > 3 then [57, Theorem 1] implies that G = CC−1 and the result follows since
C = C−1 by [69, Theorem 1] (recall that A ∈ GL2(q) is irreducible). Similarly, if q = 2 then
C is the unique conjugacy class of cyclic matrices in G all of whose eigenvalues are contained
in F2 and once again the result follows from [57, Theorem 1] (also see [57, p.1243]). �
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The following elementary observation will also be useful.

Lemma 3.22. Let G be a finite permutation group with δ(G) > 1/2. Then G = ∆(G)2.

Proof. If x 6∈ ∆(G)2, then x∆(G)−1 ∩∆(G) is empty and thus |∆(G)| 6 |G|/2, which is a
contradiction. �

We are now ready to complete the proof of Theorem 3.16.

Proof of Theorem 3.16. In view of Lemma 3.19, we may assume n > 4. In addition, we may
assume H 6= P1, Pn−1 is a maximal subgroup of G. The groups L6(2) and L7(2) can be
handled using Magma and in both cases we check that G = C2 for some conjugacy class C
of derangements. So for the remainder, we may assume (n, q) 6= (6, 2), (7, 2).

Write q = pf , where p is a prime. Recall that if e > 2 is an integer, then a prime divisor
r of qe− 1 is a primitive prime divisor if qi− 1 is indivisible by r for all i < e. By a theorem
of Zsigmondy [81], such a divisor exists unless (e, q) = (6, 2), or if e = 2 and q is a Mersenne
prime. Define the conjugacy classes C = xG and D = yG as in Proposition 3.20 and set

m = min{|x|, |y|}.
Since (n, q) 6= (6, 2), (7, 2) it follows that |x| and |y| are divisible by primitive prime divisors

of pfn−1 and pf(n−1)−1, respectively, so the maximal overgroups of x and y are described in
[47] and we can work through the possibilities arising in [47, Examples 2.1-2.9]. In doing so,
it will be convenient to adopt the standard notation C1∪· · ·∪C8∪S for the nine collections of
maximal subgroups of G arising in Aschbacher’s subgroup structure theorem [2], appealing
to [53] for a detailed description of the subgroups arising in each collection. We will often
refer to the type of H, which gives a rough description of its structure (our usage is consistent
with [53, p.58]). Let V be the natural module for G.

First assume H ∈ C1, so H = Pk is a maximal parabolic subgroup with 2 6 k 6 n− 2 and
we may identify Ω with the set of k-dimensional subspaces of V . Since x acts irreducibly
on V we have x ∈ ∆(G). Similarly, y fixes a decomposition V = U ⊕W , where U is 1-
dimensional and y acts irreducibly on W . This means that U and W are the only proper
nonzero subspaces of V fixed by y, so y is also a derangement on Ω and we conclude by
applying Proposition 3.20.

Next suppose H ∈ C2. By [47], either x and y are both derangements, or H is of type
GL1(q) o Sn with q > 5 and (n, q) 6= (4, 5) (see [47, Example 2.3], [53, Table 3.5.A] and
[9, Table 8.8]). Since x and y have at most 2 composition factors on V , containment in (a
conjugate of) H implies that m 6 n2(q − 1)/4 (see [12, Remark 5.1(i)]) but it is easy to
check that m > n2(q − 1)/4, so x and y are derangements as required.

Now assume H ∈ C5 is a subfield subgroup of type GLn(q0), where q = qk0 with k a prime
divisor of f . We have H 6 PGLn(q0) and it is easy to see that |PGLn(q0)| is not divisible

by a primitive prime divisor of pf(n−α)− 1 for α = 0 or 1, whence x and y are derangements
and the result follows.

Next assume H ∈ C6. Then by inspecting [47, Example 2.5] and [53, Proposition 4.6.6] we
deduce that y is a derangement, and that x has a fixed point only if n = 2k and q = p ≡ 1
(mod 4) for some k > 2. Since n/2 is even, we note that |x| = (qn/2 + 1)/(2, q − 1) is odd.
But H 6 22k.Sp2k(2) and |Sp2k(2)| is indivisible by |x|, so x must also be a derangement
and this completes the argument in this case.

By the main theorem of [47], both x and y are derangements if H is one of the tensor
product subgroups in C4 ∪ C7, so in order to complete the proof we may assume

H ∈ C3 ∪ C8 ∪ S.
Suppose H ∈ C3, in which case H is a field extension subgroup of type GLn/k(q

k) for

some prime divisor k of n. First assume q > 3 and set E = zG, where z = (A, Jn−2) and
A ∈ SL2(q) has order q + 1. Then G = E2 by Proposition 3.21 and we note that zq+1 has
Jordan form (Jn−2, J

2
1 ). But there are no such elements in H, so zq+1, and hence z itself,
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is a derangement and the result follows. Similarly, if q = 2 then G = E2 for the class E
of regular unipotent elements (see Proposition 3.21) and once again the result follows since
E ∩H is empty.

Next assume H ∈ C8. There are several cases to work through:

(a) H is of type Un(q0) with q = q2
0;

(b) H is of type Oε
n(q) with q odd;

(c) H is of type Spn(q) with n even and q > 2.

First consider case (a), where we have H 6 PGUn(q0). We claim that x and y are
derangements, where x and y are defined as in Proposition 3.20. To see this, first observe
that every semisimple element in H has order at most α = q(n−1)/2 + (−1)n by [42, Lemma
2.15]. If n is odd, then m > α and so the claim holds. Now assume n is even, in which case
|y| > α and thus y is a derangement. And since |x| is divisible by a primitive prime divisor
of pfn − 1, but |H| is not, we conclude that x is also a derangement and the claim follows.

Finally, let us consider cases (b) and (c). Suppose q = 2 and H = Spn(2), so n > 8 is
even. If n > 30 then Lemma 3.18 gives G = {1} ∪ CD, where C and D are both conjugacy

classes of elements of order at least 2n−3 − 1 (see (9)). And since |z| 6 2n/2+1 for all z ∈ H
(see [42, Theorem 2.16]), we deduce that C and D comprise derangements and the result
follows. For 8 6 n 6 28 we can use Magma to determine all the conjugacy classes in G and
H, which allows us to show that

δ(G) >
|{x ∈ G : |x| 6∈ ω(H)}|

|G|
>

1

2
,

where ω(H) = {|x| : x ∈ H} is the spectrum of H. Therefore, G = ∆(G)2 by Lemma 3.22.
Now assume q > 3 and write F×q = 〈λ〉. Consider the conjugacy class E = zG, where

z ∈ G is defined as follows:

z =

{
(A, J1(λ−1), Jn−3(1)) if H is of type On(q) or Spn(q)
(B, Jn−2(1)) if H is of type O±n (q).

Here A,B ∈ GL2(q) are irreducible, with det(A) = λ and det(B) = 1. By Proposition 3.21
we have G = E2 and we claim that z is a derangement.

To see this, first assume H is of type On(q), so n is odd. Now zq
2−1 has Jordan form

(Jn−3, J
3
1 ), but there are no such unipotent elements in H since all even size unipotent

Jordan blocks must occur with an even multiplicity (see [64, Theorem 3.1(ii)], for example).
Therefore z is a derangement and the result follows. Similarly, if H is of type Spn(q) with
q > 3, then z is a derangement since odd size Jordan blocks have even multiplicity in the
Jordan form of any unipotent element of H (see [64, Theorem 3.1(ii)] and [64, Lemma 6.2]).

Finally, if n is even and H is of type Oε
n(q), then z is a derangement because zq

2−1 has
Jordan form (Jn−2, J

2
1 ), which is not compatible with the form of any unipotent element in

H since the even-size Jordan block Jn−2 has multiplicity 1.
To complete the proof, we may assume H ∈ S, so H is almost simple with socle H0. We

claim that the elements x and y defined in Proposition 3.20 are derangements. Recall that
m = min{|x|, |y|}.

For the groups with 4 6 n 6 12, we can read off the possibilities for H by inspecting the
relevant tables in [9, Chapter 8] and it is straightforward to show that H does not contain
any elements of order |x| or |y|. For example, if n = 6 then m = (q3 + 1)/(2, q − 1) and by
inspecting [9, Table 8.25] we see that either

H0 ∈ {M12, A7,L2(11),L3(4),U4(3)},

or H0 = L3(q) with q odd. In the latter case, [42, Theorem 2.16] gives |z| 6 q2 + q + 1 < m
for all z ∈ Aut(H0), so x and y are derangements. Similarly, in the remaining cases one can
check that |z| 6 28 for all z ∈ Aut(H0), which reduces the problem to q ∈ {2, 3}. Closer
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inspection of [9, Table 8.25] shows that (q,H) = (3,M12) is the only possibility and the result
follows since |z| 6 11 < 14 = m for all z ∈ H.

So for the remainder we may assume n > 13. We now apply the main theorem of [47],
using the fact that |x| and |y| are divisible by primitive prime divisors of qn−1 and qn−1−1,
respectively. We consider [47, Examples 2.6-2.9] in turn.

First observe that Ex. 2.6(b,c) and Ex. 2.8 do not arise since n > 13. In Ex. 2.6(a),
H0 = Ad is an alternating group and V is the fully deleted permutation module over Fp.
However, this representation embeds Ad in a symplectic or orthogonal group, so it does
not arise. The relevant sporadic groups occurring in Ex. 2.7, as well as the cases in [47,
Table 7], can all be eliminated by considering element orders, so it just remains to handle
the cases recorded in [47, Table 8]. Here H0 is a simple classical group over Ft, where
(t, q) = 1, and these possibilities can also be eliminated by considering element orders. For

example, if H0 = PSpd(t) with t odd, then n > (td/2 − 1)/2 and [42, Theorem 2.16] gives

|z| 6 (td/2 + 1)/(t − 1) for all z ∈ H. But we have m > 2(n−1)/2 + 1 for all q, so |z| < m
and we conclude that x and y are derangements. Similarly, if H0 = L2(t) and n = (t− 1)/2,
then t > 27 since n > 13, and we have |z| 6 t+ 1 for all z ∈ H. The result now follows since

m > 2(n−1)/2 + 1 > t+ 1. �

3.5. Primitive groups. Let G 6 Sym(Ω) be a finite primitive permutation group with socle
N and recall that the possibilities for G and N are described by the O’Nan-Scott theorem.
Here our goal is to prove Theorem 14, which states that N = ∆(N)2 if |Ω| > 3, under the
assumption that Conjecture 3.1 holds.

Proof of Theorem 14. We consider the various possibilities for G in turn. If G is almost
simple, then N is simple and transitive, so N = ∆(N)2 since we are assuming Conjecture
3.1 holds. If G is an affine group, or a twisted wreath product, then N is regular and we
deduce that δ(N) = 1 − |N |−1. So if |N | > 2 then δ(N) > 1/2 and thus N = ∆(N)2

by Lemma 3.22. And if |N | = 2 then G = N = S2, Ω = {1, 2}, ∆(N) = {(1, 2)} and
∆(N)2 = {1} 6= N , which explains why we assume |Ω| > 3 in Theorem 14.

If G is a diagonal type group, then our proof of Theorem 6(i) at the end of Section 2 shows
that δ(N) > 2/3 and thus N = ∆(N)2 by Lemma 3.22. Finally, let us assume G 6 L o Sb is
a product type group, where b > 2 and L 6 Sym(Γ) is a primitive almost simple or diagonal
type group with socle S = T a. Then N = Sb = T ab and G acts on Ω = Γb with the product
action. Now

∆(N) = {(x1, . . . , xb) ∈ Sb : at least one xi is a derangement on Γ}

and thus ∆(N) contains ∆(S)× Sb−1. The result now follows since we have already shown
that ∆(S)2 = S. �

4. Soluble stabilisers

Let G be a (non-abelian) finite simple group and let S be the set of soluble maximal
subgroups of G (note that S may be empty). In addition, let S+ be the set of soluble
subgroups of G of the form H = M ∩ G, where M is a maximal subgroup of an almost
simple group with socle G. Note that if H = M ∩ G ∈ S+ then the solubility of Out(G)
implies that GM/G ∼= M/H is soluble, and thus M is also soluble. The subgroups in S and
S+ were determined (up to conjugacy) by Li and Zhang in [58].

The main result of this section is the following.

Theorem 4.1. Let G be a finite simple transitive group with soluble point stabiliser H.

(i) If H ∈ S+, then δ(G) > 89/325, with equality if and only if G = 2F4(2)′ and
H = 22.[28].S3.

(ii) If H ∈ S, then G = ∆(G)2.
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Note that part (i) establishes a slightly stronger version of Theorem 4 (see Remark 5(b)),
while part (ii) is Theorem 9(ii). In Section 4.5, we will use part (i) to prove Theorem 6(ii) on
primitive groups with soluble point stabilisers. In particular, in this section we will complete
the proofs of Theorems 4, 6 and 9.

Remark 4.2. Our proof of part (ii) of Theorem 4.1 shows that Conjecture 11 holds for
every non-classical simple primitive group G with soluble point stabilisers. That is to say,
in every case we will exhibit classes C,D of derangements such that G = {1} ∪ CD.

4.1. Sporadic groups. We begin the proof of Theorem 4.1 by assuming G is a sporadic
group. Note that in the following result, H is an arbitrary soluble subgroup.

Proposition 4.3. Let G be a transitive finite simple sporadic group with soluble point sta-
biliser H. Then G = ∆(G)2 and δ(G) > 21/55, with equality if and only if G = M11 and
H = U3(2).2 or 2.S4.

Proof. The first claim G = ∆(G)2 follows from Proposition 3.4. More precisely, either
G = C2 for some conjugacy class C of derangements, or (G,H) = (M23, 2

4.(15:4)) and

G = {1} ∪ C2 = {1} ∪D2 = CD,

where C and D are the two conjugacy classes in G of elements of order 23.
Now let us turn to the lower bound on δ(G). It will be convenient to define

αs(G) = min{δ(G,H) : H < G is soluble}. (10)

Since αs(G) > α(G), we only need to consider the groups with α(G) 6 21/55. By inspecting
Table 1, it follows that G ∈ A ∪ B, where

A = {M11,M12,M22,M23,M24, J3,McL,HS,Co3,O
′N}

B = {Ly,Th}

For the groups in A we can use Magma to construct G as a primitive permutation group
of minimal degree, together with a set of representatives of the conjugacy classes of elements
and maximal subgroups of G. For each maximal subgroup H, it is then straightforward to
determine the set of derangements on G/H and we can read off δ(G,H). In particular, if
H is soluble, then we find that δ(G,H) > 21/55, with equality if and only if G = M11 and
H = U3(2).2 or 2.S4. And if H is insoluble and δ(G,H) 6 21/55, then we construct a set
of representatives of the conjugacy classes of maximal subgroups K of H and in every case
one can check that δ(G,K) > 21/55.

Finally, let us assume G = Ly or Th, and let H be a maximal subgroup of G. First we
use GAP (as in the proof of Proposition 2.7) to show that δ(G,H) 6 21/55 if and only if
(G,H) = (Ly, 2.A11) or (Th, 21+8.A9).

Suppose G = Ly. Here we use the Magma function MatrixGroup to obtain G as a subgroup
of GL111(5) and we construct H = 2.A11 via the function MaximalSubgroups. We then
construct a set of representatives of the conjugacy classes of maximal subgroups K of H,
and in each case we check that

δ(G,K) >
|{x ∈ G : |x| 6∈ ω(K)}|

|G|
>

21

55
,

where ω(K) = {|x| : x ∈ K} is the spectrum of K. The case G = Th is entirely similar,
working with a 248-dimensional matrix representation of G over F2. �

Remark 4.4. We can compute αs(G) precisely for all of the sporadic groups G recorded
in Table 4. To explain how we do this, let d be a positive integer and let Md be a set of
representatives of the conjugacy classes in G of subgroups K such that

K = Kd < Kd−1 < · · · < K1 < K0 = G,
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G αs(G)

A5 1/3 M11 21/55

A6 2/5 M12 244/495
A7 17/35 M22 401/693

A8 17/35 M23 982/1771

A9 227/560 M24 87749/161920
A10 7141/12600 J1 573/1463

A11 47063/69300 J2 3251/6048

A12 66541/103950 J3 1398703/2511648
A13 48632009/64864800 HS 108805/177408

A14 1319450477/1816214400 McL 10673/18711

A15 1728445871/2421619200 He 130507/217600
A16 541166748751/697426329600 Suz 1030209/1601600

Ru 1137154/1781325
O′N 7129127/11111485

Co3 54763537/82627776

Co2 78264622699/112814456832
Fi22 18609741/25625600

Table 4. The values of αs(G) for some alternating and sporadic groups

where Ki is maximal in Ki−1 for all i. Setting β0(G) = 1, we define

βd(G) = min{βd−1(G), δ(G,H) : H ∈Md is soluble}
γd(G) = min{1, δ(G,H) : H ∈Md is insoluble}

and we note that αs(G) = βd(G), where d > 1 is minimal such that βd(G) 6 γd(G). This
observation allows us to compute αs(G) for each of the groups in Table 4 by proceeding as in
the proof of Proposition 4.3, working with a permutation representation of G and repeatedly
applying the function MaximalSubgroups to descend deeper in to the subgroup lattice of G.

4.2. Alternating groups.

Proposition 4.5. Let G = An be a transitive finite simple alternating group with soluble
point stabiliser H.

(i) We have G = ∆(G)2.

(ii) If 5 6 n 6 16, then δ(G) > 1/3, with equality if and only if (G,H) = (A5, D10).

(iii) If n > 17 and H ∈ S+, then δ(G) > 4531887936311/5230697472000.

Proof. Part (i) is a special case of Proposition 3.5. More precisely, either G = C2 for some
conjugacy class C of derangements, or

(G,H) ∈ {(A5, A4), (A5, S3), (A8, 2
4:(S3 × S3))}

and G = {1} ∪ CD, where C and D are the two classes of elements order 5 (for G = A5) or
7 (for G = A8).

Part (ii) can be checked using Magma and the approach described in Remark 4.4. In
particular, we can compute αs(G) precisely for all 5 6 n 6 16 (see (10) and Table 4).

For the remainder, we may assume n > 17 and H ∈ S+. Then the solubility of H implies
that H acts primitively on {1, . . . , n}, which in turn means that n = pd is a prime power and
H = AGLd(p) ∩G. Moreover, since n > 17, it follows that d = 1 and H = AGL1(p) ∩G =
p:(p− 1)/2.

Suppose x ∈ H has order r. Then either r = p and x is a p-cycle, or r divides (p−1)/2 and

x has cycle-type (r(p−1)/r, 1) as an element of G. (Note that H contains a Sylow p-subgroup
of G, so every p-cycle in G has fixed points on Ω.) So if N denotes the number of elements
in G with fixed points on Ω, then

N = 1 + (p− 1)! +
∑
r∈Λ

p!

((p− 1)/r)!r(p−1)/r
,
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where Λ is the set of divisors r > 2 of (p − 1)/2. For 17 6 p < 100, it is now entirely
straightforward to check that the lower bound in part (iii) is satisfied (with equality if
p = 17), so we may assume p > 100.

For r ∈ Λ, set

f(r) =
p!

((p− 1)/r)!r(p−1)/r

We claim that f(r) is maximal when r = (p − 1)/2. To see this, simply observe that

((p−1)/r)! > 2 and r(p−1)/r is decreasing as a function of r, so we have r(p−1)/r > ((p−1)/2)2

and the claim follows. Therefore,

f(r) 6 2

(
p!

(p− 1)2

)
and using the crude bound |Λ| 6 2

√
(p− 1)/2 we deduce that

N 6 1 + (p− 1)! + 2
√

(p− 1)/2 · 2
(

p!

(p− 1)2

)
.

In turn, this yields

δ(G) >
2
(
p!
2 − 1− (p− 1)!− 2

√
(p− 1)/2 · 2(p!)

(p−1)2

)
p!

= 1− 2

p!
− 2

p
−

8
√

(p− 1)/2

(p− 1)2

and we conclude that δ(G) > 0.97 for all p > 100. �

4.3. Exceptional groups. Next we assume G is a simple exceptional group of Lie type.
Our main result is the following.

Proposition 4.6. Let G be a transitive finite simple exceptional group of Lie type with
soluble point stabiliser H.

(i) If H ∈ S+, then δ(G) > 89/325, with equality if and only if G = 2F4(2)′ and
H = 22.[28].S3.

(ii) If H ∈ S, then G = {1} ∪ CD for classes C,D of derangements.

We begin by recording two preliminary lemmas. Recall that a conjugacy class xG is real
if x−1 ∈ xG.

Lemma 4.7. Let G be a finite simple exceptional group of Lie type over Fq and assume
G 6= E6(q), 2E6(q), G2(2)′. Then every semisimple conjugacy class in G is real.

Proof. The groups 2G2(3)′ and 2F4(2)′ can be checked directly. In each of the remaining
cases, the result follows from [76, Proposition 3.1] since the Weyl group of G contains a
central involution. �

In the next lemma, G is a simple group of Lie type over Fq, where q = pf and p is a prime,
and h is the Coxeter number of G. The latter is defined by

h =
dim Ḡ

rank Ḡ
− 1,

where Ḡ is the ambient simple algebraic group defined over the algebraic closure of Fq. So
for example, the Coxeter number of E8(q) is 248/8 − 1 = 30. Also recall that an element
x ∈ G is regular semisimple if the connected component of CḠ(x) is a maximal torus of Ḡ.
This is equivalent to the condition that |CG(x)| is indivisible by p.

Lemma 4.8. Let G 6= Sp4(2)′, G2(2)′, 2G2(3)′ be a finite simple group of Lie type with
Coxeter number h and suppose x ∈ G is semisimple. Then x is regular only if |x| > h.
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Proof. The claim is trivial if h = 2 and it can be checked directly for G = 2F4(2)′, so we
may assume h > 3 and G 6= 2F4(2)′. Set |x| = d.

Let Ḡ = Xsc and L̄ = Xad be the corresponding simply connected and adjoint simple
algebraic groups defined over the algebraic closure of Fq and write G = Op

′
(L̄σ) for a suitable

Steinberg endomorphism σ of L̄. We may assume that x is the image of y ∈ Ḡ under the
natural map Ḡ→ Xad. Embed y in a maximal torus T̄ of Ḡ and let {α1, . . . , αr} be a set of
simple roots for the corresponding root system of Ḡ. Let α0 =

∑
imiαi be the highest root

and note that
∑

imi = h− 1.
The structure of CḠ(y) is described in [50, Section 4] (we thank Martin Liebeck for drawing

our attention to this reference). In particular, from the discussion on [50, p.315] it follows
that there exist integers bi > 0 such that

∑
i bimi 6 d with the property that CḠ(y) is a

maximal torus only if each bi is positive and d >
∑

i bimi. Therefore, x is regular only if

d > 1 +
∑
i

mi = h

and the result follows. �

It is convenient to use computational methods to prove Proposition 4.6 for some of the
small exceptional groups.

Lemma 4.9. The conclusion to Proposition 4.6 holds if G is one of the following:

2G2(3)′, G2(2)′, G2(3), 2F4(2)′, 3D4(2), 3D4(3).

Proof. We can use Magma [7] to handle these cases, working with a primitive permutation
representation of G of minimal degree. First we construct the character table of G and we
use Lemma 3.2 to identify all the pairs of classes (C,D) with G = {1} ∪CD. Then for each
H ∈ S+ we determine the set of derangements for the action of G on G/H and we check
that δ(G,H) > 89/325, with equality if and only if G = 2F4(2)′ and H = 22.[28].S3. For
example, if G = 2G2(3)′ ∼= L2(8) then δ(G,H) > 3/7, with equality if and only if H = D18.
Finally, in every case we identify two classes C,D of derangements with G = {1} ∪CD. �

We now partition our analysis of the remaining exceptional groups according to the struc-
ture of the point stabiliser H.

Lemma 4.10. The conclusion to Proposition 4.6 holds if H is a parabolic subgroup of G.

Proof. Suppose H ∈ S+ is a parabolic subgroup of G, in which case the possibilities for G
and H are recorded in parts (ii) and (iii) of [13, Lemma 5.4].

We begin by assuming (G,H) is one of the cases listed in [13, Lemma 5.4(ii)]. Let C be
any conjugacy class in G of elements of order r, where r is the largest prime divisor of |G|.
Then |H| is indivisible by r, so the elements in C are derangements, and by working with the
character table of G, which is available in [11], we can use Lemma 3.2 to check that G = C2.
In addition, we can use Magma to compute δ(G,H) precisely, which allows us to verify the
desired bound δ(G,H) > 89/325.

Next assume G = F4(2) and H = [222].L2(2)2. Here H is non-maximal in G, but H.2 is
maximal in L = Aut(G) = G.2, so H ∈ S+ \ S and we just need to bound δ(G,H). To
do this, we first use Magma to construct G as a permutation group of degree 139776 and
then we obtain H by constructing the maximal subgroups of Aut(G). In the usual manner,
working with the conjugacy classes in G and H, we compute δ(G,H) = 5166407/7309575.

To complete the proof of the lemma, it remains to consider the three infinite families
recorded in [13, Table 2]:

(a) G = 2B2(q) and H = [q2]:(q − 1), where q = 22m+1 > 8.

(b) G = 2G2(q) and H = [q3]:(q − 1), where q = 32m+1 > 27.

(c) G = G2(q) and H = [q6]:(q − 1)2, where q = 3m > 9.
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In cases (a) and (b), Theorem 3.13 implies that G = C2 for some conjugacy class C of
derangements. Also note that H ∈ S+ \S in (c), so in all three cases it just remains to show
that δ(G,H) > 89/325.

First consider case (a). Let χ = 1GH be the corresponding permutation character and note
that χ = 1+St, where 1 and St denote the trivial and Steinberg characters of G, respectively
(for example, see [56, p.416]). By inspecting the character table of G (see [75, Theorem 13]),
we deduce that x ∈ G is a derangement if and only if x is a regular semisimple element with
|CG(x)| = q ±

√
2q + 1. As a consequence,

|∆(G,H)| = 1

4
(q +

√
2q) · |G|

q +
√

2q + 1
+

1

4
(q −

√
2q) · |G|

q −
√

2q + 1
=

1

2
q3(q − 1)2

and thus

δ(G,H) =
q(q − 1)

2(q2 + 1)
>

28

65

for all q > 8.
Case (b) is very similar. Once again we have χ = 1 + St and we compute

|∆(G,H)| = 1

6
(q +

√
3q) · |G|

q +
√

3q + 1
+

1

6
(q −

√
3q) · |G|

q −
√

3q + 1
+

1

6
(q − 3) · |G|

q + 1
,

which yields

δ(G,H) =
q3 − 2q2 − 1

2(q3 + 1)
>

2278

4921
.

Finally, we turn to case (c). If x ∈ G is a regular semisimple element with |CG(x)| =
q2 ± q + 1 or (q + 1)2, then (|H|, |CG(x)|) 6 4 and thus x is a derangement by Lemma 4.8
(note that h = 6). By inspecting [65], we deduce that

δ(G,H) >
1

12

(
2(q − 1)(q + 2)

q2 + q + 1
+

2(q + 1)(q − 2)

q2 − q + 1
+
q(q − 4)

(q + 1)2

)
>

89

325

for all q > 9. �

Next we consider the groups where H is the normaliser of a maximal torus. These cases
require a detailed analysis and we divide the proof into two separate lemmas.

Lemma 4.11. The conclusion to Proposition 4.6 holds if H = NG(T ) is the normaliser of
a maximal torus and G 6= F4(q), Eε6(q), E8(q).

Proof. The possibilities for H can be read off from [63, Table 5.2] and we divide the proof
into a number of separate cases. Note that for the rank one groups 2B2(q) and 2G2(q) we
have already shown that G = {1} ∪ CD for classes C,D of derangements in Theorem 3.13.

Case 1. G = 2B2(q)

Here q > 8 and H is either D2(q−1) or (q±
√

2q+1):4. If H = D2(q−1) then every semisimple

element x ∈ G with |CG(x)| = q ±
√

2q + 1 is a derangement (since (|H|, |CG(x)|) = 1) and
thus

δ(G,H) >
1

4

(
q +
√

2q

q +
√

2q + 1
+

q −
√

2q

q −
√

2q + 1

)
>

28

65
.

Similarly, if H = (q+ε
√

2q+1):4 then every semisimple element x ∈ G with |CG(x)| = q−1
or q − ε

√
2q + 1 is a derangement (since (|H|, |CG(x)|) = 1), whence

δ(G,H) >
1

2

(
q − 2

q − 1
+

q − ε
√

2q

2(q − ε
√

2q + 1)

)
>

22

35
.

Case 2. G = 2G2(q), q > 27
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This is very similar to the previous case (note that the group 2G2(3)′ was handled in
Lemma 4.9). If H = (q + 1).6 then each element x ∈ G with |CG(x)| = q ±

√
3q + 1 is a

derangement (once again, we have (|H|, |CG(x)|) = 1) and thus

δ(G,H) >
1

6

(
q +
√

3q

q +
√

3q + 1
+

q −
√

3q

q −
√

3q + 1

)
>

225

703
.

Similarly, if H = (q+ ε
√

3q+ 1).6 and |CG(x)| = q− 1 or q− ε
√

3q+ 1, then we have |x| > 2
and (|H|, |CG(x)|) 6 2, so x is a derangement and we deduce that

δ(G,H) >
1

6

(
3(q − 3)

q − 1
+

q − ε
√

3q

q − ε
√

3q + 1

)
>

153

247
.

Case 3. G = G2(q)

Next assume G = G2(q). By inspecting [63, Table 5.2] we see that p = 3, q > 9 and
H ∈ S+ \ S, so we just need to verify the lower bound δ(G) > 89/325.

For H = (q − ε)2.D12 it is clear that every regular semisimple element x ∈ G with
|CG(x)| = q2 ± q + 1 is a derangement and by inspecting [65] we deduce that

δ(G,H) >
1

6

(
q2 + q

q2 + q + 1
+

q2 − q
q2 − q + 1

)
>

2187

6643

for all q > 9. Similarly, if H = (q2 + εq + 1).6 then each x ∈ G with |CG(x)| = q2 − 1 or
q2 − εq + 1 is a derangement and it is easy to check that this gives δ(G,H) > 89/325.

Case 4. G = 2F4(q), q > 8

Next suppose G = 2F4(q) with q > 8 (see Lemma 4.9 for G = 2F4(2)′). If C is a conjugacy

class of elements of order q2+
√

2q3+q+
√

2q+1, then [45, Theorem 7.3] implies that G = C2

(noting that C is real by Lemma 4.7). And by arguing as in the proof of [45, Theorem 7.3],
using the GAP package Chevie [41], one can show that G = D2 when D is a class of elements

of order q2 −
√

2q3 + q −
√

2q + 1 (we thank Gunter Malle for his assistance with the latter
computation).

First assume H = (q + 1)2.GL2(3). If x ∈ G is a regular semisimple element with

|CG(x)| ∈ {q2 − q + 1, (q − 1)(q ±
√

2q + 1), q2 +
√

2q3 + q +
√

2q + 1}

then x is a derangement (in each case, (|H|, |CG(x)|) = 1 or 3) and by inspecting [72, Table
IV] we deduce that

δ(G,H) >
(q − 2)(q + 1)

6(q2 − q + 1)
+

(q − 2)(q +
√

2q)

8(q − 1)(q +
√

2q + 1)
+

(q − 2)(q −
√

2q)

8(q − 1)(q −
√

2q + 1)

+
q2 +

√
2q3 + q +

√
2q

12(q2 +
√

2q3 + q +
√

2q + 1)
>

89

325

for all q > 8. In addition, G = C2 for the class C of derangements defined above.
Similarly, if H = (q+ε

√
2q+1)2.(4◦GL2(3)) then every regular semisimple element x ∈ G

with |CG(x)| = q2−q+1, q2−1 or q2 +
√

2q3 +q+
√

2q+1 is a derangement and the desired

bound δ(G,H) > 89/325 quickly follows. And finally, if H = (q2 +ε
√

2q3 +q+ε
√

2q+1).12,

then each x ∈ G with |CG(x)| = q2 − q + 1, q2 − 1 or q2 − ε
√

2q3 + q − ε
√

2q + 1 is a
derangement and we deduce that δ(G,H) > 89/325. Note that in each of these cases, either
C or D is a class of derangements and we have G = C2 = D2.

By inspecting [63, Table 5.2], it just remains to consider the groups G = 3D4(q) in order
to complete the proof of the lemma.

Case 5. G = 3D4(q)
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In view of Lemma 4.9, we may assume q > 4. We refer the reader to [26] for information
on the semisimple conjugacy classes in G (for example, the number of semisimple classes
with a given centraliser structure can be read off from [26, Table 4.4]). By [45, Theorem 7.3]
and Lemma 4.7 we have G = C2, where C is a class of elements of order q4 − q2 + 1.

Suppose H = (q4−q2 +1).4. If x ∈ G is regular semisimple with |CG(x)| = (q3−ε)(q−ε),
(q3 + ε)(q − ε) or (q2 + εq + 1)2, then (|H|, |CG(x)|) 6 4 and thus x is a derangement by
Lemma 4.8. By adding up the contribution to δ(G) from these elements, we get

δ(G,H) >
1

24

(
q4 + 2q3 − q2 − 2q

(q2 + q + 1)2
+
q4 − 2q3 − q2 + 2q

(q2 − q + 1)2
+

2(q4 − 4q3 + 2q2 − 2q + 12)

(q3 − 1)(q − 1)

+
2(q4 − 2q3 + 2q2 − 4q)

(q3 + 1)(q + 1)
+

6(q4 − 2q)

(q3 − 1)(q + 1)
+

6(q4 − 2q3)

(q3 + 1)(q − 1)

)
>

89

325

for all q > 4. In addition, if we let A = xG and B = yG, where |CG(x)| = (q2 + q + 1)2

and |CG(y)| = (q2 − q + 1)2, then we can use Chevie [41] to show that G = {1} ∪ AB. In
particular, G = ∆(G)2.

Finally, let us assume H = (q2 + εq + 1)2.SL2(3). First note that each element x ∈ G
with |CG(x)| = q4 − q2 + 1 is a derangement (since (|H|, |CG(x)|) = 1) and we have G = C2

as noted above. In addition, elements with |CG(x)| = (q2 − εq + 1)2 are also derangements
since (|H|, |CG(x)|) = 1 or 3. It follows that

δ(G,H) >
1

24

(
6(q4 − q2)

q4 − q2 + 1
+
q4 + 2εq3 − q2 − 2εq

(q2 + εq + 1)2

)
>

11345

40729
>

89

325

for all q > 4. �

Lemma 4.12. The conclusion to Proposition 4.6 holds if H = NG(T ) is the normaliser of
a maximal torus.

Proof. In view of Lemma 4.11, we may assume G = F4(q), Eε6(q) or E8(q). By inspecting
[63, Table 5.2], one of the following holds:

(a) G = F4(q), q even and H ∈ S+ \ S;

(b) G = Eε6(q) and T = 1
e (q2 + εq + 1)3, where e = (3, q − ε);

(c) G = E8(q) and T = (q4 − q2 + 1)2 or q8 + εq7 − εq5 − q4 − εq3 + εq + 1 with ε = ±.

Recall Lemma 4.8, which states that |x| > h for every regular semisimple element x ∈ G,
where h is the Coxeter number of G (so h = 12, 12, 30 in cases (a),(b),(c) above). We refer
the reader to [65] as a convenient source of detailed information on the semisimple conjugacy
classes in G. We will write Φi for the i-th cyclotomic polynomial in Z[q].

Case 1. G = F4(q), q even

Here H ∈ S+ \ S, so it suffices to verify the bound δ(G) > 89/325. If q = 2 then we have
H = 72.(3 × SL2(3)) = NG(P ), where P is a Sylow 7-subgroup of G, and with the aid of
Magma it is easy to check the result. For the remainder, we may assume q > 4.

Suppose H = (q − 1)4.W , where W is the Weyl group of G (this is a soluble group of
order 1152). According to [63, Table 5.2], we may assume q > 8. Let x ∈ G be a regular
semisimple element with

|CG(x)| ∈ {Φ8, Φ12, Φ2
2Φ6, Φ2

2Φ4, Φ2
3, Φ2

6}.
Since (|H|, |CG(x)|) 6 9, Lemma 4.8 implies that x is a derangement and by inspecting [65]
we deduce that

δ(G,H) >
q4

8Φ8
+
q2(q2 − 1)

12Φ12
+

(q + 1)(q3 − 3q2 + 4q − 4)

18Φ2
2Φ6

+
q3(q − 2)

32Φ2
2Φ4

+
(q − 1)(q3 + 3q2 − 2q − 8)

72Φ2
3

+
q(q − 1)(q2 − q − 6)

72Φ2
6

>
89

325
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for all q > 8.
Next assume H = (q+1)4.W with q > 4. Here each regular semisimple element x ∈ G with

|CG(x)| = Φ8, Φ12, Φ2
1Φ3, Φ2

1Φ4, Φ2
3 or Φ2

6 is a derangement (as above, (|H|, |CG(x)|) < h
in each case) and by counting these elements we get δ(G,H) > 89/325 for all q > 8. For
q = 4, we also claim that each x ∈ G with |CG(x)| = Φ1Φ2Φ6 = 195 is a derangement.
To see this, first note that CG(x) = T is a cyclic maximal torus (see [25]) and we have
(|H|, |CG(x)|) = 15 = q2 − 1. We can embed T in a subgroup M = Sp2(4) × Sp6(4) of G
and we observe that CM (S) = 3 × GU3(4), where S is the unique subgroup of T of order
15. So if x has fixed points, then T < CM (x), which is absurd. This justifies the claim. By
including the contribution from these elements, it is easy to check that δ(G,H) > 89/325.

Next assume H = (q2 + q + 1)2.(3 × SL2(3)) with q > 4. Here we find that every
regular semisimple element x ∈ G with |CG(x)| = Φ8, Φ12, Φ2

2Φ6, Φ2
2Φ4, Φ2

6 or Φ1Φ2Φ6 is
a derangement (since (|H|, |CG(x)|) < h) and we get δ(G,H) > 89/325 by adding up the
contribution from these elements.

Similarly, if H = (q2−q+1)2.(3×SL2(3)) and q > 4, then each element with |CG(x)| = Φ8,
Φ12, Φ2

1Φ3, Φ2
1Φ4 or Φ2

3 is a derangement and this yields δ(G,H) > 89/325 for q > 16. If
q ∈ {4, 8} and |CG(x)| = Φ1Φ2Φ3, then we get (|H|, |CG(x)|) = 9, so these regular semisimple
elements are also derangements and this yields δ(G,H) > 89/325 as required.

The remaining two cases with G = F4(q) can be handled in a very similar fashion. If H =
(q2 + 1)2.(4 ◦GL2(3)) then each regular semisimple element x ∈ G with |CG(x)| = Φ8, Φ12,
Φ2

1Φ3, Φ2
2Φ6, Φ2

3, Φ2
6 or Φ1Φ2Φ3 is a derangement (indeed, in each case (|H|, |CG(x)|) 6 3)

and the desired bound follows. Similarly, if H = (q4 − q2 + 1).12 then the elements x ∈ G
with |CG(x)| = Φ8, Φ2

1Φ3, Φ2
2Φ6, Φ2

3, Φ2
6 or Φ1Φ2Φ3 are derangements and once again we

conclude that δ(G,H) > 89/325.

Case 2. G = E6(q)

Next assume G = E6(q) and H = (q2 + q + 1)3/e.31+2.SL2(3), where e = (3, q − 1). First
note that every element in G of order Φ8 and Φ9/e is a derangement (indeed, |H| is indivisible
by these two numbers), whence [45, Theorem 7.7] implies that there exist classes C,D of
derangements with G = {1} ∪ CD. Therefore, it remains to show that δ(G) > 89/325.

If q = 2 then H is the normaliser of a Sylow 7-subgroup and it is easy to verify the desired
bound using Magma. For q > 3 it will be convenient to work in the quasisimple group
L = Z.G, where Z = Z(L) has order e. Then H = J/Z with J = (q2 + q + 1)3.31+2.SL2(3)
and we note that δ(G) = δ(L, J).

Let x ∈ L be a regular semisimple element. If |CL(x)| = Φ9 then (|J |, |CL(x)|) = 1 and
by inspecting [65] we see that there are at least Φ1Φ3(q3 + 2)/9 distinct L-classes of such
elements. Next assume |CL(x)| = Φ1Φ2Φ8, in which case CL(x) = T is a cyclic maximal
torus (see [25]) and (|J |, |CL(x)|) divides q2 − 1. So if x has fixed points on L/J , then
x ∈ S < T , where S is the unique subgroup of T of order q2 − 1. But T is contained in a
subgroup M < G of type (q2 − 1)×Ω−8 (q) and we deduce that T < CM (x), which is absurd
since CL(x) = T . Therefore, x is a derangement on L/J and by inspecting [65] we read off
that L has at least Φ2

1Φ2
2Φ4/8 distinct classes of such elements.

A similar argument shows that each y ∈ L with |CL(y)| = Φ1Φ2Φ4Φ6 is a derangement.
To see this, first note that CL(y) = T is a cyclic maximal torus and (|J |, |CL(y)|) divides
(q − 1)(q3 + 1). Let S be the unique subgroup of T of order (q − 1)(q3 + 1) and note that
y ∈ S if y has fixed points. Now T is contained in a subgroup M of type (q − 1) × Ω+

10(q)
and we observe that T < CM (S). So if y has fixed points, then T < CM (y) and we reach a
contradiction as before. Therefore, y is a derangement and [65] indicates that L has at least
q3Φ2

1Φ2/12 classes of regular semisimple elements of this form.
Putting this together, we deduce that

δ(G) >
Φ1Φ3(q3 + 2)

9Φ9
+

Φ2
1Φ2

2Φ4

8Φ1Φ2Φ8
+

q3Φ2
1Φ2

12Φ1Φ2Φ4Φ6
>

89

325



ON DERANGEMENTS IN SIMPLE PERMUTATION GROUPS 31

for all q > 3.

Case 3. G = 2E6(q)

Next assume G = 2E6(q) and H = (q2 − q + 1)3/e.31+2.SL2(3), where e = (3, q + 1) and
q > 3 (see [63, Table 5.2]). This is essentially identical to the previous case and so we only
give brief details.

First we note that |H| is indivisible by Φ8 and Φ18/e, so by appealing to [45, Theorem
7.7] we deduce that G = {1} ∪ CD, where C and D are conjugacy classes of derangements.

As in Case 2, it is convenient to work in the quasisimple group L = Z.G and we set
H = J/Z, where Z = Z(L) has order e. By arguing as above, we can show that every regular
semisimple element x ∈ L with |CL(x)| = Φ18, Φ1Φ2Φ8 or Φ1Φ2Φ3Φ4 is a derangement, and
then by inspecting [65] we conclude that

δ(G) >
Φ2Φ6(q3 − 2)

9Φ18
+

Φ2
1Φ2

2Φ4

8Φ1Φ2Φ8
+

q3Φ1Φ2
2

12Φ1Φ2Φ3Φ4
>

89

325

for all q > 3.

Case 4. G = E8(q)

Finally, let us assume G = E8(q), in which case H is one of the following:

(q4 − q2 + 1)2.(12 ◦GL2(3)), (q8 ± q7 ∓ q5 − q4 ∓ q3 ± q + 1):30.

First observe that every element in G of order Φ20 or Φ24 is a derangement (since |H| is
indivisible by these numbers), so [45, Theorem 7.7] implies that G = {1} ∪ CD for classes
C,D of derangements. Therefore, we just need to verify the bound δ(G) > 89/325 and we
will consider the three possibilities for H in turn.

Case 4(a). H = (q4 − q2 + 1)2.(12 ◦GL2(3))

Let x ∈ G be a regular semisimple element and recall that |x| > 30 by Lemma 4.8.
First observe that (|H|, |CG(x)|) = 1 if |CG(x)| = Φi with i ∈ {20, 24, 15, 30}, so x is a
derangement and by inspecting [65], we see that

(q2 + 1)(q6 − 2q4 + 3q2 − 4)

20Φ20
+
q4(q4 − 1)

24Φ24
+
q(q4 − 1)

30

(
q3 − q2 + 1

Φ15
+
q3 + q2 − 1

Φ30

)
is the contribution to δ(G,H) from these elements.

Next we claim that x is a derangement if

|CG(x)| ∈ {Φ2
1Φ7, Φ2

2Φ14, Φ1Φ2Φ7, Φ1Φ2Φ14}.
To see this, first assume |CG(x)| = Φ2

1Φ7 and set T = CG(x) and d = (|H|, |T |). Then d
divides (q − 1)2 and we note that T = (q − 1) × (q7 − 1) is contained in a subgroup M of
type SL2(q) × E7(q). If x has fixed points, then |x| divides d. But T < CM (S) for every
subgroup S < T of order dividing d, so T < CM (x) and we reach a contradiction. The other
three cases are very similar and we omit the details (in every case, we can embed T = CG(x)
in a subgroup of type SL2(q) × E7(q)). By inspecting [65], we see that the contribution to
δ(G,H) from these elements is at least

q(q6 − 1)

28

(
q − 2

Φ2
1Φ7

+
q

Φ2
2Φ14

+
q

Φ1Φ2Φ7
+

q − 2

Φ1Φ2Φ14

)
.

Putting all of this together, we deduce that δ(G,H) > 89/325 if q > 7, so we may assume
q 6 5.

We handle the remaining groups with q 6 5 by identifying some additional derangements.
If |CG(x)| = Φ1Φ2Φ9, then (|H|, |CG(x)|) < 30 and thus x is a derangement by Lemma 4.8.
And the same conclusion holds if |CG(x)| = Φ1Φ2Φ18 and q 6 4. Therefore, we can add

q(q3 + 2)(q3 − 1)(q − 1)

36Φ1Φ2Φ9
+ (1− δ5,q)

(q3 + 2)(q3 + 1)(q + 1)(q − 2)

36Φ1Φ2Φ18
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to our previous lower bound and this is good enough to force δ(G,H) > 89/325 if q ∈ {3, 4, 5}.
Finally, if q = 2 and |CG(x)| = q8 − 1, then (|H|, |CG(x)|) = 3 and so we can include an
additional contribution of q4(q4 − 2)/16(q8 − 1). One can now check that the desired bound
holds for q = 2.

Case 4(b). H = Φ30:30 = (q8 + q7 − q5 − q4 − q3 + q + 1):30

We claim that each regular semisimple element x ∈ G with

|CG(x)| ∈ {Φ20, Φ24, Φ1Φ2Φ4Φ8, Φ1Φ2Φ4Φ12, Φ2
1Φ7, Φ2

2Φ14, Φ1Φ2Φ7, Φ1Φ2Φ14} (11)

is a derangement. To see this, set T = CG(x) and observe that d = (|H|, |T |) divides 30
in every case. Therefore, in view of Lemma 4.8, we immediately reduce to the case where
d = |x| = 30. In particular, x is a derangement if |CG(x)| = Φ20 or Φ24 since d 6 5.

In each of the remaining cases, we can embed T in a maximal rank subgroup M of G with
the property that T < CM (S) for every order d subgroup S of T . So if x has fixed points,
then T < CM (x) 6 CG(x) = T , which is absurd.

For example, if |T | = Φ1Φ2Φ4Φ8 then d divides q4− 1 and we can embed the cyclic group
T in a subgroup M of type SL9(q) such that T < CM (S), where S is the unique order d
subgroup of T . Similarly, if |T | = Φ1Φ2Φ4Φ12 then T is cyclic, d divides q4 − 1 and we
proceed by embedding T in M = SU5(q2). And in each of the four remaining cases, we can
argue by embedding T in a subgroup M of type SL2(q)× E7(q).

Using [65] to calculate the total number of regular semisimple elements x ∈ G with |CG(x)|
as in (11), we deduce that δ(G,H) > 89/325 for all q > 3. Finally, for q = 2 it is easy to
check that (|H|, |CG(x)|) < 30 for all

|CG(x)| ∈ {Φ15, Φ1Φ2Φ9, Φ1Φ2Φ18, Φ1Φ2Φ4Φ5, Φ1Φ2Φ4Φ10}

and we get δ(G,H) > 89/325 by including the additional contribution from these elements.

Case 4(c). H = Φ15:30 = (q8 − q7 + q5 − q4 + q3 − q + 1):30

This is entirely similar to the previous case, the only difference being that the elements
with |CG(x)| = Φ30 are derangements, rather than those with |CG(x)| = Φ15. We omit the
details. �

We are now ready to complete the proof of Proposition 4.6.

Proof of Proposition 4.6. In view of Lemmas 4.10 and 4.11, we may assume H is neither a
parabolic subgroup, nor the normaliser of a maximal torus. The relevant cases are labelled
(a)-(f) in the proof of [13, Proposition 7.1], and we have already handled (a)-(c) in Lemma
4.9.

First assume (G,H) = (F4(2), 3.U3(2)2.3.2) or (2E6(2), 3.U3(2)3.32.S3). In both cases,
the character table of G is available in [11] and one can check that the crude bound in (5)
implies that δ(G,H) > 1/2. Using Lemma 3.2, it is also easy to check that G = C2, where
C is a conjugacy class of elements of order 17.

Finally, let us assume G = E8(2) and H = 32.U3(2)4.32.GL2(3) is of type SU3(2)4. As
before, let Φi be the i-th cyclotomic polynomial evaluated at q = 2. If x ∈ G is any regular
semisimple element with

|CG(x)| ∈ {Φ20, Φ24, Φ15, Φ30, Φ2
2Φ14, Φ1Φ2Φ7, Φ1Φ2Φ9, Φ1Φ2Φ18, Φ1Φ2Φ4Φ8}

then (|H|, |CG(x)|) < 30 and thus x is a derangement by Lemma 4.8. By inspecting [65], we
can calculate the total number N of such elements and we check that δ(G,H) > N/|G| >
89/325. In addition, [45, Theorem 7.7] implies that G = {1} ∪ CD, where C and D are
classes of elements of order Φ20 = 205 and Φ24 = 241, respectively. �

4.4. Classical groups. In order to complete the proof of Theorem 4.1, we may assume G
is a classical group. Our main result is the following.
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Proposition 4.13. Let G be a transitive finite simple classical group with soluble point
stabiliser H.

(i) If H ∈ S+, then δ(G) > 89/325.

(ii) If H ∈ S, then G = ∆(G)2.

Throughout this section, G will denote a finite simple classical group over Fq, where q = pf

and p is a prime. We will write V for the natural module and we set n = dimV . In view of
isomorphisms between some of the low dimensional groups, we may assume G is one of the
following:

Ln(q) (n > 2), Un(q) (n > 3), PSpn(q) (n > 4), PΩε
n(q) (n > 7) (12)

In addition, we may exclude the following groups

L2(q) (q 6 9), L4(2), U3(3), Sp4(2)′, PSp4(3) (13)

due to the existence of the following isomorphisms (see [53, Proposition 2.9.1], for example):

L2(4) ∼= L2(5) ∼= A5, L2(7) ∼= L3(2), L2(8) ∼= 2G2(3)′, L2(9) ∼= Sp4(2)′ ∼= A6,

L4(2) ∼= A8, U3(3) ∼= G2(2)′, PSp4(3) ∼= U4(2)

4.4.1. Two-dimensional linear groups.

Lemma 4.14. The conclusion to Proposition 4.13 holds when G = L2(q).

Proof. As explained above, we may assume q > 11. By Theorem 3.13 we have G = ∆(G)2,
so we just need to show that δ(G,H) > 89/325. The possibilities for H are recorded in
[9, Table 8.1] and we refer the reader to [29, Section 38] for the character table of G. Set
d = (2, q − 1).

First assume H = P1 is a Borel subgroup, which allows us to identify Ω = G/H with the
set of 1-dimensional subspaces of V . Then x ∈ G is a derangement if and only if it acts
irreducibly on V , so either x is semisimple and |CG(x)| = (q + 1)/d, or q ≡ 3 (mod 4) and x
is an involution. As a consequence, we deduce that

δ(G,H) =
q − 1 + δ2,p

2(q + 1)
>

5

12
(14)

for all q > 11 and the result follows.
Next assume H is of type GL1(q) o S2, so H = Dd(q−1). Here x ∈ G is a derangement if

and only if x is semisimple with |CG(x)| = (q + 1)/d, or if |x| = p is odd. So for p = 2 we
see that (14) holds, while we get

δ(G,H) >
q2 − 1

|G|
+

q − 3

2(q + 1)
=
q2 + q + 4

2q(q + 1)
>

1

2

if p > 2. Similarly, if H is of type GL1(q2) then H = Dd(q+1) and x ∈ G is a derangement if
and only if x is semisimple with |CG(x)| = (q− 1)/d, or if |x| = p is odd. So for p = 2 we get

δ(G,H) =
q − 2

2(q − 1)
>

7

15

for all q > 16, and for p > 2 and q > 11 we compute

δ(G,H) >
q2 − 1

|G|
+

q − 5

2(q − 1)
=
q2 − q − 4

2q(q − 1)
>

53

110
.

Next assume q = 3k and H is a subfield subgroup of type GL2(3), where k is an odd
prime. Here H = L2(3) ∼= A4 and x ∈ G is a derangement if and only if |x| > 3, so we get

δ(G,H) =
1

|G|

(
|G| − |G|

q + 1
− q2

)
=
q(q − 3)

q2 − 1
>

81

91
.
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Finally, suppose q = p > 11 and H is of type 21+2
− .O−2 (2), so H ∈ {A4, S4}, with H = S4

if and only if q ≡ ±1 (mod 8) (see [9, Table 8.1] for the precise conditions on q required
for maximality). Here the set of nontrivial elements with fixed points comprise the unique
classes of elements of order 2 and 3, plus one class of elements of order 4 if H = S4. This
implies that

δ(G,H) >
1

|G|

(
|G| − 1− 5

2
q(q + 1)

)
=
q3 − 5q2 − 6q − 2

q(q2 − 1)
>

1

2

for all q > 13 (with equality if q ≡ 1 (mod 24), for example). If q = 11, then H = A4 and
we compute δ(G) = 32/55. �

For the remainder, we may assume G 6= L2(q). We now divide the possibilities for H
according to whether or not H is a parabolic subgroup. The cases where H is parabolic
will be handled in Section 4.4.2 and the possibilities that arise are recorded in [13, Lemma
5.4]; they comprise a handful of “sporadic” cases, involving certain low-dimensional groups
defined over small fields (see Table 5), together with three infinite families (G,H) where
G = Lε3(q) or Sp4(q) and H is a Borel subgroup. The remaining non-parabolic subgroups
are listed in [13, Lemma 6.2] and they will be treated in Section 4.4.3.

4.4.2. Parabolic subgroups. In this section we handle the case where G 6= L2(q) and H is a
parabolic subgroup. We fix our notation for parabolic subgroups:

(a) We write Pk for the stabiliser in G of a k-dimensional totally singular subspace of V
(if G = Ln(q) then all subspaces of V are totally singular).

(b) If G = Ln(q) and 1 6 k < n/2, then Pk,n−k denotes the stabiliser of a flag 0 < U <
W < V , where dimU = k and dimW = n− k.

(c) For G = PΩ+
8 (q), we define P1,3,4 to be the image of the parabolic subgroup

[q11]:

(
q − 1

d

)2

.
1

d
GL2(q).d2 < Ω+

8 (q),

where d = (2, q − 1) and 1
dGL2(q) is the unique subgroup of GL2(q) with index d.

(d) If G = Sp4(q) with q > 4 even, then P1,2 = [q4]:(q − 1)2 is a Borel subgroup of G
(that is to say, it is the normaliser of a Sylow 2-subgroup of G).

None of the subgroups H in (b), (c) or (d) are maximal in G, but they are of the form
H = M ∩G for some maximal subgroup M of an almost simple group with socle G.

The possibilities for G and H with H ∈ S+ are recorded in [13, Lemma 5.4] and we begin
by handling the cases arising in part (i) of this lemma. These are the cases listed in Table
5, recalling that we may (and do) exclude the classical groups in (13).

Lemma 4.15. The conclusion to Proposition 4.13 holds if (G,H) is one of the cases in
Table 5.

Proof. This is a straightforward Magma computation. In each case, we construct G and
H in terms of a permutation representation of G of minimal degree and by computing
conjugacy classes we determine the set ∆(G) of derangements with respect to the action
of G on G/H. This allows us to compute δ(G), which is recorded in the final column of
Table 5 to 3 significant figures. If δ(G) > 1/2 then G = ∆(G)2 by Lemma 3.22. Otherwise,
we use Magma to construct the character table of G we apply Lemma 3.2 to check that
either G = L3(2) and H ∈ {P1, P2}, or there exist classes C,D of derangements such that
G = {1} ∪ CD. Note that in the former case we have G ∼= L2(7), H ∼= S4 and thus
G = C2 ∪CD for the two classes C,D of elements of order 7 (see Proposition 3.14(iv)). �

To complete the proof for parabolic subgroups, it just remains to consider the three infinite
families recorded in [13, Lemma 5.4(ii)]:
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G Type of H δ(G)

L3(2) P1, P2, P1,2 0.285, 0.285, 0.619

L3(3) P1, P2, P1,2 0.307, 0.307, 0.682
L4(3) P2, P1,3 0.507, 0.623

L5(2) P2,3 0.679

L5(3) P2,3 0.731
L6(2) P2,4 0.797

L6(3) P2,4 0.848

U4(2) P1 0.422
U4(3) P1 0.485

U5(2) P1 0.455

Sp6(2) P2 0.453
PSp6(3) P2 0.496

Ω7(3) P2 0.524

Ω+
8 (2) P2, P1,3,4 0.613, 0.804

PΩ+
8 (3) P2, P1,3,4 0.656, 0.839

Table 5. The groups (G,H) in Lemma 4.15

(a) G = L3(q), H = P1,2 and q > 4;

(b) G = U3(q), H = P1 and q > 4;

(c) G = Sp4(q), H = P1,2 and q > 4 even.

Notice that in each case, H = NG(P ) is a Borel subgroup, where P is a Sylow p-subgroup
of G. Also note that H is non-maximal in G in cases (a) and (c).

Lemma 4.16. The conclusion to Proposition 4.13 holds if G = L3(q) and H = P1,2.

Proof. Set d = (3, q− 1), e = (q2 + q+ 1)/d and note that H ∈ S+ \ S, so it suffices to show
that δ(G) > 89/325.

Let χ be the corresponding permutation character and note that the character table of G
is available in the literature (see [73, Table 2]). As observed in the proof of [13, Lemma 5.6],
we have

χ = 1 + St + 2ψ

where St = χq3 is the Steinberg character and ψ = χq(q+1) in the notation of [73]. From the
character table, we deduce that x ∈ G is a derangement if and only if x is regular semisimple
with |CG(x)| = (q2 − 1)/d or e. Since there are (e− 1)/2− (q − 1)/d− (3− d)/2 classes of
the first type, and (e− 1)/3 classes of the second, it follows that

δ(G) =

(
1

2
(e− 1)− q − 1

d
− 3− d

2

)
d

q2 − 1
+

1

3
(e− 1)

1

e
>

24

35

for all q > 4. �

Lemma 4.17. The conclusion to Proposition 4.13 holds if G = U3(q) and H = P1.

Proof. Set d = (3, q + 1), e = (q2 − q + 1)/d and let χ be the permutation character. Then
χ = 1 + St, where St is the Steinberg character, and by inspecting the character table of G
(see [73, Table 2]) we deduce that x ∈ G is a derangement if and only if |CG(x)| = (q+ 1)2/d
or e, or if |x| = d = 3 and |CG(x)| = (q + 1)2. Therefore,

δ(G) =
1

6
(e− 1)

d

(q + 1)2
+

1

3
(e− 1)

1

e
+ δ3,d

1

(q + 1)2
>

126

325

for all q > 4. Finally, Theorem 3.13 implies that G = {1} ∪ C2 for a conjugacy class C of
derangements, whence G = ∆(G)2. �

Lemma 4.18. The conclusion to Proposition 4.13 holds if G = Sp4(q) and H = P1,2.

Proof. Here q > 4 and H is non-maximal in G, so we just need to establish the bound
δ(G) > 89/325. If x ∈ G is a regular semisimple element with |CG(x)| = (q + 1)2 or q2 + 1,
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G Type of H Maximal δ(G)

L3(2) GL2(2)⊕GL1(2) n 0.535

L3(3) GL2(3)⊕GL1(3), O3(3) n, y 0.418, 0.742
L3(4) GU3(2) y 0.685

L4(3) GL2(3) o S2, O+
4 (3) n, y 0.649, 0.804

L6(3) GL2(3) o S3 y 0.907

L8(3) GL2(3) o S4 y 0.976

U4(2) GU3(2) ⊥ GU1(2) y 0.418
U4(3) GU2(3) o S2 y 0.646

U5(2) GU3(2) ⊥ GU2(2) y 0.538

U6(2) GU3(2) o S2 y 0.583
U6(3) GU2(3) o S3 y 0.883

U8(3) GU2(3) o S4 y 0.971

U9(2) GU3(2) o S3 y 0.897
U12(2) GU3(2) o S4 y 0.947

PSp6(3) Sp2(3) o S3 y 0.644
PSp8(3) Sp2(3) o S4 y 0.824

Ω7(3) O+
4 (3) ⊥ O3(3) y 0.644

Ω+
8 (2) O−2 (2)×GU3(2) n 0.744

PΩ+
8 (3) O+

4 (3) o S2 y 0.769

PΩ+
12(3) O+

4 (3) o S3 y 0.955

PΩ+
16(3) O+

4 (3) o S4 y 0.993

Table 6. The groups (G,H) in Lemma 4.19

then (|H|, |CG(x)|) = 1 and thus x is a derangement. The number of distinct conjugacy
classes of such elements is recorded in [31, Table IV-1] and we deduce that

δ(G) >
q(q − 2)

8(q + 1)2
+

q2

4(q2 + 1)
>

117

425
>

89

325

for all q > 4. �

4.4.3. Non-parabolic subgroups. In order to complete the proof of Proposition 4.13, we may
assume H is a non-parabolic subgroup. The possibilities for G and H are described in [13,
Lemma 6.2] and we begin by handling the “sporadic” cases recorded in Table 6, which involve
certain low dimensional groups with n 6 16 and q 6 4. Note that in the third column of
the table we indicate whether or not H is a maximal subgroup of G (this follows from the
information in [9, 53]).

Lemma 4.19. The conclusion to Proposition 4.13 holds if (G,H) is one of the cases in
Table 6.

Proof. All of these cases can be handled using Magma [7]. In the final column of Table 6
we calculate δ(G) to 3 significant figures.

First assume H is maximal in G and write G = L/Z and H = J/Z, where L is one of the
quasisimple matrix groups SLεn(q), Spn(q), Ωε

n(q) and Z = Z(L). In this situation, working
with the standard matrix representation of L, we can use the function ClassicalMaximals to
construct J and we then compute δ(L, J) = δ(G) by inspecting the conjugacy classes in L
and J .

There are four remaining cases where H is non-maximal. Here H = M ∩ G, where M
is maximal in an almost simple group A with socle G. To handle these cases, we use the
function AutomorphismGroupSimpleGroup to construct a permutation representation of A
and we then construct M , and hence H, by using the function MaximalSubgroups. We then
compute δ(G) by considering the conjugacy classes in G and H.

If δ(G) > 1/2 then G = ∆(G)2 by Lemma 3.22. Otherwise, (G,H) = (L3(3),GL2(3)) or
(U4(2),GU3(2)) and by working with the character table of G and Lemma 3.2 it is easy to
show that G = {1} ∪ CD for some conjugacy classes C,D of derangements. �
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G Type of H Conditions

Lεn(q) GLε1(qn) n > 3 prime

GLε1(q) o Sn n ∈ {3, 4}
31+2.Sp2(3) n = 3, q = p ≡ ε (mod 3)

GU3(2) (n, ε) = (3,−), q = 2k, k > 3 prime

Sp4(q) Oε2(q) o S2 q > 4 even

O−2 (q2) q > 4 even

PΩ+
8 (q) O−2 (q2)×O−2 (q2)

Oε2(q) o S4

Table 7. The infinite families with H non-parabolic

Finally, let us turn to the remaining infinite families (G,H) with H non-parabolic, which
are recorded in Table 7 (see [13, Lemma 6.2(v)]). We consider each case in turn.

Lemma 4.20. The conclusion to Proposition 4.13 holds if G = Lεn(q) and H is of type
GLε1(qn), where n > 3 is prime.

Proof. Here H = NG(T ) = T.n, where T is a cyclic maximal torus of order (qn− ε)/d(q− ε)
with d = (n, q−ε). If G = L3(2) then it is easy to check that δ(G) = 3/8 and G = {1}∪CD,
where C and D are the unique conjugacy classes of elements of order 2 and 4, respectively.
In each of the remaining cases we claim that δ(G) > 1/2, so G = ∆(G)2 by Lemma 3.22.

First observe that every non-identity element x ∈ H is regular as an element of G. More
precisely, either x ∈ T and CG(x) = T , or x has order n and we calculate that G contains at
most d|G|/c regular elements of order n, where c = (q− 1)n−1 if ε = + and d = n, otherwise

c = (q2 − 1)(n−1)/2. For example, if n divides q, then every regular element in G of order n
has Jordan form (Jn) on the natural module for G and we deduce that there are

|SLεn(q)|
qn−1

=
d|G|
qn−1

<
d|G|

(q2 − 1)(n−1)/2

such elements in G.
Since there are exactly (|T |−1)/n distinct G-classes of regular semisimple elements x ∈ G

with |CG(x)| = |T | (see [33, Example (a), p.484], for example), it follows that

δ(G) >
1

|G|

(
|G| − 1− d|G|

c
− |T | − 1

n
· |G|
|T |

)
= 1− 1

|G|
− d

c
− 1

n

(
1− 1

|T |

)
and thus δ(G) > 1/2 unless G = L3(3). In the latter case, we compute δ(G) = 251/432. �

Lemma 4.21. The conclusion to Proposition 4.13 holds if G = Lε3(q) and H is of type
GLε1(q) o S3, 31+2.Sp2(3) or GU3(2).

Proof. Set d = (3, q − ε) and e = (q2 + εq + 1)/d.
First assume H is of type GLε1(q) o S3 and note that q > 5 if ε = + (see [9, Table 8.3]).

If x ∈ G is regular semisimple with |CG(x)| = e, then (|H|, |CG(x)|) = 1 and thus x is
a derangement. As noted in [73], there are precisely (e − 1)/3 conjugacy classes of such
elements and thus

δ(G) >
e− 1

3e
>

2

7
.

In addition, [45, Theorems 7.1 and 7.3] imply that G = {1} ∪ C2, where C is any class of
elements of order e.

The case H = 31+2.Sp2(3) is entirely similar. Here q = p ≡ ε (mod 3), H 6 ASL2(3) and
every regular semisimple element with |CG(x)| = e is a derangement. Similarly, if H is of
type GU3(2), then ε = −, q = 2k for some odd prime k and the same argument applies since
we have H 6 PGU3(2) ∼= ASL2(3). �

Lemma 4.22. The conclusion to Proposition 4.13 holds if G = L4(q) and H is of type
GL1(q) o S4.
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Proof. Set d = (4, q − 1) and note that q > 5 (see [9, Table 8.8]).
First assume x ∈ G is regular semisimple with |CG(x)| = (q4− 1)/d(q− 1). We claim that

x is a derangement. Seeking a contradiction, suppose x ∈ H and note that (|H|, |CG(x)|)
divides q + 1, which implies that |x| divides q + 1. Since x is regular, it follows that x
is conjugate to the image of a block-diagonal matrix of the form diag(A,B) ∈ SL4(q),
where A,B ∈ GL2(q) are irreducible, with distinct eigenvalues in Fq2 . But this implies

that |CG(x)| = (q + 1)(q2 − 1)/d and we have reached a contradiction. This justifies the
claim. From [33, Example (a), p.484], we see that G has exactly

1

4d
(q + 1)(q2 + 1− e)

such conjugacy classes, where e = (2, q − 1), whence

(q + 1)(q2 + 1− e)/4d
(q4 − 1)/d(q − 1)

=
1

4
− e

4(q2 + 1)

is the contribution to δ(G) from these elements.
Next suppose y ∈ G is regular semisimple with |CG(y)| = (q3 − 1)/d and note that

(|H|, |CG(x)|) divides e′(q − 1), where e′ = (3, q − 1). If e′ = 1 then by repeating the
argument above we deduce that y is a derangement (indeed, we have |CG(z)| = (q − 1)3/d
for every regular semisimple element z ∈ G such that |z| divides q− 1). Now assume e′ = 3.
As before, y is a derangement if |y| divides q − 1, so we may assume that |y| = 9m for
some divisor m of (q− 1)/3. To analyse this situation, it will be convenient to switch to the
matrix groups L = SL4(q) and J = (q− 1)3:S4, where J is the stabiliser in L of a direct sum
decomposition V = 〈v1〉 ⊕ 〈v2〉 ⊕ 〈v3〉 ⊕ 〈v4〉 of the natural module.

Write F×q = 〈ω〉. In terms of the basis {v1, v2, v3, v4} for V , we observe that each a ∈ J
with |CL(a)| = q3 − 1 is J-conjugate to an element of the form

ωi

1
1

ω−i

 (1, 2, 3) =


ωi

1
1

ω−i

 ∈ J,
where 1 6 i < q is indivisible by 3. Since 3 divides q − 1, there are precisely 2(q − 1)/3 such
J-classes, none of which are fused in L.

By considering rational canonical forms, we see that each L-class aL with |CL(a)| = q3−1
corresponds to a monic irreducible cubic polynomial over Fq. So there are precisely

1

3

∑
m|3

µ(m)q
3
m =

1

3
q(q2 − 1)

such classes, where µ is the Möbius function, and thus the contribution to δ(G) from the
regular semisimple elements y with |CG(y)| = (q3 − 1)/d is at least

q(q2 − 1)/3− 2(q − 1)/3

q3 − 1
=

1

3
− 1

q2 + q + 1
.

Therefore,

δ(G) >
1

4
− e

4(q2 + 1)
+

1

3
− 1

q2 + q + 1
>

643

1209
>

1

2

for all q > 5 and the result follows. �

Lemma 4.23. The conclusion to Proposition 4.13 holds if G = U4(q) and H is of type
GU1(q) o S4.

Proof. This is essentially identical to the previous case. Set d = (4, q + 1) and first consider
a regular semisimple element x ∈ G with |CG(x)| = (q4 − 1)/d(q + 1). Since (|H|, |CG(x)|)
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divides q − 1 we deduce that x is a derangement (indeed, if z ∈ G is regular semisimple and
|z| divides q − 1, then |CG(z)| = (q2 − 1)(q − 1)/d) and we calculate that there are precisely

1

4d
(q − 1)(q2 + 1− e)

such classes in G, where e = (2, q − 1).
Next set L = SU4(q) and J = (q + 1)3:S4. Then L has exactly q(q2 − 1)/3 regular

semisimple classes yL with |CL(y)| = q3 + 1, all of which contain derangements if q + 1 is
indivisible by 3. However, if q ≡ −1 (mod 3), then by arguing as in the proof of Lemma
4.22 we deduce that 2(q + 1)/3 of these classes meet J . So it follows that the contribution
to δ(G) from regular semisimple elements y ∈ G with |CG(y)| = (q3 + 1)/d is at least

q(q2 − 1)/3− 2(q + 1)/3

q3 + 1
=

1

3
− 1

q2 − q + 1

and this implies that

δ(G) >
1

4
− e

4(q2 + 1)
+

1

3
− 1

q2 − q + 1
>

47

91

for all q > 5. If q = 4 we compute δ(G) = 3508723/4243200, and similarly we get δ(G) =
20128/25515 for q = 3, hence δ(G) > 1/2 for all q > 3 and thus G = ∆(G)2 by Lemma 3.22.
Finally, for q = 2 we compute δ(G) = 31/80 and it is straightforward to check that G = C2,
where C is the unique conjugacy class of elements of order 5. �

Lemma 4.24. The conclusion to Proposition 4.13 holds if G = Sp4(q) and H is of type
Oε

2(q) o S2 or O−2 (q2), where q > 4 is even.

Proof. Here H ∈ S+ \ S and so we just need to verify the bound δ(G) > 89/325.
First assume H is of type Oε

2(q) oS2, so H = D2(q−ε) oS2. If x ∈ G is a regular semisimple

element with |CG(x)| = q2 − 1, then (|H|, |CG(x)|) = q − ε and we deduce that x is a
derangement (indeed, |CG(z)| = (q − ε)2 for every regular semisimple element z ∈ G such
that |z| divides q− ε). By inspecting [31, Table IV-1] we see that there are exactly 1

2q(q− 2)
such classes and thus

δ(G) >
q(q − 2)

2(q2 − 1)
>

8

21

for all q > 8. And if q = 4 then ε = − (see [9, Table 8.14]) and we compute δ(G) = 3481/4896.
Now assume H is of type O−2 (q2), so H = (q2 + 1).4. As above, each x ∈ G with

|CG(x)| = q2 − 1 is a derangement (indeed, we have (|H|, |CG(x)|) = 1) and we deduce that
δ(G) > 8/21 for q > 8. Finally, for q = 4 we compute δ(G) = 21011/28800. �

Lemma 4.25. The conclusion to Proposition 4.13 holds if G = PΩ+
8 (q) and H is of type

O−2 (q2)×O−2 (q2).

Proof. Once again we have H ∈ S+ \ S and so our goal is to show that δ(G) > 89/325. Set
d = (2, q − 1) and observe that

H = NG(P ) = (D2(q2+1)/d ×D2(q2+1)/d).2
2,

where P is a Sylow r-subgroup of G and r is an odd prime divisor of q2 + 1. For q = 2 we
compute δ(G) = 5740943/6967296, so for the remainder we may assume q > 3.

If q is even, then every semisimple element x ∈ H is contained in the torus (q2 +1)2, which
means that |CG(x)| = (q2 + 1)2 for every regular semisimple element x ∈ H. The conjugacy
classes in G are available in Chevie [41] (also see [65]) and it is a routine exercise to check
that

δ(G) >
1

|G|
|{x ∈ G : x regular semisimple, |CG(x)| 6= (q2 + 1)2}| > 1

2

for all q > 4.
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Now assume q is odd and let x ∈ H be a regular semisimple element with |CG(x)| =
(q3 − ε)(q − ε)/2 and ε = ±. Since (|H|, |CG(x)|) ∈ {1, 4, 16}, Lemma 4.8 implies that x is
a derangement unless |x| = 16, which coincides with the order of a Sylow 2-subgroup of H.
But the Sylow 2-subgroups of H are non-cyclic, so H does not contain any elements of order
16. It follows that each x ∈ G with |CG(x)| = (q3 − ε)(q − ε)/2 is a derangement.

Set K = Spin+
8 (q), so G = K/Z with Z = Z(K) = C2×C2. By inspecting [65], we observe

that K has exactly

N =
|K|

(q3 − ε)(q − ε)
· 1

6
q(q − ε)(q2 − 1)

elements y with |CK(y)| = (q3 − ε)(q − ε). By considering the images of these elements,
it follows that G = K/Z has at least N/4 regular semisimple elements x with |CG(x)| =
(q3 − ε)(q − ε)/2 and we deduce that

δ(G) >
1

6

(
q(q − 1)(q2 − 1)

(q3 − 1)(q − 1)
+
q(q + 1)(q2 − 1)

(q3 + 1)(q + 1)

)
>

89

325

for all q > 3. �

In order to complete the proof of Proposition 4.13, we may assume G = PΩ+
8 (q) and H is

of type Oε
2(q) o S4.

Lemma 4.26. The conclusion to Proposition 4.13 holds if G = PΩ+
8 (q) and H is of type

Oε
2(q) o S4.

Proof. First observe that q > 5 if ε = + (see [9, Table 8.50]).
To begin with, we will assume q is even. For q ∈ {2, 4} we have e = − and with the aid

of Magma it is easy to check that δ(G) > 1/2. Now assume q > 8.
If x ∈ G is regular semisimple and |CG(x)| = (q + ε)(q3 + ε), then Lemma 4.8 implies

that x is a derangement since (|H|, |CG(x)|) 6 3. From [65] we read off that G has precisely
q(q2 − 1)(q + ε)/6 conjugacy classes of such elements.

Next let y ∈ G be regular semisimple with |CG(y)| = q4 − 1, in which case T = CG(y) is
cyclic and (|H|, |T |) = (3, q+ ε)(q− ε) divides q2 − 1. Let S be the unique subgroup of T of
order q2 − 1 and note that we may embed T in a subgroup M = GL4(q). Then T < CM (S)
and we deduce that y is a derangement.

Since G has 3q2(q2 − 2)/8 distinct classes yG with |CG(y)| = q4 − 1 (see [65]), it follows
that

δ(G) >
q(q2 − 1)

6(q3 + ε)
+

3q2(q2 − 2)

8(q4 − 1)
>

1

2

for all q > 8, hence G = ∆(G)2 by Lemma 3.22.
Now assume q is odd. If q = 3 then ε = − and H = NG(P ), where P is a normal subgroup

of a Sylow 2-subgroup of G with |P | = 27. Using Magma, we compute δ(G) > 1/2. In the
same way, one can check that δ(G) > 1/2 when q = 5, so for the remainder we may assume
q > 7. It will be convenient to work in the quasisimple group L = Ω+

8 (q), in which case H
is the image of the subgroup J = Ωε

2(q)4.[26].S4 of L. In addition, set K = Spin+
8 (q) and

Z = Z(K) = C2 ×C2, so G = K/Z and L = K/Z1 for some central subgroup Z1 of order 2.
Let x ∈ L be a regular semisimple element with |CL(x)| = (q4−1)/2 or q4−1. By arguing

as above, we deduce that x is a derangement. In addition, by inspecting [65] we see that K
has exactly

N =
|K|
q4 − 1

· 3

8
(q4 − 4q2 + 3)

elements y with |CK(y)| = q4 − 1. It follows that there are at least N/2 regular semisimple
elements x ∈ L with |CL(x)| = q4 − 1 or (q4 − 1)/2.

Next consider a regular semisimple element y ∈ L with |CL(y)| = (q+ε)(q3+ε)/2 and note
that (|J |, |CL(y)|) divides (q+ε)2/e, where e = (3, q+ε). Here T = CL(y) = 1

2(q+ε)×(q3+ε)

is non-cyclic and we may embed T in a subgroup M of type GL−ε4 (q). Then T < CM (S) for
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every subgroup S of T such that |S| divides (q+ε)2/e, and it follows that y is a derangement.
As noted in the proof of Lemma 4.25, there are at least

|L|
(q3 + ε)(q + ε)

· 1

6
q(q + ε)(q2 − 1)

such elements in L.
Putting this together, we deduce that

δ(G) >
3(q4 − 4q2 + 3)

8(q4 − 1)
+
q(q2 − 1)

6(q3 + ε)
>

1

2

for all q > 7. The result follows. �

This completes the proof of Proposition 4.13. By combining this result with Propositions
4.3, 4.5 and 4.6, we conclude that the proof of Theorem 4.1 is complete. In particular, we
have now proved Theorem 4.

4.5. Primitive groups. We now use Theorem 4.1(i) to prove part (ii) of Theorem 6.

Proof of Theorem 6(ii). Let G 6 Sym(Ω) be a finite primitive permutation group with socle
N and soluble point stabiliser H. Recall that our goal is to show that δ(N) > 89/325, with
equality if and only if N = 2F4(2)′ and H ∩N = 22.[28].S3.

As a consequence of the O’Nan-Scott theorem and our soluble point stabiliser hypothesis,
G is either affine, almost simple or a product type group G 6 L oSb, where G acts on Ω = Γb

via the product action and L 6 Sym(Γ) is an almost simple primitive group with socle S
and soluble point stabilisers.

If G is affine, then N is regular and δ(N) = 1− |N |−1 > 1/2. And if G is almost simple,
then Theorem 4.1(i) implies that δ(N) > 89/325, with equality if and only if N = 2F4(2)′

and H ∩N = 22.[28].S3. Finally, if G 6 L o Sb is a product type group, then N = Sb with S
simple and by combining (6) with Theorem 4.1(i) we deduce that

δ(N) > δ(S,Γ) >
89

325
.

The result follows. �

5. Derangement generation

Recall that every alternating group can be generated by two elements. For example,

An = 〈(1, 2, 3), (δ, δ + 1, . . . , n)〉,
for all n > 4, where δ = 1 if n is odd, otherwise δ = 2. By a celebrated theorem of Steinberg
[74], every finite simple group of Lie type can also be generated by a pair of elements, and
the same is true for all the sporadic simple groups (see [3]). So this allows us to conclude,
via CFSG, that every finite simple group is generated by two elements. In recent years, this
theorem has been extended in many different directions and there is now a vast literature on
a wide range of 2-generation properties of simple groups (for example, see the survey articles
[14, 49] for a sample of some of the remarkable results that have been established).

Now suppose G 6 Sym(Ω) is a finite transitive permutation group with |Ω| > 2 and let
∆(G) be the set of derangements in G. The (normal) subgroup D(G) = 〈∆(G)〉 generated
by ∆(G) has been studied by Bailey et al. in [4], where several interesting results concerning
the order and structure of the quotient group G/D(G) are established. Of course, if G is
simple then G = D(G) and it is natural to ask whether or not G is generated by a pair of
derangements. In this final section, our main theorem shows that this is indeed the case.
Moreover, we will prove that such a group is generated by two conjugate derangements. The
following result is stated as Theorem 15 in Section 1.

Theorem 5.1. Let G 6 Sym(Ω) be a finite simple transitive permutation group. Then there
exists a derangement x ∈ G such that G = 〈x, xg〉 for some g ∈ G.
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One of the key ingredients in our proof of Theorem 5.1 involves the concept of uniform
spread. Following Breuer et al. [12], we say that a finite group G has positive uniform spread
if there exists a conjugacy class C = yG with the property that for any non-identity x ∈ G,
there exists an element z ∈ C such that G = 〈x, z〉. In this situation, we call y, or the class
C itself, a witness. The main theorem of [43] shows that every finite simple group has this
remarkably strong 2-generation property and we refer the reader to [12, 18, 19, 20] for more
recent extensions and generalisations.

The next two lemmas will be applied repeatedly in the proof of Theorem 5.1. In the first
one, and for the remainder of the paper, we writeM(y) for the set of maximal subgroups of
G containing the element y ∈ G. In addition,

fpr(z,G/H) =
|zG ∩H|
|zG|

is the fixed point ratio of z ∈ G with respect to the natural transitive action ofG on Ω = G/H,
which is simply the proportion of points in Ω fixed by z. The following elementary observation
was a key tool in [43] and we include a short proof for completeness.

Lemma 5.2. Let G be a finite group. An element y ∈ G is a witness if∑
H∈M(y)

fpr(z,G/H) < 1 (15)

for all z ∈ G of prime order.

Proof. Let x ∈ G be a non-identity element and suppose z = xm has prime order. Let

P(y, z) =
|{v ∈ yG : G 6= 〈v, z〉}|

|yG|
be the probability that z and a uniformly random conjugate of y do not generate G. Now
G 6= 〈v, z〉 if and only if zg ∈ H for some g ∈ G and H ∈ M(y). And since |zG ∩H|/|zG| is
the probability that a random conjugate of z is contained in H, it follows that

P(y, z) 6
∑

H∈M(y)

|zG ∩H|
|zG|

=
∑

H∈M(y)

fpr(z,G/H).

So if (15) holds then P(y, z) < 1 and thus G = 〈z, yg〉 = 〈x, yg〉 for some g ∈ G. Since x is
an arbitrary non-identity element, we conclude that y is a witness. �

Remark 5.3. Suppose G is simple and {H1, . . . ,Ht} is a complete set of representatives of
the conjugacy classes of maximal subgroups in G. Then each Hi is self-normalising and we
have ∑

H∈M(y)

fpr(z,G/H) =
1

|G|

t∑
i=1

|Hi|χi(x)χi(z), (16)

for all z ∈ G, where χi = 1GHi is the permutation character for the action of G on G/Hi.

The connection between uniform spread and Theorem 5.1 is given by the following easy
observation.

Lemma 5.4. Let G 6 Sym(Ω) be a finite transitive permutation group and suppose x, y ∈ G
are witnesses such that

{Ag : A ∈M(x), g ∈ G} ∩ {Bg : B ∈M(y), g ∈ G} = ∅. (17)

Then there exists a derangement z ∈ G such that G = 〈z, zg〉 for some g ∈ G.

Proof. Let H be a point stabiliser. Since the intersection in (17) is empty, it follows that
some element z ∈ {x, y} is a derangement on Ω. And since z is a witness, we conclude that
G = 〈z, zg〉 for some g ∈ G. �
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Remark 5.5. Notice that a weaker form of Lemma 5.4 will be sufficient for establishing the
conclusion in Theorem 5.1. Indeed, it suffices to show that there exist elements x, y ∈ G such
that x is a witness and y satisfies (17) and (15) for z = y. In particular, it is not necessary
to show that y is also a witness.

In view of Lemma 5.4 and the connection with uniform spread, we will make extensive
use of [12, 43], where explicit witnesses for simple groups are identified. In several cases, we
will need to prove that some additional elements are also witnesses and we will typically do
this via Lemma 5.2, which involves determining the maximal overgroups and bounding the
corresponding fixed point ratios. For example, if G is a classical group then we will work
closely with [5, 9, 47, 53] to study maximal overgroups and we will appeal to the fixed point
ratio bounds in [15] and [43, Section 3]. We will also use computational methods to handle
some of the small simple groups, which are amenable to direct computation in GAP [39] or
Magma [7] (see Propositions 5.9 and 5.15, for example).

5.1. Alternating groups. Here we prove Theorem 5.1 in the case where G = An is an
alternating group with n > 5. First we handle the groups of small degree.

Lemma 5.6. The conclusion to Theorem 5.1 holds if G = An and n 6 15.

Proof. This is a routine Magma [7] computation. First, we construct a set of representatives
of the conjugacy classes of maximal subgroups H of G. Then by inspecting the conjugacy
classes in H and G, it is straightforward to determine the set of derangements in G (with
respect to the action of G on Ω = G/H) and using random search we can easily find two
conjugate derangements that generate G. �

For the remainder of this section, we may assume n > 16. The following number-theoretic
lemma will be useful (note that the conclusion is false if n = 15).

Lemma 5.7. Let n > 16 be an integer. Then there exist primes p and q such that n/2 <
p < q 6 n− 3 and q 6= (n+ p)/2.

Proof. The cases with 16 6 n 6 40 can be checked directly, so let us assume n > 41. Then
by a theorem of Ramanujan [70], there are at least 5 primes in the interval (n/2, n], which
immediately implies that there are primes pi such that n/2 < p1 < p2 < p3 6 n − 4. The
result now follows since we can set p = p1 and q = p2 or p3, ensuring that q 6= (n+ p)/2. �

Proposition 5.8. The conclusion to Theorem 5.1 holds if G is an alternating group.

Proof. Write G = An. In view of Lemma 5.6, we may assume n > 16 and we fix primes p
and q as in Lemma 5.7. Let H be a point stabiliser and set [n] = {1, . . . , n}.

First assume H acts transitively on [n] and set L = 〈x, y〉, where x and y are the p-cycles

x = (1, 2, . . . , p), y = (n− p+ 1, . . . , n).

Since p > n − p + 1, it follows that L acts transitively on [n]. In addition, since p > n/2,
we observe that no transitive imprimitive subgroup of G contains an element of order p, so
L is primitive. Finally, a classical theorem of Jordan (see [78, Theorem 13.9]) implies that
no proper primitive subgroup of G contains a p-cycle, whence L = G. In addition, this
argument shows that neither x nor y is contained in a proper transitive subgroup of G, so x
and y are conjugate derangements and the result follows.

For the remainder, we may assume H is intransitive. Moreover, without loss of generality,
we may assume that H = (Sk×Sn−k)∩G for some 1 6 k < n/2, which allows us to identify
Ω with the set of k-element subsets of [n].

First assume n > 16 is even. Define the elements

x = (1, . . . , p)(p+ 1, . . . , n)

y = (1, . . . , p− 1, p+ 1)(p+ 2, p, p+ 3, . . . , n)
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in G and set L = 〈x, y〉. Note that y = xz, where z = (p, p + 1, p + 2) ∈ G, so x and y are
G-conjugate. In addition, note that L is transitive on [n] and xn−p is a p-cycle, so by arguing
as above we deduce that L = G. Clearly, x and y are derangements unless k = n− p. And
if k = n− p then we can redefine x and y with p replaced by q and repeat the argument.

Finally, let us assume n > 17 is odd and set L = 〈x, y〉, where

x = (1, . . . , p)(p+ 1, . . . , `)(`+ 1, . . . , n)

y = (1, . . . , p− 1, p+ 1)(p, p+ 2, . . . , `− 1, `+ 1)(`, `+ 2, . . . , n)

and ` = (n+ p)/2. Note that x and y both have cycle-type [p, (n− p)/2, (n− p)/2], so they
are conjugate in G. Then L acts transitively on [n] and it contains a p-cycle, so as before we
deduce that L = G. Moreover, x and y are derangements unless k ∈ {(n − p)/2, n − p}, so
let us assume we are in one of these two cases. Here we can repeat the argument, replacing
p by q in the construction of x and y, noting that the condition q 6= (n+ p)/2 in Lemma 5.7
implies that x and y are derangements on Ω when k ∈ {(n− p)/2, n− p}. �

5.2. Sporadic groups. Next let us turn to the sporadic groups. Here we adopt a compu-
tational approach, working extensively with Lemma 5.4. As before, we write B and M for
the Baby Monster and Monster sporadic groups, respectively.

Proposition 5.9. The conclusion to Theorem 5.1 holds if G is a sporadic group.

Proof. First assume G 6= B,M. Using GAP [39] and the information available in the GAP
Character Table Library [11], it is straightforward to evaluate the expression in (16) for
all y, z ∈ G (of course, to do this we only need to work with a set of conjugacy class
representatives). In every case, we can combine this with Lemma 5.2 to identify witnesses
x and y satisfying all the conditions in Lemma 5.4, which gives the desired result. Two
such elements are recorded in Table 8 (using the standard Atlas [23] labelling for conjugacy
classes), together with the maximal overgroups M(x) and M(y) (see Remark 5.10 below).

Next assume G = B and fix elements x ∈ 55A and y ∈ 47A. The character table of
every maximal subgroup of G is available in [11] and just by considering element orders it
is easy to check that every maximal overgroup of y is of the form H = 47:23. Moreover,
we can compute the permutation character χ = 1GH and we find that χ(y) = 1, which
implies that y is contained in a unique maximal subgroup of G (namely, NG(〈y〉) = 47:23).
Then by applying Lemma 5.2, we deduce that y is a witness. Similarly, one can check that
M(x) = {5:4×HS.2, S5×M22:2} and once again we see that x is a witness. The result now
follows from Lemma 5.4.

Finally, let us assume G = M is the Monster. Fix x, y ∈ G, where x ∈ 71A and y ∈ 59A. By
inspecting the list of maximal subgroups of G (see [27, Table 1]), it is easy to see that L2(71)
is the only maximal subgroup containing an element of order 71. And similarly, L2(59) is
the only maximal subgroup with an element of order 59. In both cases we can use [11] to
compute the corresponding permutation characters and we conclude that x and y both have
unique maximal overgroups. As above, the result now follows from Lemma 5.4. �

Remark 5.10. In the final two columns of Table 8, we list the maximal subgroups in the
sets M(x) and M(y). In order to clarify our notation, note that if G = M12 and x ∈ 11A,
thenM(x) contains two non-conjugate subgroups isomorphic to M11. On the other hand, if
G = J2 and y ∈ 7A, then M(y) contains two conjugate subgroups isomorphic to U3(3).

5.3. Exceptional groups. In this section we assume G is a finite simple exceptional group
of Lie type over Fq, where q = pf and p is a prime. We begin by handling the groups in A,
which is defined as follows:

A = {2G2(3)′, G2(2)′, G2(3), G2(4), 2F4(2)′, 3D4(2), F4(2), 2E6(2)}.

Lemma 5.11. The conclusion to Theorem 5.1 holds if G ∈ A.
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G x y M(x) M(y)

M11 11A 8A L2(11) M10, 32:SD16, 2.S4

M12 11A 10A M11, M11, L2(11) A6.2
2, A6.2

2, 2× S5

M22 11A 8A L2(11) 24:A6, 24:S5, M10

M23 23A 15A 23:11 A8, 24:(3×A5).2
M24 23A 21A M23, L2(23) L3(4):S3, 26:(L3(2)× S3)
J1 19A 15A 19:6 D6 ×D10

J2 10C 7A 21+4:A5, A5 ×D10, 52:D12 U3(3) (two), L3(2).2
J3 19A 17A L2(19), L2(19) L2(16).2, L2(17)
J4 43A 29A 43:14 29:28
HS 15A 11A S8, 5:4×A5 M22, M11, M11

He 17A 14C Sp4(4).2 21+6.L3(2), 72:2.L2(7), 71+2:(S3 × 3)
McL 15A 11A 31+4:2S5, 2.A8, 51+2:3:8 M22, M22, M11

Suz 14A 13A J2.2 (two), (A4 × L3(4)):2 G2(4), L3(3).2, L3(3).2, L2(25) (three)
Ru 29A 26A L2(29) (22 × 2B2(8)):3, L2(25).22 (two)
O′N 31A 19A L2(31), L2(31) L3(7).2, L3(7).2, J1

Co1 26A 23A (A4 ×G2(4)):2 Co2, Co3, M24

Co2 30A 23A U6(2).2, 21+8:Sp6(2), HS.2 M23

Co3 30A 23A McL.2, 2.Sp6(2), U3(5):S3, 31+4:4S6 M23

HN 22A 19A 2.HS.2 U3(8).3
Ly 67A 37A 67:22 37:18
Th 39A 36A (3×G2(3)):2 21+8.A9, 3.[38].2S4

Fi22 22A 13A 2.U6(2) Ω7(3), Ω7(3), 2F4(2)
Fi23 35A 23A S12 211.M23, L2(23)
Fi′24 29A 23A 29:14 Fi23, 211.M24

B 55A 47A 5:4×HS.2, S5 ×M22:2 47:23
M 71A 59A L2(71) L2(59)

Table 8. The elements x, y ∈ G in the proof of Proposition 5.9

Proof. For G 6= 2E6(2) we can proceed as in the proof of Proposition 5.9, working the GAP
Character Table Library [11] to evaluate the expression in (16) for all y, z ∈ G. In this way,
using Lemma 5.2, we can find two elements x, y ∈ G satisfying the conditions in Lemma
5.4 and the result follows (two such elements are presented in Table 9 with respect to the
standard Atlas [23] notation for conjugacy classes, together with the respective maximal
overgroups M(x) and M(y)).

To complete the proof, we may assume G = 2E6(2). The maximal subgroups of G have
been determined up to conjugacy by Wilson in [79] (also see Tables 3 and 10 in [24]). Fix
elements x ∈ 19A and y ∈ 13A.

By inspecting the orders of the maximal subgroups of G, we find that H = U3(8).3 is
the only one containing an element of order 19. Moreover, we can use GAP to compute the
character χ = 1GH and we deduce that χ(x) = 1. Therefore, M(x) = {H} and thus x is a
witness by Lemma 5.2.

Now let us consider y, which represents the unique conjugacy class of elements of order
13 in G. By inspection, we see that each H ∈ M(y) is isomorphic to F4(2) or Fi22, noting
that there are three conjugacy classes of each type. By working with the corresponding
permutation characters, we deduce that M(y) comprises three subgroups isomorphic to
F4(2), which represent the three classes of maximal subgroups of this type, together with six
subgroups isomorphic to Fi22 (two subgroups from each of the three classes of this type). By
[56, Theorem 1] we have fpr(z,G/H) 6 1/57 for all z ∈ G of prime order and all maximal
subgroups H of G, whence ∑

H∈M(y)

fpr(z,G/H) 6
9

57

for all z ∈ G of prime order. Therefore, y is a witness by Lemma 5.2 and we can now
conclude by appealing to Lemma 5.4. �
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G x y M(x) M(y)
2G2(3)′ 7A 3A 23:7 (two), D14 D18

G2(2)′ 12A 7A 31+2.D8, 4.S4 L3(2)
G2(3) 13A 9A L3(3):2, L3(3):2, L2(13) (32 × 31+2):2S4, (32 × 31+2):2S4, L2(8):3 (three)
G2(4) 21A 13A 3.L3(4):2 U3(4):2, L2(13)
2F4(2)′ 16A 13A 2.[28].5.4, 22.[28].S3 L3(3).2, L3(3).2, L2(25) (three)
3D4(2) 13A 7D 13:4 G2(2) (seven), (7× SL3(2)).2 (four), 72.SL2(3)
F4(2) 28A 17A [215].Sp6(2), 3D4(2).3, L3(2)2.2, Sp8(2), Sp8(2)

[220].(S3 × L3(2)) (two)
2E6(2) 19A 13A U3(8).3 F4(2), F4(2), F4(2),

Fi22 (two),Fi22 (two),Fi22 (two)

Table 9. The elements x, y ∈ G in the proof of Lemma 5.11, G ∈ A

For the remainder of this section, we may assume G 6∈ A. The following lemma will be a
useful observation.

Lemma 5.12. Suppose G 6∈ A and x ∈ G satisfies |M(x)| 6 12. Then x is a witness.

Proof. This follows by combining Lemma 5.2 with [56, Theorem 1], which implies that
fpr(z,G/H) 6 1/13 for all z ∈ G of prime order and all maximal subgroups H of G. �

Proposition 5.13. The conclusion to Theorem 5.1 holds if G is an exceptional group of Lie
type.

Proof. In view of Lemma 5.11, we may assume G 6∈ A. In every case, we will show that
there exist witnesses x, y ∈ G satisfying the conditions in Lemma 5.4.

For now, let us assume G 6= 3D4(q) and choose x, y ∈ G as in Table 10. In the table,
we write Φi for the i-th cyclotomic polynomial evaluated at q and we use the notation
d = (2, q − 1), e = (3, q − 1) and e′ = (3, q + 1). In addition, for G = 2F4(q) we define

αε = q2 + ε
√

2q3 + q + ε
√

2q + 1

for ε = ±. For G = E7(q), we have

H1 = e′.(2E6(q)× (q + 1)/de′).e′.2, H2 = e.(E6(q)× (q − 1)/de).e.2

and H3 is an E6-parabolic subgroup of type P7 (in terms of the standard labelling of maximal
parabolic subgroups of G).

Observe that in every case, x and y generate distinct maximal tori of G, which we denote
by Tx and Ty, respectively. The existence of cyclic tori of the given orders, and hence the
existence of x and y, follows from the general theory of tori in finite reductive groups (see
[22, Section 3.3], for example). So in view of Lemmas 5.4 and 5.12, it just remains to justify
the given description of the sets M(x) and M(y) in Table 10.

For now we will assume G 6= G2(q). If we exclude the groups

{F4(q), 2E6(q), E7(q) : q = 2, 3} (18)

then the maximal overgroups of Tx are determined by Weigel [77] and we read off the sub-
groups in M(x) recorded in the fourth column of the table. And for the groups in (18) we
can appeal to the proof of [43, Proposition 6.2]. Similarly, the description of M(y) in Table
10 follows from [46, Theorem 2.1].

Now suppose G = G2(q) and recall that q > 5 since we are assuming G 6∈ A. As above,
we can read off M(y) from [46, Theorem 2.1]. Similarly, our description of M(x) follows
from [77] unless q ≡ −1 (mod 3). Here |x| = q2 + q+ 1 and by inspecting the list of maximal
subgroups of G (see [9, Tables 8.30, 8.41], for example) it is easy to see that each subgroup
in M(x) is conjugate to H = SL3(q).2. Moreover, we note that xG ∩H is the union of two
SL3(q)-classes, both of which have size |SL3(q)|/(q2 + q + 1). Therefore,

fpr(x,G/H) · |G : NG(H)| = |x
G ∩H|
|xG|

|G|
|H|

= 1
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G |x| |y| M(x) M(y)
2B2(q) q +

√
2q + 1 q −

√
2q + 1 Tx.4 Ty.4

2G2(q) q +
√

3q + 1 q −
√

3q + 1 Tx.6 Ty.6
G2(q) q ≡ ε (mod 3) q2 − εq + 1 q2 + εq + 1 SL−ε3 (q).2 SLε3(q).2

p = 3 q2 + q + 1 q2 − q + 1 SL3(q).2 (two) SU3(q).2 (two)
2F4(q) α+ α− Tx.12 Ty.12
F4(q) p 6= 2 q4 − q2 + 1 q4 + 1 3D4(q).3 2.Ω9(q)

p = 2 q4 − q2 + 1 q4 + 1 3D4(q).3 (two) Sp8(q) (two)
E6(q) Φ9/e Φ12Φ3/e L3(q3).3 (3D4(q)× (q2 + q + 1)/e).3
2E6(q) Φ18/e

′ Φ12Φ6/e
′ U3(q3).3 (3D4(q)× (q2 − q + 1)/e′).3

E7(q) q > 3 Φ18Φ2/d Φ9Φ1/d H1 H2, H3 (two)
q = 2 129 73 SU8(2) H2, H3 (two)

E8(q) Φ30 Φ15 Tx.30 Ty.30

Table 10. The elements x, y ∈ G in the proof of Proposition 5.13, G 6∈ A,
G 6= 3D4(q)

and we conclude that x is contained in a unique conjugate of H, as recorded in Table 10.
To complete the proof, we may assume G = 3D4(q) with q > 3 (recall that 3D4(2) ∈ A).

Let x, y ∈ G be regular semisimple elements with respective orders q4− q2 +1 and q2 + q+1,
and corresponding centralisers of order q4 − q2 + 1 and (q2 + q + 1)2. By [45, Proposition
2.11] we haveM(x) = {T.4}, where T = 〈x〉 is a maximal torus, and thus x is a witness. So
to complete the proof, we may assume G has point stabiliser H = (q4 − q2 + 1).4.

Now let us consider y. As noted in the proof of [46, Proposition 2.3], each H ∈ M(y) is
conjugate to one of the following

H1 = G2(q), H2 = ((q2 + q + 1) ◦ SL3(q)).(q2 + q + 1, 3).2,

H3 = (q2 + q + 1)2.SL2(3), H4 = PGL3(q),

where H4 only arises when q ≡ 1 (mod 3). In particular, y is a derangement on Ω = G/H
and so it just remains to show that G = 〈y, yg〉 for some g ∈ G.

For q = 3 we can use Magma to show that |M(y)| = 18 and the result follows via Lemmas
5.2 and 5.4 since [56, Theorem 1] gives fpr(z,G/H) 6 1/73 for all z ∈ G of prime order and
all maximal subgroups H of G. Now assume q > 4. As noted in Remark 5.5, we just need
to show that∑

H∈M(y)

fpr(y,G/H) =

4∑
i=1

ni · fpr(y,G/Hi) = |G|
4∑
i=1

|Hi|−1 · fpr(y,G/Hi)
2 < 1,

where ni is the number of conjugates of Hi containing y. Since |G| < q28 and |yG| > 1
2q

24,
the crude bound

fpr(y,G/Hi) <
|Hi|
|yG|

< 2|Hi|q−24

yields

|G|
4∑
i=1

|Hi|−1 · fpr(y,G/Hi)
2 < 4q−20

4∑
i=1

|Hi| < 1

and the result follows. �

5.4. Classical groups. In order to complete the proof of Theorem 5.1, it remains to handle
the classical groups. So let G be a finite simple classical group over Fq, where q = pf and p
is a prime. Let V be the natural module and set n = dimV .

As explained at the start of Section 4.4, we may assume that G is one of the groups in
(12). In addition, we may exclude the groups in (13) due to the existence of exceptional
isomorphisms involving some of the low dimensional classical groups.
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G |y| Conditions

Ln(q) (qn − 1)/e n > 2, e = (n, q − 1)(q − 1)
Un(q) (qn + 1)/e′ n > 3 odd, e′ = (n, q + 1)(q + 1)

PSpn(q) (qn/2 + 1)/d n > 4, d = (2, q − 1)

PΩ−n (q) (qn/2 + 1)/d n > 8, d = (2, q − 1)

Table 11. Singer cycles

Recall that the main theorem on the subgroup structure of finite classical groups is due to
Aschbacher [2] and we will refer repeatedly to the detailed information on maximal subgroups
in [9, 53]. Also recall that the type of a maximal subgroup gives an approximate description of
its structure. For example, if G = L6(q) and H is the stabiliser of a direct sum decomposition
V = V1 ⊕ V2 ⊕ V3 of the natural module into 2-spaces, then we say that H is a subgroup
of type GL2(q) o S3, noting that the precise structure can be read off from [53, Proposition
4.2.9] (also see [9, Table 8.24]). Detailed information on the maximal subgroups of classical
groups is presented in [9, 53], including a complete classification (up to conjugacy) for the
groups with n 6 12.

Let us also recall that if e, q > 2 are integers, then a prime divisor r of qe−1 is a primitive
prime divisor (ppd for short) if r does not divide qi− 1 if i < e. By a theorem of Zsigmondy
[81], a ppd exists unless (e, q) = (6, 2), or if e = 2 and q is a Mersenne prime. If G is a
classical group as above and x ∈ G has prime order r, where r is a ppd of qe−1 with e > n/2,
then the maximal overgroups of x (up to conjugacy) are described in [47] and we will use
this important result in several proofs.

Let G be one of the groups listed in Table 11 and recall that an element y ∈ G is a Singer
cycle if the order of y is as given in the table. Note that every Singer cycle acts irreducibly
on the natural module V . In the proof of the following result, we write π(`) for the set of
prime divisors of the integer ` > 2.

Proposition 5.14. Every Singer cycle is a witness.

Proof. Let G be one of the groups in Table 11 and let y ∈ G be a Singer cycle. We will
consider each possibility for G in turn.

First assume G = Ln(q) is a linear group, so n > 2 and (n, q) 6= (2, 2), (2, 3). We begin by
claiming that

M(y) =


{S3, A4 (two)} if (n, q) = (2, 5)
{S4, S4} if (n, q) = (2, 7)
{A5, A5} if (n, q) = (2, 9)
{L3(2), L3(2), L3(2)} if (n, q) = (3, 4)
{Hk : k ∈ π(n)} otherwise,

(19)

where Hk is a field extension subgroup of type GLn/k(q
k). Here our notation indicates that

M(y) contains two conjugate subgroups isomorphic to A4 when G = L2(5), and it contains
two non-conjugate subgroups isomorphic to S4 when G = L2(7).

The groups with (n, q) = (2, 5), (2, 7), (2, 9) and (3, 4) can be handled using Magma, so
we may assume that we are not in one of these cases. Then by the main theorem of [5],
each H ∈ M(y) is a field extension subgroup of type GLn/k(q

k), where k is a prime divisor
of n. Moreover, [20, Lemma 8.7] implies that y is contained in a unique subgroup of type
GLn/k(q

k) for each prime k, so this justifies (19) and it just remains to show that y is a
witness. We will do this by establishing the inequality (15) in Lemma 5.2.

If n 6 5 then |M(y)| = 1 and thus (15) holds for all z ∈ G of prime order. Now assume
n > 6 and H ∈M(y). Fix an element z ∈ G of prime order and note that

fpr(z,G/H) < |zG|−
1
2

+ 1
n
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by the main theorem of [15]. Now |M(y)| = |π(n)| < log2 n and it is straightforward to show
that |zG| > q2n−2 (see [16, Section 3], for example). Therefore∑

H∈M(y)

fpr(z,G/H) < log2 n
(
q2n−2

)− 1
2

+ 1
n

and it is easy to check that this upper bound is less than 1 for all n > 6 and q > 2.

Next assume G = Un(q), where n > 3 is odd and (n, q) 6= (3, 2). Here we claim that

M(y) =


{L2(7)} if (n, q) = (3, 3)
{A7, A7, A7} if (n, q) = (3, 5)
{L2(11)} if (n, q) = (5, 2)
{Hk : k ∈ π(n)} otherwise,

(20)

where Hk is a field extension subgroup of type GUn/k(q
k). For (n, q) = (3, 3), (3, 5) or (5, 2)

we can use Magma to verify the result (note that if (n, q) = (3, 5) then G has three conjugacy
classes of maximal subgroups isomorphic to A7 andM(y) contains a representative from each
class). And in each of the remaining cases, we apply [12, Proposition 5.21].

Now suppose G = PSpn(q) is a symplectic group, where n = 2m > 4 and (n, q) 6= (4, 2).
We claim that

M(y) =


{H2, 24.A5 (two)} if (n, q) = (4, 3)
{H3 (three), O−6 (2)} if (n, q) = (6, 2)
{H2, O−8 (2), L2(17)} if (n, q) = (8, 2)
{Hk : k ∈ π(m)} ∪ J otherwise,

(21)

where Hk is a field extension subgroup of type Spn/k(q
k) and

J =

 {H} if q is even
{K} if qm is odd
∅ otherwise

with H,K of type O−n (q) and GUm(q), respectively.
In order to justify the claim, first assume q is even. The cases (n, q) = (6, 2), (8, 2) can

be checked directly, and for each of the remaining groups we can appeal to [12, Proposition
5.8] (and its proof). As indicated in (21), if G = Sp6(2) then y is contained in exactly 3
conjugate field extension subgroups of type Sp2(23) (this observation was not noted in the
proof of [12, Proposition 5.8], and it was also incorrectly omitted in the statement of [20,
Lemma 8.7]).

Now assume q is odd. The case (n, q) = (4, 3) can be handled directly. For the remaining
groups, the main theorem of [5] implies that each H ∈ M(y) is a field extension subgroup
of type Spn/k(q

k) or GUm(q), noting in the latter case that H contains a Singer cycle if and

only if m is odd. The description of M(y) in (21) now follows from [20, Lemma 8.7].
To complete the argument for symplectic groups, we need to show that y is a witness when

q is odd and (n, q) 6= (4, 3). If n = 4 then |M(y)| = 1 and the result follows from Lemma
5.2, so we may assume n > 6. Fix a subgroup H ∈ M(y) and let z ∈ G be an element of
prime order. Now |M(y)| < log2 n and |zG| > (qn − 1)/2, so by applying the main theorem
of [15] we deduce that

∑
H∈M(y)

fpr(z,G/H) < log2 n

(
1

2
(qn − 1)

)− 1
2

+ 1
n

+ 1
n+2

.

It is routine to check that this upper bound is less than 1 for all n > 6, q > 3 and the result
follows.
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To complete the proof, let G = PΩ−n (q) with n = 2m > 8. By combining the main theorem
of [5] with [20, Lemma 8.7], we deduce that

M(y) = {Hk : k ∈ π(m)} ∪ J , (22)

where Hk is a field extension subgroup of type O−n/k(q
k) and

J =

 {H,K} if mq is odd
{H} if m is odd and q is even
∅ otherwise

and H,K are of type GUm(q) and Om(q2), respectively. If z ∈ G has prime order, then by
combining the bounds |M(x)| < log2 n and |zG| > q2n−6 with the main theorem of [15], we
get ∑

H∈M(y)

fpr(z,G/H) < log2 n
(
q2n−6

)− 1
2

+ 1
n

+ 1
n−2 < 1

for all n > 8, q > 2 and the result follows via Lemma 5.2. �

We are now ready to prove Theorem 5.1 for classical groups. It is convenient to use
Magma to verify the result for some of the low dimensional classical groups defined over
small fields. With this aim in mind, let B denote the following collection of groups:

L2(11),L3(2),L3(3),L3(4),L4(3)

U3(4),U3(5),U4(2),U4(3),U4(4),U4(5),U5(2),U5(3),U5(4),U6(2),U6(3),U7(2)

PSp4(3), Sp4(4),PSp4(5), Sp6(2),PSp6(3), Sp6(4),Sp8(2), Sp10(2),Sp12(2)

Ω7(3),Ω±8 (2),PΩ±8 (3),Ω+
8 (4),PΩ+

8 (5),Ω±10(2),PΩ±10(3),Ω±12(2),PΩ±12(3)

Proposition 5.15. The conclusion to Theorem 5.1 holds if G ∈ B.

Proof. We can proceed as in the proof of Lemma 5.6, working with Magma [7]. Set Ω =
G/H, where H is a maximal subgroup of G. For the computation, it is convenient to
work in the corresponding matrix group L ∈ {SLεn(q),Spn(q),Ωε

n(q)}, so we have G = L/Z
and H = J/Z, where Z = Z(L). We can use the function ClassicalMaximals to construct
a conjugate of J and by taking conjugacy classes we can determine the set ∆(L, J) of
derangements in L with respect to the action on L/J . Finally, we use random search to
find elements x ∈ ∆(L, J) and y ∈ L such that L = 〈x, xy〉, which in turn implies that G is
generated by two conjugate derangements on Ω. �

We begin by considering the linear groups.

Proposition 5.16. The conclusion to Theorem 5.1 holds if G = Ln(q) is a linear group.

Proof. As noted above (see (13)), we may assume (n, q) 6= (4, 2) and q > 11 if n = 2. And
in view of Proposition 5.15, we may assume G 6∈ B. Set d = (n, q − 1) and e = d(q − 1). As
usual, we write Pk for the stabiliser in G of a k-dimensional subspace of V .

Let x ∈ G be a Singer cycle. By Proposition 5.14, x is a witness and each H ∈M(x) is a
field extension subgroup of type GLn/k(q

k), one for each prime divisor k of n (see (19)).

Let y ∈ G be an element of order (qn−1 − 1)/d and note that y fixes a decomposition
V = U ⊕W of the natural module, where W is an (n− 1)-dimensional subspace on which y
acts irreducibly. We claim that y is a witness and

M(y) =

{
{D2(q−1)/d, P1 (two)} if n = 2 and q > 13
{P1, Pn−1} if n > 3 and (n, q) 6= (3, 2), (3, 3), (3, 4), (4, 2),

so the desired result follows from Lemma 5.4.
To justify the claim, first assume n = 2 and q > 13. By inspecting [9, Tables 8.1,

8.2], we deduce that M(y) comprises NG(〈y〉) = D2(q−1)/d, together with two P1 parabolic
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subgroups (note that y is only contained in two such subgroups because it fixes exactly
two 1-dimensional subspaces of V ). By applying the main theorem of [62] we deduce that
fpr(z,G/H) < 1/3 for all z ∈ G of prime order and all H ∈ M(y), so Lemma 5.2 implies
that y is a witness.

Now assume n > 3. Clearly, U and W are the only proper nonzero subspaces of V fixed
by y, which implies that y is contained in unique P1 and Pn−1 parabolic subgroups. If we
can show that M(y) = {P1, Pn−1}, then the result will follow via Lemmas 5.2 and 5.4 since

fpr(z,G/H) 6
2n−1 − 1

2n − 1
<

1

2

for all z ∈ G of prime order and H ∈ {P1, Pn−1} (maximal when q = 2 and z is a transvec-
tion). So it just remains to show that y is not contained in a proper irreducible subgroup.

For n = 3 this can be checked by inspecting the list of maximal subgroups of G presented
in [9, Tables 8.3, 8.4], so let us assume n > 4. The case (n, q) = (7, 2) can be verified directly,
which means that we may assume |y| is divisible by a primitive prime divisor r of qn−1 − 1.
The maximal subgroups of G containing an element of order r are described in [47]. Using
this, together with the fact that |y| = (qn−1 − 1)/d, it is a straightforward exercise to show
that M(y) = {P1, Pn−1} as required (see the proof of Theorem 3.16, where we used [47] to
study the maximal overgroups of the element y defined in Proposition 3.20). This justifies
the claim and the proof is complete. �

Next we prove Theorem 5.1 for the unitary groups.

Proposition 5.17. The conclusion to Theorem 5.1 holds if G = Un(q) is a unitary group.

Proof. We may assume n > 3. Recall that U3(2) is soluble and U3(3) ∼= G2(2)′ was handled
in Lemma 5.11, so we may assume q > 4 when n = 3. In addition, we may assume G 6∈ B (see
Proposition 5.15). We will write Pk (respectively, Nk) for the stabiliser of a k-dimensional
totally isotropic (respectively, non-degenerate) subspace of the natural module V . Set d =
(n, q + 1) and e = d(q + 1).

Case 1. n is odd

First assume n is odd. Let x ∈ G be a Singer cycle. Then Proposition 5.14 implies that
x is a witness and (20) indicates that each H ∈ M(x) is a field extension subgroup of type
GUn/k(q

k). In particular, each maximal overgroup of x acts irreducibly on V .
For n > 9, we define y ∈ G as in [43, Table II]. Then y is a witness by [43, Proposition

4.1] and the final column of [43, Table II] indicates that each H ∈ M(y) acts reducibly on
V . We now conclude by applying Lemma 5.4.

Now assume n ∈ {3, 5, 7}. Let y ∈ G be a regular semisimple element of order qn−2 + 1
with |CG(y)| = (qn−2 + 1)(q + 1)/d. More specifically, for n = 3 we take y to be the image
of the diagonal matrix diag(λ, λ2, λq−2) ∈ SU3(q) with respect to an orthonormal basis for
V , where F×

q2
= 〈µ〉 and λ = µq−1. Note that y fixes an orthogonal decomposition

V = U ⊥W1 ⊥W2

of the natural module, where each summand is non-degenerate and the Wi are 1-dimensional.
We claim that

M(y) =

{
{GW1 , GW2 , GU⊥} = {N1 (two), N2} if n ∈ {5, 7} and (n, q) 6= (5, 2)
{GW1 , GW2 , GU , K} = {N1 (three), K} if n = 3 and q > 7,

where K is a subgroup of type GU1(q) o S3.
Since y acts irreducibly on U , it is clear that the reducible subgroups in M(y) are as

described. For n ∈ {5, 7} we note that some power of y has order r, where r is a primitive
prime divisor of q2n−4−1, and it is easy to verify the above claim by inspecting the maximal
subgroups of G in [9]. Now assume n = 3, so q > 7 and representatives of the conjugacy
classes of maximal subgroups of G are listed in [9, Tables 8.5, 8.6]. Visibly, y fixes a unique
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orthogonal decomposition of V into non-degenerate 1-spaces, so it is contained in a unique
subgroup of type GU1(q) o S3. In addition, if q is odd then y is not contained in a subgroup
of type O3(q) (since by construction, y does not lift to an element in SU3(q) with a nonzero
1-eigenspace). None of the remaining irreducible maximal subgroups of G contain an element
of order |y| and this establishes the claim.

We now complete the proof of the proposition for n ∈ {3, 5, 7}. Recall that we may
assume G 6∈ B, so q > Q where Q = 7, 5, 3 for n = 3, 5, 7. In view of Lemma 5.2, it suffices
to show that y is a witness. If n = 3 then |M(y)| = 4 and the main theorem of [62] yields
fpr(z,G/H) 6 4/21 for all H ∈ M(y) and all z ∈ G of prime order. Now apply Lemma
5.2. Similarly, if n ∈ {5, 7} and q > 5, then the bound fpr(z,G/H) 6 4/15 from [62] is good
enough. So this just leaves (n, q) = (7, 3), (7, 4). Here [43, Proposition 3.16] implies that
fpr(z,G/H) < 1/3 for all H ∈M(y) and once again the result follows from Lemma 5.2.

Case 2. n is even

For the remainder, we may assume n = 2m > 4 is even. In view of Proposition 5.15,
we may assume q > 7 if n = 4, and q > 4 if n = 6. Let x ∈ G be an element of order
(qn−1 + 1)/d. Then [12, Proposition 5.22] gives M(x) = {N1} and thus x is a witness.

Suppose n > 8 and let y ∈ G be an element of order (qm+δ + 1)(qm−δ + 1)/e, where δ = 1
if m is even, otherwise δ = 2. By inspecting [43, Table II] we see that M(y) = {Nm−δ}, so
y is a witness and we conclude via Lemma 5.4. So to complete the proof, we may assume
n = 4 or 6.

Suppose n = 6 with q > 4 and let y ∈ G be a regular semisimple element of order (q6−1)/e.
Now y fixes a decomposition V = U ⊕W of the natural module, where U and W are totally
isotropic 3-spaces on which y acts irreducibly. In particular, U and W are the only proper
nonzero subspaces of V fixed by y, so M(y) contains two P3 parabolic subgroups (namely,
the stabilisers of U and W ), together with a unique subgroup of type GL3(q2) corresponding
to the stabiliser of the decomposition V = U ⊕W . By inspecting [9, Tables 8.26, 8.27], it
is clear that any additional subgroup in M(y) must be a field extension subgroup of type
GU2(q3). By arguing as in the proof of [20, Lemma 8.7], we deduce that y is contained in
exactly one such subgroup and thus |M(y)| = 4. For H = P3, [43, Proposition 3.15] implies
that fpr(z,G/H) < 1/6 for all z ∈ G of prime order, while the main theorem of [62] yields
fpr(z,G/H) 6 1/3 for H of type GL3(q2) or GU2(q3). Therefore, (15) holds and thus y is a
witness by Lemma 5.2. As before, we now complete the argument by appealing to Lemma
5.4.

Finally, suppose n = 4 with q > 7. Let y ∈ G be a regular semisimple element of order
(q4− 1)/e. By inspecting [9, Tables 8.10, 8.11], it is easy to see thatM(y) comprises two P2

parabolic subgroups and a unique subgroup of type GL2(q2). As above, it is straightforward
to show that (15) holds for all z ∈ G of prime order and we now conclude via Lemmas 5.2
and 5.4. �

Proposition 5.18. The conclusion to Theorem 5.1 holds if G = PSpn(q) is a symplectic
group.

Proof. We may assume n = 2m > 4, with (n, q) 6= (4, 2), (4, 3) and G 6∈ B (see (13) and
Proposition 5.15). As before, we will write Pk (respectively, Nk) for the stabiliser of a k-
dimensional totally isotropic (respectively, non-degenerate) subspace of the natural module
V . Set d = (2, q − 1).

First assume m > 4. Let x ∈ G be a Singer cycle, so x is a witness by Proposition 5.14
and the maximal overgroups of x are listed in (21). If q is odd then we can choose y ∈ G as
in [43, Table II], noting that y is a witness by [43, Proposition 4.1] and every subgroup in
M(y) acts reducibly on V . Since the maximal overgroups of x are irreducible, the desired
result follows via Lemma 5.4.

Now assume q is even (with m > 4) and fix y ∈ G with |y| = lcm(qm−1 + 1, q+ 1). Then y
fixes an orthogonal decomposition V = U ⊥W of the natural module, where dimU = 2 and
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y acts irreducibly on both summands. We claim that y is a witness andM(y) = {N2,O
+
n (q)},

which allows us to conclude via Lemma 5.4 once again.
In order to prove the claim, first observe that U and W are the only proper nonzero

subspaces of V fixed by y, so the stabiliser N2 of U is the only reducible subgroup inM(y).
Let us also note that we may embed

y ∈ O−2 (q)×O−n−2(q) < O+
n (q) = H < G

and we deduce that y is contained in a unique conjugate of H since yG ∩ H = yH and
CH(y) = CG(y). In addition, we observe that the action of y on V is not compatible with
containment in an orthogonal subgroup O−n (q). At this point, we can now work with [47] to
rule out the existence of any additional subgroups in M(y), noting that |y| is divisible by a
primitive prime divisor of qn−2 − 1 (recall that Sp8(2) is in B).

Here it is worth pausing to highlight the special case where q = 2, m is even and H = Sn+2

is irreducibly embedded in G via the fully deleted permutation module (see [47, Example
2.6(a)]). Now |y| = 2m−1 + 1 and [68, Theorem 2] gives

log |z| 6
√
` log `

(
1 +

log log `− α
2 log `

)
for all z ∈ H, where ` = n + 2 and α = 0.975 (where log denotes the natural logarithm).
It is straightforward to check that this upper bound implies that |z| < |y| for all m > 20.
And one can check directly that H does not contain an element of order |y| if 8 6 m 6 18,
so there are no such subgroups in M(y). However, if m = 6 then H = S14 has a unique
conjugacy class of elements of order 25 + 1 = 33, so for (n, q) = (12, 2) one has to carefully
choose y in order to avoid containment in a conjugate of H. This can always be done since
G has three classes of such elements, only one of which meets H. But in any case, we should
observe that the group Sp12(2) was handled computationally in Proposition 5.15.

This leaves us with the cases n = 4, 6. For n = 6 with q > 4 we take x to be a Singer
cycle and we define y to be a regular semisimple element of order (q2 + 1)(q + 1)/d. Here y
fixes an orthogonal decomposition V = U ⊥ W , where U and W are non-degenerate spaces
on which y acts irreducibly, with dimU = 2. Then M(y) = {N2,O

+
6 (q)} if q is even, and

M(y) = {N2} if q is odd (see [43, p.767]), so the result follows by combining (21) with
Lemma 5.4.

Finally, let us assume n = 4 and q > 7. Let x ∈ G be a Singer cycle and note that
M(x) = {Sp2(q2).2,O−4 (q)} if q is even and M(x) = {H} if q is odd, where H is a field
extension subgroup of type Sp2(q2) (see (21)). We define y ∈ G as follows. For q even, we
take y to be a regular semisimple element of order q + 1 with |CG(y)| = (q + 1)2. More
precisely, we take y = diag(A,A2) with respect to a standard symplectic basis {e1, f1, e2, f2}
of the natural module, where A ∈ Sp2(q) is a Singer cycle. And for q odd, we choose y of
order p(q + 1) with |CG(y)| = q(q + 1). We claim that y is a witness and M(y) = {H,K},
where H is of type Sp2(q) o S2, and K is of type O+

4 (q) for q even and type P1 for q odd.
Given the claim, the main theorem of [62] implies that (15) holds for all z ∈ G of prime
order and we conclude by applying Lemmas 5.2 and 5.4. So it just remains to determine the
subgroups in M(y).

Suppose q is even and note that the maximal subgroups of G are listed in [9, Table 8.14].
Here y fixes an orthogonal decomposition V = U ⊥ W of the natural module, where U and
W are non-degenerate 2-spaces on which y acts irreducibly. Since U and W are the only
proper nonzero subspaces of V fixed by y, it follows that y is contained in a unique subgroup
of type Sp2(q) o S2. In addition, y is not contained in a parabolic subgroup. Subgroups of
type Sp2(q2) or O−4 (q) do not contain regular semisimple elements of order q+1 with a trivial
1-eigenspace, and we note that |2B2(q)| is indivisible by q + 1. Next suppose L = Sp4(q0) is
a subfield subgroup with q = qk0 and k is a prime. If k is odd then L does not contain any
elements of order q + 1. And if k = 2 then each z ∈ L of order q + 1 = q2

0 + 1 is a Singer
cycle and the eigenvalues on V ⊗ Fq2 of such an element are incompatible with those of y,
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so there are no subfield subgroups in M(y). Finally, we note that

y ∈ O−2 (q)×O−2 (q) < O+
4 (q) = H < G

and we calculate that y is contained in a unique conjugate of H.
Now assume q is odd. Here y is the image (modulo scalars) of diag(A,B) ∈ Sp4(q)

with respect to a symplectic basis {e1, f1, e2, f2}, where A ∈ Sp2(q) is a Singer cycle and
B ∈ Sp2(q) is a transvection. Note that y fixes a unique 1-dimensional subspace of V , so it is
contained in a unique P1 parabolic subgroup. It also fixes a unique orthogonal decomposition
V = U ⊥W with non-degenerate summands, so y is contained in a unique subgroup of type
Sp2(q) o S2. Finally, by inspecting [9, Tables 8.12, 8.13] we observe that no other maximal
subgroup of G contains an element of order p(q + 1) and the proof is complete. �

In order to complete the proof of Theorem 5.1, we may assume G = PΩε
n(q) is an orthogo-

nal group with n > 7. As before, Pk will denote the stabiliser in G of a k-dimensional totally
singular subspace of V . In addition, if k is even then we use N δ

k to denote the stabiliser
of a non-degenerate k-space of type δ ∈ {+,−}. (Recall that a non-degenerate k-space
has plus-type if it contains a totally singular subspace of dimension k/2, otherwise it has
minus-type.)

Proposition 5.19. The conclusion to Theorem 5.1 holds if G = Ωn(q) is an orthogonal
group with n odd.

Proof. Here q is odd and n = 2m + 1 > 7. In view of Proposition 5.15, we may assume
(n, q) 6= (7, 3). Let x ∈ G be a regular semisimple element of order (qm + 1)/2 and note
that x fixes an orthogonal decomposition V = U ⊥ W of V , where U is a non-degenerate
minus-type space of dimension n − 1. By [12, Proposition 5.20] we have M(x) = {N−n−1}
(the proposition in [12] is stated for q > 5, but the given conclusion still holds when q = 3
and n > 9). In particular, x is a witness by Lemma 5.2.

We define y = diag(A,B), where A ∈ Ω−n−3(q) is a Singer cycle and B ∈ Ω3(q) is a regular
unipotent element (so B has Jordan form (J3) on the natural 3-dimensional module). Note
that |y| = p(qm−1 + 1)/2 and y fixes an orthogonal decomposition V = U ⊥ W , where U is
a non-degenerate minus-type space of dimension n− 3. We claim that M(y) = {P1, N

−
n−3},

in which case the main theorem of [62] implies that (15) holds for all z ∈ G of prime order
and we conclude in the usual manner via Lemmas 5.2 and 5.4. So it remains to determine
the subgroups in M(y).

To do this, first note that y fixes exactly three proper nonzero subspaces of V , namely U
and W , together with the totally singular 1-dimensional 1-eigenspace of B on W . Therefore,
P1 and N−n−3 are the only reducible subgroups in M(y). The existence of an irreducible
subgroup in M(y) can be ruled out by appealing to [47], noting that |y| is divisible by a
primitive prime divisor of qn−3 − 1. We leave the reader to check the details. �

Proposition 5.20. The conclusion to Theorem 5.1 holds if G = PΩ−n (q) is an orthogonal
group.

Proof. We may assume n = 2m > 8. Let x ∈ G be a Singer cycle, so x is a witness by
Proposition 5.14 and the subgroups inM(x) are recorded in (22). For n > 14 we can define
y ∈ G as in [43, Table II]. Then y is a witness by [43, Proposition 4.1], while [43, Table II]
indicates that every subgroup in M(y) acts reducibly on V . So for n > 14, we conclude by
applying Lemma 5.4.

To complete the proof, we may assume n ∈ {8, 10, 12}. For q ∈ {2, 3} we can use Magma
to verify Theorem 5.1 directly (see Proposition 5.15), so we are free to assume q > 4. Let
y ∈ G be a regular semisimple element of type (n− 2)− ⊥ (1⊕ 1), so y fixes a decomposition
V = U ⊥ (W1 ⊕W2) of the natural module, where U is a non-degenerate minus-type space
of dimension n − 2 on which y acts as a Singer cycle, and the Wi are totally singular 1-
spaces. We claim that M(y) = {H,K,L}, where H and K are P1 parabolic subgroups and
L = N−n−2.
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By construction, y fixes exactly 4 proper nonzero subspaces of V , namely U , W1, W2 and
U⊥ = W1 ⊕W2. Therefore, H, K and L are the only reducible subgroups in M(y). By
inspecting the relevant tables in [9, Chapter 8], it is easy to see that there are no additional
subgroups in M(y) and the claim follows.

Finally, let z ∈ G be an element of prime order. Then by applying the upper bounds on
fpr(z,G/H) in [43, Propositions 3.15, 3.16], we deduce that (15) holds and the result follows
via Lemma 5.4. �

Proposition 5.21. The conclusion to Theorem 5.1 holds if G = PΩ+
n (q) is an orthogonal

group with n > 10.

Proof. Write n = 2m. In view of Proposition 5.15, we may assume q > 4 if n ∈ {10, 12}.
Define x as in [12, Proposition 5.13] for m odd, and as in [34, Theorem 2.14] for m even.
Then as explained in [12, 34], we have

M(x) =

{
{N−m−1} if m is odd
{N−m−2, H,K} if m is even,

where H and K are non-conjugate field extension subgroups of type O+
m(q2) if m ≡ 2 (mod 4)

and type GUm(q) if m ≡ 0 (mod 4). Clearly, if m is odd then x is a witness. And the same
conclusion holds for m even, in view of Lemma 5.2 and the fixed point ratio bounds in [15]
and [43, Proposition 3.16].

Let y ∈ G be a regular semisimple element fixing an orthogonal decomposition V = U ⊥W
into minus-type non-degenerate spaces, where dimU = 2 and y acts irreducibly on both
summands. More precisely, we take y to be the image (modulo scalars) of an element in
Ω+
n (q) of order lcm(qm−1 + 1, q+ 1)/d, where d = (2, q− 1). We claim that M(y) comprises

N−2 (namely, the stabiliser GU = GW ), together with two non-conjugate field extension
subgroups of type GUm(q) when m is even.

To see this, first note that U and W are the only proper nonzero subspaces of V fixed by
y, so GU is the only reducible subgroup in M(y). Since |y| is divisible by a primitive prime
divisor of qn−2 − 1, we can work with [47] to show that the only additional subgroups in
M(y) are of type GUm(q) with m even. So let us assume m is even and note that G has
two conjugacy classes of subgroups H of type GUm(q) (see [53, Proposition 4.3.18]). We
calculate that yG ∩H = yH and CG(y) = CH(y), so y is contained in a unique conjugate of
H and the claim follows.

Finally, we can use Lemma 5.2 to show that y is a witness and we conclude by applying
Lemma 5.4. �

The following proposition completes the proof of Theorem 5.1.

Proposition 5.22. The conclusion to Theorem 5.1 holds if G = PΩ+
8 (q).

Proof. The groups with q 6 5 can be handled using Magma (see Proposition 5.15), so we may
assume q > 7. Define x ∈ G as in [34, Theorem 2.14], which tells us thatM(x) = {H,K,L},
where H and K are field extension subgroups of type O+

4 (q2) and L is of type O−4 (q) o S2.
In addition, define y as in the proof of Proposition 5.21. Then M(y) contains a unique
reducible subgroup of type N−2 , together with two non-conjugate field extension subgroups
of type GU4(q) (see [43, p.767]), so y is a witness and the result follows from Lemma 5.4. �

This completes the proof of Theorem 15.
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