
ON THE PRIME GRAPH OF SIMPLE GROUPS

TIMOTHY C. BURNESS AND ELISA COVATO

Abstract. Let G be a finite group, let π(G) be the set of prime divisors of |G| and let
Γ(G) be the prime graph of G. This graph has vertex set π(G), and two vertices r and s
are adjacent if and only if G contains an element of order rs. Many properties of these
graphs have been studied in recent years, with a particular focus on the prime graphs of
finite simple groups. In this note, we determine the pairs (G,H), where G is simple and
H is a proper subgroup of G such that Γ(G) = Γ(H).

1. Introduction

Let G be a finite group, let π(G) be the set of prime divisors of |G|, and let Γ(G) denote
the prime graph of G. This undirected graph, which is also known as the Gruenberg-Kegel
graph of G, has vertex set π(G), and two vertices r and s are adjacent if and only if G
contains an element of order rs.

This notion was introduced by Gruenberg and Kegel in the 1970s, and it has been
studied extensively in recent years. For example, the connectivity properties of Γ(G)
have been investigated by various authors, with a particular focus on simple groups. A
characterisation of the finite groups G with a disconnected prime graph was obtained by
Williams [16], together with detailed information on the connected components when G
is simple. Later work of Kondrat’ev [10] (see also Kondrat’ev and Mazurov [11]) shows
that the prime graph of any finite group has at most six connected components. In fact,
a more recent theorem of Zavarnitsine [17, Theorem B] reveals that the sporadic simple
group J4 is the only finite group whose prime graph has six connected components.

Various recognition problems have also been studied in the context of prime graphs and
simple groups, and this continues to be an active area of research. A group G is said to
be prime graph recognisable if G ∼= H for every finite group H with Γ(G) = Γ(H). For
example, the Ree groups 2G2(q) have this property (see [17, Theorem A]), and detailed
information on the recognisability of sporadic simple groups is given by Hagie [7]. More
generally, one can ask if there are restrictions on the structure of a finite group H with
Γ(G) = Γ(H) (in terms of composition factors, for example), and we refer the reader to
the survey article [8] for further results in this direction.

An interesting variation on the recognisability problem is to consider the existence
of subgroups H of G such that Γ(G) = Γ(H). A recent theorem of Lucchini, Morigi
and Shumyatsky (see [14, Theorem C]) states that every finite group G has a 3-generated
subgroup H such that Γ(G) = Γ(H). Moreover, they construct a soluble 3-generated group
G such that no 2-generated subgroup has the same prime graph as G, so 3-generation is
best possible. In the same paper, the authors also investigate similar problems for other
group invariants, such as π(G) (the set of prime divisors of |G|), ω(G) (the set of orders
of elements of G), exp(G) (the exponent of G), etc. For example, [14, Theorem A] implies
that every finite group G has a 2-generated subgroup H such that π(G) = π(H), and
appropriate extensions to profinite groups have recently been established by Covato [5].
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Note that in each of these results, H is not required to be a proper subgroup of G;
indeed, H = G may be the only subgroup with the desired property. For example, the
simple group G = L5(q) has no proper subgroup H with π(G) = π(H) (see Theorem 2.2).
Since every finite simple group can be generated by two elements (this follows from the
classification of finite simple groups), it follows that the results in [14] have no content
if we restrict our attention to finite simple groups. Therefore, we are led naturally to
consider the following problem on prime graphs, which also relates to the aforementioned
recognisability problem:

Problem. Let G be a finite simple group. Determine the subgroups H of G such that
Γ(G) = Γ(H).

Clearly, Γ(G) = Γ(H) only if π(G) = π(H). The subgroups H of a simple group G with
π(G) = π(H) have been determined by Liebeck, Praeger and Saxl (see [12, Corollary 5]),
using the classification of finite simple groups, and this result has found a wide range of
applications in permutation group theory. In this paper, we will use this result to solve the
above problem; our main result is Corollary 4 below. This follows from our first theorem,
which treats the case where H is a maximal subgroup of G. (In the final column of Table
1, we record the number of connected components in Γ(G), denoted by s(G), which is
taken from [11, Tables 1-3].)

Theorem 1. Let G be a finite simple group and let H be a maximal subgroup of G. Then
Γ(G) = Γ(H) only if one of the following holds:

(a) (G,H) is one of the cases in Table 1;

(b) G = An and H = (Sk × Sn−k) ∩ G, where 1 < k < n and p 6 k for every prime
number p 6 n.

Moreover, Γ(G) = Γ(H) in each of the cases in Table 1.

G H Conditions s(G)

Sp8(q) O−8 (q) q even 2
PΩ+

8 (q) Ω7(q) q odd 1 + δ3,q
Ω+
8 (q) Sp6(q) q even 1 + δ2,q

Sp4(q) O−4 (q) q even 2
Ω+
8 (2) P1, P3, P4, A9 2

L6(2) P1, P5 2
Sp6(2) O+

6 (2) 2
U4(2) P2,Sp4(2) 2
U4(3) A7 2
G2(3) L2(13) 3
A6 L2(5) 3
M11 L2(11) 3

Table 1. The cases (G,H) in Theorem 1(a)

Remark 2. Let us make some comments on the statement of Theorem 1:

(i) The groups G in Table 1 are listed up to isomorphism. For example, the cases
(G,H) = (PSp4(3),PSp2(9).2) and (Ω5(3),PO−4 (3)) are recorded as (G,H) =
(U4(2),Sp4(2)).
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(ii) In Table 1, Pi denotes a maximal parabolic subgroup of G that corresponds to
deleting the i-th node in the corresponding Dynkin diagram for G. In the relevant
cases, the precise structure of Pi is as follows:

G = Ω+
8 (2) : P1

∼= P3
∼= P4

∼= 26.L4(2)
G = L6(2) : P1

∼= P5
∼= 25.L5(2)

G = U4(2) : P2
∼= 24.L2(4)

Consider the case arising in part (b) of Theorem 1. Here, the problem of determining
whether or not Γ(G) = Γ(H) depends on some formidable open problems in number theory,
such as Goldbach’s conjecture. In this situation, we propose the following conjecture.

Conjecture 3. If G = An and H = (Sk × Sn−k) ∩ G as in part (b) of Theorem 1, then
Γ(G) = Γ(H) if and only if one of the following holds:

(a) (n, k) ∈ {(6, 5), (10, 7)};
(b) n > 25 is odd, k = n− 1 and n− 4 is composite.

We refer the reader to Section 4 for further comments on this conjecture. In particular,
Lemma 4.4 states that if n > 15 is odd and k = n − 1, then Γ(G) = Γ(H) if and only if
n− 4 is composite. It is also easy to check that Γ(G) = Γ(H) if we are in one of the two
cases in part (a).

We can extend Theorem 1 by removing the condition that H is a maximal subgroup:

Corollary 4. Let G be a finite simple group and let H be a proper subgroup of G. If
G = An, then assume H is transitive. Then Γ(G) = Γ(H) if and only if one of the
following holds:

(a) H is a maximal subgroup and (G,H) is one of the cases listed in Table 1;

(b) H is a second maximal subgroup and (G,H) = (Ω+
8 (2), O+

6 (2)) or (U4(2), O−4 (2)).

Remark 5. Suppose G = An and H is an intransitive subgroup of G. If the above
conjecture holds, then Γ(G) = Γ(H) if and only if H is maximal and (G,H) is one of the
cases in the statement of the conjecture.

Notation. Our group-theoretic notation is standard, and we adopt the notation of Klei-
dman and Liebeck [9] for simple groups. In particular, we write

PSLn(q) = L+
n (q) = Ln(q), PSUn(q) = L−n (q) = Un(q)

and similarly GL−n (q) = GUn(q), etc. If G is a simple orthogonal group, then we write G =
PΩε

n(q), where ε = + (respectively −) if n is even and G has Witt defect 0 (respectively 1),
and ε = ◦ if n is odd (in the latter case, we also write G = Ωn(q)). Following [9], we will
sometimes refer to the type of a subgroup H, which provides an approximate description
of the group-theoretic structure of H. In addition, δi,j denotes the familiar Kronecker
delta.

Organisation. Finally, some words on the organisation of this paper. In Section 2 we
record several preliminary results that we will need in the proofs of our main theorems.
In particular, we state a special case of [12, Corollary 5], which plays a major role in
this paper, and we record some useful facts on the centralisers of prime order elements in
symplectic and orthogonal groups. The proof of Theorem 1 is given in Section 3, and the
special case arising in part (b) of Theorem 1 is discussed in Section 4. Finally, the proof
of Corollary 4 is given in Section 5.
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2. Preliminaries

Let G be a finite group, let π(G) be the set of prime divisors of |G| and let Γ(G) be the
prime graph of G. For primes r, s ∈ π(G), we will write r ∼G s if r and s are adjacent in
Γ(G). In this section we record some preliminary results that will be useful in the proof
of Theorem 1. We start with an easy observation.

Lemma 2.1. Let G be a finite group and let r, s ∈ π(G) be distinct primes. Then r ∼G s
if and only if s ∈ π(CG(x)) for some element x ∈ G of order r.

Let H be a proper subgroup of G and note that Γ(G) = Γ(H) only if π(G) = π(H). If
G is simple, then the cases with π(G) = π(H) have been determined by Liebeck, Praeger
and Saxl [12], and this result plays a major role in the proof of Theorem 1.

Theorem 2.2. Let G be a finite simple group and let H be a maximal subgroup of G.
Then π(G) = π(H) if and only if (G,H) is one of the cases listed in Table 2.

G Type of H Conditions
(a) An (Sk × Sn−k) ∩An p prime, p 6 n =⇒ p 6 k
(b) Sp2m(q) O−2m(q) m, q even
(c) Ω2m+1(q) O−2m(q) m even, q odd
(d) PΩ+

2m(q) O2m−1(q) m even, q odd
(e) PΩ+

2m(q) Sp2m−2(q) m, q even
(f) PSp4(q) Sp2(q

2)
L6(2) P1, P5

U3(3) L2(7)
U3(5) A7

U4(2) P2,Sp4(2)
U4(3) L3(4), A7

U5(2) L2(11)
U6(2) M22

PSp4(7) A7

Sp6(2) O+
6 (2)

Ω+
8 (2) P1, P3, P4, A9

G2(3) L2(13)
2F4(2)′ L2(25)
M11 L2(11)
M12 M11,L2(11)
M24 M23

HS M22

McL M22

Co2 M23

Co3 M23

Table 2. The cases (G,H) in Theorem 2.2

Proof. This is a special case of [12, Corollary 5]; the specific cases that arise are listed in
[12, Table 10.7]. �

We refer the reader to [9, Tables 5.1.A–C] for convenient lists of the orders of all finite
simple groups. The following basic result on the divisibility of the orders of classical groups
is an immediate consequence.
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Lemma 2.3. Let ` and m be integers such that 0 6 ` < m. Then the following hold:

(a) |GLεm(q)| is divisible by |GLεm−`(q)|;
(b) |Sp2m(q)| is divisible by |Sp2(m−`)(q)| and |Oε2m(q)|;
(c) |Oε2m(q)| is divisible by |Oε′2(m−`)(q)|, unless ` = 0 and ε 6= ε′.

2.1. Primitive prime divisors. Let q = pf be a prime power and let r be a prime
dividing qe − 1. We say that r is a primitive prime divisor (ppd for short) of qe − 1 if r
does not divide qi − 1 for all 1 6 i < e. A classical theorem of Zsigmondy [18] states that
if e > 3 then qe − 1 has a primitive prime divisor, unless (q, e) = (2, 6). Primitive prime
divisors also exist when e = 2, provided that q is not a Mersenne prime. Note that if r is
a primitive prime divisor of qe − 1 then r ≡ 1 (mod e), and r divides qn − 1 if and only if
e divides n.

2.2. Centralisers. In order to handle the cases labelled (b) – (f) in Table 2, we need
information on the orders of centralisers of elements of prime order in finite symplectic
and orthogonal groups. In [15], Wall provides detailed information on the conjugacy classes
in finite classical groups, but we prefer to use an alternative description that is more suited
to our specific needs.

Let G = PSpn(q) be a symplectic group over Fq, where q = pf and p is a prime. Let
x ∈ G be an element of odd prime order r 6= p. Write x = x̂Z, where x̂ ∈ Spn(q) and
Z = Z(Spn(q)). Define

Φ(r, q) = min{a ∈ N | r divides qa − 1} (1)

and set i = Φ(r, q). Note that i 6 n. As explained in [4, Chapter 3] (also see [3, Section 3]),
the conjugacy class of x is parameterised by a specific tuple (a1, . . . , at) of non-negative
integers that encodes the rational canonical form of x̂ on the natural Spn(q)-module,
where t = (r−1)/i and i 6 i

∑
j aj 6 n. If i is odd, then this tuple satisfies the additional

condition aj = at/2+j for j = 1, . . . , t/2.

More concretely, the G-class of x corresponds to the tuple (a1, . . . , at) if and only if x̂ is
Spn(q)-conjugate to a block-diagonal matrix of the form [I`,Λ

a1
1 , . . . ,Λ

at
t ], where ` = n−

i
∑t

j=1 aj and Λ
aj
j denotes aj copies of an irreducible matrix Λj ∈ GLi(q) with eigenvalues

{ω, ωq, . . . , ωqi−1} in Fqi for some primitive r-th root of unity ω. Moreover, the order of
the centraliser CG(x) can be read off from the corresponding tuple as follows:

|CG(x)| =

{
2−a|Sp`(q)|

∏t
j=1 |GUaj (q

i/2)| i even

2−a|Sp`(q)|
∏t/2
j=1 |GLaj (q

i)| i odd
(2)

where a = 1 if q is odd, otherwise a = 0.

There is a very similar parameterisation of the conjugacy classes of elements of odd
prime order r 6= p in orthogonal groups. In particular, if G = PΩε

n(q) and the G-class of
x ∈ G corresponds to the tuple (a1, . . . , at), then

|CG(x)| =

{
2−a|SOε′

` (q)|
∏t
j=1 |GUaj (q

i/2)| i even

2−a|SOε′
` (q)|

∏t/2
j=1 |GLaj (q

i)| i odd
(3)

for some integer a ∈ {0, 1, 2}, where ` is defined as above (again, if i is odd then aj = at/2+j
for j = 1, . . . , t/2). Note that if n is odd then ` is odd and thus ε′ = ε = ◦. The situation
when n is even is slightly more complicated (see [15, p.38]):

Remark 2.4. There are some additional conditions when G = PΩε
n(q) and n is even.

(i) Suppose ε = +. If i is odd and ` > 0 then ε′ = +. If i is even then either
∑

j aj is

even and ε′ = + (or ` = 0), or
∑

j aj is odd, ` > 0 and ε′ = −.
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(ii) Suppose ε = −. If i is odd then ` > 0 and ε′ = −. If i is even then either
∑

j aj is

odd and ε′ = + (or ` = 0), or
∑

j aj is even, ` > 0 and ε′ = −.

The following result will be useful in the proof of Theorem 1.

Lemma 2.5. Let G be one of the groups PSp8(q), PΩ+
8 (q) or PSp4(q), let x ∈ G be an

element of odd prime order r 6= p and set i = Φ(r, q) and ε = ±1. Let s 6= p be a prime
divisor of |CG(x)|. Then s divides the integer N(i) defined in Table 3.

G i N(i)
PSp8(q) 2(3− ε) q4 − ε

3(3− ε)/2 (q + ε)(q3 − ε)
1, 2 (q2 + 1)(q6 − 1)

PΩ+
8 (q) 4 q4 − 1

3(3− ε)/2 q3 − ε
(3− ε)/2 (q4 − 1)(q3 − ε)

PSp4(q) 4 q2 + 1
1, 2 q2 − 1

Table 3. The integer N(i) in Lemma 2.5

Proof. We use the centraliser orders presented in (2) and (3). For example, suppose
G = PΩ+

8 (q) and i = 2. We claim that s divides N(2) = (q4 − 1)(q3 + 1). To see this,
let ` denote the dimension of the 1-eigenspace of x̂ on the natural module for Ω+

8 (q), so
0 6 ` 6 6 is even. If ` = 6 then a combination of (3) and Remark 2.4 implies that
s divides |SO−6 (q)||GU1(q)|, and the claim follows. Similarly, if ` = 4 then s divides
|SO+

4 (q)||GU2(q)| (note that |GU1(q)|2 divides |GU2(q)|), and if ` = 2 then s divides
|SO−2 (q)||GU3(q)|. Finally, if ` = 0 then s divides |GU4(q)|. This justifies the claim, and
the other cases are very similar. �

We will also need information on the conjugacy classes and centralisers of involutions
and elements of order p in symplectic and orthogonal groups. For involutions, we refer
the reader to [6, Section 4.5] (for p 6= 2) and [1] (for p = 2). The information we need for
elements of order p > 2 is given in [13, Section 7.1]. See also [3, Section 3] and [4, Chapter
3]. It is routine to check the following two lemmas on unipotent elements.

Lemma 2.6. Let G = POε
2m(q), where m > 4, let x ∈ G be an element of order p

and let s be a prime divisor of |CG(x)|. Then either s divides |Sp2m−4(q)|, or q is even,
x ∈ Oε2m(q) \ Ωε

2m(q) and s divides |Sp2m−2(q)|.

Lemma 2.7. Let G = PSp2m(q), where m > 2, let x ∈ G be an element of order p and
let s be a prime divisor of |CG(x)|. Then s divides |Sp2m−2(q)|.

3. Proof of Theorem 1

We start by reducing the proof of Theorem 1 to the cases labelled (b) – (f) in Table 2.

Proposition 3.1. Let G be a finite simple group and let H be a maximal subgroup of G.
Assume that (G,H) is not one of the cases labelled (a) – (f) in Table 2. Then Γ(G) = Γ(H)
if and only if (G,H) is one of the following:

(Ω+
8 (2), Pi) (Ω+

8 (2), A9) (L6(2), Pj) (Sp6(2), O+
6 (2)) (U4(2), P2)

(U4(2), Sp4(2)) (U4(3), A7) (G2(3),L2(13)) (A6,L2(5)) (M11,L2(11))

where i ∈ {1, 3, 4} and j ∈ {1, 5}.
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Proof. By Theorem 2.2, we may assume that (G,H) is one of the cases recorded in Table
2. If (G,H) is not one of the cases labelled (a) – (f), then it is easy to determine whether
or not Γ(G) = Γ(H), using Magma [2] for example. The result follows. �

In order to prove Theorem 1, it remains to deal with the cases labelled (b) – (f) in Table
2. Recall that the special case labelled (a) will be discussed separately in Section 4.

Proposition 3.2. Suppose G = Sp2m(q) and H = O−2m(q), where m and q are even. Then
Γ(G) = Γ(H) if and only if m = 2 or 4.

Proof. First assume m > 8. We claim that Γ(G) 6= Γ(H). To see this, let ` be the
smallest prime that does not divide m. Note that ` is odd since m is even. By Bertrand’s
Postulate, there exists a prime `′ such that m/4 < `′ < m/2, so `′ does not divide m and
thus ` < m/2.

Let r be a primitive prime divisor (ppd) of q` − 1 and let s be a ppd of qm−` − 1 (such
primes exist by Zsigmondy’s Theorem, as discussed in Section 2.1). Then r, s ∈ π(G), and
we note that r 6= s since ` < m − ` as noted above. As explained in Section 2.2, there
exists an element x ∈ G of order r such that |CG(x)| = |Sp2(m−`)(q)||GL1(q

`)| (in the

notation of Section 2.2, we can take x = [I2(m−`),Λ1,Λt/2+1]), so s divides |CG(x)| and
thus r ∼G s by Lemma 2.1.

Let y ∈ H be an element of order r, and suppose s divides |CH(y)|. The 1-eigenspace of
y has dimension 2(m−b`) > 2 for some positive integer b (the 1-eigenspace is nontrivial by
Remark 2.4), and it is easy to see that s does not divide |O−2(m−b`)(q)|. Therefore, s must

divide |GLb(q
`)|. Clearly, this is impossible if b < m/`− 1, so we must have b > m/`− 1.

As noted above, we also have m− b` > 1, so

m/`− 1 6 b 6 (m− 1)/`.

Now (b− 1)` < m− `, so by considering |GLb(q
`)| we deduce that s must divide qb`− 1, so

c(m− `) = b` for some positive integer c. But ` < m/2 and thus 2(m− `) > m− 1 > b`,
so c = 1 is the only possibility. This implies that b = m/` − 1, which is a contradiction
since ` does not divide m. We conclude that r 6∼H s and thus Γ(G) 6= Γ(H).

Next suppose m = 6. Again, we claim that Γ(G) 6= Γ(H). Let r and s be primitive
prime divisors of q8−1 and q4−1, respectively. There is an element x ∈ G of order r with
|CG(x)| = |Sp4(q)||GU1(q

4)| (take x = [I4,Λ1]), so r ∼G s. However, if y ∈ H has order r
then |CH(y)| = |O+

4 (q)||GU1(q
4)| is the only possibility (see Remark 2.4), and thus s does

not divide |CH(y)|. Therefore, r 6∼H s and once again we deduce that Γ(G) 6= Γ(H).

Finally, let us assume that m = 4 or 2. Here we claim that Γ(G) = Γ(H). Let
r, s ∈ π(G) be primes such that r < s and r ∼G s. In order to show that r ∼H s we will
identify an element y ∈ H of order r such that |CH(y)| is divisible by s. For the sake of
brevity, we will assume that m = 4 (the case m = 2 is very similar, and easier).

If r = 2 then Lemma 2.7 implies that s divides |Sp6(q)|, and we deduce that r ∼H s since
|CH(y)| = 2|Sp6(q)| for any transvection y ∈ H (in the terminology of [1], y is a b1-type
involution); see [3, p.94], for example. Now assume that r is odd. Note that s is also odd.
Set i = Φ(r, q) (see (1)) and suppose y ∈ H has order r. If i = 8 then Lemma 2.5 implies
that s divides q4 + 1, and the desired result follows since |CH(y)| = |GU1(q

4)|. Similarly,
if i = 4 then |CH(y)| = |O+

4 (q)||GU1(q
2)| is the only possibility (see Remark 2.4), and the

result follows since s divides q4− 1. Next suppose i = 2, so s divides (q2 + 1)(q6− 1). If s
divides (q2+1)(q3−1) then take y = [I6,Λ1] ∈ H (in the notation of Section 2.2), in which
case |CH(y)| = |O+

6 (q)||GU1(q)| is divisible by s. On the other hand, if s divides q3 + 1
then take y = [I2,Λ

3
1] ∈ H so that s divides |CH(y)| = |O+

2 (q)||GU3(q)|. It follows that
r ∼H s when i = 2. The cases i ∈ {1, 3, 6} are very similar, and we omit the details. �
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Proposition 3.3. Suppose G = Ω2m+1(q) and H is of type O−2m(q), where m is even and
q is odd. Then Γ(G) = Γ(H) if and only if (m, q) = (2, 3).

Proof. It is easy to check that Γ(G) = Γ(H) if (m, q) = (2, 3), so let us assume that
(m, q) 6= (2, 3). Suppose m > 4. Set r = p and let x ∈ G be a unipotent element with
Jordan form [J3, J

2m−2
1 ], where Ji denotes a standard unipotent Jordan block of size i.

By [13, Theorem 7.1], there are two G-classes of elements of this form, and we can choose
x so that |CG(x)| is divisible by |Ω−2m−2(q)|. Let s be a ppd of q2m−2 − 1 and note that
s divides |CG(x)|, so r ∼G s. However, s does not divide |Sp2m−4(q)| and thus Lemma
2.6 implies that s does not divide |CH(y)| for any element y ∈ H of order p. Therefore
r 6∼H s and we conclude that Γ(G) 6= Γ(H).

Finally, suppose m = 2. Set r = p and let s be an odd prime divisor of q2−1 (note that
s exists since q > 5). Let x ∈ G be a unipotent element with Jordan form [J2

2 , J1]. Then
|CG(x)| is divisible by q2−1 (see [13, Theorem 7.1]), so r ∼G s. However, every nontrivial
unipotent element y ∈ H has Jordan form [J3, J1], and we calculate that |CH(y)| = 2q2.
Therefore r 6∼H s, and once again we conclude that Γ(G) 6= Γ(H). �

Remark 3.4. The case G = Ω5(3) with H of type O−4 (3) arising in Proposition 3.3 is
recorded as (G,H) = (U4(2),Sp4(2)) in Table 1.

Proposition 3.5. Suppose G = Ω+
2m(q) and H = Sp2m−2(q), where m and q are even.

Then Γ(G) = Γ(H) if and only if m = 4.

Proof. First assume m > 8. As in the proof of Proposition 3.2, let r and s be ppds of q`−1
and qm−` − 1, respectively, where ` is the smallest prime number that does not divide m.
Let x ∈ G be an element of order r with |CG(x)| = |Ω+

2(m−`)(q)||GL1(q
`)|. Then s divides

|CG(x)|, so r ∼G s. However, by repeating the argument in the proof of Proposition 3.2,
we deduce that s does not divide |CH(y)| for any element y ∈ H of order r. Therefore,
r 6∼H s and thus Γ(G) 6= Γ(H). To reach the same conclusion when m = 6 we proceed as
in the proof of Proposition 3.2, taking r and s to be primitive prime divisors of q8− 1 and
q4 − 1, respectively.

Finally, let us assume that m = 4. We claim that Γ(G) = Γ(H). To see this, we proceed
as in the proof of Proposition 3.2. Let r, s ∈ π(G) be primes such that r < s and r ∼G s.
We need to find an element y ∈ H of order r with the property that s divides |CH(y)|. If
r = 2 then s divides q4 − 1 (see Lemma 2.6) and we can take y ∈ H to be a b1-involution
(that is, a transvection), so that |CH(y)| = q5|Sp4(q)|. Now assume that r (and thus s) is
odd. Set i = Φ(r, q) ∈ {1, 2, 3, 4, 6}. We now consider each possibility for i in turn, using
Lemma 2.5. For instance, suppose i = 2, so s divides (q4 − 1)(q3 + 1). If s divides q4 − 1
then take y = [I4,Λ1], otherwise take y = [Λ3

1]. Then (2) indicates that s divides |CH(y)|,
so r ∼H s as required. The other cases are entirely similar, and we omit the details. �

Proposition 3.6. Suppose G = PΩ+
2m(q) and H is of type O2m−1(q), where m is even

and q is odd. Then Γ(G) = Γ(H) if and only if m = 4.

Proof. For m > 6 we can argue as in the proof of the previous proposition, so let us assume
that m = 4, so H = Ω7(q) (see [9, Proposition 4.1.6]). As before, let r, s ∈ π(G) be primes
such that r < s and r ∼G s. Our aim is to find an element y ∈ H of order r with the
property that s divides |CH(y)|. If r 6= p is odd, then we can repeat the argument in the
proof of the previous proposition (for the case m = 4). If r = p then Lemma 2.6 implies
that s divides q4−1, and the desired result follows by taking y ∈ H to be an element with
Jordan form [J3, J

4
1 ] and the property that |CH(y)| is divisible by |Ω−4 (q)| (the existence

of such an element was discussed in the proof of Proposition 3.3).

Finally, let us assume that r = 2. Detailed information on the conjugacy classes of
involutions in G and H is given in [6, Table 4.5.1], and the desired result quickly follows.
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For example, suppose that q ≡ 1 (mod 4). The representatives of the involution classes in
G are labelled t1, t2, t3, t4 in [6, Table 4.5.1], and we deduce that s divides (q3−1)(q4−1).
Now if y ∈ H is a t3-type involution, then |CH(y)| is divisible by |Ω+

6 (q)| (see [6, Table
4.5.1]) and thus r ∼H s. The case q ≡ 3 (mod 4) is very similar. �

Proposition 3.7. Suppose G = PSp4(q) and H is of type Sp2(q
2), where q > 3. Then

Γ(G) = Γ(H) if and only if q = 3.

Proof. The case q = 3 can be checked directly, so let us assume that q > 4. Let r = p and
let s be any odd prime divisor of q2 − 1 (note that s exists since q > 4). Let x ∈ G be a
transvection, so x has Jordan form [J2, J

2
1 ] and s divides |CG(x)| = q3|Sp2(q)|. Therefore,

r ∼G s. However, |CH(y)| = 2kq2 for all y ∈ H of order r (where k = 1 + δ2,p), so r 6∼H s.
We conclude that Γ(G) 6= Γ(H) if q > 4. �

Remark 3.8. Note that the caseG = PSp4(3) withH of type Sp2(9) arising in Proposition
3.7 is recorded as (G,H) = (U4(2),Sp4(2)) in Table 1.

This completes the proof of Theorem 1.

4. Intransitive subgroups of alternating groups

In this section, we consider the special case labelled (a) in Table 2, which arises in part
(b) of Theorem 1. Here G = An and H = (Sk × Sn−k) ∩G, where 1 < k < n is an integer
such that p 6 k for every prime p 6 n.

Since k < n, the condition on k implies that n is composite. If 5 < n < 12 then it is
easy to check that Γ(G) = Γ(H) if and only if (G,H) = (A6, A5) or (A10, (A7 × A3).2).
Now assume that n > 12. We make the following conjecture:

Conjecture 4.1. If n > 12, then Γ(G) = Γ(H) if and only if n is odd, k = n − 1 and
n− 4 is composite.

For example, this conjecture implies that Γ(G) = Γ(H) if k = n− 1 and

n ∈ {25, 39, 49, 55, 69, 81, 85, 91, 95, 99, . . .}.
In particular, Γ(G) = Γ(H) if n = m2 and m > 5 is odd.

The following result shows that determining whether or not Γ(G) = Γ(H) in the special
case n = p+ 1 is equivalent to a formidable open problem in number theory.

Lemma 4.2. Let G = Ap+1 and H = Ap, where p > 7 is a prime. Then Γ(G) 6= Γ(H) if
and only if there exist distinct primes r, s such that p+ 1 = r + s.

Proof. First observe that if p = 5 then Γ(G) is the empty graph on 3 vertices, so Γ(G) =
Γ(H). Now assume p > 7. Suppose there exist distinct primes r and s such that p+1 = r+s
(for example, this holds if Goldbach’s Conjecture is true, with distinct primes). Then
r, s ∈ π(G), and clearly r ∼G s but r 6∼H s, so Γ(G) 6= Γ(H).

For the converse, suppose that Γ(G) 6= Γ(H); say r, s ∈ π(G), where r < s, r ∼G s
and r 6∼H s. By Lemma 2.1, there exists an element x ∈ G of order r such that s
divides |CG(x)|. Now x has cycle-shape (rk, 1p+1−rk) for some k > 1 + δr,2, so |CG(x)| =
1
2(p + 1 − rk)!rk and thus s 6 p + 1 − rk. If r = 2 and y ∈ H has cycle-shape (22, 1p−4)
then the condition r 6∼H s implies that |CH(y)| = 2(p− 4)! is indivisible by s, so s > p− 3
and we deduce that s = p− 3 is the only possibility. But this situation cannot arise since
p > 7. Now assume r > 2. If y ∈ H has cycle-shape (r, 1p−r) then |CH(y)| = 1

2(p− r)!r is
indivisible by s, so s > p−r+1. Therefore, k = 1 is the only possibility, and p+1 = r+s.
The result follows. �
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More generally, suppose that the following variation of Goldbach’s conjecture is true
(note that the condition n > 12 is needed, since the conclusion is false when n = 10):

Conjecture 4.3. Let n > 12 be an even integer, and let p be the largest prime less than
n. Then there exist distinct primes r, s such that r < s < p and n = r + s.

If we assume the validity of this conjecture, then we immediately deduce that Γ(G) 6=
Γ(H) if n > 12 is even; simply take r and s as in the conjecture, and note that r ∼G s
and r 6∼H s. Similarly, if n > 15 is odd and k < n− 1 then the conjecture provides primes
r and s such that n− 1 = r + s, and again it is easy to see that r ∼G s and r 6∼H s.

Lemma 4.4. Let G = An and H = An−1, where n > 15 is odd. Then Γ(G) = Γ(H) if
and only if n− 4 is composite.

Proof. First assume that r = n − 4 is a prime number and set s = 2, so r ∼G s. Now, if
y ∈ H has order r then y has cycle-shape (r, 13) and thus |CH(y)| = 3r is odd. Therefore,
r 6∼H s and thus Γ(G) 6= Γ(H). For the converse, we argue as in the proof of [19,
Proposition 1]. Suppose that Γ(G) 6= Γ(H), say r, s ∈ π(G) where r < s, r ∼G s and r 6∼H
s. For a prime number p, set e(p) = p1+δ2,p . By [19, Lemma 1′], n− 1 < e(r) + e(s) 6 n,
so n = e(r) + e(s). Since n is odd, it follows that r = 2 and thus s = n − 4 is a prime
number. �

In particular, Lemma 4.4 implies that Γ(G) = Γ(H) if the conditions in part (b) of
Conjecture 3 hold.

5. Proof of Corollary 4

In this final section we establish Corollary 4. Let G be a finite simple group and let H
be a proper subgroup of G. Suppose Γ(G) = Γ(H). We may as well assume that H is non-
maximal, so H < M < G for some maximal subgroup M of G. Note that Γ(G) = Γ(M),
so the possibilities for (G,M) are given in Theorem 1.

First assume that (G,M) is not one of the cases in the first four rows of Table 1. Here it
is easy to determine the proper subgroups H of M such that Γ(M) = Γ(H), using Magma
[2] for example. Only one case arises, namely (G,M,H) = (U4(2), Sp4(2), O−4 (2)). This
gives us the second example recorded in part (b) of Corollary 4.

To complete the proof of the corollary, we may assume that (G,M) is one of the first
four cases listed in Table 1. Let L be a maximal subgroup of M containing H. Suppose
(G,M) = (PΩ+

8 (q),Ω7(q)), where q is odd. Here M is simple and thus Theorem 1 implies
that Γ(M) 6= Γ(L), which eliminates this case. Similarly, if (G,M) = (Ω+

8 (q), Sp6(q)) (with
q even) then Theorem 1 implies that the only possibility is L = O+

6 (2) with q = 2. By our
earlier analysis, we know that there is no proper subgroup J < L such that Γ(L) = Γ(J),
whence H = O+

6 (2). This yields the first case recorded in part (b) of Corollary 4.

Finally, let us assume that (G,M) = (Sp2m(q), O−2m(q)), where m ∈ {2, 4} and q is
even. Let T = Ω−2m(q) be the socle of M and note that π(T ) = π(M). We claim that
Γ(G) 6= Γ(T ). This can be checked directly if (m, q) = (4, 2), so let us assume that
(m, q) 6= (4, 2). Let r = 2 and let s be a primitive prime divisor of q2m−2−1. If x ∈ G is a
transvection (that is, a b1-involution in the terminology of [1]) then |CG(x)| is divisible by
|Sp2m−2(q)|, so s divides |CG(x)| and thus r ∼G s. Now T = Ω−2m(q) does not contain any
b-type involutions (see [1, 8.10]). In particular, if y ∈ T is an involution then either m = 2
and |CT (y)| = q2, or m > 4 and any odd prime divisor of |CT (y)| must divide |Sp2m−4(q)|
(see Lemma 2.6). Therefore, s does not divide |CT (y)|, so r 6∼T s. This justifies the claim.

In view of the claim, we may assume that H does not contain T . We are now in a
position to apply [12, Corollary 5]. However, T = Ω−2m(q) is not one of the cases listed in
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the first column of [12, Table 10.7]. This rules out the case (G,M) = (Sp2m(q), O−2m(q)),
and the proof of Corollary 4 is complete.
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