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On base sizes for symmetric groups
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Abstract

A base of a permutation group G on a set Ω is a subset B of Ω such that the pointwise stabilizer

of B in G is trivial. The base size of G, denoted by b(G), is the minimal cardinality of a base. Let

G = Sn or An acting primitively on a set with point stabilizer H. In this note we prove that if H

acts primitively on {1, . . . , n}, and does not contain An, then b(G) = 2 for all n ≥ 13. Combined

with a theorem of James, this completes the classification of primitive actions of alternating and

symmetric groups which admit a base of size two.

1. Introduction

Let G be a transitive permutation group on a finite set Ω with point stabilizer H. A base

for G is a subset B of Ω such that the pointwise stabilizer of B in G is trivial. The base size

of G, denoted by b(G), is the minimal cardinality of a base for G. Equivalently, b(G) is the

minimal cardinality of a set of conjugates of H such that their intersection is trivial. Bases

arise in estimating the orders of primitive permutation groups (see [1], for example) and in

more recent years they have played an essential role in the computational study of groups (see

[17] and [18], for example).

According to a theorem of Liebeck and Shalev [15, Theorem 1.3], there is a constant c such

that if G is an almost simple primitive permutation group on a set Ω then either b(G) ≤ c, or

G and Ω belong to a short explicit list of exceptions. The exceptions involve the action of An

or Sn on subsets or partitions of {1, . . . , n}, and the action of classical groups on subspaces

of the natural module. In general, b(G) is unbounded in these cases since |G| is not bounded

above by a fixed polynomial of |Ω|.

This theorem had first been conjectured by Cameron and Kantor in [10], where they prove

the conjecture in the alternating group case by establishing a strong asymptotic result with the

constant c taken to be 2. More precisely, they prove that if G = Sn or An, and the stabilizer
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of a point acts primitively on {1, . . . , n} and does not contain An, then the probabiity that a

random pair of points in Ω form a base for G tends to 1 as n tends to infinity. In particular,

there exists a constant N such that b(G) = 2 for all n ≥ N .

Our main theorem reveals that N = 13 is best possible.

Theorem 1. Let G = Sn or An acting primitively on a set with point stabilizer H. Assume

that H acts primitively on {1, . . . , n} and does not contain An. Then b(G) ≤ 3 for all n ≥ 11,

with equality if and only if (G,H) = (A11,M11) or (A12,M12).

For such actions, close inspection of the small degree groups yields the following the result.

Corollary 2. If n ≥ 5 and b(G) > 2 then (b(G), G,H) is listed in Table 1.

Remark 3. In the terminology of [4, 7, 8], Corollary 2 implies that b(G) ≤ 3 for any non-

standard permutation group with socle An, with equality only possible if n ≤ 12. Indeed, the

examples with b(G) > 3 in the statement of Corollary 2 are isomorphic to standard permutation

groups. For instance, A8
∼= PSL4(2) and the action of A8 on the cosets of AGL3(2) is equivalent

to the action of PSL4(2) on 1-dimensional subspaces of the natural module.

In [14], James studies the primitive action of Sn on partitions of {1, . . . , n}. Combined with

Theorem 1, this yields a classification of the primitive actions of symmetric groups which admit

a base of size two (see Corollary 4). In his thesis [13], James extends his analysis of partition

actions to the alternating groups, and using [13, Theorem 1.1.13] we deduce Corollary 5 below.

Corollary 4. Let G = Sn with n ≥ 5 acting primitively on a set with point stabilizer H.

Then either b(G) = 2, or (n,H) is one of the following:

Table 1. Some primitive actions with b(G) > 2

b(G) (G,H)

5 (S6,PGL2(5))

4 (A8,AGL3(2)), (A6,PSL2(5))

3 (A12,M12), (A11,M11), (S10,PΓL2(9)), (S9,AGL2(3)), (A9,PΓL2(8))

(S8,PGL2(7)), (A7,PSL2(7)), (S5, 5:4), (A5, D10)
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(i) H = Sk × Sn−k with k < n/2;

(ii) H = S2 o Sl and n = 2l;

(iii) H = Sk o Sl, n = kl with k ≥ 3 and l < max{8, k + 3};

(iv) (n,H) = (10,PΓL2(9)), (9,AGL2(3)), (8,PGL2(7)), (6,PGL2(5)) or (5, 5:4).

Corollary 5. Let G = An with n ≥ 5 acting primitively on a set with point stabilizer H.

Then either b(G) = 2, or (n,H) is one of the following:

(i) H = (Sk × Sn−k) ∩G with k < n/2;

(ii) H = (S2 o Sl) ∩G and n = 2l;

(iii) H = (Sk o Sl) ∩G, n = kl with k ≥ 3, and either l < k + 2, or l = k + 2 ∈ {5, 6};

(iv) (n,H) = (12,M12), (11,M11), (9,PΓL2(8)), (8,AGL3(2)), (7,PSL2(7)), (6,PSL2(5)) or (5, D10).

Remark 6. It is interesting to consider the base size of the permutation groups arising in

cases (i) - (iii) of Corollary 4.

(i) Here Ω is the set of k-element subsets of {1, . . . , n}; in general, the exact base size is not

known. Perhaps the best result to date is due to Z. Halasi [12], which states that

b(G) ≥
⌈

2n− 2

k + 1

⌉
,

with equality if n ≥ k2 − 1. We thank Dr Halasi for providing us with a very elegant proof

of this result. Since b(G) ≥ log2 n for all k, we note that this bound is not sharp when k

is large.

(ii) We claim that b(G) = 3. To see this, first observe that H is the centralizer of a fixed

point free involution. Embed the dihedral group D of order n into Sn via the regular

representation. Note that D is generated by a pair x1, x2 of fixed point free involutions,

so C = CG(D) is isomorphic to D (its “opposite”). It is easy to produce a fixed point free

involution x3 that does not commute with any element of C (by counting, for example),

so
⋂

i CG(xi) is trivial. Therefore b(G) ≤ 3, and thus equality holds since |H|2 > |G|.

(iii) We refer the reader to [2], where explicit upper bounds on b(G) are given.

Remark 7. For completeness, let us consider the three additional almost simple groups

with socle A6. If G 6= A6, S6 is an almost simple group with socle A6, acting primitively on a

set with point stabilizer H, then it is easy to check that either b(G) = 2, or one of the following

holds:

(i) b(G) = 4 and (G,H) = (A6.2
2,AGL1(9).2); or
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(ii) b(G) = 3 and (G,H) is one of the following:

(A6.2
2, [32]), (A6.2

2, D20.2), (M10,AGL1(9)), (PGL2(9), D20), (PGL2(9), 32:Q8),

where [32] denotes a Sylow 2-subgroup of A6.2
2.

In a series of recent papers, explicit versions of the aforementioned theorem of Liebeck and

Shalev have been obtained for various families of simple groups. In [4, 7], it is proved that

b(G) ≤ 6 for any almost simple primitive group G of Lie type (excluding subspace actions of

classical groups, of course). Precise base sizes are computed in [8] for sporadic groups; the

main result states that b(G) ≤ 7, with equality if and only if G = M24 acting on 24 points. In

[9, p.122], Cameron conjectured that c = 7 is the best possible constant in the Liebeck-Shalev

theorem, so in view of the above results we see that Corollary 2 provides the final step in the

proof of this conjecture.

Corollary 8. Cameron’s base size conjecture is true.

In the forthcoming paper [5] we establish an analogue of Theorem 1 for primitive actions of

finite almost simple classical groups, extending the results of [4]. Excluding subspace actions,

we show that in most cases there is a base of size 2, and we completely classify the exceptions.

Following [10], we also obtain strong asymptotic results on the probability that a random pair

of points form a base. We extend our analysis to simple algebraic groups in [6], where we

compute the precise base size for most primitive actions of such groups (including subspace

actions of classical algebraic groups). In particular, we establish an analogue of Corollary 8 for

algebraic groups.

2. Preliminaries

Our main tool is the following easy lemma.

Lemma 2.1. Let G be a finite group, let H be a subgroup of G with H = NG(H), and let

x1, . . . , xk represent the distinct G-classes of elements of prime order in H. If H ∩Hx 6= 1 for

all x ∈ G then
k∑

i=1

|xG
i ∩H|2|CG(xi)| ≥ |G|.
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In particular, if H ∩Hx 6= 1 for all x ∈ G then

|H|2 max |CG(x)| ≥ |G|,

where the maximum is taken over all elements x ∈ H of prime order.

Proof. Let x ∈ H be an element of prime order. The number of distinct conjugates of H

containing x is given by the formula

(|xG ∩H|/|xG|) · |G : H|,

whence the number of distinct conjugates of H containing some element of xG ∩H is at most

|xG ∩H|2 |CG(x)|/|H|.

If the first asserted inequality fails, it follows that there is a conjugate Hy which does not

contain any prime order elements of H, whence H ∩Hy = 1. The second assertion is an obvious

consequence of the first.

Corollary 2.2. Let G be a primitive permutation group on a finite set Ω with point

stabilizer H. Then b(G) = 2 if

k∑
i=1

|xG
i ∩H|2|CG(xi)| < |G|,

where x1, . . . , xk represent the distinct G-classes of elements of prime order in H.

3. Proof of Theorem 1

Let G = Sn or An acting primitively on a set Ω with point stabilizer H. Assume that H

acts primitively on {1, . . . , n} and does not contain An. The cases with n < 40 can be checked

by hand, although it is convenient and straightforward to verify the results with the aid of

Magma [3]. For the remainder we will assume n ≥ 40.

To begin with, let us exclude the following two cases:

(a) H = (Sl o Sk) ∩G with the natural product action on n = lk points;

(b) H = Sl or Al, acting on m-element subsets of {1, . . . , l} (so n =
(
l
m

)
).

Then by a theorem of Maróti [16, Theorem 1.1] we have

|H| ≤ n1+blog2 nc.

In addition, except for one family which involves the action of orthogonal groups over the field

of two elements on a set of hyperplanes, the minimal degree of H is at least n/2 (see [11,
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Theorem 1]). Therefore, with this exception,

|CG(x)| ≤ 2n/4dn/4e!dn/2e!

for all non-trivial x ∈ H. (Note that equality holds when n is divisible by 4 and x has cycle-

shape (2n/4, 1n/2).) Since n ≥ 40 we deduce that |H|2 max |CG(x)| < |G|, whence b(G) = 2 by

Corollary 2.2.

A similar calculation applies for the exceptional family of orthogonal groups over the field of

two elements. Indeed, if H is of type O2l+1(2) or O+
2l(2) then n = 2l−1(2l − 1) and the minimal

degree of H is n/2− 2l−2; for O−2l(2) we have n = (2l + 1)(2l−1 − 1) and the minimal degree

is n/2− (2l−1 − 1)/2 (see [11, Theorem 1] for these facts). The previous argument now goes

through essentially unchanged. Therefore, to complete the proof, it remains to deal with the

excluded cases (a) and (b) above.

First consider (a). Without loss of generality, we may assume G = Sn, so H = Sl o Sk with

the product action on n = lk points. We give details in the case k = 2 – the other cases are

much easier. Here n = l2 for some integer l ≥ 7. By Corollary 2.2, it suffices to show that

k′∑
i=1

|xG
i ∩H|2|CG(xi)|+

k∑
i=k′+1

|xG
i ∩H|2|CG(xi)| < |G|, (3.1)

where x1, . . . , xk′ represent the distinct G-classes of involutions in H, and xk′+1, . . . , xk the

G-classes of elements of odd prime order. Let i2(H) denote the number of involutions in H.

The number of involutions in Sl is equal to the sum of the degrees of the complex irreducible

characters of Sl, and hence is bounded above by p(l)l!1/2, where p(l) is the number of partitions

of l. In H there are precisely l! involutions outside the base group S2
l , whence

i2(H) ≤ (1 + p(l)l!1/2)2 − 1 + l! ≤ l!(1 + p(l))2.

The centralizer in G of any involution in H has order at most 2ll!(l2 − 2l)!, so

k′∑
i=1

|xG
i ∩H|2|CG(xi)| ≤ i2(H)2 max |CG(xi)| ≤ l!2(1 + p(l))42ll!(l2 − 2l)! < |G|/2,

since

l!3(1 + p(l))42l+1 < (l − 1)4l < (l2)!/(l2 − 2l)!.

Now let us turn to elements of odd order. The centralizer in G of any non-identity element of

odd order in H has order at most 3ll!(l2 − 3l)!, so

k∑
i=k′+1

|xG
i ∩H|2|CG(xi)| < |H|23ll!(l2 − 3l)! < |G|/2

and we conclude that b(G) = 2, as required.



ON BASE SIZES FOR SYMMETRIC GROUPS Page 7 of 8

Finally, let us turn to case (b), so H = Sl or Al acting on the set of m-element subsets of

{1, . . . , l}, and thus n =
(
l
m

)
. Here we consider just the action on pairs of elements – the other

cases are similar and easier. We have n = l(l − 1)/2 and we proceed as in the previous case,

separately estimating the contributions from involutions and elements of odd prime order. The

maximal size of the centralizer in G of an involution in H is 2l−2(l − 2)![(l2 − 5l + 8)/2]!, while

that of an element of odd prime order is at most 3l−2(l − 2)![(l2 − 7l + 12)/2]!. From these

bounds we quickly deduce that (3.1) holds, hence b(G) = 2.

This completes the proof of Theorem 1.
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