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Abstract. Let G be a finite primitive permutation group on a set Ω with point stabiliser
H. Recall that a subset of Ω is a base for G if its pointwise stabiliser is trivial. We define
the base size of G, denoted b(G,H), to be the minimal size of a base for G. Determining
the base size of a group is a fundamental problem in permutation group theory, with a long
history stretching back to the 19th century. Here one of our main motivations is a theorem
of Seress from 1996, which states that b(G,H) 6 4 if G is soluble. In this paper we extend
Seress’ result by proving that b(G,H) 6 5 for all finite primitive groups G with a soluble
point stabiliser H. This bound is best possible. We also determine the exact base size for all
almost simple groups and we study random bases in this setting. For example, we prove that
the probability that 4 random elements in Ω form a base tends to 1 as |G| tends to infinity.

1. Introduction

Let G be a permutation group on a set Ω and recall that a subset of Ω is a base for G if
its pointwise stabiliser is trivial (that is, only the identity element fixes every point in the
subset). The minimal cardinality of a base is called the base size of G and this invariant has
been widely studied for more than a century, with numerous applications and connections to
other areas of algebra and combinatorics. We refer the reader to the survey articles [6, 45]
and [13, Section 5] for more background on bases and their applications.

Determining the precise base size of a finite permutation group is a difficult problem,
in general. Indeed, there is no known efficient algorithm for computing this number or for
constructing a base of minimal size. In particular, a theorem of Blaha [8, Theorem 3.1] implies
that the problem of determining if the base size is at most a given integer is NP-complete.
Therefore, it is natural to seek bounds on base sizes for interesting families of groups and
there have been several major advances in this direction in recent years, particularly in the
context of finite primitive groups.

Let G 6 Sym(Ω) be a finite primitive group of degree n with point stabiliser H and write
b(G,H) for the base size of G. Notice that if G = Sn is the symmetric group in its natural
action, then b(G,H) = n− 1. Similarly, b(G,H) = n− 2 for G = An. If G is neither Sn nor
An, then a theorem of Bochert [9] from 1889 shows that b(G,H) 6 n/2. The best possible
result here (up to a multiplicative constant) is due to Liebeck [43], which states that either
b(G,H) < 9 log2 n, or n =

(
m
k

)r
and (Am)r P G 6 Sm oSr, where the action of Sm is on k-sets

and the wreath product has the product action. This result, which relies on the Classification
of Finite Simple Groups, extends earlier work of Babai [2], who proved that b(G) < 4

√
n loge n

if G is simply primitive (Babai’s proof does not use the Classification).

Further motivation for studying bases for finite primitive groups stems from several
highly influential conjectures of Cameron, Kantor and Pyber from the early 1990s. As an
immediate consequence of the definition of a base, we observe that |G| 6 nb(G,H) and thus
b(G,H) > log |G|/ log n. A conjecture of Pyber [54] asserts that there exists an absolute
constant c such that

b(G,H) 6 c
log |G|
log n
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for every primitive group G of degree n. This conjecture has attracted the interest of various
authors, with efforts to attack it organised according to the O’Nan-Scott theorem, which
partitions the finite primitive groups into families depending on the structure and action of
the socle of the group. By building on the work of several authors spanning more than 20
years, the proof of Pyber’s conjecture was finally completed by Duyan, Halasi and Maróti
[32] in 2018. Also see [37] for upper bounds with explicit constants. Stronger bounds have
been established in some special cases. For example, if G is soluble, then a striking theorem
of Seress [55] states that b(G,H) 6 4, which is best possible.

It is also possible to establish stronger bounds for some almost simple primitive groups
(recall that G is almost simple if G0 P G 6 Aut(G0) for some nonabelian finite simple group
G0, which is the socle of G). Let us say that such a group G 6 Sym(Ω) is standard if G0 = Am
is an alternating group and Ω is a set of subsets or partitions of {1, . . . ,m}, or if G0 is a
classical group and Ω is a set of subspaces (or pairs of subspaces) of the natural module for G0

(otherwise, G is non-standard). For example, the natural action of Sm is standard. In general,
it is easy to see that if G is standard of degree n then |G| is not bounded above by a fixed
polynomial in n and thus b(G,H) can be arbitrarily large. However, if G is non-standard then
a conjecture of Cameron and Kantor [28, p.142] asserts that b(G,H) 6 c for some absolute
constant c (they also conjectured that if G is sufficiently large, then almost every c-tuple of
points in Ω forms a base for G). This was subsequently refined by Cameron [27, p.122], who
conjectured that b(G,H) 6 7, with equality if and only if G is the Mathieu group M24 in its
natural action on 24 points.

The original conjecture of Cameron and Kantor was proved by Liebeck and Shalev [46]
using probabilistic methods and fixed point ratio estimates. By applying similar techniques,
Cameron’s refined conjecture was established in the sequence of papers [17, 21, 23, 24]. The
proof of Cameron’s conjecture also reveals that if G 6 Sym(Ω) is non-standard and P(G, 6)
is the probability that a randomly chosen 6-tuple of points in Ω forms a base for G, then
P(G, 6)→ 1 as |G| → ∞. Also see [12] for a classification of the non-standard groups with
b(G,H) = 6 (there are infinitely many).

In this paper we extend some of this earlier work in several different directions. First
recall Seress’s theorem [55], which states that if G is a finite primitive soluble group, then
b(G,H) 6 4. In this setting, G is an affine group and the point stabiliser H is of course
soluble itself. Given this result, it is natural to seek bounds on the base sizes of arbitrary
primitive groups with soluble point stabilisers. It turns out that the base size of such a group
is still bounded above by a small constant.

Theorem 1. Let G 6 Sym(Ω) be a finite primitive permutation group with soluble point
stabiliser H. Then b(G,H) 6 5.

The upper bound in Theorem 1 is best possible and there are infinitely many groups that
attain the bound. For example, if we take G = S5 o Cm in its product action on 5m points,
then H = S4 o Cm is soluble and b(G,H) = 5 for all m > 2 (see Remark 8.3).

As a consequence of the O’Nan-Scott theorem, the primitive groups G 6 Sym(Ω) with
soluble point stabilisers can be divided into three families: affine, almost simple and product-
type groups of the form T r P G 6 L o Sr, where L 6 Sym(Γ) is an almost simple primitive
group with socle T and soluble point stabiliser and the action of G on Ω = Γr is the product
action. Moreover, Li and Zhang [42] have determined all the almost simple primitive groups
with this property, which relies on the extensive literature on maximal subgroups of almost
simple groups.

Suppose G 6 Sym(Ω) is almost simple and primitive with a soluble point stabiliser H.
If G is non-standard, then the proof of Cameron’s conjecture yields b(G,H) 6 6 and the
subsequent refinement in [12] gives b(G,H) 6 5 (in fact, by the main results in [21, 24], the
exact base size is known for all non-standard groups with socle an alternating or sporadic
group). There are only partial results in the literature on base sizes for standard groups
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(for example, see [7, 18, 36, 39, 51] for some results on bases for standard groups with an
alternating socle). However, the soluble stabiliser hypothesis is rather restrictive and we can
reduce the analysis of standard groups to symmetric and alternating groups of small degree
and groups of Lie type of low rank (typically defined over small fields). These groups are
amenable to direct calculation and we are able to determine the exact base size of every
almost simple primitive group with a soluble point stabiliser. In particular, we can identify
all of the groups with b(G,H) = 2 and so this brings us a step closer towards a classification
of the finite primitive groups with a base of size two, which is an ambitious project initiated
by Jan Saxl in the 1990s.

Our main result for almost simple groups is Theorem 2 below. In part (i)(b,c), we use
the standard Pm notation for maximal parabolic subgroups of classical groups; this is the
stabiliser in G of an m-dimensional totally isotropic subspace of the natural module for G0.
The tables referred to in part (ii) are presented at the end of the paper in Section 9 (see
Remarks 9.1 and 9.2 for information on the conventions adopted in these tables).

Theorem 2. Let G 6 Sym(Ω) be a finite almost simple primitive group with socle G0 and
soluble point stabiliser H. Let b = b(G,H) be the base size of G.

(i) We have b 6 5, with equality if and only if one of the following holds:

(a) G = S8 and H = S4 o S2;

(b) G0 = L4(3) and H = P2;

(c) G0 = U5(2) and H = P1.

(ii) We have b > 2 if and only if (G,H, b) is one of the cases recorded in Tables 4–7.

Let us record some immediate corollaries.

Corollary 3. Let G 6 Sym(Ω) be a finite almost simple primitive group with socle G0 and
point stabiliser H. Suppose |H| is odd and b(G,H) > 2. Then G0 = L2(q), q ≡ 3 (mod 4),
|G : G0| is odd, H = P1 is a Borel subgroup and

b(G,H) =

{
4 if G 6= G0

3 otherwise.

Corollary 4. Let G 6 Sym(Ω) be a finite almost simple primitive group with socle G0 and
point stabiliser H. Suppose H is nilpotent and b(G,H) > 2. Then b(G,H) = 3 and either

(i) G = Aut(A6) and H is a Sylow 2-subgroup of G; or

(ii) G = PGL2(q), q is a Mersenne prime and H = D2(q+1) is a Sylow 2-subgroup of G.

In the statement of the next result, we exclude the groups with socle G0 = 2G2(3)′ ∼= L2(8)
(here b(G,H) 6 4, with equality if and only if G = 2G2(3) and H = 23:7:3). See Table 5 for a
complete list of the exceptional groups with b(G,H) = 3.

Corollary 5. Let G 6 Sym(Ω) be a finite almost simple primitive group with socle G0 and
soluble point stabiliser H. If G0 is an exceptional group of Lie type, then b(G,H) 6 3, with
equality only if p ∈ {2, 3} and H is a parabolic subgroup.

The proof of Theorem 2 combines probabilistic and computational methods. Given a
positive integer c and a permutation group G on a finite set Ω, let

P(G, c) =
|{(α1, . . . , αc) ∈ Ωc :

⋂
iGαi = 1}|

|Ω|c
(1)

be the probability that a randomly chosen c-tuple of points in Ω forms a base for G. As in
the proof of Cameron’s base size conjecture, we can use fixed point ratios to estimate P(G, c),
noting that b(G,H) 6 c if and only if P(G, c) > 0. In this way, we can establish the following
asymptotic result for almost simple primitive groups.
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Theorem 6. Let (Gn) be a sequence of finite almost simple primitive permutation groups
with soluble point stabilisers such that |Gn| → ∞ as n→∞.

(i) We have P(Gn, 4)→ 1 as n→∞.

(ii) Moreover, either P(Gn, 3)→ 1 as n→∞, or there exists an infinite subsequence of
groups with socle L2(q) and degree q + 1.

Let G be a finite group, let H be a soluble subgroup of G and assume G has no nontrivial
soluble normal subgroups (so we may view G as a transitive permutation group on the set of
cosets of H). In this general setting, there is a conjecture attributed to Babai, Goodman and
Pyber (cf. Conjecture 6.6 in [3]) which asserts that b(G,H) 6 7 (see Problem 17.41(a) in the
Kourovka notebook [49]; also see [58, Problem 1]). By Theorem 1, this conjecture holds when
H is a maximal subgroup of G. In fact, the stronger bound b(G,H) 6 5 has been conjectured
by Vdovin in [49, Problem 17.41(b)] and once again, our main theorem shows that this holds
when H is maximal. However, the general problem for non-maximal subgroups is still open.

In [58], Vdovin essentially reduces his general conjecture to the almost simple groups and
here there has been progress in some special cases. For example, Baikalov [5] has proved the
conjecture for all soluble subgroups of symmetric and alternating groups and there are some
partial results for groups of Lie type in [4, 57].

Notation. Let G be a finite group and let n be a positive integer. We will write Cn, or just
n, for a cyclic group of order n and Gn will denote the direct product of n copies of G. An
unspecified extension of G by a group H will be denoted by G.H; if the extension splits then
we write G:H. We use [n] for an unspecified soluble group of order n. If X is a subset of G,
then in(X) is the number of elements of order n in X. We adopt the standard notation for
simple groups of Lie type from [40]. In particular we write Lεn(q) for PSLn(q) (when ε = +)
and PSUn(q) (when ε = −). The simple orthogonal groups are denoted PΩε

n(q), which differs
from the notation used in the Atlas [31]. For positive integers a and b, we write (a, b) for
the greatest common divisor of a and b, while δa,b denotes the familiar Kronecker delta. All
logarithms in this paper are base two.

Organisation. Let us say a few words on the layout of the paper. In Section 2 we discuss the
probabilistic and computational methods that play a central role in the proofs of our main
results. In Sections 3–7, which comprises the main bulk of the paper, we present proofs of
Theorems 2 and 6, with the cases organised according to the possibilities for the socle G0 and
point stabiliser H of G. The groups with socle an alternating or sporadic group are handled
in Section 3. The two-dimensional linear groups with G0 = L2(q) require special attention
and they are treated in Section 4. The remaining groups of Lie type are studied in Sections
5–7, with the special cases where H is a parabolic subgroup featuring in Section 5. Finally,
in Section 8 we consider the affine and product-type primitive groups with soluble stabilisers
and we combine Theorem 2 with work of Seress [55] to complete the proof of Theorem 1. The
tables referred to in the statement of Theorem 2 are presented in Section 9.

2. Preliminaries

In this section we discuss some of the probabilistic and computational methods for cal-
culating base sizes. These techniques will be applied repeatedly in the proofs of our main
results.

2.1. Bases. Let G 6 Sym(Ω) be a transitive permutation group on a finite set Ω with point
stabiliser H. Let b(G,H) denote the base size of G. As noted in Section 1, the definition of
a base implies that the elements of G are distinguished by their action on a base and thus
|G| 6 |Ω|b(G,H). This gives us the following useful lower bound on b(G,H).
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Lemma 2.1. We have

b(G,H) >

⌈
log |G|
log |Ω|

⌉
.

In order to determine an upper bound b(G,H) 6 c we can either adopt a constructive
approach with the aim of exhibiting a base of size c, or we can try to estimate the probability
P(G, c) that a randomly chosen c-tuple in Ω forms a base for G (see (1)), noting that
b(G,H) 6 c if and only if P(G, c) > 0. We will use both approaches in this paper, but we
will predominantly seek to apply the probabilistic method whenever it is feasible to do so.

Probabilistic methods for studying bases were originally introduced by Liebeck and Shalev
[46] in their proof of the Cameron-Kantor conjecture. The idea is very simple. Let c be a
positive integer and observe that {α1, . . . , αc} ⊆ Ω is not a base for G if and only if there
exists an element x ∈ G of prime order such that x ∈ Gαi for all i. Since we can interpret the
fixed point ratio of x,

fpr(x,G/H) =
|CΩ(x)|
|Ω|

=
|xG ∩H|
|xG|

,

as the probability that x fixes a uniformly random element in Ω (here CΩ(x) is the set of
fixed points of x on Ω), it follows that

1− P(G, c) 6
∑
x∈P

fpr(x,G/H)c =: Q(G, c),

where P is the set of elements of prime order in G. Now |CΩ(x)| = |CΩ(xg)| for all g ∈ G,
whence

Q(G, c) =
k∑
i=1

|xGi | ·
(
|xGi ∩H|
|xGi |

)c
(2)

where x1, . . . , xk represent the G-classes of elements of prime order in H. We will repeatedly
apply the following lemma.

Lemma 2.2. If Q(G, c) < 1 then b(G,H) 6 c.

The following result is [17, Lemma 2.1], which provides a useful tool for bounding Q(G, c).

Lemma 2.3. Suppose x1, . . . , xm represent distinct G-classes such that
∑

i |xGi ∩H| 6 A
and |xGi | > B for all i. Then

m∑
i=1

|xGi | ·
(
|xGi ∩H|
|xGi |

)c
6 B(A/B)c

for every positive integer c.

2.2. Computational methods. We will use computational methods extensively in the
proof of Theorem 2 to handle small degree symmetric and alternating groups, as well as some
low rank groups of Lie type defined over small fields. In all cases, we use Magma V2.23-2
[10] to do the computations. Here we briefly describe the main techniques.

Let G 6 Sym(Ω) be an almost simple primitive group with socle G0 and soluble point
stabiliser H. Given G as an abstract group, our initial aim is to construct G as a permutation
group of an appropriate degree (this is not necessarily the permutation representation of G on
Ω). Typically we do this by first using the function AutomorphismGroupSimpleGroup to obtain
A = Aut(G0) as a permutation group and then we identify G by inspecting the subgroups of
A containing G0. For example, we can use the command LowIndexSubgroups(A,m), which
returns a set of representatives of the A-classes of subgroups of A of index at most m.

Next we construct H as a subgroup of G in the same permutation representation. To
do this, we usually use the command MaximalSubgroups(G:IsSolvable:=true), which
returns a set of representatives of the G-classes of soluble maximal subgroups of G and it is
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easy to identify the representative conjugate to H. For certain large groups of interest, the
MaximalSubgroups function is ineffective and so in these cases we need to adopt a different
approach. In the handful of cases where this issue arises, G is a classical group and we can
either use the ClassicalMaximals function to construct an appropriate maximal subgroup
of the corresponding matrix group, or we can seek a direct construction of H inside G.

Example 2.4. To illustrate the latter approach, suppose G = Aut(U6(3)) and H is a
maximal subgroup of type GU2(3) o S3 (this case arises in the proof of Proposition 6.3). Here
|H ∩G0| = 21334 and we observe that H = NG(K), where K is a subgroup of G0 of order
210. Given this, we can use the following code to construct G and H as permutation groups
of degree 22204:

G:=AutomorphismGroupSimpleGroup("U",6,3);

g:=Socle(G);

S:=SylowSubgroup(g,2);

S,f:=PCGroup(S);

N:=Subgroups(S:OrderEqual:=2^10);

exists(k){i : i in [1..#N] | #Normalizer(g,N[i]‘subgroup@@f) eq 2^13*3^4};

H:=Normalizer(G,N[k]‘subgroup@@f);

Example 2.5. Suppose G = PGO+
12(3) and H is a maximal subgroup of type O+

4 (3) o S3;
this is also a genuine case that we will need to handle in the proof of Proposition 6.3. Write
G = L/Z and H = K/Z, where L is the matrix group GO+

12(3) and Z = Z(L). We use
ClassicalMaximals to construct K (noting that K is contained in Aschbacher’s C2 collection
of maximal subgroups of L, which explains why we set classes:={2}) and then we take
images modulo scalars to obtain G and H as permutation groups of degree 88816:

L:=CGOPlus(12,3);

C:=ClassicalMaximals("O+",12,3: classes:={2}, normaliser:=true);

exists(i){i : i in [1..#C] | LMGIsSoluble(C[i]) eq true};

K:=C[i];

f,G,R:=PermutationRepresentation(L:ModScalars:=true);

H:=f(K);

Let us assume we have now constructed G and H as permutation groups. In most cases,
we can compute b(G,H) simply by combining the lower bound in Lemma 2.1 with a random
search. More precisely, if dlog |G|/ log |Ω|e = c then Lemma 2.1 gives b(G,H) > c and by
random search we will typically be able to find elements x1, . . . , xc−1 in G such that

H ∩Hx1 ∩ · · · ∩Hxc−1 = 1,

which gives the reverse inequality b(G,H) 6 c.

However, there are some situations where this approach is ineffective because G does not
have a base of size c. In other words,

c =

⌈
log |G|
log |Ω|

⌉
< b = b(G,H).

Here we establish the bound b(G,H) 6 b by random search and then to conclude we need to
show that every (b− 1)-point stabiliser is nontrivial. For example, if G = S8 and H = S4 o S2,
then dlog |G|/ log |Ω|e = 3 and b(G,H) 6 5 by random search. By computing the order of
every 4-point stabiliser we deduce that b(G,H) = 5.

To compute the order of every (b− 1)-point stabiliser, we use the CosetAction function to
construct G as a permutation group on the set of cosets of H and then we inspect stabiliser
chains, working with representatives of the orbits of k-point stabilisers for k < b− 1. This
approach is straightforward to implement and it is effective for all but one case that arises in
this paper. The exceptional case is described in the following example.
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Example 2.6. Suppose G0 = PΩ+
8 (3) and H is of type O+

4 (3) oS2. Here dlog |G|/ log |Ω|e = 2
and by random search we deduce that b(G,H) = 2 if |G : G0| 6 4. In the remaining cases, we
claim that b(G,H) = 3. By random search, we get b(G,H) 6 3 and so it remains to show
that every 2-point stabiliser is nontrivial. But the method outlined above using CosetAction

is ineffective since |Ω| = 14926275 is prohibitively large. To resolve these cases, we use the
double coset enumeration technique explained in [24, Section 2.3.3]. Here the aim is to find a
set T of distinct (H,H) double coset representatives such that

(a) |HxH| < |H|2 for all x ∈ T ; and

(b)
∑

x∈T |HxH| > |G| − |H|2.

Indeed, if such a set T exists, then H does not have a regular orbit on Ω and we deduce that
b(G,H) > 3. As noted in [24], this approach can be implemented in Magma and for the case
above we quickly deduce that b(G,H) = 3 when |G : G0| > 6.

3. Alternating and sporadic groups

In this section we begin the proof of Theorem 2 by handling the case where G0 is either
an alternating or sporadic simple group. Our main result is the following.

Proposition 3.1. Let G 6 Sym(Ω) be a finite almost simple primitive group with socle G0

and soluble point stabiliser H. Set b = b(G,H) and assume G0 is either an alternating group
or a sporadic simple group.

(i) We have b 6 5, with equality if and only if G = S8 and H = S4 o S2.

(ii) We have b > 2 if and only if (G,H, b) is one of the cases recorded in Table 4.

In addition, P(G, 2)→ 1 as |G| → ∞.

Proof. First assume G0 is a sporadic simple group. Here the possibilities for H are listed in
[42, Table 15] and in each case b(G,H) is computed in [24]. The result follows by inspection.

Now assume G0 = An is an alternating group. The cases with n 6 16 are easily verified
using Magma [10] (see Section 2.2), so let us assume n > 17. Then by inspecting [42, Table
14], we see that n = p and H = AGL1(p) ∩G is the only possibility, where p is a prime. Here
b(G,H) = 2 by [21, Theorem 1.1], so it just remains to show that P(G, 2) → 1 as p → ∞.
Define Q(G, 2) as in (2) and observe that |H| 6 p(p− 1) and every nontrivial element in H
has at most one fixed point on {1, . . . , p}. By considering the involutions in H, we deduce
that

|xG| > p!

((p− 1)/2)!2(p−1)/2

for all x ∈ H of prime order and one checks that this lower bound is greater than p5 for
p > 17. Therefore, Lemma 2.3 implies that

Q(G, 2) 6
p2(p− 1)2

p5
< p−1

and we conclude that P(G, 2)→ 1 as |G| → ∞. �

4. Two-dimensional linear groups

In this section we establish Theorem 2 for the groups with socle G0 = L2(q). We begin by
introducing some general notation, which we will use throughout this section.

Let V be the natural module for G0 and write q = pf and d = (2, q − 1), where p is a

prime. Set G̃ = PGL2(q). Fix a basis {e1, e2} for V and write F×q = 〈µ〉. Then

Aut(G0) = 〈G0, δ, φ〉, (3)
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Case Type of H Conditions b(G,H)
(a) P1 See Remark 4.2

(b) GL1(q) o S2

{
3 PGL2(q) < G
2 otherwise

(c) GL1(q2)

{
3 PGL2(q) 6 G
2 otherwise

(d) GL2(3) q = 3k, k > 3 prime 2
(e) 21+2

− .O−2 (2) q = p > 7 2 + δ7,q

Table 1. The cases with G0 = L2(q)

where δ ∈ G̃ is the image (modulo scalars) of the diagonal matrix diag(µ, 1) ∈ GL2(q) and φ
is a field automorphism of order f such that (ae1 + be2)φ = ape1 + bpe2 for all a, b ∈ Fq. For
g ∈ Aut(G0), if we write g̈ for the coset G0g, then

Out(G0) = {g̈ : g ∈ Aut(G0)} = 〈δ̈〉 × 〈φ̈〉 = Cd × Cf .

If H is a subgroup of G, then we set H0 = H ∩G0.

Since L2(4) ∼= L2(5) ∼= A5 and L2(9) ∼= A6, we will assume q > 7 and q 6= 9 (see Proposition
3.1 for the excluded cases). The possibilities for H are easily determined by inspecting [42]
(or by consulting [11, Table 8.1]) and they are recorded in Table 1. Following [40], we refer to
the type of H, which provides a rough description of the structure of H. Note that in the
first row, H is a parabolic subgroup of G (as the notation indicates, it is the stabiliser in G
of a 1-dimensional subspace of V ).

The main result of this section is the following.

Proposition 4.1. Let G 6 Sym(Ω) be a finite almost simple primitive group with socle
G0 = L2(q) and soluble point stabiliser H, where q > 7 and q 6= 9. Then b(G,H) is recorded
in the final column of Table 1. In particular, b(G,H) 6 4 and P(G, c)→ 1 as q →∞, where
c = 4 if H is of type P1, otherwise c = 3.

Remark 4.2. In case (a) we have b(G,H) ∈ {3, 4}, with b(G,H) = 3 if and only if

(i) G 6 PGL2(q); or

(ii) q is odd, f is even and G = 〈G0, δφ
f/2〉 = G0.〈δ̈φ̈f/2〉 = G0.2.

Equivalently, b(G,H) = 3 if and only if G = G0 or G is sharply 3-transitive.

Remark 4.3. Let G be as in Proposition 4.1 with q > 11 and set b = b(G0, H0). Then

b =

{
3 if H is of type P1, or if p = 2 and H is of type GL1(q2)
2 otherwise

and the proof of Proposition 4.1 shows that

P(G0, b)→

 0 if p = 2 and H is of type GL1(q) o S2

1/2 if p 6= 2 and H is of type GL1(q) o S2 or GL1(q2)
1 otherwise

as q →∞.

We will prove Proposition 4.1 with a sequence of lemmas. We refer the reader to [20,
Section 3.2] for a source of information on the conjugacy classes of elements of prime order in
Aut(G0). We start by considering case (a) in Table 1.

Lemma 4.4. If G0 = L2(q) and H is of type P1, then b(G,H) 6 4 and P(G, 4) → 1 as
q →∞.
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Proof. Here H0 = (Cp)
f :C(q−1)/d is a Borel subgroup of G0 and we have H = NG(P ), where

P is a Sylow p-subgroup of G0. Note that |Ω| = q + 1 and we may identify Ω with the set of
1-dimensional subspaces of V . In view of Lemma 2.2, it suffices to show that Q(G, 4) < 1 and
Q(G, 4)→ 0 as q tends to infinity. The cases with q 6 32 can be checked using Magma [10]
(see Section 2.2), so we will assume that q > 32. Let χ be the corresponding permutation

character of G̃ = PGL2(q), so χ(x) = |CΩ(x)| for all x ∈ G̃ and we note that χ = 1 + St is the

sum of the trivial and Steinberg characters of G̃. We proceed by estimating the contribution
to Q(G, 4) from the different types of elements of prime order in H.

Suppose x ∈ H has prime order r. If x is unipotent then r = p, |xG̃| = q2 − 1 and χ(x) = 1
(since every regular unipotent element is contained in a unique Borel subgroup, or recall that

the Steinberg character vanishes at nontrivial unipotent elements). Therefore, |xG̃∩H| = q−1
and we deduce that the contribution to Q(G, 4) from unipotent elements is equal to

α1 =
(q − 1)4

(q2 − 1)3
=

q − 1

(q + 1)3
.

Next assume x is a semisimple involution, so q is odd. If x is the image of a diagonalisable
matrix in GL2(q) (that is, if CG0(x) is the normaliser of a split torus), then |xG| = 1

2q(q + 1)

and x fixes exactly two 1-spaces, so χ(x) = 2 and |xG ∩H| = q. On the other hand, if CG0(x)
is the normaliser of a non-split torus, then χ(x) = 0 and xG ∩H is empty. It follows that the
contribution from semisimple involutions is given by

α2 =
q4(

1
2q(q + 1)

)3 =
8q

(q + 1)3
.

Now assume x ∈ H is semisimple and r > 3. Here r divides q − 1, |xG̃| = q(q + 1) and

χ(x) = 2, so |xG̃ ∩H| = 2q. Since there are 1
2(r − 1) distinct G̃-classes of such elements, we

conclude that the combined contribution to Q(G, 4) from semisimple elements of odd order
is equal to

α3 =
∑
r∈π

1

2
(r − 1) · 16q

(q + 1)3
,

where π is the set of odd prime divisors of q − 1. Now r 6 q − 1 and |π| < log q, so

α3 <
8q(q − 2) log q

(q + 1)3
= α′3.

Finally, let us assume q = qr0 and x is a field automorphism of order r. Here CH0(x) is a
Borel subgroup of CG0(x) (see the proof of [41, Lemma 6.1], for example) and thus

|xG0 ∩H| = q(q − 1)

(1 + δ2,r)q0(q0 − 1)
, |xG0 | = q(q2 − 1)

(1 + δ2,r)q0(q2
0 − 1)

.

Since there are r + δ2,r − 1 distinct G0-classes of field automorphisms of order r in Aut(G0),
the combined contribution from field automorphisms is equal to

α4 =
∑
r∈π′

(r − 1) · (q0 + 1)3

(q + 1)3
· q(q − 1)

q0(q0 − 1)
,

where π′ is the set of prime divisors of f = logp q.

We have now shown that

Q(G, 4) = α1 + (1− δ2,p)α2 + α3 + α4

and it is straightforward to check that this is less than 1 if 32 < q < 10000. Therefore, for
the remainder of the proof we may assume that q > 10000. (Note that Q(G, 4) > 1 if q = 32,
which explains why we used Magma to handle the cases with q 6 32.)
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If q0 = 2 then π′ = {r} and

α4 = (r − 1) · 27

2
· 2r(2r − 1)

(2r + 1)3
,

which is less than q−1/2 since r > 13. Now assume q0 > 3. Here one checks that

(q0 + 1)3

(q + 1)3
· q(q − 1)

q0(q0 − 1)
< 4q−(1− 1

r )

and thus

(r − 1) · (q0 + 1)3

(q + 1)3
· q(q − 1)

q0(q0 − 1)
< 4q−

1
2

for all r ∈ π′. We deduce that α4 < 4q−1/2 log log q = α′4 since |π′| < log log q.

In conclusion, if q > 10000 then

Q(G, 4) < α1 + α2 + α′3 + α′4 < 5q−
1
2 log log q

and the result follows. �

Lemma 4.5. If G0 = L2(q) and H is of type P1, then b(G,H) ∈ {3, 4} and b(G,H) = 3 if
and only if

(i) G 6 PGL2(q); or

(ii) q is odd, f is even and G = 〈G0, δφ
f/2〉 = G0.2.

In addition, if b(G,H) = 3 then P(G, 3)→ 1 as q →∞.

Proof. First observe that log |G|/ log |Ω| > 2, so by combining Lemmas 2.1 and 4.4 we deduce
that b(G,H) ∈ {3, 4}. As before, we may identify Ω with the set of 1-dimensional subspaces
of the natural module V for G0. Given this identification, it is straightforward to check that

{〈e1〉, 〈e2〉, 〈e1 + e2〉, 〈e1 + µe2〉}
is a base for G of size 4.

First assume q is even, so G0 is 3-transitive on Ω and thus every 3-point stabiliser in G
has order |G : G0|. Therefore, b(G,H) = 3 if and only if G = G0, in which case

P(G, 3) =
|G|
|Ω|3

=
q(q2 − 1)

(q + 1)3
(4)

and we see that P(G, 3)→ 1 as q →∞.

Now assume q is odd. Let α, β, γ ∈ Ω be three distinct points and observe that G0 is
2-transitive, but not 3-transitive on Ω. Since PGL2(q) is 3-transitive, it follows that every
3-point stabiliser in G0 is trivial. Therefore, the 2-point stabiliser (G0)α,β has 4 orbits on Ω,

namely {a}, {β} and two regular orbits Γ1 and Γ2, each of size 1
2(q − 1).

Suppose G is 3-transitive. Then Gα,β is transitive on Γ1 ∪Γ2 and thus |Gα,β,γ | = 1
2 |G : G0|.

Therefore, b(G,H) = 3 if and only if G = G0.2 is sharply 3-transitive, which implies that either

G = PGL2(q), or f is even and G = 〈G0, δφ
f/2〉 (note that φ fixes 〈e1〉, 〈e2〉 and 〈e1 + e2〉, so

〈G0, φ
f/2〉 is not 3-transitive). In these cases, every 3-point stabiliser is trivial and (4) holds.

Finally, if G is not 3-transitive, then each Γi is an orbit for Gα,β, so |Gα,β,γ | = |G : G0| and
we deduce that b(G,H) = 3 if and only if G = G0. �

Lemma 4.6. If G0 = L2(q) and H is of type GL1(q) o S2 or GL1(q2), then b(G,H) 6 3 and
P(G, 3)→ 1 as q →∞.

Proof. Here H0 = D2(q−ε)/d and |Ω| = 1
2q(q + ε), where ε = 1 if H is of type GL1(q) o S2,

otherwise ε = −1. We proceed by estimating the contributions to Q(G, 3) from the various
elements of prime order in H. Both cases are very similar, so for brevity we will assume that
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H is of type GL1(q) o S2. Let x ∈ H be an element of prime order r and recall that i2(H)
denotes the number of involutions in H.

If x is unipotent, then r = p = 2, |xG| = q2 − 1 = b1 and |xG ∩H| = i2(H) = q − 1 = a1.
Similarly, if x is a semisimple involution, then |xG| > 1

2q(q − 1) = b2 and we note that

i2(H) 6 q = a2. Next suppose x is semisimple and r > 3, so r divides q − 1, |xG0 | = q(q + 1)
and |xG0 ∩ H| = 2. Since G0 has 1

2(r − 1) 6 1
2(q − 2) distinct conjugacy classes of such

elements, it follows that the combined contribution to Q(G, 3) from semisimple elements of
odd order is at most ∑

r∈π

1

2
(r − 1) · 8

q2(q + 1)2
<

4(q − 2) log q

q2(q + 1)2
= α1,

where π is the set of odd prime divisors of q − 1.

Finally, suppose q = qr0 and x is a field automorphism of order r. If r = 2 then |xG| >
1
2q

1/2(q + 1) = b3 and an easy calculation shows that H contains at most a3 = 2q1/2 of these
elements. Now assume r is odd, so

|xG ∩H| = q − 1

q0 − 1
, |xG| = q(q2 − 1)

q0(q2
0 − 1)

and there are r − 1 distinct conjugacy classes of field automorphisms of order r. If q0 = 2
then q = 2r and the contribution from field automorphisms is equal to

(r − 1) · 36(2r − 1)

22r(2r + 1)2
< 2−r = q−1.

Similarly, if q0 > 3 then the combined contribution from odd order field automorphisms is
given by∑

r∈π′
(r − 1) · q

2
0(q0 + 1)2

q2(q + 1)2
· q − 1

q0 − 1
<
∑
r∈π′

3(r − 1)q−3(1− 1
r ) < q−1 log log q = α2,

where π′ is the set of odd prime divisors of f = logp q.

In conclusion,

Q(G, 3) <

3∑
i=1

a3
i /b

2
i + α1 + α2 < 2q−

1
2

for all q > 37. In addition, this upper bound gives Q(G, 3) < 1 if q > 13. The remaining
groups with q 6 13 can be checked using Magma. �

Lemma 4.7. If G0 = L2(q) and H is of type GL1(q) o S2, then b(G,H) 6 3, with equality if
and only if PGL2(q) < G.

Proof. Here H0 = D2(q−1)/d, |Ω| = 1
2q(q + 1) and we may identify Ω with the set of distinct

pairs of 1-dimensional subspaces of V . By Lemma 4.6, we have b(G,H) 6 3. In fact, we claim
that {α, β, γ} is a base for G, where

α = {〈e1〉, 〈e2〉}, β = {〈e1〉, 〈e1 + e2〉}, γ = {〈e1〉, 〈e1 + µe2〉}.

To see this, suppose x = Aφj fixes α, β and γ, where A ∈ GL2(q) and 0 6 j < f . We need
to show that A ∈ Z(GL2(q)) and j = 0, which is a routine calculation. For example, one
checks that x fixes α and β if and only if A ∈ Z(GL2(q)), and then it also fixes γ if and only

if µ = µp
j
. Since µ is a generator for F×q , it follows that j = 0 and this justifies the claim.

As explained in [19, Example 2.5] (also see [34, Table 2]), if G = PGL2(q) then H has a
unique regular orbit on Ω and thus b(G,H) = 2. As an immediate consequence, we deduce
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that b(G,H) = 3 if PGL2(q) < G (indeed, if Gα has a regular orbit, then the stabiliser of α
in PGL2(q) has at least |G : PGL2(q)| regular orbits). Let us also observe that

P(PGL2(q), 2) =
|G|
|Ω|2

=
4(q − 1)

q(q + 1)
,

which tends to 0 as q tends to infinity.

Since PGL2(q) has a trivial 2-point stabiliser, we immediately deduce that b(G,H) = 2
if G = G0. Moreover, by arguing as in the proof of [22, Lemma 7.9] for example, one can
show that if q is odd then (G0)α has exactly 1

4(q +m) regular orbits, where m = 7 if q ≡ 1
(mod 4), otherwise m = 5. Therefore, if q is odd then

P(L2(q), 2) =
(q − 1)(q +m)

2q(q + 1)
,

which tends to 1
2 .

Finally, to complete the proof we may assume that q is odd and G ∩ PGL2(q) = G0. Here
either G = 〈G0, φ

j〉 for some j with 0 6 j < f , or G = 〈G0, δφ
j〉 with 0 < j < f and f/(f, j)

even. In both cases, we claim that {α, β} is a base for G, where

α = {〈e1〉, 〈e2〉}, β = {〈e1 − e2〉, 〈e1 + µe2〉}.
To see this, let x = ABiφj , where A ∈ SL2(q), B = diag(µ, 1) ∈ GL2(q) and either i = 0 and
0 6 j < f , or 1 6 i < q − 1 and 0 < j < f . It suffices to show that x fixes α and β if and
only if A = ±I2 and i = j = 0. So let us assume x fixes α and β. Since x fixes α, it follows
that ABi is either diagonal or anti-diagonal.

Suppose ABi = diag(aµi, a−1) is diagonal. If x fixes both spaces in β, then

(e1 − e2)x = aµie1 − a−1e2 = λ(e1 − e2)

(e1 + µe2)x = aµie1 + a−1µp
j
e2 = η(e1 + µe2)

for some λ, η ∈ F×q . The first condition gives a2 = µ−i and using the second we deduce that

µp
j−1 = 1. Since µ has (multiplicative) order q − 1, it follows that j = 0 and thus i = 0 and

a2 = 1, so A = ±I2 as required. Similarly, if x interchanges the two 1-spaces in β, then we

deduce that µp
j+1 = 1, which contradicts the fact that µ has order q − 1.

Now suppose ABi =
(

0 a
−a−1µi 0

)
is anti-diagonal. If x fixes both spaces in β, then

(e1 − e2)x = −ae1 − a−1µie2 = λ(e1 − e2)

(e1 + µe2)x = aµp
j
e1 − a−1µie2 = η(e1 + µe2)

for scalars λ, η ∈ F×q . These conditions imply that µp
j+1 = 1, which is a contradiction as

above. Finally, if x interchanges both spaces in β then we get µi−1 = a2 and µp
j−1 = 1. The

latter condition implies that j = 0, which forces i = 0 and thus µ = a−2 is a square in Fq.
Once again we have reached a contradiction since µ is a generator for F×q . �

Lemma 4.8. If G0 = L2(q) and H is of type GL1(q2), then b(G,H) 6 3, with equality if
and only if PGL2(q) 6 G.

Proof. Here H0 = D2(q+1)/d, |Ω| = 1
2q(q−1) and Lemma 4.6 gives b(G,H) 6 3 and P(G, 3)→

1 as q →∞. The subdegrees for the action of PGL2(q) are presented in [34, Table 2] and we
see that there is no suborbit of size 2(q + 1). Therefore, b(G,H) = 3 if PGL2(q) 6 G.

To complete the proof, we may assume that q is odd and G∩PGL2(q) = G0. The subdegrees
for the action of G = G0 are computed in [22, Lemma 7.9] and we deduce that b(G,H) = 2
and

P(G, 2) =
(q + 1)(q −m)

2q(q − 1)
,
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where m = 1 if q ≡ 1 (mod 4) and m = 3 if q ≡ 3 (mod 4). In particular, P(G, 2) → 1
2 as

q →∞. As in the proof of the previous lemma, it now remains to consider the following two
cases:

(a) G = 〈G0, φ
j〉 with 1 6 j < f ;

(b) G = 〈G0, δφ
j〉 with 1 6 j < f and f/(f, j) even.

In both cases, we claim that b(G,H) = 2. To show this, it will be useful to identify G0

with the unitary group X0 = U2(q) and Ω with the set of orthogonal pairs of non-degenerate
1-dimensional subspaces of the natural module U for X0 over Fq2 . Fix an orthonormal basis
{u, v} for U with respect to the defining unitary form on U and set α = {〈u〉, 〈v〉} ∈ Ω.
Observe that

Ω = {α} ∪ {ωξ : ξ ∈ F×
q2
, ξq+1 6= −1},

where ωξ = {〈u+ ξv〉, 〈u− ξ−qv〉}. Note that ωξ = ω−ξ−q .

For the remainder of this proof, we will abuse notation by writing φ for the field auto-
morphism of X0 that corresponds to the map η 7→ ηp on Fq2 . In particular, we will assume
that

(au+ bv)φ = apu+ bpv

for all a, b ∈ Fq2 . Now X0 ∩ 〈φ〉 = 〈φf 〉 and 〈X0, φ〉 = X0.f . With this set up, the two cases
we need to consider are as described in (a) and (b) above, with G0 replaced by X0. Note that
in (b), the diagonal automorphism δ is the image of a diagonal matrix diag(λq−1, 1) ∈ GU2(q)
with respect to the basis {u, v} for U , where F×

q2
= 〈λ〉.

We claim that {α, β} is a base for G, where

β = {〈u+ λv〉, 〈u− λ−qv〉}.
To see this, let x = ABiφj , where

A =

(
a b
c d

)
∈ SU2(q), B =

(
λq−1 0

0 1

)
∈ GU2(q)

and 0 6 j < 2f with j 6= f . In addition, assume that either i = 0, or 1 6 i < q + 1 and
0 < j < 2f . Then to justify the claim, it suffices to show that x fixes α and β if and only if
A = ±I2 and i = j = 0.

Let us assume x fixes α and β. Since x fixes α, it is of the form(
aλi(q−1) 0

0 a−1

)
φj or

(
0 a

−a−1λi(q−1) 0

)
φj ,

according to whether or not x fixes or interchanges the two 1-spaces in α. Note that aq+1 = 1
since A ∈ SU2(q). This gives us two cases to consider.

Suppose A is diagonal and x fixes the two subspaces comprising β. By direct calculation,
we deduce that

a2 = λp
j−i(q−1)−1 = λq−qp

j−i(q−1), (5)

whence λ(q+1)(pj−1) = 1 and thus q2 − 1 divides (q + 1)(pj − 1) (recall that F×
q2

= 〈λ〉). Since

j 6= f we immediately deduce that j = 0 is the only possibility. Therefore i = 0 (recall that
i > 1 only if j > 0) and thus (5) implies that a2 = 1, so A = ±I2. Similarly, if A is diagonal

and x interchanges the spaces in β, then λ(q+1)(pj+1) = 1 and this is incompatible with the
fact that λ has (multiplicative) order q2 − 1.

Now assume A is anti-diagonal. If x fixes the two spaces in β then λ(q+1)(pj+1) = 1, which
is a contradiction as above. On the other hand, if x swaps the spaces in β then

a2 = λi(q−1)−pj+q = λi(q−1)+qpj−1

and thus λ(q+1)(pj−1) = 1. As above, it follows that i = j = 0 and thus a2 = λq−1. But

aq+1 = 1 so we have λ(q2−1)/2 = 1 and once again we have reached a contradiction.
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This justifies the claim and we conclude that b(G,H) = 2 in cases (a) and (b) above. This
completes the proof of the lemma. �

Lemma 4.9. Suppose G0 = L2(q), where q = 3k and k is an odd prime. If H is of type
GL2(3), then b(G,H) = 2 and P(G, 2)→ 1 as q →∞.

Proof. The case q = 27 can be checked using Magma, so let us assume q > 35. Here
H0 = L2(3) ∼= A4 and |H| 6 24k = a1. Now |xG| > 1

2q(q − 1) = b1 for all x ∈ H of prime

order (minimal if x is an involution) and thus Q(G, 2) < a2
1/b1. It is routine to check that

this upper bound is less than q−1/2 if q > 35 and it is less than 1 if q = 35. �

Lemma 4.10. Suppose G0 = L2(q) and H is of type 21+2
− .O−2 (2), where q = p > 7. Then

b(G,H) = 2 + δ7,q and P(G, 2)→ 1 as q →∞.

Proof. Here q = p > 7 and H0 = A4.c, where c = 2 if p ≡ ±1 (mod 8), otherwise c = 1 (see
[40, Proposition 4.6.7]). Therefore, |H| 6 24 = a1 and we note that |xG| > 1

2q(q − 1) = b1 for

all x ∈ H of prime order. This yields Q(G, 2) 6 a2
1/b1, which is less than q−1/2 if q > 109, and

it is less than 1 if q > 31. The remaining cases with q 6 31 can be checked using Magma. �

This completes the proof of Proposition 4.1.

5. Groups of Lie type: Parabolic actions

To complete the proof of Theorem 2, we may assume G is an almost simple group of Lie
type over Fq with socle G0 6= L2(q). We partition these groups into three collections according
to G0 and the structure of the maximal subgroup H. In this section, we consider the groups
where H is a parabolic subgroup; the remaining cases are handled in Sections 6 (classical
groups) and 7 (exceptional groups).

Remark 5.1. In order to avoid unnecessary repetition, if G0 is a classical group then we
will assume it is one of the following:

Lεn(q), n > 3; PSp4(q), n > 4; PΩε
n(q), n > 7.

In addition, we will assume that G0 6= L3(2),L4(2),PSp4(2)′ or PSp4(3), which is justified by
the existence of the following exceptional isomorphisms (see [40, Proposition 2.9.1]):

L3(2) ∼= L2(7), L4(2) ∼= A8, PSp4(2)′ ∼= A6, PSp4(3) ∼= U4(2).

Similarly, if G0 is an exceptional group, then we will assume G0 6= 2G2(3)′, G2(2)′ since
2G2(3)′ ∼= L2(8) and G2(2)′ ∼= U3(3).

The main result of this section is the following.

Proposition 5.2. Let G 6 Sym(Ω) be a finite almost simple primitive group with socle G0

and soluble point stabiliser H. Set b = b(G,H) and assume G0 6= L2(q) is a group of Lie type
and H is a maximal parabolic subgroup of G.

(i) We have 3 6 b 6 5, with b = 5 if and only if G0 = L4(3) and H is of type P2, or
G0 = U5(2) and H is of type P1.

(ii) The precise value of b is recorded in Tables 5 (G0 exceptional) and 6 (G0 classical).

In addition, P(G, 3)→ 1 as |G| → ∞.

Remark 5.3. We adopt the standard notation from [40] for maximal parabolic subgroups.
In particular, if G0 is a classical group with natural module V , then Pm denotes the stabiliser
of an m-dimensional totally singular subspace of V . Similarly, if G0 = Ln(q), then Pm,n−m
is the stabiliser of a flag 0 < W < U < V , where dimW = m < n/2 and dimU = n−m. If
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Case G0 Type of H Conditions
(a) L3(q) P1,2 G 66 〈PGL3(q), φ〉
(b) U3(q) P1

(c) Sp4(q) [q4]:C2
q−1 q = 2f > 4 and G 66 〈G0, φ〉

(d) G2(q) [q6]:C2
q−1 q = 3f > 3 and G 66 〈G0, φ〉

(e) 2B2(q) [q2]:Cq−1 q = 22m+1 > 8
(f) 2G2(q) [q3]:Cq−1 q = 32m+1 > 27

Table 2. Parabolic actions

G0 = PΩ+
8 (q) then we write P1,3,4 for a parabolic subgroup H of G such that H ∩G0 = L/Z

and

L = [q11]:[(q − 1)/d]2.
1

d
GL2(q).d2 < Ω+

8 (q)

with d = (2, q − 1) and Z = Z(Ω+
8 (q)). Note that in this case, H is maximal and soluble if

and only if q ∈ {2, 3} and G 66 PGO+
8 (q) (see [11, Table 8.50]).

To get started, we first determine the cases that we need to consider. As before, we set
H0 = H ∩G0. In Table 2, we write φ for a field automorphism of G0 of order f = logp q.

Lemma 5.4. Let G be a finite almost simple group of Lie type over Fq with socle G0 6= L2(q)
and a soluble maximal parabolic subgroup H. Then one of the following holds:

(i) G0 ∈ {Lεn(q),L6(q),PSp6(q),Ω7(q),PΩ+
8 (q)} with n 6 5 and q ∈ {2, 3}.

(ii) G0 is an exceptional group and one of the following holds:

(a) G = G2(3) and H = [35]:GL2(3).

(b) G0 = 3D4(q), H0 = [q11]:((q3 − 1) ◦ SL2(q)).(2, q − 1) and q ∈ {2, 3}.
(c) G0 = 2F4(2)′ and H0 = [29]:5:4 or [210]:S3.

(d) G = F4(2).2 and H = [222]:S2
3 .2.

(iii) (G,H) is one of the cases recorded in Table 2.

Proof. This follows by inspection of [42, Tables 16-19] for G0 classical and [42, Table 20] for
G0 exceptional. �

Proposition 5.5. Proposition 5.2 holds in cases (i) and (ii) of Lemma 5.4.

Proof. For the case in part (ii)(d), [23, Theorem 3] gives b(G,H) = 3 (here H = P2,3 in the
notation of [23]). All of the remaining groups can be handled using Magma (see Section
2.2). �

For the remainder of this section, we may assume (G,H) belongs to one of the infinite
families recorded in Table 2. Notice that in each case, H = NG(P ) where P is a Sylow
p-subgroup of G0. As before, if G0 is a classical group then we refer the reader to [20, Section
3] for information on the conjugacy classes of elements of prime order in Aut(G0).

Lemma 5.6. Suppose G0 = L3(q) and H is of type P1,2. Then either b(G,H) = 3, or
G = L3(4).D12 and b(G,H) = 4. Moreover, P(G, 3)→ 1 as q →∞.

Proof. Write q = pf and set d = (3, q − 1). As recorded in Table 2, the maximality of H
implies that G contains graph or graph-field automorphisms of G0. We have

H0 = [q3]:[(q − 1)2/d], |Ω| = (q2 + q + 1)(q + 1)

and one checks that log |G|/ log |Ω| > 2 (recall that q > 3). The cases with q 6 27 can be
checked using Magma. (Note that if q > 5, then it suffices to show that b(G,H) 6 3 for
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G = Aut(G0), which is easily checked by random search, noting that H = NG(P ) for a Sylow
p-subgroup P of G0.) For the remainder of the proof, we will assume that q > 27. Our aim is
to show that Q(G, 3) < 1 (and also Q(G, 3)→ 0 as q tends to infinity).

First assume x ∈ G0 is an element of prime order r. Let χ be the corresponding permutation
character of G0, so χ(x) = |CΩ(x)|. The character table of G0 is presented in [56, Table 2]
and we observe that

χ = χ1 + 2χq(q+1) + χq3

as a sum of unipotent characters (in the notation of [56, Table 2]). Here χ1 and χq3 are the
trivial and Steinberg characters of G0, respectively.

Suppose x is unipotent and let Ji denote a standard unipotent Jordan block of size i. If x
has Jordan form [J2, J1] on the natural module, then we read off χ(x) = 2q + 1 (note that
there is an error in [56, Table 2]: the Steinberg character vanishes on all nontrivial unipotent
elements, so χq3(x) = 0 and not q as stated in the table). Similarly, χ(x) = 1 if x = [J3]. For

x = [J2, J1] we have |xG0 | = (q+1)(q3−1) and we deduce that |xG0∩H0| = 2q2−q−1. On the
other hand, if x is regular then |xG0 | = q(q2−1)(q3−1)/d and we get |xG0∩H0| = q(q−1)2/d.
Therefore, the combined contribution to Q(G, 3) from unipotent elements is

α =
(q2 − q − 1)3

(q + 1)2(q3 − 1)2
+

q3(q − 1)6

q2(q2 − 1)2(q3 − 1)2
< q−2.

Next assume x ∈ G0 is semisimple and note that we may assume r divides q− 1 (otherwise
xG ∩ H is empty). If r = 2 then |xG0 | = q2(q2 + q + 1) and χ(x) = 3(q + 1), which gives
|xG0 ∩H0| = 3q2. Therefore, the contribution from semisimple involutions is equal to

β1 =
(3q2)3

q4(q2 + q + 1)2
=

27q2

(q2 + q + 1)2
.

If x is regular then |xG0 | = q3(q + 1)(q2 + q + 1) and χ(x) = 6, so |xG0 ∩H0| = 6q3. Let
n(r) be the number of G0-classes of regular semisimple elements of order r. Then n(3) = 1
and n(r) = 1

6(r − 1)(r − 2) if r > 5. Therefore, the combined contribution to Q(G, 3) from
these elements is equal to

β2 =

(
δ +

1

6

∑
r∈π

(r − 1)(r − 2)

)
· (6q3)3

(q3(q + 1)(q2 + q + 1))2
,

where π is the set of primes r > 5 dividing q − 1 and we set δ = 1 if d = 3, otherwise δ = 0.
Similarly, if x ∈ G0 is non-regular then |xG0 | = q2(q2 + q + 1) and χ(x) = 3(q + 1), which
gives |xG0 ∩H0| = 3q2. Since there are r− 1 distinct G0-classes of such elements if r > 5 (and
none if r = 3), the contribution here is equal to

β3 =

(
δ +

∑
r∈π

(r − 1)

)
· 27q2

(q2 + q + 1)2
,

where δ and π are defined as above. Therefore, the combined contribution from all semisimple
elements in G0 is equal to β0 = (1− δ2,p)β1 + β2 + β3.

For 27 < q < 1000, we calculate that β0 <
1
7 . Now assume q > 1000. If q − 1 is a prime,

then q is even, δ = 0, π = {q − 1} and it is routine to check that β0 < 70q−1. Now assume
q − 1 is composite. Since |π| < log q and r 6 1

2(q − 1), we deduce that

δ +
1

6

∑
r∈π

(r − 1)(r − 2) < 1 +
1

24
(q − 3)(q − 5) log q

and

δ +
∑
r∈π

(r − 1) < 1 +
1

2
(q − 3) log q.

These estimates yield upper bounds on β2 and β3 and one checks that β0 < 250q−1.
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To complete the analysis of semisimple elements, it remains to consider the contribution
from elements of order 3 in PGL3(q) \G0, so let us assume d = 3. There are four G0-classes
of such elements; two of the classes are represented by elements that are the images of
non-regular elements of order 3 in GL3(q), while the latter two are the images of elements
of order 9 that do not fix any 1-spaces over Fq (in particular, xG ∩ H is empty for these
elements). If x is the image of a non-regular element of order 3 then |xG0 | = q2(q2 + q + 1)
and we calculate that |xG0 ∩ H| = 3q2 (this can be computed directly and it also follows
from the fact that χ(y) = 3(q + 1) for all non-regular semisimple elements y ∈ G0), so the
contribution from these elements is equal to 2β1.

Therefore, the entire contribution to Q(G, 3) from semisimple elements is equal to

β = (1− δ2,p + 2δ3,d)β1 + β2 + β3

and we conclude that β < 1
7 if 27 < q < 1000 and β < 250q−1 if q > 1000.

Next assume x ∈ G is a field automorphism of prime order r, so q = qr0. Set G̃ = PGL3(q)

and H̃ = [q3]:C2
q−1 = NG̃(P ). Then

|xG̃| = q3(q2 − 1)(q3 − 1)

q3/r(q2/r − 1)(q3/r − 1)
= f(q, r)

and as noted in the proof of [41, Lemma 6.1], we have

|xG̃ ∩ H̃x| = q3(q − 1)2

q3/r(q1/r − 1)2
= g(q, r).

Therefore, the contribution to Q(G, 3) from field automorphisms is

ϕ =
∑
r∈π

(r − 1) · g(q, r)3f(q, r)−2,

where π is the set of prime divisors of logp q = f . One checks that ϕ < 1
2 if 27 < q < 10000,

so let us assume q > 10000. (It is worth noting here that ϕ > 1 if q = 27, which explains why
we used Magma to handle this case.) Set e(q, r) = (r − 1) · g(q, r)3f(q, r)−2.

If q0 ∈ {2, 3} then ϕ = e(qr0, r) < 3q−1/2. Now assume q0 > 4 and observe that

|xG̃ ∩ H̃x| < 2q5(1− 1
r ), |xG̃| > q8(1− 1

r )

and thus

e(q, r) < (r − 1) · 8q−(1− 1
r ) = 8(r − 1)q

−(r−1)
0 .

For r > 3, this implies that e(q, r) < 8q−1/2 and direct calculation gives e(q, 2) < 2q−1/2.
Since |π| < log log q, we conclude that

ϕ < 8q−
1
2 log log q

for q > 10000.

Next suppose x ∈ G is an involutory graph-field automorphism. Here q = q2
0,

|xG̃ ∩ H̃x| = q3(q − 1)2

q3/2(q − 1)
= q3/2(q − 1)

(since a Borel subgroup of CG̃(x) = PGU3(q1/2) has order q3/2(q − 1)) and

|xG̃| = q3(q2 − 1)(q3 − 1)

q3/2(q − 1)(q3/2 + 1)
= q3/2(q + 1)(q3/2 − 1).

Therefore, the contribution from these elements is equal to

|xG̃ ∩ H̃x|3

|xG̃|2
=

q3/2(q − 1)3

(q + 1)2(q3/2 − 1)2
< q−

1
2 .
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Finally, let us assume x is an involutory graph automorphism of G0. Without loss of
generality, replacing x by a conjugate if necessary, we may assume that x is the inverse-

transpose map. We claim that |CΩ(x)| = q+ 1, which implies that |xG̃ ∩ H̃| = q2(q− 1). Since

|xG̃| = q2(q3 − 1), it follows that the contribution from graph automorphisms is at most

(q2(q − 1))3

(q2(q3 − 1))2
=

q2(q − 1)

(q2 + q + 1)2
< q−1.

To establish the claim, it is helpful to identify Ω with the set of flags 0 < U < W < V of the
natural module V for G0. Let {e1, e2, e3} be a basis for V . Now x maps the 1-space U = 〈u〉 to
the 2-space U⊥ = {v ∈ V : uT v = 0 for all u ∈ U}. Therefore, x fixes a flag 0 < U < W < V
if and only if U < U⊥, whence |CΩ(x)| is the number of 1-spaces 〈a1e1 + a2e2 + a3e3〉 with
a2

1 + a2
2 + a2

3 = 0.

If q is even, then a2
1 + a2

2 + a2
3 = 0 if and only if a3 = a1 + a2, so there are q2 − 1 choices

for a1e1 + a2e2 + a3e3 and thus q + 1 distinct 1-spaces with the desired property. For q odd,
we see that |CΩ(x)| is the number of totally isotropic 1-spaces in a 3-dimensional orthogonal
space. Therefore, |CΩ(x)| = |SO3(q) : L| where L is a Borel subgroup of SO3(q), which once
again gives |CΩ(x)| = q + 1 as claimed.

We conclude that if 27 < q < 10000, then

Q(G, 3) <
1

2
+

1

7
+ q−

1
2 + q−1 + q−2 < 1

and thus b(G,H) = 3. Similarly, if q > 10000 then the above estimates imply that

Q(G, 3) < (1 + 8 log log q)q−
1
2 + 251q−1 + q−2

and the result follows. �

Lemma 5.7. If G0 = U3(q) and H is of type P1, then b(G,H) = 3 and P(G, 3) → 1 as
q →∞.

Proof. This is very similar to the proof of the previous lemma. Write q = pf and d = (3, q+1).
Note that q > 3 and

H0 = [q3]:C(q2−1)/d, |Ω| = q3 + 1.

We have log |G|/ log |Ω| > 2, so b(G,H) > 3. The cases with q 6 8 can be checked using
Magma, so for the remainder of the proof we will assume that q > 8.

Let χ be the corresponding permutation character of G0. The character table of G0 is
given in [56, Table 2] and we observe that

χ = χ1 + χq3

is the sum of the trivial and Steinberg characters of G0. Let x ∈ G0 be an element of prime
order r.

If x is unipotent then χ(x) = 1 + 0 (as noted in the proof of the previous lemma, there is a
misprint in [56, Table 2]), so |xG0 ∩H0| = q − 1 if x = [J2, J1] and |xG0 ∩H0| = q(q2 − 1)/d
if x = [J3]. It follows that the contribution to Q(G, 3) from unipotent elements is

(q − 1)3

(q − 1)2(q3 + 1)2
+

q3(q2 − 1)3

q2(q2 − 1)2(q3 + 1)2
< q−3.

Next suppose x is semisimple and note that we may assume r divides q2 − 1. If r = 2
then |xG0 | = q2(q2 − q + 1) and χ(x) = q + 1, which gives |xG0 ∩H0| = q2. Therefore, the
contribution from semisimple involutions is equal to

β1 =
q6

q4(q2 − q + 1)2
=

q2

(q2 − q + 1)2
.
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Now assume r > 3. Let n(r) be the number of G0-classes of regular semisimple elements of
order r. If r divides q − 1 then x is regular, |xG0 | = q3(q3 + 1), n(r) = 1

2(r− 1) and χ(x) = 2,

which gives |xG0 ∩H0| = 2q3. Therefore,

β2 =
1

2

∑
r∈π

(r − 1) · 8q3

(q3 + 1)2
<

4(q − 2)q3 log q

(q3 + 1)2
= β′2

is the contribution from these elements, where π is the set of primes r > 3 dividing q − 1.

Now assume r divides q + 1. For now, let us also assume that r > 5. If x is regular, then
χ(x) = 0 so we may assume x is non-regular. Then |xG0 | = q2(q2 − q + 1), n(r) = r − 1 and
χ(x) = q + 1, so |xG0 ∩H0| = q2 and the contribution from these elements is equal to

β3 =
∑
r∈π′

(r − 1) · q2

(q2 − q + 1)2
<

q2 log q

(q2 − q + 1)2
= β′3,

where π′ is the set of primes r > 5 dividing q + 1.

To complete the analysis of semisimple elements, let us assume r = d = 3. Suppose x ∈ G0

and observe that |H0| is divisible by 3 if and only if q ≡ −1 (mod 9). So let us assume q ≡ −1
(mod 9). If x is regular, then χ(x) = 0. There are also two non-regular classes of elements
x ∈ G0 of order 3 with |xG0 | = q2(q2 − q + 1) and χ(x) = q + 1 (in the notation of [56, Table

2], these elements are of type C
(k)
4 ). Here we get |xG0 ∩H0| = q2. In addition, there are two

classes of elements of order 3 in PGU3(q) \G0, but none of them fix a 1-dimensional subspace
of the natural module for G0 (indeed, on lifting to GU3(q), none of these elements have an
eigenvalue in Fq2). It follows that the total contribution to Q(G, 3) from elements of order 3
when d = 3 is at most

β4 =
2q2

(q2 − q + 1)2
.

We conclude that the combined contribution from semisimple elements is less than

β1 + β′2 + β′3 + β4 =
(3 + log q)q2

(q2 − q + 1)2
+

4(q − 2)q3 log q

(q3 + 1)2
< 2q−1

for all q > 8.

Next let us assume x is a field automorphism of prime order r, so q = qr0 and r is odd. Set

G̃ = PGU3(q) and H̃ = [q3]:Cq2−1 = NG̃(P ), where P is a Sylow p-subgroup of G0. Then

|xG̃| = q3(q2 − 1)(q3 + 1)

q3/r(q2/r − 1)(q3/r + 1)
= f(q, r) > q8(1− 1

r )

and

|xG̃ ∩ H̃x| = q3(q2 − 1)

q3/r(q2/r − 1)
= g(q, r) < 2q5(1− 1

r ),

so the total contribution to Q(G, 3) from field automorphisms is

ϕ =
∑
r∈π

(r − 1) · g(q, r)3f(q, r)−2,

where π is the set of odd prime divisors of logp q = f . One checks that ϕ < 1
2 if 8 < q < 10000,

so let us assume q > 10000. Set e(q, r) = (r − 1) · g(q, r)3f(q, r)−2, so

e(q, r) < (r − 1) · 8q−(1− 1
r ) = 8(r − 1)q

−(r−1)
0 < 8q−

1
2

and we conclude that
ϕ < 8q−

1
2 log log q

for q > 10000.

Finally, let us assume x ∈ G is an involutory graph automorphism. Fix a standard unitary
basis {e1, v, f1} for the natural module V , where e1 and f1 are isotropic, (e1, f1) = (v, v) = 1
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and (e1, v) = (f1, v) = 0 with respect to the defining unitary form ( , ) on V . It will be
convenient to identify Ω with the set of totally isotropic 1-dimensional subspaces of V . Without
loss of generality, we may assume that x corresponds to the involutory automorphism of Fq2 ,
so x sends the subspace 〈ae1 +bv+cf1〉 of V to 〈aqe1 +bqv+cqf1〉. The 1-space 〈ae1 +bv+cf1〉
is totally isotropic if and only if acq + bq+1 + caq = 0, and it is fixed by x if and only if
a, b, c ∈ Fq. Therefore, |CΩ(x)| is equal to the number of 1-spaces 〈ae1 + bv + cf1〉 with
a, b, c ∈ Fq and 2ac+ b2 = 0.

If q is even then b = 0 and there are (q2 − 1)/(q − 1) = q + 1 choices for (a, c), whence
|CΩ(x)| = q + 1. Now assume q is odd. If b = 0 then either a or c is 0, so 〈e1〉 and 〈f1〉 are
the only options. If b 6= 0, then we may assume b = 1 by scaling, so ac = −1

2 and there
are q − 1 possibilities for (a, c). So once again we get |CΩ(x)| = 2 + (q − 1) = q + 1. Now

|xG̃| = q2(q3 + 1) and it follows that |xG̃ ∩H| = q2(q + 1). Therefore, the contribution to
Q(G, 3) from graph automorphisms is equal to

q2(q + 1)

(q2 − q + 1)2
,

which is less than 2q−1 for q > 8.

To conclude, we observe that the above estimates imply that

Q(G, 3) <
1

2
+ 4q−1 + q−3 < 1

if 8 < q < 10000 and

Q(G, 3) < 8q−
1
2 log log q + 4q−1 + q−3

if q > 10000. The result follows. �

Lemma 5.8. If G0 = Sp4(q) and H is of type [q4]:C2
q−1, then b(G,H) = 3 and P(G, 3)→ 1

as q →∞.

Proof. Here q = 2f > 4 and the maximality ofH implies thatG contains graph automorphisms.
We have

H0 = [q4]:C2
q−1, |Ω| = (q + 1)2(q2 + 1),

so log |G|/ log |Ω| > 2 and thus b(G,H) > 3. For q 6 32, it is easy to check that b(G,H) 6 3
using Magma [10]. For the remainder, we may assume that q > 64.

Write G0 = Ḡσ = Sp4(q), where Ḡ = Sp4(k), k is the algebraic closure of F2 and σ is a
Steinberg endomorphism of Ḡ. Set H0 = H ∩ G0. Then H0 = H̄σ, where H̄ is a σ-stable
Borel subgroup of Ḡ, and we fix a σ-stable maximal torus T̄ of Ḡ contained in H̄ such that
T̄σ = C2

q−1. Let χ be the permutation character corresponding to the action of G0 on Ω. Since

H0 is a Borel subgroup of G0, it follows that χ = RḠ
T̄

(1T̄ ) is the Deligne-Lusztig character
of G0 corresponding to the trivial conjugacy class in the Weyl group W = D8 of G0. By
adopting the notation in [35, Table 2.8], we can express

χ = θ0 + 2θ9 + θ11 + θ12 + θ13 (6)

as a sum of unipotent characters of G0 (in this notation, θ0 and θ13 are the trivial and
Steinberg characters of G0). Let x ∈ G0 be an element of prime order r.

First assume r = 2, so x is of type b1, a2 or c2 with respect to the notation in [1]. Since G
contains graph automorphisms, we note that b1 and a2 are G-conjugate. The values of the
unipotent characters in (6) at unipotent elements are recorded in [35, Table 2.10]. If x is of
type b1 or a2, then |xG| = 2(q4−1) and χ(x) = (q+1)2, which implies that |xG∩H| = 2(q2−1).
Similarly, if x is of type c2 then |xG| = (q2 − 1)(q4 − 1) and χ(x) = 2q + 1, which gives
|xG ∩H| = (2q + 1)(q − 1)2. We conclude that the contribution to Q(G, 3) from unipotent
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elements is precisely

(2(q2 − 1))3

(2(q4 − 1))2
+

((2q + 1)(q − 1)2)3

((q2 − 1)(q4 − 1))2
< 2q−2.

Now assume r is odd and divides q − 1 (note that xG ∩H is empty if r does not divide
q − 1). Suppose x is regular, so r > 5, |xG0 | = q4(q + 1)2(q2 + 1) and CḠ(x) is a maximal
torus. Here we calculate that χ(x) = |W | = 8 (for example, this is easily computed via [35,

Lemma 2.2.23]), which gives |xG0 ∩H0| = 8q4. Since there are
(

(r−1)/2
2

)
= 1

8(r − 1)(r − 3)
distinct G0-classes of regular semisimple elements of order r, it follows that the combined
contribution from regular semisimple elements is precisely∑

r∈π

1

8
(r − 1)(r − 3) · (8q4)3

(q4(q + 1)2(q2 + 1))2
=
∑
r∈π

(r − 1)(r − 3) · 64q4

(q + 1)4(q2 + 1)2
,

where π is the set of odd prime divisors of q − 1. Since |π| < log q and r 6 q − 1, this is at
most

β1 =
64(q − 2)(q − 4)q4 log q

(q + 1)4(q2 + 1)2
.

Now assume r is odd and x is non-regular, so |xG0 | = q3(q + 1)(q2 + 1). Using [35, Lemma
2.2.23] we calculate that χ(x) = 4(q + 1), which yields |xG0 ∩H0| = 4q3. Since there are r− 1
distinct G0-classes of such elements, the contribution here is equal to∑

r∈π
(r − 1) · (4q3)3

(q3(q + 1)(q2 + 1))2
=
∑
r∈π

64(r − 1) · q3

(q + 1)2(q2 + 1)2
,

which is at most

β2 =
64(q − 2)q3 log q

(q + 1)2(q2 + 1)2
.

We conclude that the total contribution to Q(G, 3) from semisimple elements is less than
β1 + β2 < 12q−1.

Next assume x ∈ G is a field automorphism of order r, so q = qr0 and

|xG0 | = q4(q2 − 1)(q4 − 1)

q4/r(q2/r − 1)(q4/r − 1)
= f(q, r).

As before, CH0(x) is a Borel subgroup of CG0(x) = Sp4(q0) and this implies that

|xG0 ∩H0x| =
q4(q − 1)2

q4/r(q1/r − 1)2
= g(q, r).

Since there are r − 1 distinct G0-classes of field automorphisms of order r in Aut(G0), it
follows that the combined contribution to Q(G, 3) from field automorphisms is equal to

ϕ =
∑
r∈π

(r − 1) · g(q, r)3f(q, r)−2,

where π is the set of prime divisors of f = log q. Set e(q, r) = (r − 1) · g(q, r)3f(q, r)−2. If
26 6 q 6 211 then it is easy to check that ϕ < 1

10 , so let us assume that q > 212.

If f = r then ϕ = e(q, r) and one checks that this is less than q−1. Now assume f is

composite, so q0 = q1/r > 4 for each r ∈ π. This implies that

f(q, r) > q10(1− 1
r ), g(q, r) < 2q6(1− 1

r )

and thus
e(q, r) < 8(r − 1)q−2(1− 1

r ) = 8(r − 1)q
−2(r−1)
0 6 4q−1

for all r > 3. Since e(q, 2) < 2q−1, we deduce that

ϕ < 2q−1 + |π| · 4q−1 < 2q−1 + 4q−1 log log q



22 TIMOTHY C. BURNESS

for all q > 212.

Finally, let us assume x is an involutory graph automorphism of G0, so f is odd and

|xG ∩H| = q4(q − 1)2

q2(q − 1)
= q2(q − 1), |xG| = |Sp4(q)|

|2B2(q)|
= q2(q2 − 1)(q + 1)

since CH0(x) is a Borel subgroup of CG0(x) = 2B2(q). Therefore, the contribution from these
elements is q2(q − 1)(q + 1)−4 < q−1.

By bringing the above bounds together, we conclude that if q > 64 then

Q(G, 3) < 13q−1 + 2q−2 + η,

where η = 1
10 if q 6 211, otherwise η = 2q−1 + 4q−1 log log q. Therefore, Q(G, 3) < 1 for all

q > 64 and we also observe that Q(G, 3)→ 0 as q →∞. �

Lemma 5.9. If G0 = G2(q) and H is of type [q6]:C2
q−1, then b(G,H) = 3 and P(G, 3)→ 1

as q →∞.

Proof. Here q = 3f and the maximality of H implies that G contains graph automorphisms.
The cases q ∈ {3, 9} can be handled using Magma, so let us assume q > 27. Note that

H0 = [q6]:C2
q−1, |Ω| = (q + 1)(q5 + q4 + q3 + q2 + q + 1)

and log |G|/ log |Ω| > 2, whence b(G,H) > 3.

Let χ be the corresponding permutation character of G0. As explained in [41, Section 2],
we can decompose χ as a sum

χ = Rφ1,6 +Rφ′1,3 +Rφ′′1,3 + 2Rφ2,2 + 2Rφ2,1 +Rφ1,0

where each Rφ is an almost character of G0 labelled by an irreducible character φ of the
Weyl group of G0 (here we are using the labelling given in [29, Section 13.2]). Let x ∈ G0 be
an element of prime order r. As usual, we may assume r divides |H0|, so either r = 3 or r
divides q − 1.

First assume r = 3, so x is unipotent. The restriction of the Rφ to unipotent elements are
called the Green functions of G0, which are polynomials in q with non-negative coefficients.
The full character table of G0 is available in [33] and all of the relevant Green functions
have been computed (see [48], for example). This allows us to read off χ(x) for each element
x ∈ G0 of order 3 and we obtain the following results, where we use the labels from [44, Table
22.2.6] for the unipotent classes in the ambient algebraic group Ḡ = G2 (note that there are
two G-classes of elements of type G2(a1)):

χ(x) |xG| |xG ∩H|
A1 (q + 1)(q2 + q + 1) 2(q6 − 1) 2(q2 + q + 1)(q − 1)

(Ã1)3 2q2 + 2q + 1 (q2 − 1)(q6 − 1) (2q2 + 2q + 1)(q − 1)2

G2(a1) 2q + 1 1
2q

2(q2 − 1)(q6 − 1) 1
2q

2(q − 1)2(2q + 1)

We deduce that the contribution to Q(G, 3) from unipotent elements is less than q−2.

Now assume r 6= 3, so r divides q − 1 and CḠ(x) is either A1Ã1 (r = 2 only), A1T1, Ã1T1

or T2, where Ã1 denotes an A1 subgroup generated by short root subgroups and Ti is an
i-dimensional torus. We refer the reader to [47] for a convenient source of information on the
semisimple conjugacy classes in G0 (the original reference is [30]). In each case, we compute
χ(x) by applying [41, Corollary 3.2], which can be implemented in Magma (alternatively, one
can also do this using [35, Lemma 2.2.23]). In this way, we obtain the results presented below,
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where n denotes the number of G0-classes of semisimple elements with the given centraliser:

|CG0(x)| n χ(x) |xG0 ∩H0|
A1Ã1 q2(q2 − 1)2 1 3(q + 1)2 3q4

A1T1 q(q − 1)(q2 − 1) 1
2(q − 3) 6(q + 1) 6q5

Ã1T1 q(q − 1)(q2 − 1) 1
2(q − 3) 6(q + 1) 6q5

T2 (q − 1)2 1
12(q2 − 8q + 15) 12 12q6

One checks that the total contribution to Q(G, 3) from semisimple elements is less than q−2.

Now suppose x ∈ G is a field automorphism of prime order r. Then q = qr0 and we have

|xG ∩H| = q6(q − 1)2

q6
0(q0 − 1)2

< 2q8(1− 1
r ), |xG| = |G2(q)|

|G2(q0)|
> q14(1− 1

r )

so the contribution to Q(G, 3) from these elements is less than∑
r∈π

(r − 1) · 8q−4(1− 1
r ) < |π| · q−1 < q−1 log log q,

where π is the set of prime divisors of f = log3 q.

Finally, suppose x ∈ G is an involutory graph automorphism. Here f is odd and CH0(x) is
a Borel subgroup of CG0(x) = 2G2(q), so

|xG ∩H| = q3(q − 1), |xG| = q3(q − 1)(q3 − 1)

and the contribution from graph automorphisms is equal to q3(q − 1)(q3 − 1)−2 < q−2. We
conclude that if q > 27, then

Q(G, 3) < 3q−2 + q−1 log log q

and the result follows. �

Finally, we turn to the cases labelled (e) and (f) in Table 2.

Lemma 5.10. Suppose G0 = 2B2(q) or 2G2(q) and H is of type [q2]:Cq−1 or [q3]:Cq−1,
respectively. Then b(G,H) = 3 and P(G, 3)→ 1 as q →∞.

Proof. This follows immediately from [23, Theorem 3(i)]. �

This completes the proof of Proposition 5.2.

6. Classical groups: Non-parabolic actions

We are now ready to complete the proof of Theorem 2 for classical groups by handling
the remaining cases where G0 6= L2(q) and H is a non-parabolic subgroup of G. We continue
to assume (as we may) that G0 satisfies the conditions presented in Remark 5.1. Our main
result is the following.

Proposition 6.1. Let G 6 Sym(Ω) be a finite almost simple primitive classical group with
socle G0 and soluble point stabiliser H. Set b = b(G,H) and assume G0 6= L2(q) and H is
non-parabolic.

(i) We have b 6 4, with b > 2 if and only if (G,H, b) is one of the cases in Table 7.

(ii) In addition, P(G, 2)→ 1 as |G| → ∞.

In order to prove this result, we first need to determine the possibilities for G and H.

Lemma 6.2. Let G be a finite almost simple classical group over Fq with socle G0 6= L2(q)
and a maximal soluble non-parabolic subgroup H. Then one of the following holds:

(i) G0 ∈ {Lε3(q),Lε4(q),Lε5(q),PSp6(q)} ∪ {L3(4),Ω7(3),PSp8(3),Ω+
8 (2)} with q ∈ {2, 3}.

(ii) G0 = Lεn(3), n ∈ {6, 8} and H is of type GLε2(3) o Sn/2.
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Case G0 Type of H Conditions
(a) Lεn(q) GLε1(qn) n > 3 prime; (n, q, ε) 6= (3, 3,−), (5, 2,−)
(b) Lεn(q) GLε1(q) o Sn n = 3, 4; q > 5 if ε = +
(c) PΩ+

8 (q) Oε
2(q) o S4 q > 5 if ε = +

(d) PΩ+
8 (q) O−2 (q2)×O−2 (q2) G 66 〈PGO+

8 (q), φ〉
(e) Sp4(q) Oε

2(q) o S2 q > 4 even, G 66 〈G0, φ〉
(f) Sp4(q) O−2 (q2) q > 4 even, G 66 〈G0, φ〉
(g) U3(q) GU3(2) q = 2k, k > 3 prime
(h) Lε3(q) 31+2.Sp2(3) q = p ≡ ε (mod 3)

Table 3. Non-parabolic actions of classical groups

(iii) G0 = Un(2), n ∈ {6, 9, 12} and H is of type GU3(2) o Sn/3.

(iv) G0 = PΩ+
n (3), n ∈ {8, 12, 16} and H is of type O+

4 (3) o Sn/4.

(v) (G,H) is one of the cases recorded in Table 3.

Proof. This follows by inspecting [42, Tables 16–19]. �

Proposition 6.3. Proposition 6.1 holds in cases (i)–(iv) of Lemma 6.2.

Proof. All of the groups arising in part (i) can be handled using Magma in the usual manner
(via AutomorphismGroupSimpleGroup and MaximalSubgroups).

Now let us consider the cases in (ii), (iii) and (iv). The case G0 = U6(2) with H of type
GU3(2) o S2 can be treated in the same way as those in (i) and one checks that b(G,H) = 3.
The special case where G0 = PΩ+

8 (3) and H is of type O+
4 (3) o S2 was discussed in Example

2.6 and we find that b(G,H) 6 3, with equality if and only if |G : G0| > 6.

In all of the remaining cases, we claim that b(G,H) = 2. To prove this, we may assume that
G = Aut(G0). If G0 = L6(3) then we can use the MaximalSubgroups function in Magma to
construct H and we quickly deduce that b(G,H) = 2 by random search. In the remaining
cases, we have

G0 ∈ {U6(3),Lε8(3),U9(2),U12(2),PΩ+
12(3),PΩ+

16(3)}
and the MaximalSubgroups function is ineffective.

As noted in Example 2.4, if G0 = U6(3) and H is of type GU2(3) o S3, then H = NG(K)
for some subgroup K of order 210 and we can use this observation to construct G and H as
permutation groups of degree 22204 (see Example 2.4 for the details). It is then straightforward
to find an element x ∈ G with H ∩Hx = 1. The cases with G0 = Lε8(3) can be handled in
an entirely similar fashion, using the fact that H = NG(K) with |K| = 212−ε. Similarly, if
G0 = U9(2) and H is of type GU3(2) o S3, then H = NG(K) for a subgroup K < G0 of order
38 and we can treat this case in the same way. We refer the reader to Example 2.5 for the
case where G0 = PΩ+

12(3) and H is of type O+
4 (3) o S3.

The final two cases are more difficult to handle computationally and we will show that
b(G,H) = 2 by establishing the bound Q(G, 2) < 1.

First assume G0 = U12(2) and H is of type GU3(2) o S4. By [40, Proposition 4.2.9] we have

H0 = [33].U3(2)4.33.S4, H ∩ PGU12(2) 6 [33].(PGU3(2) o S4).

Let N = [33] be the normal subgroup of H0 and let us view H as the stabiliser in G of an
orthogonal decomposition V = V1 ⊥ V2 ⊥ V3 ⊥ V4 of the natural module, where each Vi is
a non-degenerate 3-space. Let x ∈ H be an element of order r, so r ∈ {2, 3}. We refer the
reader to [20, Section 3.3] for information on the conjugacy classes of prime order elements in
Aut(G0), which we will repeatedly use in the following analysis. Note that |H| < 242 = a1.
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Recall that if X is a subset of a finite group, then ir(X) denotes the number of elements of
order r in X.

First assume r = 3, so x is semisimple. If some conjugate of x induces a nontrivial
permutation of the Vi, then each cube root of unity arises as an eigenvalue of x on V with
multiplicity at least 3 and we deduce that

|xG| > |GU12(2)|
|GU6(2)||GU3(2)|2

> 289 = b1.

Now assume every element in xG ∩H fixes each Vi and observe that there are at most

|N | · (1 + i3(PGU3(2)4)) < 231 = a2

such elements in H. Therefore, the contribution to Q(G, 2) from these elements x ∈ H of
order 3 with |xG| > 3.262 = b2 is less than a2

2/b2 = 1
3 . So let us assume |xG| 6 3.262. Then one

checks that the possibilities for x, up to Aut(G0)-conjugacy, are as follows (here F×4 = 〈ω〉):
i x ai bi
3 [I11, ω] 48 221

4 [I10, ωI2] 912 239

5 [I10, ω, ω
2] 1824 240

6 [I9, ωI3] 8644 253

7 [I9, ωI2, ω
2] 22512 256

In this table, we also record bounds |xG0 ∩H| 6 ai and |xG0 | > bi. For example, if x is the
image of [I10, ω, ω

2] ∈ GU12(2) then

|xG0 | = |GU12(2)|
|GU10(2)||GU1(2)|2

> 240

and we calculate that

|xG0 ∩H| 6
(

4

1

)
|GU3(2)|
|GU1(2)|3

+ 2

(
4

2

)(
|GU3(2)|

|GU2(2)||GU1(2)|

)2

= 1824.

We conclude that the combined contribution to Q(G, 2) from elements of order 3 is less than

a2
1/b1 + a2

2/b2 + 2
7∑
i=3

a2
i /bi <

1

2
.

Now let us assume x ∈ H is an involution. Suppose for now that x is unipotent, so x has
Jordan form [Jk2 , J

12−2k
1 ] for some 1 6 k 6 6. If x = [J2, J

10
1 ] then

|xG ∩H| 6
(

4

1

)
|GU3(2)|

23|GU1(2)|2
= 36 = a8, |xG| =

|GU12(2)|
221|GU10(2)||GU1(2)|

> 221 = b8.

Similarly, if x = [J2
2 , J

8
1 ] then |xG ∩H| 6

(
4
2

)
92 = 486 = a9 and |xG| > 239 = b9. For all other

unipotent involutions, one checks that |xG| > 253 = b10 and we note that

i2(H0) 6 i2(PGU3(2) o S4) = 279567 < 219 = a10.

Therefore, the total contribution to Q(G, 2) from unipotent involutions is less than

10∑
i=8

a2
i /bi < 2−10.

To complete the argument in this case, we may assume x ∈ H is an involutory graph
automorphism. If CG0(x) = Sp12(2), then |xG| > 263 = b11 and the proof of [15, Proposition
2.7] gives the bound |xG∩H| 6 |GU3(2)|2 < 219 = a11. On the other hand, if CG0(x) 6= Sp12(2),
then |xG| > 275 = b12 and we note that H contains fewer than

|H0/N | = |U3(2)|4.33.|S4| < 235 = a12
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involutory graph automorphisms. Therefore, the contribution from graph automorphisms is
less than a2

11/b11 + a2
12/b12 < 2−4 and we conclude that

Q(G, 2) < 2−1 + 2−10 + 2−4 < 1,

which implies that b(G,H) = 2.

Finally, let us assume G0 = PΩ+
16(3) and H is of type O+

4 (3) o S4. We may view H as
the stabiliser of an orthogonal decomposition V = V1 ⊥ V2 ⊥ V3 ⊥ V4, where each Vi is a
4-dimensional non-degenerate plus-type space. By [40, Proposition 4.2.11] we have

H0 = 23.PΩ+
4 (3)4.26.S4, H 6 23.PO+

4 (3)4.2.S4.

Let N = 23 be the normal subgroup of H0 and observe that

i2(H) 6 |N | · (1 + i2(PGO+
4 (3) o S4)) < 320, i3(H) 6 i3(PGO+

4 (3) o S4) < 319.

Let x ∈ H be an element of prime order r, so r ∈ {2, 3}. See [20, Section 3.5] for detailed
information on the conjugacy classes of elements of prime order in orthogonal groups.

First assume r = 3, so x is unipotent. If x has Jordan form [J2
2 , J

12
1 ], then |xG| > 326 = b1

and we calculate that there are at most

a1 =

(
4

1

)
|O+

4 (3)|
3|Sp2(3)|

= 288

of these elements in H. Similarly, if x = [J3, J
13
1 ] then |xG| > 327 = b2 and H contains at

most a2 = 256 such elements. For all other elements of order 3 we have |xG| > 344 = b3
(minimal if x has Jordan form [J4

2 , J
8
1 ]) and i3(H) < 319 = a3 as noted above.

Now assume x ∈ H is an involution. Since i2(H) < 320 = a4, it follows that the contribution
to Q(G, 2) from the elements with |xG| > 347 = b4 is less than a2

4/b4 = 3−7. Now assume
|xG| 6 347, which implies that x is the image of an involution in GO+

16(3) of the form
[−I`, I16−`] with ` 6 3. In particular, x fixes each Vi in the above orthogonal decomposition
stabilised by H. Set m = i2(PGO+

4 (3)) = 123.

If x = [−I1, I15] then

|xG| > |O
+
16(3)|

2|O15(3)|
> 314 = b5

and there are fewer than a5 =
(

4
1

)
m = 492 such elements in H. Similarly, if x = [−I2, I14] then

|xG| > 327 = b6 and H contains at most a6 =
(

4
2

)
m2 +

(
4
1

)
m = 91266 such elements. Finally,

if x = [−I3, I13] then |xG| > 337 = b7 and there are less than a7 =
(

4
3

)
m3 + 2

(
4
2

)
m2 +

(
4
1

)
m =

7625508 of these elements in H.

We conclude that

Q(G, 2) <
7∑
i=1

a2
i /bi < 1

and the result follows. �

For the remainder of this section, we consider each of the infinite families in Table 3 in
turn. We continue to assume that G0 satisfies the conditions described in Remark 5.1. For
example, in the statement of the next lemma, the case G0 = L3(2) is excluded.

Lemma 6.4. Suppose G0 = Lεn(q) and H is of type GLε1(qn), where n > 3 is a prime. Then
b(G,H) 6 3, with equality if and only if G = L3(3).2. In addition, P(G, 2)→ 1 as |G| → ∞.

Proof. Here H0 = Cm:Cn, where m = (qn− ε)/d(q− ε) and d = (n, q− ε) (see [40, Proposition
4.3.6]). Let V be the natural module for G0 and let x ∈ H be an element of prime order r.
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If x is unipotent, then r = p = n and x has Jordan form [Jp] on V . Similarly, if x is
semisimple then it embeds in G as a regular element (see [20, Lemma 5.3.2], for example).
Therefore,

|xG| > 1

2n

(
q

q + 1

)n
qn

2−n = b1

for all unipotent and semisimple elements in H and we note that

|H ∩ PGLεn(q)| 6 n
(
qn − 1

q − 1

)
= a1.

Now assume x is either a field automorphism of odd prime order or an involutory graph

automorphism of G0. Then |xG| > 1
2nq

n2/2+n/2−1 = b2 and we observe that

|H| 6 2n

(
qn − 1

q − 1

)
log q = a2.

Finally, suppose ε = +, q = q2
0 and x is an involutory field or graph-field automorphism. Here

|xG| > 1
2nq

(n2−1)/2 = b3 and H contains at most

qn/2 − 1

q1/2 − 1
+
qn/2 + 1

q1/2 + 1
< 2

(
qn/2 − 1

q1/2 − 1

)
= a3 (7)

of these elements.

In view of the above bounds, we conclude that Q(G, 2) <
∑3

i=1 a
2
i /bi. For n > 5, one

checks that this upper bound is less than q−n/2 unless (n, q) = (7, 2), or n = 5 and q 6 16.
Moreover, it is less than 1 unless n = 5 and q 6 4; these remaining cases can be checked
using Magma.

To complete the proof, we may assume n = 3. We can use Magma to verify the result for
q 6 19, so let us assume q > 19. Let x ∈ H be an element of prime order r. If x is semisimple
or unipotent, then

|xG| > 1

3
q3(q − 1)(q2 − q + 1) = b1

and we note that |H ∩PGLε3(q)| 6 3(q2 + q+ 1) = a1. Next assume x is a field automorphism
and r is odd. Here r > 5 (since every element in H of order 3 is contained in PGLε3(q)), so

|xG| > 1
6q

32/5 = b2 and there are at most a2 = 3(q2 + q + 1) log q of these elements in H. If x

is an involutory graph automorphism, then |xG| > 1
3q

2(q3 − 1) = b3 and x inverts the normal
subgroup C(q2+εq+1)/d of H0. Since this torus has odd order, we deduce that H contains at

most a3 = q2 + q + 1 involutory graph automorphisms. Finally, suppose ε = + and x is an
involutory field or graph-field automorphism. Here q = q2

0,

|xG| > 1

3
q3/2(q + 1)(q3/2 − 1) = b4

and as noted above (see (7)) there are fewer than a4 = 2(q + q1/2 + 1) of these elements in H.

We conclude that if n = 3 then Q(G, 2) <
∑4

i=1 a
2
i /bi. It is routine to check that this upper

bound is less than 1 if q > 19, and it is less than q−1/2 if q > 73. The result follows. �

Lemma 6.5. Suppose G0 = Lε3(q) and H is of type GLε1(q) o S3. Then b(G,H) 6 3, with
equality if and only if G0 = U3(3), or if G0 = U3(4) and G 6= G0. In addition, P(G, 2)→ 1
as q →∞.

Proof. Write q = pf and set d = (3, q − ε). Here H0 = [(q − ε)2/d].S3 is the stabiliser in G0

of a direct sum decomposition V = V1 ⊕ V2 ⊕ V3 of the natural module into 1-spaces (more
precisely, this is an orthogonal decomposition into non-degenerate 1-spaces when ε = −). As
noted in [11, Table 8.3], if ε = + then q > 5 (otherwise H is non-maximal). The cases with
q 6 27 can be checked using Magma, so we will assume q > 27.
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Let x ∈ H be an element of prime order r. First assume x is unipotent, so r = p ∈ {2, 3}.
If r = 3 then x acts transitively on the Vi, whence x has Jordan form [J3] on V and
|xG| > q(q2− 1)(q3− 1) = b1. Moreover, there are at most a1 = 2(q+ 1)2 of these elements in
H. Similarly, if r = 2 then x acts as a transposition on the Vi and it has Jordan form [J2, J1]
on V . Therefore, |xG| > (q2 − 1)(q2 − q + 1) = b2 and H contains at most a2 = 3(q + 1) such
elements.

Next assume x is semisimple. If r = 2 then q is odd, |xG| > q2(q2 − q + 1) = b3 and we
note that there is a unique class of involutions in PGLε3(q). Since

i2(H ∩ PGLε3(q)) 6 i2(C2
q−ε) + 3(q − ε) = 3(q + 1− ε),

it follows that H contains at most a3 = 3(q + 2) semisimple involutions. Now assume r = 3.
If q 6≡ ε (mod 3), then x cyclically permutes the Vi, so |xG| > q3(q3 − 1) = b4 and there
are at most a4 = 2(q + 1)2 of these elements in H. Suppose now that r = 3 and q ≡ ε
(mod 3). If x is not regular, then |xG| > q2(q2 − q + 1) = b5 and x fixes each Vi, so there
are at most i3(C2

q−ε) = 8 = a5 such elements in H. On the other hand, if x is regular, then

|xG| > 1
3q

3(q − 1)(q2 − q + 1) = b6 and we note that i3(H ∩ PGLε3(q)) 6 8 + 2(q + 1)2 = a6.

To complete the analysis of semisimple elements, let us assume x has order r > 5, so r
is a divisor of q − ε and x fixes each Vi. Let π be the set of such primes. First assume x is
regular. Then up to conjugacy, x is the image of an element in SLε3(q) of the form [1, ω, ω−1],
where ω ∈ Fqu is a primitive r-th root of unity (here u = 1 if ε = +, otherwise u = 2). Now
|xG| > q3(q − 1)(q2 − q + 1) and we calculate that |xG0 ∩H| 6 6. Since there are (r − 1)/2
distinct G0-classes of this form, it follows that the contribution to Q(G, 2) from these elements
is at most ∑

r∈π

1

2
(r − 1) · 36

q3(q − 1)(q2 − q + 1)
<

18 log q

q2(q − 1)(q2 − q + 1)
.

Here we are using the fact that |π| < log q and r 6 q + 1 for all r ∈ π. Similarly, if x is
non-regular then |xG| > q2(q2−q+1), |xG0∩H| 6 3 and the contribution from these elements
is less than ∑

r∈π
(r − 1) · 9

q2(q2 − q + 1)
<

9 log q

q(q2 − q + 1)
.

It follows that the combined contribution to Q(G, 2) from semisimple elements of order at
least 5 is less than 2q−2.

Next assume x is a field automorphism of order r > 5. Here q > 32, |xG| > 1
6q

32/5 = b7
and there are at most ∑

r∈π′
(r − 1) · (q − ε)2 < (q + 1)2 log q = a7

such elements in H, where π′ is the set of prime divisors r > 5 of f = logp q.

Now suppose x is a field automorphism of order 3, so q = q3
0 and

|xG| > 1

3
q2(q4/3 + q2/3 + 1)(q2 − q + 1) = b8.

A straightforward calculation shows that there are at most

a8 = 4(q + 1)(q1/3 + 1) + 2(q2/3 + q1/3 + 1)2

such elements in H. For example, suppose ε = + and consider the coset C2
q−1ρx, where ρ =

(1, 2, 3) ∈ S3. We may identify C2
q−1 with the subgroup {(a, b, a−1b−1) : a, b ∈ F×q } < C3

q−1 and

we may assume that the action of x on C2
q−1 is given by (a, b, a−1b−1)x = (aq0 , bq0 , a−q0b−q0).

If z = (a, b, a−1b−1)ρx, then

z3 = (a1−q0bq0(q0−1), aq0(1−q0)b1−q
2
0 , aq

2
0−1bq0−1)
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and we deduce that i3(C2
q−1ρx) = (q− 1)(q0− 1). Similarly, there are (q− 1)(q0− 1) elements

of order 3 in each of the cosets of C2
q−1 containing (1, 2, 3)x2, (1, 3, 2)x and (1, 3, 2)x2, and

we calculate that there are (q2/3 + q1/3 + 1)2 elements of order 3 in both C2
q−1x and C2

q−1x
2.

It follows that if ε = + then H contains at most

4(q − 1)(q1/3 − 1) + 2(q2/3 + q1/3 + 1)2 < a8

field automorphisms of order 3. A similar argument applies when ε = −.

Now assume ε = +, q = q2
0 and x is an involutory field or graph-field automorphism. Here

|xG| > 1

3
q3/2(q + 1)(q3/2 − 1) = b9

and by counting the number of involutions in each relevant coset of C2
q−1 (noting that an

involutory graph automorphism inverts C2
q−1), we deduce that H contains at most

a9 = (q1/2 + 1)2 + (q1/2 − 1)2 + 6(q − 1) = 8q − 4

of these elements. Finally, if x is an involutory graph automorphism, then |xG| > 1
3q

2(q3−1) =

b10 and one can check that there are at most a10 = (q + 1)2 + 3(q + 1) = q2 + 5q + 4 such
elements in H.

We conclude that if q > 27 then

Q(G, 2) < 2q−2 +
10∑
i=1

a2
i /bi < 1

and thus b(G,H) = 2. Moreover, this upper bound is less than q−1/2 if q > 89. �

Lemma 6.6. Suppose G0 = Lε4(q) and H is of type GLε1(q) o S4. Then

b(G,H) =

 4 if G0 = U4(2)
3 if G = U4(3).D8

2 otherwise

and P(G, 2)→ 1 as q →∞.

Proof. Set q = pf and d = (4, q − ε). Here H0 = [(q − ε)3/d].S4 is the stabiliser of an
appropriate direct sum decomposition V = V1 ⊕ V2 ⊕ V3 ⊕ V4 of the natural module for G0.
As noted in [11, Table 8.8], the maximality of H implies that q > 5 when ε = +. The cases
with q 6 8 can be checked using Magma so we will assume q > 8 for the remainder of the
proof.

Let x ∈ H be an element of prime order r. First assume x is unipotent, so r = p ∈ {2, 3}.
Suppose p = 2. If x has Jordan form [J2, J

2
1 ] on V , then |xG| > (q3 + 1)(q2 + 1)(q − 1) = b1

and we note that x acts as a transposition on {V1, . . . , V4}, whence

|xG ∩H| 6
(

4

2

)
(q − ε) 6 6(q + 1) = a1.

Similarly, if x = [J2
2 ] then |xG| > 1

4q
8 = b2 and there are at most a2 = 3(q + 1)2 of

these elements in H (here x induces a double transposition on the Vi). Now assume p = 3.
Here x = [J3, J1] is the only possibility and we have |xG| > 1

2(q + 1)−1q11 = b3 and

|xG ∩H| 6 8(q + 1)2 = a3.

Next assume x is a semisimple involution, so q is odd. There are three conjugacy classes
of involutions in PGLε4(q), labelled t1, t2 and t′2 in [20, Sections 3.2.2 and 3.3.2]. First
assume x is of type t1, so up to conjugacy x is the image of an element in GLε4(q) of the
form [−I1, I3]. Now |xG| > q3(q2 + 1)(q − 1) = b4 and we calculate that there are at most
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a4 =
(

4
1

)
+
(

4
2

)
(q + 1) = 6q + 10 of these elements in H. Similarly, if x is of type t2 then

|xG| > 1
2q

4(q − 1)(q3 − 1) = b5 and there are at most

a5 =

(
4

2

)
+ 2

(
4

2

)
(q + 1) + 3(q + 1)2 = 3q2 + 18q + 21

such elements in H. Finally, if x is of type t′2 then |xG| > b6 = b5 and x induces a double
transposition on the Vi, whence H contains at most a6 = 3(q + 1)2 of these involutions.

Now let us turn to the contribution to Q(G, 2) from semisimple elements of odd prime
order r. First assume r = 3 and q ≡ −ε (mod 3), so x must induce a 3-cycle on the Vi. Then
up to conjugacy, x is the image of a matrix of the form [I2, ω, ω

2] ∈ SL4(k), where k = F̄q
and ω ∈ k is a primitive cube root of unity, and we obtain the bounds |xG| > 1

2q
10 = b7 and

|xG ∩ H| 6 8(q + 1)2 = a7. Now assume q ≡ ε (mod 3). Here there are four G0-classes of
elements of order 3. If x is of type [I3, ω] or [I3, ω

2] then |xG| > q3(q2 + 1)(q − 1) = b8 and

in total there are at most a8 = 2
(

4
1

)
= 8 of these elements in H. Similarly, if x = [I2, ωI2]

then |xG ∩H| 6 6 = a9 and |xG| > q4(q2 + 1)(q2 − q + 1) = b9. Finally, if x = [I2, ω, ω
2] then

|xG| > 1
2(q + 1)−2q12 = b10 and H contains at most a10 = 2

(
4
2

)
+ 8(q + 1)2 = 8q2 + 16q + 20

of these elements.

Now assume r > 5, so r divides q − ε and x fixes each Vi. If x is of the form [I3, ω] then
|xG0 ∩ H| = 4 = a11 and |xG0 | > q3(q2 + 1)(q − 1) = b11. Similarly, if x = [I2, ωI2] then
|xG0∩H| = 6 = a12 and |xG0 | > q4(q2−q+1)(q2 +1) = b12. There are r−1 distinct G0-classes
of elements of each type. If x is any other element of order r, then |xG| > 1

2(q+ 1)−2q12 = b13

and we note that there are less than a13 = (q + 1)3 semisimple elements in H of order at
least 5. Therefore, the combined contribution to Q(G, 2) from semisimple elements of order
at least 5 is less than

α = a2
13/b13 +

∑
r∈π

(r − 1) ·
(
a2

11/b11 + a2
12/b12

)
,

where π is the set of primes r > 5 dividing q − ε. Since r 6 q + 1 and |π| < log q, we deduce
that

α < a2
13/b13 + q

(
a2

11/b11 + a2
12/b12

)
log q < 2q−3

for all q > 9.

To complete the proof, we may assume x is a field, graph or graph-field automorphism.
First assume q = qr0 and x is a field automorphism of order r. If r > 3 then q > 27 (recall
that we are assuming q > 9), |xG| > 1

8q
10 = b14 and we observe that there are fewer than

a14 = 24(q + 1)3 log q of these elements in H. Now assume r = 2, so q = q2
0, ε = + and

|xG| > 1

4
q3(q + 1)(q3/2 + 1)(q2 + 1) = b15.

By carefully counting the number of involutions in the relevant cosets of C3
q−1, we deduce

that H contains at most

a15 = (q1/2 + 1)3 +

(
4

2

)
(q − 1)(q1/2 + 1) + 3(q − 1)(q1/2 − 1)

involutory field automorphisms. For example, if z ∈ C3
q−1ρx, say

z = (a, b, c, a−1b−1c−1)ρx,

where ρ = (1, 2)(3, 4) ∈ S4 and a, b, c ∈ F×q , then

z2 = (abq0 , baq0 , a−q0b−q0c1−q0 , a−1b−1cq0−1)

and thus z2 = 1 if and only if b = a−q0 and c = λa−1 with λq0−1 = 1. Therefore, each
coset of the form C3

q−1ρx, where ρ ∈ S4 is a double transposition, contains (q − 1)(q1/2 − 1)
involutions.
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Similarly, if x is an involutory graph-field automorphism then

|xG| > 1

4
q3(q + 1)(q3/2 − 1)(q2 + 1) = b16

and there are at most

a16 = (q1/2 + 1)3 +

(
4

2

)
(q − 1)(q1/2 − 1) + 3(q − 1)(q1/2 + 1)

of these elements in H.

Finally, let us assume x ∈ G is an involutory graph automorphism. Let τ be the inverse-
transpose graph automorphism of G0 (note that if ε = −, then this is induced by the order
two field automorphism of Fq2). As explained in [20, Sections 3.2.5 and 3.3.5], we have

CG0(τ) = PSOε′
4 (q).2 if q is odd (for some choice of sign ε′) and CG0(τ) = CSp4(q)(t) if q is

even, where t ∈ Sp4(q) is a transvection. If x ∈ H is an involutory graph automorphism with
CG0(x)′ = PSp4(q), then |xG| > 1

2q
2(q3 − 1) = b17 and we observe that x is contained in a

coset of the form C3
q−ερτ , where ρ ∈ S4 is a double transposition. Now τ inverts the torus

C3
q−ε and we calculate that there are at most 2(q − ε) involutions in each of these cosets and

so in total there are at most a17 = 6(q + 1) of these graph automorphisms in H. On the
other hand, if CG0(x)′ 6= PSp4(q), then |xG| > 1

2q
4(q2 − 1)(q3 − 1) = b18 and by counting the

involutions in the cosets C3
q−ετ and C3

q−ερτ , where ρ ∈ S4 is a transposition, we deduce that

H contains at most a18 = (q + 1)3 +
(

4
2

)
(q + 1)2 of these graph automorphisms.

If we now bring together the above bounds, we deduce that if q > 9 then

Q(G, 2) < 2q−3 +
10∑
i=1

a2
i /bi + ηa2

14/b14 +
18∑
i=15

a2
i /bi,

where η = 1 if q = qr0 with r > 3, otherwise η = 0. One can check that this upper bound is

less than 1 for all q > 9. In addition, it is less than q−1/2 if q > 29. �

Lemma 6.7. Suppose G0 = PΩ+
8 (q) and H is of type Oε

2(q) o S4. Then

b(G,H) =

{
3 if (ε, q) = (−, 2)
2 otherwise

and P(G, 2)→ 1 as q →∞.

Proof. Let V be the natural module for G0 and write q = pf with p a prime. Here H is the
stabiliser in G of an orthogonal decomposition

V = V1 ⊥ V2 ⊥ V3 ⊥ V4, (8)

where each Vi is a non-degenerate 2-space of type ε. The precise structure of H0 is given in [40,
Proposition 4.2.11] and we note that |H0| = 2m.24(q− ε)4, where m = 1 + 2δ2,p. If q < 5 then
the maximality of H implies that ε = − and using Magma one checks that b(G,H) = 2 + δ2,q.
Therefore, for the remainder we will assume that q > 5. We refer the reader to [20, Section
3.5] for information on the conjugacy classes of elements of prime order in Aut(G0).

Let x ∈ H be an element of prime order r. First assume r > 5, so either x is semisimple
and r divides q − ε, or x is a field automorphism and q = qr0. Note that q > 8 since q − ε is
indivisible by r when q = 5 or 7. If x is semisimple, then

|xG| > |SO+
8 (q)|

|SO−6 (q)|GU1(q)|
>

1

2
q12 = b1

and plainly there are fewer than a1 = (q + 1)4 such elements in H. Similarly, if x is a field

automorphism then |xG| > 1
8q

112/5 = b2 and we note that |H| 6 24.72(q+ 1)4 = a2. It follows
that the combined contribution to Q(G, 2) from elements of order at least 5 is less than
a2

1/b1 + a2
2/b2 < q−3.
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Next assume x ∈ H is a unipotent element of order 3. Here p = 3 and x acts as a 3-cycle
on the summands in (8), which implies that x has Jordan form [J2

3 , J
2
1 ] on V . Therefore,

|xG| > 1
8q

18 = b3 and H contains at most 8|Oε
2(q)|2 6 32(q + 1)2 = a3 such elements. Since

q > 9, it follows that the contribution from these elements is less than a2
3/b3 < q−9.

Now assume p 6= 3 and x ∈ H is a semisimple element of order 3, so x ∈ H ∩ G0 = H0.
Suppose q 6≡ ε (mod 3). Since |Oε

2(q)| is indivisible by 3, it follows that x must induce a 3-cycle
on the set of spaces in the decomposition (8). Therefore dimCV (x) = 4, |xG| > 1

2q
18 = b4

and we note that i3(H0) 6 32(q + 1)2 = a4.

Now suppose q ≡ ε (mod 3). There are three Aut(G0)-classes of elements of order 3 in G0,
represented by

[I2, ωI3, ω
2I3], [I4, ωI2, ω

2I2], [I6, ω, ω
2]

(modulo scalars), where ω ∈ Fq2 is a primitive cube root of unity (the Aut(G0)-class of the
latter element splits into three G0-classes, so there are five G0-classes in total). First assume
x is of type [I2, ωI3, ω

2I3], so |xG| > 1
2(q + 1)−1q19 = b5. Here we calculate that there are at

most

16|Oε
2(q)|2 + 23

(
4

1

)
6 64(q + 1)2 + 32 = a5

such elements in H. Similarly, if x is the image of [I4, ωI2, ω
2I2] then |xG| > 1

2q
18 = b6 and

H contains at most

8|Oε
2(q)|2 + 22

(
4

2

)
6 32(q + 1)2 + 24 = a6

of these elements. Finally, suppose x is of type [I6, ω, ω
2]. Here we have |xG| > 1

2q
12 = b7 and

|xG0 ∩H0| 6 2
(

4
1

)
= 8, so |xAut(G0) ∩H| 6 24 = a7.

Since a2
4/b4 < q−8 and

∑7
i=5 a

2
i /bi < q−7 for all q > 5, we conclude that the contribution

to Q(G, 2) from semisimple or unipotent elements of order 3 is less than q−7.

Next let us consider the contribution from semisimple or unipotent involutions (including
involutory graph automorphisms). It will be useful to observe that Oε

2(q) ∼= D2(q−ε).

First assume p = 2, so q > 8. There are five classes of unipotent involutions in Aut(G0),
represented by the elements

b1, a2, c2, b3, c4

in the notation of Aschbacher and Seitz [1]. We claim that the total contribution to Q(G, 2)

from these elements is less than
∑5

i=1 r
2
i /si < q−2, where the terms ri and si are defined in

the following table:
i x ri si
1 b1 12(q + 1) 1

2q
7

2 a2 12(q + 1) 1
2q

10

3 c2 18(q + 1)2 1
2q

12

4 b3 12(q + 1)2(q + 7) 1
2q

15

5 c4 (q + 1)3(q + 13) 1
2q

16

Here ri is an upper bound on |xAut(G0) ∩H| and si is a lower bound on |xG0 | (see the proof
of [14, Proposition 3.22], for example), so the claim follows from Lemma 2.3.

For instance, suppose x is a c2-type involution. Here the Aut(G0)-class of x is a union
of three distinct G0-classes, labelled c2, a4 and a′4 in [1]. If x is G0-conjugate to c2, then x
fixes each summand Vi in (8), acting nontrivially on exactly two of the summands. Since

i2(Oε
2(q)) = q − ε, it follows that |xG0 ∩ H| 6

(
4
2

)
(q − ε)2 6 6(q + 1)2. Similarly, if x is

G0-conjugate to a4 or a′4 then x induces a double transposition on the Vi and there are at

most 3|Oε
2(q)|2 6 12(q+1)2 such elements in H. We conclude that |xAut(G0)∩H| 6 18(q+1)2,

which explains the expression for r3 given in the above table. Similar reasoning applies in the
other cases.
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Now assume p 6= 2 and x is a semisimple involution. If x is a graph automorphism of type
[−I1, I7], then |xG| > 1

4q
7 = b8 and we calculate that H contains at most

a8 = 3

(
4

1

)
(q + 1) = 12(q + 1)

of these involutions. Next assume x is of type [−I3, I5], which represents the other Aut(G0)-
class of involutory graph automorphisms. Here |xG| > 1

4q
15 = b9 and by carefully considering

the conjugacy classes of involutions in Oε
2(q) o S4 < O+

8 (q) we deduce that

a9 = 3

(
2

(
4

2

)
(q + 1) +

(
4

3

)
(q + 1)3 +

(
4

2

)
2(q + 1) ·

(
2

1

)
(q + 1)

)
= 12(q2 + 8q + 10)(q + 1)

is an upper bound on the total number of involutions in H of this form.

Next assume x is Aut(G0)-conjugate to an involution of the form [−I2, I6]. There are two
such Aut(G0)-classes, each of which splits into three G0-classes, giving six G0-classes in total.
Now |xG| > 1

4q
12 = b10 and we see that there are at most

a10 = 6

((
4

1

)
+

(
4

2

)
(q + 1)2 +

(
4

2

)
2(q + 1)

)
= 12(3q2 + 12q + 11)

such elements in H. Finally, let us assume x is Aut(G0)-conjugate to an involution of the
form [−I4, I4]; there are two such Aut(G0)-classes, one of which splits into three G0-classes.
Now |xG| > 1

8q
16 = b11 and we calculate that H contains at most

a11 = 4

((
4

2

)
+ 12(q + 1)3 + (q + 1)4 +

(
4

2

)
2(q + 1)

(
2 + (q + 1)2

)
+ 3(2(q + 1))2

)
= 4q4 + 112q3 + 360q2 + 496q + 268

involutions of this type.

Putting all of the above estimates together, we conclude that the contribution to Q(G, 2)
from semisimple involutions is less than

11∑
i=8

a2
i /bi < 2q−1

for all q > 5. Given the previous estimate for unipotent involutions when p = 2, it follows
that the total contribution from semisimple or unipotent involutions (including involutory
graph automorphisms) is less than 2q−1.

To complete the proof, we need to consider field and graph-field automorphisms of order 2
and 3, as well as graph automorphisms of order 3.

Suppose x is an involutory field or graph-field automorphism, so q > 9 and |xG| > 1
4q

14 = b12.

By applying the upper bounds on |xG ∩H| presented in the proof of [15, Proposition 2.11],
we deduce that H contains at most

a12 = 2

(
(2q1/2)4 +

(
4

2

)
|O+

2 (q)| · (2q1/2)2 + 3|O+
2 (q)|2

)
= 152q2 − 144q + 24

of these elements.

Finally, let us assume x is a field, graph or graph-field automorphism of order 3. First
assume x ∈ H is a triality graph automorphism with CG0(x) = G2(q), so |xG| > 1

8q
14 = b13.

Fix a set of simple roots {a1, . . . , α4} for the ambient simple algebraic group Ḡ = D4, labelled
in the usual way (so α2 corresponds to the central node in the corresponding Dynkin diagram).
We may assume x cyclically permutes the roots α1, α3 and α4, so it induces a 3-cycle on the
factors of a standard maximal torus of Ḡ. It follows that x acts as a 3-cycle on the summands
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Vi in (8) and then by counting elements of order 3 in the coset (H ∩ PGO+
8 (q))x we deduce

that there are at most
4!

3
· 3|Oε

2(q)|2 6 96(q + 1)2 = a13

of these specific graph automorphisms in H. For all other field, graph and graph-field
automorphisms of order 3 we have |xG| > 1

8q
20 = b14 and we note that

|H| 6 24.72(q + 1)4 log q = a14.

Therefore, the total contribution from field and graph-field automorphisms of order 2 and
3, together with graph automorphisms of order 3, is less than

ηa2
12/b12 + a2

13/b13 + a2
14/b14,

where η = 1 if q = q2
0, otherwise η = 0. For q > 7, one can check this is less than q−2. If q = 5

then we can remove the log q factor in the expression for a14 and in this way we deduce that
the contribution is less than 1

4 .

Finally, by bringing together the above estimates, we conclude that

Q(G, 2) < q−3 + q−7 + 2q−1 + µ

for all q > 5, where µ = q−2 if q > 7 and µ = 1
4 if q = 5. Therefore Q(G, 2) < 1 and thus

b(G,H) = 2. We also deduce that P(G, 2)→ 1 as q tends to infinity. �

Lemma 6.8. Suppose G0 = PΩ+
8 (q) and H is of type O−2 (q2)×O−2 (q2). Then b(G,H) = 2

and P(G, 2)→ 1 as q →∞.

Proof. Set d = (2, q − 1) and note that

H0 = (D 2
d

(q2+1) ×D 2
d

(q2+1)).2
2 < (Ω−4 (q)× Ω−4 (q)).22

and the maximality of H implies that G contains triality graph or graph-field automorphisms
(see [11, Table 8.50]). Let us also observe that H = NG(P ), where P is a Sylow `-subgroup
of G0 and ` is an odd prime divisor of q2 + 1. Given this, it is easy to check the cases with
q 6 7 using Magma, so for the remainder of the proof we will assume that q > 8. Let x ∈ H
be an element of prime order r.

First assume x ∈ H ∩ PGO+
8 (q). If r is odd, then x is semisimple, r divides q2 + 1 and

|xG0 | > |SO+
8 (q)|

|SO−4 (q)||GU1(q2)|
>

1

2
q20.

Now suppose r = 2. As explained in the proof of [16, Proposition 3.4], every involution in
H ∩ PGO+

8 (q) is contained in Inndiag(G0), which is the subgroup of Aut(G0) generated by
the inner and diagonal automorphisms of G0. As a consequence, if p = 2 then x is G-conjugate
to c2 or c4 (in the notation of [1]), which implies that |xG| > 3

2q
12. Similarly, if p 6= 2 then

|xG| > 3

(
|O+

8 (q)|
|O−6 (q)||O−2 (q)|

)
>

1

2
q12 = b1.

Since |H ∩PGO+
8 (q)| 6 32(q2 + 1)2 = a1, it follows that the combined contribution to Q(G, 2)

from elements in H ∩ PGO+
8 (q) is less than a2

1/b1.

Finally, let us assume x ∈ H\PGO+
8 (q), so x is a field, graph or graph-field automorphism. If

x is a field or graph-field automorphism of odd order, then |xG| > 1
8q

56/3 = b2 and we note that

|H| 6 96(q2 + 1)2 log q = a2. Similarly, if x is an involutory field or graph-field automorphism,
then |xG| > 1

8q
14 = b3 and there are at most 2|H ∩ PGO+

8 (q)| 6 64(q2 + 1)2 = a3 of these

elements in H. Finally, suppose x is a triality graph automorphism. Here |xG| > 1
8q

14 = b4
and again we observe that H contains at most 64(q2 + 1)2 = a4 of these elements.
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To summarise, we have shown that

Q(G, 2) <
4∑
i=1

a2
i /bi

and one checks that this upper bound is less than 1 for q > 8 (in addition, it is less than

q−1/2 if q > 11). The result follows. �

Lemma 6.9. Suppose G0 = Sp4(q) and H is of type Oε
2(q) oS2 or O−2 (q2). Then b(G,H) = 2

and P(G, 2)→ 1 as q →∞.

Proof. In both cases, q > 4 is even and G contains graph automorphisms. If q 6 32 then the
desired result can be checked using Magma, so we will assume q > 64.

First assume H is of type Oε
2(q) o S2, so

H0 = Oε
2(q) o S2 = D2(q−ε) o S2 < Sp2(q) o S2 < G0.

Let x ∈ H be an element of prime order r. As noted in the proof of [16, Proposition 3.1], if x is a
unipotent involution then |xG∩H| = 4(q−ε) = a1 and |xG| = 2(q4−1) = b1 if x is G-conjugate
to a long root element, otherwise |xG ∩H| 6 (q + 1)2 = a2 and |xG| = (q2 − 1)(q4 − 1) = b2.
If x is semisimple, then r divides q − ε,

|xG| > |Sp4(q)|
|GU2(q)|

= q3(q − 1)(q2 + 1) = b3

and we note that |H0| 6 8(q + 1)2 = a3. Similarly, if x is a field automorphism of odd

order, then |xG| > q20/3 = b4 and plainly there are fewer than a4 = 8(q + 1)2 log q field
automorphisms in H.

Now assume x is an involutory field or graph automorphism (note that G contains one
or the other, but not both). First assume x is a field automorphism, so log q is even. Here
|xG| = q2(q + 1)(q2 + 1) = b5 and we calculate that |xG ∩H| 6 6q − 2 = a5. Indeed, if ε = −
then |xG ∩H| 6 |O−2 (q)| = 2(q + 1), whereas if ε = + we get

|xG ∩H| 6 |O+
2 (q)|+

(
|O+

2 (q)|
|O+

2 (q1/2)|
+
|O+

2 (q)|
|O−2 (q1/2)|

)2

= 6q − 2.

Finally, suppose x is an involutory graph automorphism, so log q is odd. Here we have
CG0(x) = 2B2(q), so |xG| = q2(q + 1)(q2 − 1) = b6 and we note that H contains fewer than
a6 = 8(q + 1)2 of these elements.

We conclude that

Q(G, 2) <
4∑
i=1

a2
i /bi + αa2

5/b5 + (1− α)a2
6/b6,

where α = 1 if log q is even, otherwise α = 0. One checks that this upper bound is less than 1
for all q > 64. In addition, it is less than q−1/2 if q > 212.

A very similar argument applies when H is of type O−2 (q2) and we omit the details. �

Lemma 6.10. Suppose G0 = U3(q) and H is of type GU3(2), where q = 2k and k > 3 is a
prime. Then b(G,H) = 2 and P(G, 2)→ 1 as q →∞.

Proof. By [40, Proposition 4.5.3] we have H0 = PGU3(2) if k = 3, otherwise H0 = U3(2).
The cases k ∈ {3, 5} can be checked directly using Magma, so let us assume k > 7. Now
|H| 6 2k|PGU3(2)| = 432k = a1 and |xG| > (q − 1)(q3 + 1) = b1 for all x ∈ G of prime
order (minimal if x ∈ G0 is an involution). Therefore, Q(G, 2) 6 a2

1/b1 < 4q−1 and the result
follows. �

Lemma 6.11. Suppose G0 = Lε3(q) and H is of type 31+2.Sp2(3). Then b(G,H) = 2 and
P(G, 2)→ 1 as q →∞.
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Proof. Here q = p ≡ ε (mod 3) and [40, Proposition 4.6.5] gives H0 = 32.Q8 if q ≡ 4ε, 7ε
(mod 9), otherwise H0 = 32.Sp2(3). The cases with q 6 23 can be checked using Magma, so
let us assume q > 23. Now |H| 6 432 = a1 and |xG| > (q − 1)(q3 − 1) = b1 for all x ∈ G of
prime order (minimal if ε = + and x is a unipotent element with Jordan form [J2, J1]), so
Q(G, 2) 6 a2

1/b1 < 8q−1 and the result follows. �

This completes the proof of Proposition 6.1.

7. Exceptional groups: Non-parabolic actions

Here we complete the proof of Theorem 2 by handling the almost simple groups where G0

is an exceptional group of Lie type and H is non-parabolic. As explained in Remark 5.1, we
may (and will) assume that G0 6= 2G2(3)′, G2(2)′. Our main result is the following.

Proposition 7.1. Let G 6 Sym(Ω) be a finite almost simple primitive group with socle
G0 and soluble point stabiliser H. Assume G0 is an exceptional group of Lie type and H is
non-parabolic. Then b(G,H) = 2 and P(G, 2)→ 1 as |G| → ∞.

Proof. By inspecting [42, Table 20], we deduce that H is a maximal rank subgroup of G.
More precisely, either H = NG(T ) is the normaliser of a maximal torus T < G0, or one of
the following holds:

(a) G0 = G2(3), H is of type SL2(3)2.

(b) G0 = 3D4(2), H is of type 3× SU3(2).

(c) G = 2F4(2), H = SU3(2).2.

(d) G0 = F4(2), H is of type SU3(2)2.

(e) G0 = 2E6(2), H is of type SU3(2)3.

(f) G = E8(2), H is of type SU3(2)4.

If H = NG(T ) or if (G,H) is one of the cases labelled (c)–(f), then the result follows
immediately from [26, Proposition 4.2]. Cases (a) and (b) can be handled using Magma. �

By combining Proposition 7.1 with Propositions 3.1, 4.1, 5.2 and 6.1, we conclude that the
proof of Theorem 2 is complete. The same sequence of propositions also establishes Theorem
6, while Corollaries 3, 4 and 5 follow by inspection.

8. Proof of Theorem 1

In this section we complete the proof of Theorem 1. Let G 6 Sym(Ω) be a finite primitive
permutation group with soluble stabiliser H. By [42, Theorem 1.1], one of the following holds:

(a) G = V :H is an affine group, where V = Fdp and H 6 GL(V ) is irreducible.

(b) Tm P G 6 L oSm and G acts on Ω = Γm with the product action, where L 6 Sym(Γ)
is almost simple and primitive with socle T and a soluble point stabiliser.

(c) G is almost simple and the possibilities for (G,H) are recorded in [42, Tables 14-20].

In view of Theorem 2, we may assume G is an affine or product-type group as described in
cases (a) and (b).

8.1. Affine groups. LetG = V :H be a primitive affine group, where V = Fdp andH 6 GL(V )
is irreducible and soluble. Since G itself is soluble, we can apply the following theorem of
Seress [55] (note that every soluble primitive permutation group is of affine type).

Theorem 8.1 (Seress [55]). Let G 6 Sym(Ω) be a finite soluble primitive permutation group
with point stabiliser H. Then b(G,H) 6 4. Moreover, b(G,H) 6 3 if |H| is odd.
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As noted by Seress [55, p.244], both bounds are sharp in a strong sense. Indeed, a theorem

of Pálfy [52] states that if G is a soluble primitive group of degree n, then |G| 6 24−1/3nc

with c = 1 + log9(48.241/3) = 3.243..., and equality is attained for infinitely many values of
n. In these cases, Lemma 2.1 gives b(G,H) > 4 and thus the main bound in Theorem 8.1
is achieved infinitely often. Similarly, if |H| is odd then another result of Pálfy [53] gives

|G| 6 3−1/2nc with c = 2.278... and once again there are infinitely many examples where this
bound is attained.

There are also strong base size results for affine groups in the so-called coprime setting
with (|V |, |H|) = 1. For example, a theorem of Vdovin [59] gives b(G,H) 6 3 in this situation
(with H soluble), which extends an earlier result of Moretó and Wolf [50] in the case where H
has odd order. It is worth noting that Vdovin’s result has in turn been extended by Halasi and
Podoski [38], who have proved that b(G,H) 6 3 for all affine groups of the form G = V :H
with (|V |, |H|) = 1.

8.2. Product-type groups. Let L 6 Sym(Γ) be an almost simple primitive group with
socle T and soluble point stabiliser K. Set Ω = Γm with m > 2 and consider the product
action of L o Sm on Ω. Let G be a subgroup of L o Sm with socle Tm such that

Tm P G 6 L o P
and P 6 Sm is a transitive permutation group induced by the conjugation action of G on
the factors of Tm. Then G 6 Sym(Ω) is a primitive group of product-type with soluble point
stabiliser H = G ∩ (K o P ). As explained in [42], every primitive product-type group with
a soluble point stabiliser is of this form. Note that G = TmH, so H also induces P on the
factors of Tm and thus the solubility of H implies that P is also soluble.

Theorem 8.2. Let G 6 Sym(Ω) be a finite primitive group of product-type with soluble point
stabiliser H. Then b(G,H) 6 5.

Proof. As above, write G 6 L o P 6 Sym(Ω) where Ω = Γm, m > 2 and L 6 Sym(Γ) is
almost simple. Let d(P ) be the distinguishing number of P , which is the minimal number of
colours needed to colour the elements of {1, . . . ,m} in such a way that the stabiliser in P of
this colouring is trivial. Then by the proof of [25, Lemma 3.8] we have

b(G,H) 6

⌈
dlog d(P )e
blog |Γ|c

⌉
+ b(L,K).

Now Theorem 2 gives b(L,K) 6 5 and the solubility of P implies that d(P ) 6 5 by [55,
Theorem 1.2]. Since |Γ| > 5, it follows that b(G,H) 6 5 if b(L,K) 6 3.

Now assume b(L,K) = 4. If |Γ| > 8 then the above bound yields b(G,H) 6 5, so we may
assume |Γ| < 8 and thus L = S5 and K = S4 by Theorem 2. For a positive integer d, let
reg(L, d) denote the number of regular orbits of L with respect to its natural action on Γd.
Since d(P ) 6 5, [6, Theorem 2.13] implies that b(G,H) 6 5 if and only if reg(L, 5) > 5 (Vdovin
makes the same observation in [58]). Using Magma, it is easy to check that reg(L, 5) = 11
and thus b(G,H) 6 5 as required.

To complete the proof, we may assume b(L,K) = 5. Here Theorem 2 implies that one of
the following holds, where T denotes the socle of L:

(a) L = S8, K = S4 o S2 and |Γ| = 35.

(b) T = L4(3), K = P2 and |Γ| = 130.

(c) T = U5(2), K = P1 and |Γ| = 165.

We claim that reg(L, 5) > 5 in each of these cases, which gives b(G,H) 6 5 as above.

In case (a), the proof of [60, Theorem 2] gives reg(L, 5) > 12 and thus b(G,H) 6 5 as
required. In fact, a straightforward Magma computation shows that reg(L, 5) = 600 in this
case. To handle cases (b) and (c), write K = Lγ for some fixed γ ∈ Γ and let t be the number
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of tuples of the form (γ, λ1, λ2, λ3, λ4) ∈ Γ5 with
⋂
iKλi = 1. Then reg(L, 5) > 5t/|L| and so

we just need to verify the bound t > |L| for L = Aut(T ). Using Magma, we calculate that

t = 100776960 > |Aut(L4(3))| = 24261120

in case (b) and similarly

t = 496668672 > |Aut(U5(2))| = 27371520

in case (c). The result follows. �

Remark 8.3. It is easy to see that there are infinitely many finite primitive groups G with a
soluble stabiliser H and b(G,H) = 5. For example, we can take any group of the form L oCm
with its product action on Ω = Γm, where m is a positive integer and L 6 Sym(Γ) is one of
the groups in (a), (b) or (c) above. We can also take G = S5 o Cm acting on 5m points for
any m > 2. Indeed, in this case b(G,H) 6 5 by Theorem 8.2, while [6, Theorem 2.13] implies
that b(G,H) > 5 since L = S5 is 4-transitive on Γ and therefore reg(L, 4) = 1 < d(Cm).

By combining Theorems 8.1 and 8.2 with Theorem 2, we conclude that the proof of
Theorem 1 is complete.

9. The tables

In this final section, we present the tables referred to in the statement of Theorem 2. First
we record some remarks on their content.

Remark 9.1. In Tables 6 and 7, we exclude the almost simple groups with socle G0, where
G0 is one of the following:

L2(4), L2(5), L2(9), L3(2), L4(2), PSp4(2)′, PSp4(3).

This is justified by the existence of the following isomorphisms:

L2(4) ∼= L2(5) ∼= A5, L2(9) ∼= PSp4(2)′ ∼= A6, L3(2) ∼= L2(7),

L4(2) ∼= A8, PSp4(3) ∼= U4(2).

So for example, a reader who is interested in the groups with socle L4(2) should consult Table
4 and the cases with G = S8 or A8.

Similarly, since 2G2(3)′ ∼= L2(8) and G2(2)′ ∼= U3(3), we also exclude the groups with socle
2G2(3)′ or G2(2)′ in Table 5.

Remark 9.2. Let us record some additional comments on Tables 6 and 7.

(i) In Table 6, we adopt the notation for parabolic subgroups described in Remark 5.3.
In addition, if q = pf with p prime, then φ denotes a field automorphism of order f .

(ii) Suppose G0 = L2(q) and H is of type P1 (see Table 6). Here b(G,H) ∈ {3, 4}, with
b(G,H) = 3 if and only if G 6 PGL2(q), or

q = pf , p > 3, f is even and G = 〈G0, δφ
f/2〉 = G0.2,

where δ is a diagonal automorphism of G0 (see (3)).

(iii) In Table 6, suppose G0 = U4(q) and H is of type P1, so the solubility of H implies
that q ∈ {2, 3}. If q = 2 then b(G,H) = 4. For q = 3 we have

b(G,H) =

{
4 G ∈ {G0.D8, G0.[4], G0.21}
3 otherwise

where G0.21 is the unique index-two subgroup of PGU4(3).
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b G H
5 S8 S4 o S2

4 S5 S4

A6.2
2 AGL1(9).2

S6 S4 × S2, S2 o S3, S3 o S2

A8 (S4 o S2) ∩G
3 A5 A4, D10

S5 S3 × S2, 5:4
A6.2

2 D20.2, [32]
PGL2(9) D20, 32:Q8

M10 AGL1(9)
A6 (S4 × S2) ∩G, (S2 o S3) ∩G, (S3 o S2) ∩G
S7 S4 × S3

A7 (S4 × S3) ∩G
S8 S2 o S4

S9 S3 o S3, AGL2(3)
A9 (S3 o S3) ∩G
S12 S3 o S4, S4 o S3

A12 (S3 o S4) ∩G, (S4 o S3) ∩G
S16 S4 o S4

A16 (S4 o S4) ∩G
M11 32:Q8.2
M12 32:2S4, 21+4:S3, 42:D12

M12.2 21+4:S3.2, 42:D12.2, 31+2:D8

J2 22+4:(3× S3)
J2.2 22+4:(3× S3).2
Fi22 31+6:23+4:32:2
Fi22.2 31+6:23+4:32:2.2
Fi23 31+8.21+6.31+2.2S4

Table 4. Alternating and sporadic groups

(iv) Suppose G0 = L3(q) and H is of type GU3(q1/2) (see Table 7). Here q = 4 since H is
soluble and we get

b(G,H) =

{
3 if |G : G0| > 3 or G = G0.22

2 otherwise

where G0.22 contains involutory field automorphisms.

(v) If G0 = L4(q) and H is of type GL2(q) o S2, then the solubility and maximality of
H implies that q = 3 and G is one of G0.2

2, G0.21 = PGL4(3) or G0.23 (the latter
group contains an involutory graph automorphism x with CG0(x) = PSO−4 (3).2). We
get b(G,H) = 3 in every case.
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b G0 H ∩G0 Conditions
3 F4(q) [222]:S2

3 G = F4(2).2
G2(q) [q6]:C2

q−1 p = 3, G 66 〈G0, φ〉
[35]:GL2(3) G = G2(3)

3D4(q) [q11]:((q3 − 1) ◦ SL2(q)).(2, q − 1) q = 2, 3
2F4(q)′ [29]:5:4, [210]:S3 q = 2
2B2(q) [q2]:Cq−1
2G2(q) [q3]:Cq−1 q > 27

Table 5. Exceptional groups

b G0 Type of H Conditions
5 L4(q) P2 q = 3

U5(q) P1 q = 2
4 L2(q) P1 See Remark 9.2(ii)

L3(q) P1, P2 G = L3(3)
P1,2 G = L3(4).D12

L4(q) P1,3 G = L4(3).22

U4(q) P1 q = 2, 3; see Remark 9.2(iii)
L5(q) P2,3 G = L5(3).2
L6(q) P2,4 G = L6(3).22

PSp6(q) P2 G = PGSp6(3)
Ω7(q) P2 G = SO7(3)
PΩ+

8 (q) P2 q = 2, 3 and G 6= G0

3 L2(q) P1 See Remark 9.2(ii)
L3(q) P1,2 G 66 〈PGL3(q), φ〉, G 6= L3(4).D12

U3(q) P1

L4(q) P1,3 G = L4(3).2 6= PGL4(3)
U4(q) P1 q = 2, 3; see Remark 9.2(iii)
Sp4(q) [q4]:C2

q−1 q > 4 even, G 66 〈G0, φ〉
L5(q) P2,3 G = L5(2).2
L6(q) P2,4 G = L6(2).2 or L6(3).2 6= PGL6(3)
PSp6(q) P2 q = 2 or G = PSp6(3)
Ω7(q) P2 G = Ω7(3)
PΩ+

8 (q) P2 q = 2, 3 and G = G0

P1,3,4 q = 2, 3, G 66 PGO+
8 (q)

Table 6. Classical groups in parabolic actions
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b G0 Type of H Conditions
4 U4(q) GU3(q)×GU1(q) q = 2

GU1(q) o S4 q = 2
3 L2(q) GL1(q) o S2 PGL2(q) < G

GL1(q2) PGL2(q) 6 G
21+2
− .O−2 (2) q = 7

L3(q) GL2(q)×GL1(q) G = L3(3).2
GL1(q3) G = L3(3).2

GU3(q1/2) q = 4; see Remark 9.2(iv)
U3(q) GU2(q)×GU1(q) q = 3

GU1(q) o S3 q = 3, or q = 4 and G 6= G0

L4(q) GL2(q) o S2 q = 3; see Remark 9.2(v)
O+

4 (q) G = L4(3).22

U4(q) GU1(q) o S4 G = U4(3).D8

GU2(q) o S2 q = 3 and G 6= G0

U5(q) GU3(q)×GU2(q) q = 2
U6(q) GU3(q) o S2 q = 2
PSp6(q) Sp2(q) o S3 G = PGSp6(3)
PΩ+

8 (q) O+
4 (q) o S2 q = 3 and |G : G0| > 6

O−2 (q) o S4 q = 2
O−2 (q)×GU3(q) G = Ω+

8 (2).S3

Table 7. Classical groups in non-parabolic actions
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