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Abstract. Let G be a permutation group on a set Ω. A subset B of Ω is a base for G if
the pointwise stabilizer of B in G is trivial; the base size of G is the minimal cardinality
of a base for G, denoted by b(G). In this paper we calculate the base size of every
primitive almost simple classical group with point stabilizer in Aschbacher’s collection
S of irreducibly embedded almost simple subgroups. In this situation we also establish
strong asymptotic results on the probability that randomly chosen subsets of Ω form a
base for G. Indeed, with some specific exceptions, we show that almost all pairs of points
in Ω are bases.

1. Introduction

Let G be a permutation group on a finite set Ω. A subset B of Ω is a base for G if
the pointwise stabilizer of B in G is trivial. The base size of G, denoted by b(G), is the
minimal cardinality of a base for G. Determining base sizes is a fundamental problem in
permutation group theory, with a long history stretching back to the early days of group
theory in the nineteenth century (see [4], for example). More recently, bases have played
an important role in computational group theory (see [43, Chapter 4] for more details).

Let G be a finite almost simple primitive permutation group on a set Ω with socle G0

and point stabilizer H. Roughly speaking, G is said to be standard if G0 is a classical group
and Ω is an orbit of subspaces of the natural G0-module, or if G0 = An and Ω is an orbit of
subsets or partitions of the natural G-set {1, . . . , n} (see [13, Definition 1.1] for the precise
definition); if (G,Ω) is not of this form then G is non-standard. A well-known conjecture
of Cameron and Kantor [21] asserts that there is a constant c such that b(G) ≤ c for any
non-standard group G. (In general, if G is standard then |G| is not bounded above by a
fixed polynomial in |Ω|, so the non-standard condition is necessary.) This conjecture was
proved by Liebeck and Shalev [38, Theorem 1.3] with an undetermined constant c, using
probabilistic methods. More recently, by combining the main theorems in [13, 17, 18, 14],
it follows that the optimal constant in the conjecture is c = 7; more precisely, b(G) ≤ 7
with equality if and only if G = M24 in its 5-transitive action on 24 points.

More detailed results have been obtained in some specific cases. If G0 is a sporadic group
then the exact value of b(G) is calculated in [18] (see also [42]). Similarly, if G0 = An is an
alternating group then b(G) = 2 if n > 12, and the precise base size has been computed
for all non-standard groups with an alternating socle (see [14]). For non-standard classical
groups, [13, Theorem 1.1] states that b(G) ≤ 5, with equality if and only if G = U6(2).2 and
H = U4(3).22, while the bound b(G) ≤ 6 is established in [17] for groups of exceptional
Lie type. In the latter case, it has recently been established that there are infinitely
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many examples with b(G) = 6 (see [15, Theorem 8]). For example, we have b(G) = 6 if
(G,H) = (E6(q), P1), (E6(q), P6) or (E7(q), P7), where Pi denotes the standard maximal
parabolic subgroup of G corresponding to the i-th node of the Dynkin diagram of G.
However, in general the precise base size for Lie type groups has only been computed in
a handful of special cases (for example, see [25] for the case G0 = Ln(q) and H of type
Spn(q), and also [13] for some additional specific cases); one of the outstanding problems
in this area is to compute the precise base size of every non-standard primitive group of
Lie type.

Let G be a finite almost simple classical group over Fq with socle G0 and natural module
V of dimension n. In [1], Aschbacher introduces eight geometric families of subgroups of
G, denoted by Ci (1 ≤ i ≤ 8), which are defined in terms of the underlying geometry of V .
For example, these collections include the stabilizers of suitable subspaces of V , and the
stabilizers of appropriate direct sum and tensor product decompositions of V . Essentially,
Aschbacher’s main theorem states that if H is a maximal subgroup of G with HG0 = G
then either H is contained in one of the Ci collections, or H is almost simple and the
socle of H acts absolutely irreducibly on V . Following [34], we refer to the latter family
of almost simple subgroups as the S collection (see Definition 2.9). In studying finite
primitive classical groups it is natural to make a distinction between the groups in which
a point stabilizer belongs to one of the Ci collections, and those with a point stabilizer in
S. (Throughout this paper, we follow [34] in defining the various Ci collections.)

Our main result, Theorem 1 below, gives the precise value of b(G) in the case where
a point stabilizer belongs to the above S collection. Base sizes for the geometric Ci-
actions of classical groups are considered separately in the forthcoming paper [16]. (In
[16] we also handle the small number of additional primitive groups corresponding to
certain novelty subgroups of G0 = PΩ+

8 (q) and PSp4(q)′ (q even); this includes the case
(G,H) = (PΩ+

8 (q).3, G2(q)), for example.) A related result for simple algebraic groups
over an algebraically closed field appears in [15].

Theorem 1. Let G be a non-standard classical group with socle G0 and point stabilizer
H ∈ S. Then either b(G) = 2, or (G,H, b(G)) is one of the cases listed in Table 1, where
H0 = Soc(H) denotes the socle of H.

Corollary 1. Let G be a non-standard classical group with socle G0 and point stabilizer
H ∈ S. Let n be the dimension of the natural G0-module. If n > 8 then either b(G) = 2,
or one of the following holds:

(i) b(G) = 4 and (G,H) = (O−10(2), S12).

(ii) b(G) = 3 and (G,H) = (O+
14(2), S16), (Ω−12(2), A13), (O−12(2), S13) or (Ω−10(2), A12).

In particular, if n > 14 then b(G) = 2.

Remark 1. In the statement of Theorem 1 and Corollary 1 (and also Theorem 2 below) we
exclude any groups which are permutation isomorphic to a standard group. For example,
the action of G0 = PΩ+

8 (q) on the cosets of an irreducible subgroup Ω7(q) is equivalent to
the standard action of G0 on the set of non-singular 1-dimensional subspaces of the natural
G0-module. In addition, we exclude any groups which are permutation isomorphic to a
classical group acting on the cosets of a Ci-subgroup. In Table 2 we list all of the excluded
groups which arise in this way (in the fourth line of the table, Λ2V4 denotes the wedge
square of the natural H0-module V4).

The proof of Theorem 1 uses probabilistic methods, based on fixed point ratio estimates.
Recall that the fixed point ratio of x ∈ G, which we denote by fpr(x) = fpr(x,Ω), is the
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b(G) G0 H0 Conditions
5 U6(2) U4(3) G = G0.2
4 Ω−10(2) A12 G = G0.2

PΩ+
8 (3) Ω+

8 (2) G 6= G0

Ω+
8 (2) A9

Ω7(q) G2(q) q odd
Sp6(q) G2(q)′ q even
U6(2) U4(3) G 6= G0.2
Sp6(2) U3(3)
U4(3) L3(4)
U3(5) A7

U3(3) L2(7) G = G0.2
3 Ω+

14(2) A16 G = G0.2
Ω−12(2) A13

Ω−10(2) A12 G = G0

Sp8(2) A10

PΩ+
8 (3) Ω+

8 (2) G = G0

Ω7(3) Sp6(2)
Ω7(3) A9

U6(2) M22

U4(3) A7

PSp4(q) Sz(q) q = 22a+1 > 2
L3(4) A6

U3(5) A6

U3(5) L2(7) G = G0.2
U3(3) L2(7) G = G0

L2(19) A5

L2(11) A5

Table 1. H ∈ S, b(G) > 2

G0 H0 Representation Equivalent action

PΩ+
8 (q)

{
Ω7(q) p > 2
Sp6(q) p = 2

spin module C1-action on non-singular 1-spaces

PΩ+
8 (q) PΩ−8 (q1/2) spin module C5-action on cosets of O−8 (q1/2)

Lε6(q) Lε4(q) Λ2V4 C8-action on cosets of Oε6(q)
L4(2) A7 A8 on {1, . . . , 8}
L2(9) A5 A6 on {1, . . . , 6}

Table 2. Some excluded S-actions

proportion of points in Ω which are fixed by x. In other words, fpr(x) is the probability
that a randomly chosen element of Ω is fixed by x. If G is transitive with point stabilizer
H then it is easy to see that

fpr(x) =
|xG ∩H|
|xG|

. (1)

As originally observed in the proof of [38, Theorem 1.3], the connection between fixed
point ratios and base sizes arises in the following way. For a positive integer c, let P (G, c)
be the probability that a randomly chosen c-tuple of points in Ω is a base for G, and let
Q(G, c) = 1− P (G, c) denote the complementary probability. Note that G admits a base
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of size c if and only if Q(G, c) < 1. Of course, a c-tuple in Ω fails to be a base if and
only if it is fixed by an element x ∈ G of prime order; further, the probability that a
random c-tuple is fixed by x is at most fpr(x)c. If G is transitive then fixed point ratios
are constant on conjugacy classes (see (1)), so

Q(G, c) ≤
∑
x∈P

fpr(x)c =

k∑
i=1

|xGi | · fpr(xi)
c =: Q̂(G, c), (2)

where P is the set of elements of prime order in H, and x1, . . . , xk represent the distinct

G-classes of elements in P. Therefore b(G) ≤ c if Q̂(G, c) < 1, so we can use upper bounds
on fixed point ratios to bound the base size. In particular, we observe that b(G) = 2 if

|H| ≤ min
x∈P
|xG|1/2 (3)

(see Corollary 2.3).

This probabilistic approach also allows us to establish strong asymptotic results on
the abundance of bases in Ω of a given size. In [21], Cameron and Kantor prove that if
G = An or Sn is a non-standard permutation group on a set Ω then the probability that a
random pair of points in Ω form a base for G tends to 1 as n tends to infinity. Similarly,
if G is a non-standard classical group with natural module of dimension greater than 15
then Liebeck and Shalev prove that three randomly chosen points in Ω form a base with
probability tending to 1 as |G| tends to infinity (see [39, Theorem 1.11]). More generally,
by [17, Theorem 2], the same property holds for six random points in any non-standard
permutation group. Theorem 2 below gives the optimal asymptotic result for S-actions of
almost simple classical groups (see Remark 1).

Theorem 2. Let Gi be a sequence of primitive almost simple classical groups with |Gi|
tending to infinity and each point stabilizer Hi ∈ S. Then the probability that a random
pair of points is a base for Gi tends to 1, unless there exists an infinite subsequence with

(i) (Soc(Gi), Soc(Hi)) =

{
(Ω7(q), G2(q)) q odd
(Sp6(q), G2(q)′) q even

; or

(ii) (Soc(Gi), Soc(Hi)) = (PSp4(q)′, Sz(q)), q even.

For subsequences of type (i) or (ii), let c be minimal such that the probability that c random
points form a base for Gi tends to 1. Then c = 4 in case (i), and c = 3 in (ii).

Let G be an almost simple classical group over Fq (where q = pf for a prime p) with
natural module V of dimension n. Let H be a point stabilizer and suppose H ∈ S with
socle H0. In order to prove Theorems 1 and 2 we partition the collection S into several
sub-collections, in a similar spirit to the proof of [12, Theorem 1.1]. First we define three
collections of irreducible almost simple subgroups, denoted by the letters A, B and C (see
Tables 3, 4 and 5, respectively). For instance, if H ∈ A then H0 is an alternating group
and V is the fully deleted permutation module for H0 over Fp. Now, if n ≥ 6 and H is
not in A, B or C then we are in a position to apply two powerful theorems of Liebeck and
Guralnick-Saxl (see Theorems 2.10 and 2.12). Together, these theorems imply that

(a) |H| < q2n+4; and

(b) ν(x) > max{2, 1
2

√
n} for all nontrivial x ∈ H ∩ PGL(V ), where ν(x) denotes the

codimension of the largest eigenspace of a lift x̂ ∈ GL(V̄ ) with V̄ = V ⊗ F̄q.
If x ∈ H ∩ PGL(V ) has prime order then the bound in (b) easily translates into a

lower bound for |xG| (see Proposition 2.6, for example), and subsequently we can use
the upper bound on |H| in (a) to determine when the inequality in (3) holds. Indeed,
in Proposition 6.1 we show that (3) holds for all n ≥ N , where N = 14 if G0 = Lεn(q),
otherwise N = 64. This reduces the problem to irreducible subgroups of small degree and
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we can inspect explicit lists of these subgroups compiled by Lübeck [40] and Hiss-Malle
[30]. The subsequent analysis yields two further sub-collections, denoted by D and E (see
Tables 11 and 12). We deal case-by-case with the permutation groups in the collections
A–E , working with the underlying irreducible representation to compute fixed point ratio

estimates, which we use to estimate Q̂(G, c) in (2). Finally, the remaining cases with n < 6
can be listed explicitly (see Table 14), and the desired result quickly follows.

Our main theorem has already been applied in two recent papers. A finite transitive
permutation group G is said to be 3/2-transitive if all the nontrivial orbits of a point
stabilizer have the same size, with this size being greater than 1. Clearly, if b(G) = 2
then a point stabilizer has a regular orbit and thus G is not 3/2-transitive. Consequently,
Theorem 1 plays an important role in the analysis of S-actions in [3], where the almost
simple 3/2-transitive groups are classified.

In a similar spirit, Theorem 1 has also been used in joint work of the first author with
Praeger and Seress [19]. A non-regular primitive permutation group is extremely primitive
if a point stabilizer acts primitively on each of its nontrivial orbits. By a theorem of Mann,
Praeger and Seress [41], every finite extremely primitive group is either almost simple or
of affine type, and the extremely primitive almost simple classical groups are classified in
[19] (the sporadic and alternating examples are determined in [20]). If G is an almost
simple extremely primitive group then b(G) > 2, and once again Theorem 1 is a key tool
in this classification.

Finally, some words on the organization of this paper. In Section 2 we present some
preliminary results we will use in the proof of Theorems 1 and 2. In particular, we
introduce the sub-collections denoted A, B and C, which we deal with next in Sections 3,
4 and 5, respectively. Two further sub-collections, denoted by D and E , are then handled
in Section 6. Finally, the proof of Theorems 1 and 2 is completed in Section 7, where we
deal with the remaining low dimensional classical groups.

2. Preliminaries

2.1. Notation. Our notation for classical groups is mostly standard, following Kleidman-
Liebeck [34]. In particular, we write L+

n (q) = Ln(q) and L−n (q) = Un(q) for PSLn(q) and
PSUn(q), respectively. The simple orthogonal groups are denoted by PΩε

n(q), where ε = ±
if n is even, and ε = ◦ when n is odd (in the latter case we write PΩ◦n(q) = Ωn(q)). Our
notation for matrices is also standard. With respect to a fixed basis of V , we use [x1, . . . , xt]
to denote a block-diagonal matrix in GLn(q) = GL(V ) with blocks xi. Further, Im denotes
the identity m×m matrix, and Jm is the standard indecomposable unipotent Jordan block
of size m.

If G is a finite group then |x| denotes the order of an element x ∈ G. Also, if X is a
subset of a finite group and m is a positive integer then im(X) is the number of elements
of order m in X. The greatest common divisor of the integers a and b is denoted by (a, b),
while the symbol δi,j represents the familiar Kronecker delta. We reserve the symbol Q
for the rational number q/(q + 1). Finally, if x is a real number and ε = ± then x − ε
denotes x− ε1.

2.2. Probabilistic methods. Let G be a transitive permutation group on a finite set
Ω with point stabilizer H. Let B be a base for G. By definition, the elements of G are
uniquely determined by their action on B, whence |G| ≤ |Ω||B|. This trivial observation
yields the following useful lower bound:

Lemma 2.1. b(G) ≥ log |G|/ log |Ω|.
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As explained in the Introduction, fixed point ratio estimates can be used to derive an
upper bound on b(G). Indeed, recall that if Q(G, c) is the probability that a randomly
chosen c-tuple of points in Ω do not form a base for G then

Q(G, c) ≤
∑
x∈P

fpr(x)c =
k∑
i=1

|xGi | · fpr(xi)
c =: Q̂(G, c),

where P is the set of elements of prime order in H, and x1, . . . , xk represent the distinct

G-classes of elements in P. Therefore, b(G) ≤ c if Q̂(G, c) < 1. The next result provides

an effective upper bound on Q̂(G, c) (see [13, Lemma 2.1]).

Proposition 2.2. Let G be a transitive permutation group on a finite set Ω with point
stabilizer H. Suppose x1, . . . , xm represent distinct G-classes such that

∑
i |xGi ∩H| ≤ A

and |xGi | ≥ B for 1 ≤ i ≤ m. Then
m∑
i=1

|xGi | · fpr(xi)
c ≤ B(A/B)c

for all positive integers c.

Corollary 2.3. Suppose |H|2 ≤ |xG| for all x ∈ H of prime order. Then b(G) = 2.

Proof. Set A = |H| and B = minx∈P |xG|. Then Proposition 2.2 yields Q̂(G, 2) < A2/B
and the result follows. �

The next proposition provides an alternative base-two criterion in the case where G is
a finite almost simple classical group.

Proposition 2.4. Let G be a transitive almost simple classical group with socle G0, point
stabilizer H, and natural G0-module of dimension n ≥ 6.

(i) If fpr(x) < |xG|−
2
3 for all x ∈ H of prime order, then b(G) = 2.

(ii) Suppose (Gi, Hi) is a sequence of transitive almost simple classical groups, where
|Gi| tends to infinity and the dimension of each natural Gi-module is at least 6. If

fpr(x) < |xGi |−
2
3 for all x ∈ Hi of prime order, then P (Gi, 2) tends to 1.

Proof. Following [13, Definition 3], let t be a real number, let χ be the set of G-classes of
elements of prime order in G and define ηG(t) =

∑
C∈χ |C|−t. Fix TG ∈ (0, 1) such that

ηG(TG) = 1. Then

Q̂(G, 2) <
k∑
i=1

|xGi |−
1
3 ≤ ηG(1/3),

where x1, . . . , xk represent the distinct G-classes of elements of prime order in H. Finally,

[13, Proposition 2.2] (and its proof) implies that TG < 1/3, so Q̂(G, 2) < 1 and thus
b(G) = 2. For (ii), the proof of [13, Proposition 2.2] reveals that ηGi(1/3) → 0, so
Q(Gi, 2)→ 0 and the result follows. �

2.3. Conjugacy classes. Let G be an almost simple classical group over Fq with socle

G0 and natural module V of dimension n. Write q = pf where p is a prime. Due to
the existence of certain exceptional isomorphisms between some of the low dimensional
classical groups (see [34, Proposition 2.9.1], for example), we may assume n ≥ 3 if G0 =
Un(q), n ≥ 4 if G0 = PSpn(q)′ and n ≥ 7 if G0 = PΩε

n(q).

In order to estimate Q̂(G, c) we need information on the conjugacy classes of elements
of prime order in G. Let x ∈ G be an element of prime order r. If x ∈ G ∩ PGL(V )
then x is either unipotent (if r = p) or semisimple (if r 6= p). There are three remaining
possibilities:
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(i) r divides logp q and x is a field automorphism (induced by an automorphism of
Fq);

(ii) r ≤ 3 and x is a graph automorphism (induced by an order r symmetry of the
corresponding Dynkin diagram);

(iii) r ≤ 3, r divides logp q and x is a graph-field automorphism (a product of commuting
graph and field automorphisms of order r).

Let F̄q denote the algebraic closure of Fq and set V̄ = V ⊗ F̄q. For each element
x̂ ∈ GL(V̄ ) we define a subspace [V̄ , x̂] = 〈v − vx̂ | v ∈ V̄ 〉, which allows us to introduce
the following important invariant. (Here a lift of x is an element x̂ ∈ GL(V ) such that
x = x̂Z, where Z denotes the centre of GL(V ).)

Definition 2.5. Let x ∈ G ∩ PGL(V ) and let x̂ ∈ GL(V ) be a lift of x. We define

ν(x) := min{dim[V̄ , λx̂] | λ ∈ K∗},
so ν(x) is equal to the codimension of the largest eigenspace of x̂ on V̄ (which is indepen-
dent of the choice of lift x̂).

In [11, Section 3], various bounds on |xG| are given in terms of ν(x). For the remainder
of this subsection we set Q = q/(q + 1) and a = 1

2(1− ε).

Proposition 2.6. Let x ∈ G ∩ PGL(V ) be an element of prime order r with ν(x) = s.
Then |xG| > F (n, s, q), where F is defined in the following table.

G0 s < n/2 s ≥ n/2
Lεn(q) 1

2Q
aq2s(n−s) 1

2rQ
as

n−s qns

PSpn(q)′ 1
4Qq

s(n−s) 1
4Qq

1
2
ns

PΩε
n(q) 1

4Qq
s(n−s−1) 1

8Q
n

2(n−s) q
1
2
n(s−1)

Proof. This follows from [11, Proposition 3.38]. �

Corollary 2.7. If n ≥ 7 and ν(x) ≥ 3 then |xG| > G(n, q), where G(n, q) = 1
2Qq

6n−18 if

G0 = Lεn(q), otherwise G(n, q) = 1
4Qq

3n−12.

Proposition 2.8. If x ∈ G \ PGL(V ) has prime order then |xG| > H(n, q), where

G0 H(n, q)

Lεn(q) 1
2Q

aq
1
2

(n2−n−4)

PSpn(q)′ 1
4q

1
4
n(n+1)

PΩε
n(q) 1

8q
1
4
n(n−1)

Proof. This is [11, Corollary 3.49]. �

2.4. The S collection. Let G be an almost simple classical group over Fq, acting primi-
tively on a set Ω with point stabilizer H, socle G0 and natural module V of dimension n.
Write q = pf where p is a prime.

Recall that Aschbacher’s theorem [1] states that either H is contained in one of eight
geometric subgroup collections (denoted Ci, 1 ≤ i ≤ 8), or H belongs to a collection
S of almost simple absolutely irreducible subgroups. Some additional properties of the
subgroups in S are detailed in Definition 2.9 below (see [34, p.3]). Note that the conditions
labelled (iii) – (vii) prevent a subgroup in S from being contained in a member of one of
the geometric Ci families.

Definition 2.9. A subgroup H of G is in S if and only if the following hold:

(i) The socle H0 of H is a nonabelian simple group, and H0 6∼= G0.
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d p G0

(A1) d ≡ 2 (mod 4) 2 Spd−2(2)

(A2) d ≡ 0 (mod 4) 2

{
Ω+
d−2(2) if d ≡ 0 (mod 8)

Ω−d−2(2) if d ≡ 4 (mod 8)

(A3) odd 2

{
Ω+
d−1(2) if d ≡ ±1 (mod 8)

Ω−d−1(2) if d ≡ ±3 (mod 8)

(A4) arbitrary odd

{
PΩε

d−1(p) if (d, p) = 1
PΩε

d−2(p) otherwise

Table 3. The collection A, H0 = Ad on the fully deleted permutation module

(ii) If Ĥ0 is the full covering group of H0, and if ρ : Ĥ0 → GL(V ) is a representation

of Ĥ0 such that ρ(Ĥ0) = H0 (modulo scalars) then ρ is absolutely irreducible.

(iii) ρ(Ĥ0) cannot be realized over a proper subfield of F, where F = Fq2 if G0 is unitary,
otherwise F = Fq.

(iv) If ρ(Ĥ0) fixes a non-degenerate quadratic form on V then G0 = PΩε
n(q).

(v) If ρ(Ĥ0) fixes a non-degenerate symplectic form on V , but no non-degenerate
quadratic form, then G0 = PSpn(q).

(vi) If ρ(Ĥ0) fixes a non-degenerate unitary form on V then G0 = Un(q).

(vii) If ρ(Ĥ0) does not satisfy the conditions in (iv), (v) or (vi) then G0 = Ln(q).

In order to prove Theorems 1 and 2 we partition the subgroups in S into several sub-
collections. First let A, B and C denote the irreducible almost simple subgroups listed

in Tables 3, 4 and 5, respectively. In the tables, M(λ) is the unique irreducible FqĤ0-
module of highest weight λ (up to quasi-equivalence), and we follow [6] in labelling the
fundamental dominant weights λi. Note that if H ∈ A then H0 is an alternating group,
q = p is prime and V is the fully deleted permutation module for H0 over Fp (see [34,
pp.185-187]). The collections A, B and C facilitate the statement of two key theorems.

Theorem 2.10. If H ∈ S and n ≥ 6 then one of the following holds:

(i) H0 is an alternating group, embedded in G0 as in A;

(ii) H0 is embedded in G0 as in B;

(iii) |H| < q2n+4.

Proof. If G0 6= Un(q) then this follows immediately from [37, Theorem 4.2], so let us
assume G0 = Un(q). Here [37, Theorem 4.2] gives the possibilities with |H| ≥ q4n+8; in
order to extend this result we proceed as in the proof of [37, Theorem 4.1].

For example, suppose H0 is a simple group of Lie type in characteristic p. Let Ĥ0 be
the full covering group of H0, and let K be the algebraic closure of Fq. Then H0 = Lεd(q

i),
PΩε

d(q
i) (with d ≡ 2 (mod 4)) or Eε6(qi), and n = `i where ` is the dimension of a non-

self dual irreducible KĤ0-module (see [34, Section 5.4]). Suppose H0 = PΩε
d(q

i). Here
` ≥ d ≥ 10 and

|H| ≤ |Aut(H0)| < q
1
2
id(d−1)+i < q2di+4 ≤ q2n+4

if i ≥ 2. If i = 1 then we may assume n > d, so n ≥ min{2d/2−1, d2/2− d/2− 1} (see [40])
and we deduce that |H| ≥ q2n+4 if and only if (n, d) = (16, 10), which corresponds to the
case labelled (B4) in Table 4 with ε = −. The other cases are very similar.
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H0 G0 Representation of H0

(B1) Lεd(q) Lεd(d−1)/2(q) Λ2Vd, d ≥ 5

(B2)

{
Ω7(q) p > 2
Sp6(q) p = 2

PΩ+
8 (q) spin module

(B3)

{
Ω9(q) p > 2
Sp8(q) p = 2

PΩ+
16(q) spin module

(B4) PΩε
10(q) Lε16(q) spin module

(B5) Eε6(q) Lε27(q) M(λ1)

(B6) E7(q)

{
PSp56(q) p > 2
Ω+

56(q) p = 2
M(λ7)

(B7) M24 L11(2)
(B8) J3 U9(2)
(B9) Suz U12(2)
(B10) Co1 Ω+

24(2)
(B11) PSp6(3) U13(2)
(B12) U4(3) U6(2)
(B13) M22 U6(2)

Table 4. The collection B from Theorem 2.10

If H0 is a sporadic group then n ≥ N(H0), where N(H0) is the lower bound on the
minimal dimension of a faithful projective p-modular representation of H0 given in [34,
Proposition 5.3.8]. If |H| ≥ q2n+4 then we immediately deduce that q = 2 and (H0, n) is
one of the following:

H0 M11 M12 M22 M24 J2 J3 Suz Co1

n 5 6 6, 7 11 6, 7, 8 9, 10, 11 12, . . . , 17 24, . . . , 28

By inspecting [29, Table 2], we see that the only possibilities are the cases labelled (B8),
(B9), (B10) and (B13) in Table 4. We leave the reader to verify the theorem in the
remaining cases. (As in the proof of [37, Theorem 4.1], we use Landazuri-Seitz [35] to
derive a lower bound on n when H0 is a group of Lie type in non-defining characteristic,
and we use a combination of [45, 46, 47] and [31, Theorem 7] when H0 is an alternating
group.) �

Remark 2.11. In case (B1) of Table 4 we may assume d ≥ 5. Indeed, if d = 3 then the
underlying representation ρ is an isomorphism, while G is permutation isomorphic to a
C8-action when d = 4 (see Table 2).

Theorem 2.12. If H ∈ S and n ≥ 6 then one of the following holds:

(i) H0 is an alternating group, embedded in G0 as in A;

(ii) H0 is embedded in G0 as in C;

(iii) ν(x) > max{2, 1
2

√
n} for all nontrivial x ∈ H ∩ PGL(V ).

Proof. This follows from [28, Theorem 7.1]. �

Remark 2.13. In case (C19) of Table 5 we may assume p ≥ 3; if p = 2 then condition
(iii) in Definition 2.9 implies that q = 4, but H is non-maximal since J2 < G2(4) < Sp6(4).
For completeness, we note that b(G) = 2 if (G,H) = (Sp6(4), J2) or (Sp6(4).2, J2.2).

Suppose n ≥ 6 and H ∈ S is not one of the subgroups in A, B or C. If x ∈ H ∩PGL(V )
has prime order then the lower bound on ν(x) in Theorem 2.12(iii) provides a lower bound



10 TIMOTHY C. BURNESS, ROBERT M. GURALNICK, AND JAN SAXL

H0 G0 Remarks
(C1) Lε3(q) Lε6(q) p > 2, S2V3

(C2)

{
Ω7(q) p > 2
Sp6(q) p = 2

PΩ+
8 (q) spin module

(C3) 3D4(q0) PΩ+
8 (q) q = q3

0, minimal module

(C4) G2(q)′
{

Ω7(q) p > 2
Sp6(q) p = 2

M(λ1)

(C5) G2(q) Ω7(q) p = 3, M(λ2)
(C6) A6 Lε6(p) p ≡ ε (mod 3), p ≥ 5
(C7) A7 Lε6(p) p ≡ ε (mod 3), p ≥ 5
(C8) L3(4) Lε6(p) p ≡ ε (mod 3), p ≥ 5
(C9) U3(3) PSp6(p) p 6= 3
(C10) U3(3) Lε7(p) p ≡ ε (mod 3), p ≥ 5
(C11) U3(3) Ω7(p) p ≥ 5
(C12) U4(3) Lε6(p) p ≡ ε (mod 3), p ≥ 5
(C13) U4(3) U6(2)
(C14) U5(2) PSp10(p) p ≥ 3
(C15) Sp6(2) Ω7(p) p ≥ 3
(C16) Ω+

8 (2) PΩ+
8 (p) p ≥ 3

(C17) M12 L6(3)
(C18) M22 U6(2)
(C19) J2 PSp6(q) p ≥ 3

Table 5. The collection C from Theorem 2.12

for |xG| (via Proposition 2.6, for example). Next we can apply Corollary 2.3, using the
upper bound on |H| given in Theorem 2.10(iii). In this way, we quickly deduce that
b(G) = 2 for all n ≥ N , where N = 14 if G0 = Lεn(q), otherwise N = 64 (see Proposition
6.1). Similarly, if (Gi, Hi) is a sequence of primitive almost simple classical groups with
Hi ∈ S \ (A ∪ B ∪ C), such that |Gi| tends to infinity and the dimension of each natural
Gi-module is at least N , then P (Gi, 2) tends to 1.

This reduces the proof of Theorems 1 and 2 to certain irreducible embeddings of small
degree, which we can determine precisely by appealing to [30] and [40]. This analysis
yields two further sub-collections, denoted by D and E (see Tables 11 and 12). These
collections are dealt with in Section 6, while the remaining cases with n < 6 are handled
in Section 7.

We are now ready to begin the proof of Theorems 1 and 2. For the remainder of the
paper, G denotes a finite almost simple classical group over Fq, with socle G0 and natural
module V of dimension n, and Ω is a primitive G-set with point stabilizer H ∈ S. As
in Definition 2.9, H0 denotes the (simple) socle of H and ρ is the underlying absolutely

irreducible representation of the full covering group Ĥ0. In addition, Ḡ denotes the ambient
simple algebraic group defined over the algebraic closure K = F̄q (so that G0 = (Ḡσ)′ for
a suitable Frobenius morphism σ of Ḡ).

3. The A collection

We begin the proof of Theorems 1 and 2 by dealing with the irreducible subgroups in
the A collection (see Table 3). Recall that these embeddings are afforded by the fully
deleted permutation module for Ad over Fp.
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b(G) G0 H0 Conditions

4 Ω−10(2) A12 G = G0.2
Ω+

8 (2) A9

3 Ω+
14(2) A16 G = G0.2

Ω−12(2) A13

Ω−10(2) A12 G = G0

Sp8(2) A10

Ω7(3) A9

Table 6. H ∈ A, b(G) > 2

Proposition 3.1. Suppose H ∈ A. Then either b(G) = 2, or (G,H, b(G)) is one of the
cases listed in Table 6. Moreover, if (Gi, Hi) is a sequence of primitive almost simple
classical groups, with Hi ∈ A and |Gi| tending to infinity, then P (Gi, 2) tends to 1.

Lemma 3.2. Proposition 3.1 holds for (A1).

Proof. Here G0 = Spd−2(2), d ≡ 2 (mod 4) and we may assume d ≥ 10 since H0
∼= G0 if

d = 6. Suppose d = 10. Then log |G|/ log |Ω| > 2 so Lemma 2.1 implies that b(G) ≥ 3.
With the aid of Magma [5] (and the command MaximalSubgroups) we can construct G
and H as permutation groups on 255 points, and by random search it is easy to find
x, y ∈ G such that H ∩Hx ∩Hy = 1, whence b(G) = 3 as required. Now assume d = 14.
Here Magma stores G as a permutation group on 4095 points, but we have to construct
H = S14 directly. To do this, first observe that

S14 = 〈x, y | x is a transposition, |y| = 13, |xy| = 14〉

(see [48]). Now G contains a unique class of elements of order 13, and since V is the
fully deleted permutation module for H it follows that the transpositions in H act as
transvections on V (so |CG(x)| = 4095). By random search it is straightforward to find
x, y ∈ G satisfying the relations in the above presentation for S14; we take H = 〈x, y〉
and a further random search provides an element g ∈ G such that H ∩ Hg = 1, whence
b(G) = 2.

Next let us assume d ≥ 30. Let x ∈ H be an element of prime order r and recall that
fpr(x) = |xG ∩H|/|xG| (see (1)). In view of Proposition 2.4, it suffices to show that

fpr(x) < |xG|−
2
3 . (4)

Let h be the number of r-cycles in the cycle-shape of x and observe that

|xG ∩H| ≤ |xSd | = d!

h!(d− hr)!rh
(5)

(see the proof of [12, Proposition 2.5]). If r = 2 and h < d/2 then x is G0-conjugate
to either bh or ch (in the notation of [2]), the precise type depending on the parity of h.

Therefore [11, Proposition 3.22] gives |xG| > 2h(d−h−1)−1 and thus (4) holds. Similarly, if

r = 2 and h = d/2 then x is conjugate to ad/2−1, so |xG| > 2d(d/2−2)/2−1 and the result

follows as before. Now, if r > 2 then x is Ḡ-conjugate to [Id−2−h(r−1), ωIh, . . . , ω
r−1Ih],

where ω ∈ K is a primitive r-th root of unity. Therefore CḠ(x) ∼= Spd−2−h(r−1)×GL
(r−1)/2
h ,

so

|xG| > 1

2

(
2

3

) 1
2

(r−1)

2
1
2

(r−1)(2dh−3h−h2r)
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and once again (5) is sufficient. Therefore (4) holds and we conclude that b(G) = 2.

Finally, suppose 18 ≤ d ≤ 26 and define Q̂(G, 2) as in (2). Then direct calculation yields

Q̂(G, 2) < 1 and thus b(G) = 2. �

Lemma 3.3. Proposition 3.1 holds for (A2).

Proof. Here d ≡ 0 (mod 4) and we may assume d ≥ 12 since A8
∼= Ω+

6 (2). If d = 12 then
a straightforward Magma calculation yields b(G) = 4 if G = O−10(2), otherwise b(G) = 3.
Now assume d ≥ 16. We claim that if d ≥ 32 then (4) holds for all x ∈ H of prime order, so
b(G) = 2 by Proposition 2.4. (To obtain the desired asymptotic result, it suffices to show
that (4) holds for all sufficiently large d (see Proposition 2.4), so this also follows from the
claim.) To justify the claim, let x ∈ H be an element of prime order r and let h be the

number of r-cycles in the cycle-shape of x. If r = 2 and h < d/2 then |xG| > 2h(d−h−2)−1,

while |xG| > 2(d/2−2)(d/2−1)−1 if h = d/2. In both cases, the bound in (5) is sufficient. If
r is odd then

|xG| > 1

2

(
2

3

) 1
2

(r+1)

2
1
2
h(r−1)(2d−5−hr)

and once again (5) is good enough. If 20 ≤ d ≤ 28 then one can check that Q̂(G, 2) < 1
and so b(G) = 2 in these cases too.

It remains to deal with the case d = 16. Now Magma stores O+
14(2) as a permutation

group on 8255 points and by random search we can construct H = NG(〈x, y〉), where
x, y ∈ G satisfy the relations in the following presentation of A16 (see [48])

A16 = 〈x, y | x is a 3-cycle, y is a 15-cycle, |xy| = 14, |xy2| = 63〉.
(Note that |xG| = 10924032 and |yG| = 15036051337981584715284480 if x ∈ H is a 3-
cycle and y ∈ H is a 15-cycle.) By random search it is easy to see that b(G) = 2 when
G = Ω+

14(2) and b(G) ≤ 3 when G = O+
14(2). To deduce that b(G) = 3 when G = O+

14(2)
we use a Magma implementation of the ‘double coset enumeration’ technique described
in [18, Section 2.3.3]. (The basic idea is to find a set of distinct (H,H) double cosets
{HxiH | i ∈ I} such that |HxiH| < |H|2 and

∑
i∈I |HxiH| > |G|− |H|2; this implies that

H does not have a regular orbit on G/H and thus b(G) > 2.) �

Lemma 3.4. Proposition 3.1 holds for (A3).

Proof. Here d is odd and we may assume d ≥ 9 since G0
∼= A8 when d = 7 (see Table 2),

while G0
∼= H0 when d = 5. In addition, we note that the maximality of H in G implies

that d ≡ 1 (mod 4). If d = 9 then a Magma calculation yields b(G) = 4 (see the proof of
[13, Proposition 3.2]) so let us assume d ≥ 13. In the usual way, it is straightforward to

show that (4) holds if d ≥ 29, while a direct calculation yields Q̂(G, 2) < 1 when d = 17,
21 or 25. Therefore b(G) = 2 if d ≥ 17, and the asymptotic result follows immediately
from the fact that (4) holds for all sufficiently large d (see Proposition 2.4). Finally, if
d = 13 then Magma stores O−12(3) as a subgroup of S2015 and by random search we can
construct H = NG(〈x, y〉), where x, y ∈ G satisfy the relations in the presentation

A13 = 〈x, y | x is a 3-cycle, |y| = 11, |xy| = 13〉
(see [48]; note that |xG| = 732160 if x ∈ H is a 3-cycle). By a further random search it
is easy to check that b(G) ≤ 3, while the double coset method employed in the proof of
Lemma 3.3 yields b(G) > 2. �

Lemma 3.5. Proposition 3.1 holds for (A4).

Proof. We have d ≥ 8 and p is odd. First assume (d, p) = 1, so G0 = PΩε
d−1(p) and the

maximality of H in G implies that p does not divide d + 1. Let x ∈ H be an element of
prime order r and let h be the number of r-cycles in the cycle-shape of x. Suppose r = 2
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and assume h < d/2− 1 if d is even. Then |xG| > 1
8p
h(d−1−h) and by applying the upper

bound on |xG ∩H| given in (5) we deduce that (4) holds unless (d, p) ∈ A, where

A = {(16, 3), (13, 3), (10, 3), (8, 7), (8, 5)}.
Similarly, if r = 2, d is even and h ≥ d/2− 1 then

|xG ∩H| ≤ d!

(d/2− 1)!2d/2
+

d!

(d/2)!2d/2
=

(d/2 + 1)d!

(d/2)!2d/2
,

|xG| > 1
4(p + 1)−1pd

2/4−d/2+1 and thus (4) holds unless (d, p) = (10, 3) or (8, 5). Now, if
r > 2 and (d, p) 6∈ A then (4) follows from the bounds in the proof of [12, Proposition 2.5],
hence b(G) = 2 for all (d, p) 6∈ A (and as usual, the desired asymptotic result follows from

Proposition 2.4). If (d, p) ∈ A and (d, p) 6= (10, 3) then it is easy to check that Q̂(G, 2) < 1
and thus b(G) = 2 in each of these cases too. Finally, if (d, p) = (10, 3) then we use
Magma to construct G and H = NG(〈x, y〉) as permutation groups of degree 3280, where
x, y ∈ G satisfy the relations in the presentation

A10 = 〈x, y | x is a 3-cycle, |y| = 9, |xy| = 8, |xy2| = 12〉.
(Note that |xG0 | = 2302560 and |yG0 | = 812157489561600.) In this way we quickly deduce
that b(G) = 2 by random search.

Finally let us assume p divides d, so G0 = PΩε
d−2(p) and d ≥ 9. Arguing as before, we

see that (4) holds unless (d, p) ∈ B where

B = {(18, 3), (15, 3), (12, 3), (10, 5), (9, 3)}.
If (d, p) = (9, 3) then (G,H) = (Ω7(3), S9), log |G|/ log |Ω| > 2 and an easy Magma
calculation yields b(G) = 3. Next suppose (d, p) = (12, 3). Here ε = + and Magma stores
G as a permutation group on 9922 points. By random search we can find x, y ∈ G such
that H = NG(〈x, y〉), where x, y satisfy the relations in the presentation

A12 = 〈x, y | x is a 3-cycle, |y| = 11, |xy| = 10, |xy2| = 35〉.
(Note that |xG| = 21431520 if x ∈ H has order 3.) We quickly deduce that b(G) = 2. In

each of the remaining cases, direct calculation yields Q̂(G, 2) < 1 and therefore b(G) =
2. �

This completes the proof of Proposition 3.1.

4. The B collection

Next we establish Theorems 1 and 2 for the irreducible subgroups in the B collection
(see Table 4). Note that we may exclude the case labelled (B2) – see Table 2. Our main
result is the following:

Proposition 4.1. Suppose H ∈ B\B2. Then either b(G) = 2, or G0 = U6(2), H0 = U4(3)
and b(G) = 4 + α, where α = 1 if G = G0.2, otherwise α = 0. Moreover, if (Gi, Hi) is a
sequence of primitive almost simple classical groups, with Hi ∈ B \ B2 and |Gi| tending to
infinity, then P (Gi, 2) tends to 1.

Lemma 4.2. Proposition 4.1 holds for (B1).

Proof. Here H ∩ PGL(V ) 6 PGLεd(q) = H̃, d ≥ 5 and ρ is quasi-equivalent to the repre-
sentation afforded by the wedge square Λ2Vd, where Vd is the natural module for SLεd(q).

Define Q̂(G, 2) as in (2). To prove the lemma it suffices to show that Q̂(G, 2) < F (d, q)
for some function F , where F (d, q) < 1 and F (d, q)→ 0 as d+ q →∞.

If x ∈ H∩PGL(V ) has prime order then the proof of [12, Lemma 2.9] gives ν(x) ≥ d−2

(see Definition 2.5), whence Proposition 2.6 yields |xG| > 1
2Qq

d3−5d2+10d−8 = b (with
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Q = q/(q + 1)) and the same bound also holds if x ∈ H \ PGL(V ) (see Proposition 2.8).

Since |H| < 2 log2 q.q
d2−1 = a we deduce that Q̂(G, 2) ≤ a2/b, which is less than q−d if

d ≥ 6.

To complete the proof, we may assume d = 5, so n = 10. We will estimate the

contribution to Q̂(G, 2) from the various elements of prime order in H. Set G̃ = PGLε10(q)
and let x ∈ H ∩ PGL(V ) be an element of prime order r.

Suppose r = p, so x is unipotent. It is straightforward to calculate the Jordan form of x
on V = Λ2V5, and we deduce that if x is conjugate to [J3

2 , I4] then |xG∩H| < 2q8 = a1 and

|xG| > 1
2Qq

42 = b1, otherwise |xG| > 1
2Qq

48 = b2. We note that H̃ contains fewer than

q20 = a2 elements of order p. Next suppose r 6= p. If r = 2 then x is conjugate to [−I4, I6],
so |xG ∩ H| < 2q12 + 2q8 = a3 and |xG| > 1

2Qq
48 = b3. Now assume r > 2. If CG(x) is

of type GLε6(q) × GLε4(q) then r divides q − ε and CH(x) is of type GLε4(q) × GLε1(q), so

|xG̃ ∩H| < 2q8 = a4 and |xG| > 1
2Qq

48 = b4. In addition, we note there are at most∑
r∈π′

(r − 1) ≤ (q − ε− 1)|π′| < q log(q + 1) = n4

distinct G̃-classes of such elements, where π′ is the set of odd prime divisors of q − ε.
In the remaining cases, a straightforward calculation with the module Λ2V5 reveals that
|xG| > 1

2Q
2q54 = b5 and we note that |H̃| < q24 = a5.

Finally suppose x ∈ H \PGL(V ) has prime order. If x is an involutory graph automor-
phism then |xG| > 1

2Qq
43 = b6 and we calculate that |xG∩H| < 2q14 = a6 since x induces

an involutory graph automorphism on H0. Similarly, we have |xG ∩H| < 2q12 = a7 and

|xG| > 1
2q

97/2 = b7 if ε = + and x is an involutory graph-field automorphism. If x is a field

automorphism of prime order r then |xG ∩H| < 2q24(1−r−1) and |xG| > 1
2Qq

99(1−r−1)−1 =

f(r), so fpr(x) < 4(q+1)q−75(1−r−1) = g(r). Clearly, G contains fewer than log2 q.q
99 field

automorphisms, so by applying Proposition 2.2 we see that the contribution to Q̂(G, 2)
from these elements is less than∑

r∈π
(r − 1) · h(r) < h(2) + 2h(3) + log2 q.q

99g(5)2,

where h(r) = f(r)g(r)2 and π is the set of distinct prime divisors of logp q. Putting all
this together, and using Proposition 2.2 once again, we conclude that

Q̂(G, 2) <
7∑
i=1

nibi(ai/bi)
2 + h(2) + 2h(3) + log2 q.q

99g(5)2 < q−1,

where ni = 1 for i 6= 4. The result follows. �

Lemma 4.3. Proposition 4.1 holds for (B3).

Proof. Here ρ is the restriction to Ω9(q) (or Sp8(q) if q is even) of a spin representation
which embeds Ω+

10(q) in SL16(q). As in the proof of the previous lemma, our aim is to

derive a suitable upper bound for Q̂(G, 2). Let x ∈ H ∩ PGL(V ) be an element of prime
order r.

First assume r = p > 2 and let λ be the partition of 16 corresponding to the Jordan
form of x on V . If λ 6= (28), (3, 24, 15) or (24, 18) then the proof of [12, Lemma 2.8] gives
|xG| > 1

8Q
2q70 = b1, and we note that H ∩PGL(V ) contains fewer than q32 = a1 elements

of order p. For λ = (28) we calculate that |xG ∩ H| < 2q14 = a2 and |xG| > 1
4q

56 = b2.

Similarly, |xG ∩H| < q16 = a3 and |xG| > 1
8q

60 = b3 if λ = (3, 24, 15), while |xG ∩H| <
2q12 = a4 and |xG| > 1

4q
44 = b4 if λ = (24, 18). For r = p = 2, the proof of [12, Lemma
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2.8] provides the following bounds |xG ∩H| < ai and |xG| > bi:

i O+
16(q)-class of x ai bi

5 a4 2q12 1
2q

44

6 a8 2q14 + q8 1
2q

56

7 c8 2(q20 + q18 + q16) 1
2q

64

Next suppose r 6= p. At the level of algebraic groups, we may assume x ∈ D4 < D5

and we note that V ↓ D4 = V8 ⊕ V ′8 , where V8 and V ′8 are non-isomorphic 8-dimensional
spin modules for D4. In particular, if r = 2 then [11, Proposition 3.55(iii)] implies that
ν(x) = 8, whence |xG| > 1

4Qq
56 = b8 and we calculate that there are at most 2q20 = a8

involutions in H ∩ PGL(V ). Now assume r > 2. If CH(x) is not of type O7(q) × GLε1(q)
then using [11, Proposition 3.55(iv)] we calculate that |xG| > 1

2Qq
76 = b9 (minimal if

CḠ(x) is of type O8 × GL4) and we note that |H ∩ PGL(V )| < q36 = a9. Otherwise, if

CH(x) is of type O7(q) × GLε1(q) then CḠ(x) is of type GL8, so |xG̃ ∩ H| < 2q14 = a10

and |xG| > 1
2Qq

56 = b10, where G̃ = Ḡσ = Inndiag(G0) is the group of inner-diagonal

automorphisms of G0 (see [27, Section 2.5]). Further, since r divides q2 − 1, there are
fewer than log(q2 − 1) possibilities for r and so there are less than 1

2q log(q2 − 1) = n10

distinct G̃-classes of this type.

Finally, suppose x ∈ H \PGL(V ) has prime order r. Then x is a field automorphism, so

|xG ∩H| < 2q36(1−r−1), |xG| > 1
4q

120(1−r−1) = f(r) and thus fpr(x) < 8q−84(1−r−1) = g(r).

It follows that the contribution to Q̂(G, 2) from field automorphisms is less than∑
r∈π

(r − 1) · h(r) < h(2) + 2h(3) + 2 log2 q.q
120g(5)2,

where h(r) = f(r)g(r)2 and π is the set of prime divisors of logp q. Applying Proposition
2.2, we conclude that

Q̂(G, 2) <

10∑
i=1

nibi(ai/bi)
2 + h(2) + 2h(3) + 2 log2 q.q

120g(5)2 < q−1,

where ni = 1 for i 6= 10. Therefore b(G) = 2, and we also observe that Q̂(G, 2) → 0 as
q →∞, so the required asymptotic result also holds. �

Lemma 4.4. Proposition 4.1 holds for the remaining cases in B.

Proof. First consider (B4). Suppose x ∈ H has prime order. If x ∈ H ∩ PGL(V ) then
ν(x) ≥ 4 (see [10, Lemma 7.2]) and thus |xG| > 1

2Qq
96 = b by Proposition 2.6. According

to Proposition 2.8, the same bound on |xG| also holds if x ∈ H \ PGL(V ). Now |H| <
2 log2 q.q

45 = a and thus Q̂(G, 2) < a2/b < q−1. Cases (B5) and (B6) are very similar.

Next consider (B7), where G = L11(2) and H = M24. The 2-modular character table of
H is available in the Modular Atlas (see [32, p.267]), and from the values of the relevant
Brauer character we can compute precise fixed point ratios for semisimple elements. With
the aid of Magma and the Web Atlas [48], we can explicitly construct H as a subgroup of
the matrix group G = SL11(2); we find that 2A-elements in H have Jordan form [J4

2 , I3],

while 2B-elements have form [J5
2 , I1]. Therefore we can compute Q̂(G, 2) precisely, and we

deduce that Q̂(G, 2) < 1. The cases (B8) and (B9) are similar. (Note that the 2-modular
character tables of J3 and Suz are available in the GAP Character Table Library [8]. Also
note that H ∩ PGL(V ) = H0 in both cases.)

Next we turn to (B10), so G = Ω+
24(2), H = Co1 and |H| < 262 = a1. Suppose

x ∈ H has prime order r and note that ν(x) ≥ 6 (see [28, Table 1]). In particular, if
r ∈ {5, 11, 13, 23} then |xG| > 2146 = b1. Similarly, if r = 3 or 7 then |xG| > 2112 = b2 and
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b(G) G0 H0 Conditions
5 U6(2) U4(3) G = G0.2
4 PΩ+

8 (3) Ω+
8 (2) G 6= G0

U6(2) U4(3) G = G0

Sp6(2) U3(3)
3 Ω7(3) Sp6(2)

U6(2) M22

Table 7. H ∈ C, b(G) > 2

i3(H)+i7(H) < 252 = a2, while i2(H) < 234 = a3 and |xG| > 2101 = b3 if r = 2 (here ir(H)

denotes the number of elements of order r in H). Therefore Q̂(G, 2) <
∑3

i=1 bi(ai/bi)
2 < 1

and thus b(G) = 2 as required.

In (B11) we have (G,H) = (U13(2),PSp6(3)) or (U13(2).2,PGSp6(3)). The 2-modular
character table of H0 = PSp6(3) is available in the GAP Character Table Library [8] and
we deduce that ν(x) ≥ 4 for all x ∈ H0 of odd prime order. Using a combination of the
Web Atlas and Magma, we see that the same bound also holds for involutions in H0, so
Proposition 2.6 implies that |xG| > 270 for all x ∈ H0 of prime order. Now if x ∈ H \H0

is an involution then x is a graph automorphism of G0, so once again we have |xG| > 270.

Since |H| < 232 we deduce that Q̂(G, 2) < 2−6, so b(G) = 2. The case (B13) is very
similar, while for (B12) we have b(G) = 4 + α, where α = 1 if G = G0.2, otherwise α = 0
(see [13, Lemma 3.4]). �

5. The C collection

Proposition 5.1. Suppose H ∈ C \ C2 (see Table 5). Then either b(G) = 2, or one of the
following holds:

(i) (G0, H0) =

{
(Ω7(q), G2(q)) q odd
(Sp6(q), G2(q)′) q even

and b(G) = 4;

(ii) (G,H, b(G)) is one of the cases listed in Table 7.

Moreover, if (Gi, Hi) is a sequence of primitive almost simple classical groups, with Hi ∈
C \ C2 and |Gi| tending to infinity, then P (Gi, 2) tends to 1 unless there exists an infinite
subsequence with

(Soc(Gi), Soc(Hi)) =

{
(Ω7(q), G2(q)) q odd
(Sp6(q), G2(q)′) q even.

For such a subsequence, P (Gi, 4) tends to 1.

Note that in the statement of Proposition 5.1 we exclude the case labelled (C2); see
Table 2. Also note that the cases labelled (C13) and (C18) have already been considered
in the previous section (see (B12) and (B13), respectively).

Lemma 5.2. Proposition 5.1 holds for (C1).

Proof. Here G0 = Lε6(q) and H0 = Lε3(q), where q is odd and ρ is the representation
afforded by the symmetric-square S2V3 of the natural module V3 for SLε3(q). As before,

we will find a function F (q) such that Q̂(G, 2) ≤ F (q) < 1 for all q ≥ 3, with the additional
property that F (q)→ 0 as q →∞.

Let x ∈ H ∩PGL(V ) be an element of prime order r. If r > 2 then an easy calculation
with the symmetric-square yields |xG| > 1

2Q
2q22 = b1 and we note that |H ∩ PGL(V )| <
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q8 = a1. Similarly, if r = 2 then |xG ∩ H| < 2q4 = a2 and |xG| > 1
2Qq

16 = b2. Now,

if x ∈ H \ PGL(V ) is an involution then |xG| > 1
2Qq

13 = b3 and [36, Proposition 1.3]

yields i2(Aut(Lε3(q))) < 2(q + 1)q4 = a3. Finally, if x is a field automorphism of odd

prime order r then |xG ∩ H| < 2q8(1−r−1) and |xG| > 1
12q

35(1−r−1) = f(r), so fpr(x) <

24q−27(1−r−1) = g(r) and the contribution to Q̂(G, 2) from odd order field automorphisms
is less than 2h(3) + log3 q.q

35g(5)2, where h(r) = f(r)g(r)2. Therefore

Q̂(G, 2) <
3∑
i=1

bi(ai/bi)
2 + 2h(3) + log3 q.q

35g(5)2,

which is less than q−1 for all q ≥ 5. The same bound also yields Q̂(G, 2) < 1 when
q = 3. �

Lemma 5.3. Proposition 5.1 holds for (C3).

Proof. Here q = q3
0 and H0 = CG0(ψ), where ψ is a triality graph-field automorphism of

G0. Detailed information on the conjugacy classes in H0 is given in [23] and [44].

Let x ∈ H ∩ PGL(V ) be an element of prime order r. First assume r = p. Let λ be
the partition of 8 corresponding to the Jordan form of x on V . The unipotent classes in
H0 are listed in [44, p.677] and we adopt the notation therein. From this labelling we can
read off λ, and consequently we derive the following bounds |xG ∩H| < ai and |xG| > bi
when p > 2:

i H0-class of x λ ai bi
1 A1 (22, 14) q10

0
1
4q

30
0

2 3A1 (3, 22, 1) 2q16
0

1
8q

48
0

3 A′2, A
′′
2 (32, 12) q18

0
1
8(q3

0 + 1)−2q60
0

4 D4(a1) (5, 3) q22
0

1
8q

66
0

5 D4 (7, 1) q24
0

1
8q

72
0

Similarly, if r = p = 2 then |xG ∩H| < ai and |xG| > bi, where

i H0-class of x G0-class of x ai bi
6 A1 a2 q10

0
1
2q

30
0

7 3A1 c4 2q16
0

1
2q

48
0

(Note that a2 and c4 are the only ψ-stable G0-classes of involutions - see [11, Proposition
3.55(ii)].) If p > 2 and r = 2 then [11, Proposition 3.55(iii)] implies that CG(x) is of type
O+

4 (q)2, so |xG ∩H| = i2(H0) < 2q16
0 = a8 and |xG| > 1

8q
48
0 = b8.

Next suppose r 6= p and r > 2. As described in [23, Section 2], there are 13 possibilities
for CH0(x) (up to H0-conjugacy), labelled sj for 3 ≤ j ≤ 15. The precise number of
distinct H0-classes of type sj is given in [23, Table 4.4], and using [23, Tables 2.2a, 2.2b]
it is easy to determine CḠ(x), where Ḡ = D4 is the ambient algebraic group. In this way
we compute the following bounds, where ai is an upper bound for the total number of
elements x ∈ H0 with CḠ(x) of type i, while bi is a lower bound for |xG|. (In the second
column, Ti denotes an i-dimensional torus.)

i CḠ(x) Possibilities for CH0(x) ai bi
9 A2T2 s4, s9 2q18

0 .(q
2
0 + q0) 1

2(q3
0 + 1)−2q60

0

10 A3
1T1 s3, s7 2q18

0 .q0
1
2(q3

0 + 1)−1q57
0

11 A1T3 s5, s10 2q22
0 .(q

3
0 − q2

0) 1
2(q3

0 + 1)−3q75
0

12 T4 s6, s8, s11, . . . , s15 q28
0

1
2(q3

0 + 1)−4q84
0
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r H0-class of x ν(x) |xG ∩H| |xG| >
2 2A 2 2835 515

2D 1 252 59

2E 3 11340 517

3 3A 3 560 517

3B 2 3360 517

3C, 3D 4 43680 522

7 7A, 7B 5 653184 529

Table 8. Case (C12), p = 5

Finally, suppose x ∈ H \ PGL(V ) has prime order r. If x is a field automorphism and
r 6= 3 then r divides logp q0 and we have

|xG ∩H| < 2q
28(1− 1

r )
0 , |xG| > 4δ2,p−1q

84(1− 1
r )

0 = f(r).

Therefore fpr(x) < 2.41−δ2,pq
−56(1−r−1)
0 = g(r) and the contribution to Q̂(G, 2) from these

elements is less than h(2) + 3 log2 q0.q
84
0 g(5)2, where h(r) = f(r)g(r)2. Now, if x is a field

automorphism of order 3 then x induces a triality automorphism on H0, and using [36,
Proposition 1.3] we obtain the bounds

|xG ∩H| ≤ i3(Aut(H0)) < 2(q0 + 1)q19
0 = a13, |xG| >

1

4
q56

0 = b13.

The same bounds also apply if x is a triality graph-field automorphism.

Finally, suppose x is a triality graph automorphism. Then x induces a triality graph
automorphism on H0 and we claim that the centralizers CH0(x) and CG0(x) are of the
same type. (There are two conjugacy classes of triality graph automorphisms in Aut(G0),
with representatives τ1 and τ2, where CG0(τ1) ∼= G2(q) and CG0(τ2) ∼= PGLε3(q) if q ≡ ε
(mod 3), otherwise CG0(τ2) ∼= [q5].SL2(q). We say that τ1 is a G2-type triality, while τ2

is a non-G2 triality. There is an analogous description of the conjugacy classes of triality
automorphisms in Aut(H0).)

To justify the claim, let y ∈ Aut(G0) be a field automorphism of order 3. By conjugating
appropriately, we may assume that x and y commute. By [27, Theorem 4.9.1(d)], xy is
Inndiag(G0)-conjugate to any order 3 graph-field automorphism of G0, so we may assume
H0 = CG0(xy). Therefore CH0(x) = CH0(y) = CCG0

(x)(y) and the result follows. For

example, if CG0(x) is of type G2(q) then we deduce that CH0(x) is of type G2(q0).

It follows that |xG ∩H| < ai and |xG| > bi, where ai and bi are defined as follows:

i Type of CG0(x) ai bi
14 G2 2q14

0 22δ2,p−3q42
0

15 non-G2 2q20
0 22δ2,p−3q60

0

Putting all this together, we conclude that

Q̂(G, 2) <

15∑
i=1

nibi(ai/bi)
2 + h(2) + 3 log2 q0.q

84
0 g(5)2,

where n14 = n15 = 2 and ni = 1 for i < 14. This upper bound is less than q−1
0 for all

q0 6= 3, and the same bound yields Q̂(G, 2) < 1 when q0 = 3. �

Lemma 5.4. Proposition 5.1 holds for (C12) and (C14).
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r H0-class of x |xG ∩H| |xG| >
2 2A, 2E 58275 1

8716

2B, 2C, 2D 3ζ .3780 3ζ .14
7
8712

2F 120 1
477

2G 37800 1
4715

3 3A, 3B, 3C 3ζ .2240 3ζ .12712

3D 89600 1
2718

3E 268800 1
2718

5 5A, 5B, 5C 3ζ .580608 3ζ .12720

7 7A 24883200 1
8724

Table 9. Case (C16), p = 7

Proof. Both cases are very similar, so we only give details for (C12). Here H0 = U4(3) and
G0 = Lε6(p), where p ≥ 5 and p ≡ ε (mod 3). First assume p = 5 and let x ∈ H ∩PGL(V )
be an element of prime order r. By inspecting the corresponding Brauer character (see [32,
p.131]) we derive the results recorded in Table 8. If r = 5 then |xG∩H| = i5(H) = 653184
and using Magma we deduce that x has Jordan form [J5, I1] on V , whence |xG| > 527.
Now, if x ∈ H \ PGL(V ) has prime order then x is an involutory graph automorphism,
hence |xG ∩H| ≤ i2(Aut(H0))− i2(H ∩ PGL(V )) = 14148 and |xG| > 1

12515. The desired

bound Q̂(G, 2) < 1 quickly follows.

Similarly, the reader can check that Q̂(G, 2) < p−1 if p > 5. Note that if p = 7 and
x ∈ H ∩ PGL(V ) has order 7 then |xG ∩H| ≤ i7(H) = 933120 and |xG| > 729 since x has
Jordan form [J6] on V . �

Lemma 5.5. Proposition 5.1 holds for (C16).

Proof. For p = 3 a Magma calculation yields b(G) = 3 + α, where α = 0 if G = G0,
otherwise α = 1 (see the proof of [13, Proposition 3.2]). For the remainder we may assume
p ≥ 5.

First assume p = 7. Suppose x ∈ H ∩ PGL(V ) has prime order r. By inspecting the
7-modular character table of H0 = Ω+

8 (2) (see [32, p.238]), and by appealing to the proof
of [12, Lemma 2.14], we derive the bounds presented in Table 9 (in the table, ζ = 1 if G
contains a triality graph automorphism, otherwise ζ = 0). If x ∈ H is a triality graph
automorphism then the centralizers CH0(x) and CG0(x) are of the same type (see the proof

of [12, Proposition 2.14]) and therefore the contribution to Q̂(G, 2) from such elements is
less than 2a2

1/b1 + 2a2
2/b2, where a1 = 14400, a2 = 806400, b1 = 1

8714 and b2 = 1
8720. We

conclude that Q̂(G, 2) < 1 when p = 7.

Similar reasoning applies when p > 7. Here every element in H ∩PGL(V ) is semisimple

and their contribution to Q̂(G, 2) can be computed precisely by inspecting the character
table of H in [22]. Now i3(Aut(H0)) − i3(H0) = 1641600 = a and so the contribution
from triality automorphisms is less than 64a2p−14 since |xG| > 1

8p
14 for any triality x. It

is straightforward to check that Q̂(G, 2) < p−1.

Finally, suppose p = 5. Let x ∈ H∩PGL(V ) be an element of prime order r. In the usual

manner we derive the bounds recorded in Table 10, and we quickly deduce that Q̂(G, 2) < 1
if G does not contain triality automorphisms. According to the proof of [12, Proposition

2.14], the contribution to Q̂(G, 2) from triality automorphisms is at most 2a2
1/b1 + 2a2

2/b2,
where a1 = 14400, a2 = 806400, b1 = 1521000000 and b2 = 23575500000000. This implies

that b(G) ∈ {2, 3} since Q̂(G, 3) < 1 and Q̂(G, 2) > 1. By using GAP [24] to construct G
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r H0-class of x |xG ∩H| |xG| ≥
2 2A, 2E 58275 42976171875

2B, 2C, 2D 3ζ .3780 3ζ .153562500
2F 120 39000
2G 37800 15868125000

3 3A, 3B, 3C 3ζ .2240 3ζ .201500000
3D 89600 2619500000000
3E 268800 3438093750000

5 5A, 5B, 5C 3ζ .580608 3ζ .47528208000000
7 7A 24883200 47151000000000000

Table 10. Case (C16), p = 5

and H as permutation groups of degree 58968, Dr. T. Breuer has proved that b(G) = 2
in this case (see [9] for the details of this calculation). �

Lemma 5.6. Proposition 5.1 holds for the remaining cases in C.

Proof. For (C4) and (C5) we refer the reader to [13, Lemma 3.1 and Proposition 3.2], where
the result b(G) = 4 is proved. At the algebraic group level, the action of Ḡ = SO7(F̄q) on
the cosets of G2(F̄q) is considered in [15]. Here the generic base size of Ḡ is shown to be 4
(see [15, Proposition 4.4]), so the desired asymptotic result immediately follows from [15,
Proposition 2.7].

For (C9), the proof of [13, Proposition 3.1] gives b(G) = 4 if p = 2, and it is straightfor-

ward to check that Q̂(G, 2) < p−1 for all p > 2. The other cases are similar and we leave
the reader to fill in the details. �

6. The collections D and E

We may now assume that (G,H) is not one of the cases in the collections A, B or C.
We continue to assume that n ≥ 6, and we set N = 14 if G0 = Lεn(q), otherwise N = 64.

Proposition 6.1. If n ≥ N then b(G) = 2. Moreover, if (Gi, Hi) is a sequence of primitive
almost simple classical groups, where Hi ∈ S \ (A ∪ B ∪ C), |Gi| tends to infinity and the
dimension of each natural Gi-module is at least N , then P (Gi, 2) tends to 1.

Proof. This follows quickly from Theorems 2.10 and 2.12. For example, suppose G0 =
Lεn(q) and n ≥ 14. Let x ∈ H be an element of prime order. If x ∈ H ∩ PGL(V ) then
Theorem 2.12 implies that ν(x) ≥ 3, whence Corollary 2.7 gives |xG| > 1

2Qq
6n−18 = b and

the same bound also holds if x ∈ H \ PGL(V ) (see Proposition 2.8). Now, Theorem 2.10

yields |H| < q2n+4 = a and we conclude that Q̂(G, 2) < a2/b < q−n/40. �

For the remainder of this section we will assume 6 ≤ n < N . At this juncture it is
natural to split the analysis, according to whether or not H0 is a group of Lie type in
characteristic p.

6.1. Defining characteristic. First we assume H0 is a simple group of Lie type over Fq′
for some p-power q′.

Lemma 6.2. If H0 = L2(q′) then b(G) = 2 and P (G, 2) tends to 1 as |G| tends to infinity.
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Proof. Here q′ = qi and n = `i for some positive integer i, where ` is the dimension

of a nontrivial irreducible KĤ0-module (see [34, Proposition 5.4.6]). The corresponding

irreducible representation of Ĥ0 is self-dual, so G0 is either symplectic or orthogonal.
Applying Theorem 2.12, together with Propositions 2.6 and 2.8, we deduce that

|H| ≤ |Aut(H0)| = i logp q.q
i(q2i − 1), |xG| > 1

4
Qqα(n−α−1)

for all x ∈ H of prime order, where α is the smallest integer greater than max{2, 1
2

√
n}.

Now, if (n, i) 6∈ {(9, 2), (8, 3), (6, 1)} then these bounds imply that Q̂(G, 2) < 1, so b(G) =

2. Moreover, it is easy to check that Q̂(G, 2)→ 0 as n or q tends to infinity, so we also have
P (G, 2)→ 1 as claimed. It remains to deal with the cases (n, i) ∈ {(9, 2), (8, 3), (6, 1)}.

If (n, i) = (9, 2) then |xG| > 1
4q

16 for all x ∈ H of prime order (since ν(x) ≥ 3 if

x ∈ H ∩PGL(V ), minimal if r = p and x has Jordan form [J4
2 , I1]), and the result follows

as before. The case (n, i) = (6, 1) is similar. Here p is odd, G0 = PSp6(q) and |xG| > 1
4q

21/2

for all x ∈ H of prime order (minimal if x is an involutory field automorphism). Again,
the result follows in the usual manner.

Finally, suppose (n, i) = (8, 3). If p = 2 then G0 = Ω+
8 (q) and we can discard this

case since H is not maximal in G (see [33, Proposition 2.36]). Now assume p is odd, so

G0 = PSp8(q) and H ∩ PGL(V ) 6 PGL2(q3).3 = B.3 = H̃. Let x ∈ H ∩ PGL(V ) be an
element of prime order r.

If r = p and x ∈ B then x is conjugate to [J4, J
2
2 ] if p ≥ 5, and to [J2

3 , J2] when p = 3,
so |xG ∩ H| < q6 = a1 and |xG| > 1

4q
24 = b1. If r = 2 then Theorem 2.12 implies that

ν(x) ≥ 4, so |xG ∩H| ≤ q6 = a2 and |xG| > 1
4q

16 = b2. Next assume x ∈ B and r 6= p is
odd. Then x is conjugate to

[ω, ω−1]⊗ [ωq, ω−q]⊗ [ωq
2
, ω−q

2
]

for some ω ∈ K, and it is easy to see that |xG| is minimal when ω ∈ Fq. This gives

|xG| > 1
2Qq

24 = b3 and we note that |B| < q9 = a3. Now, if x ∈ H̃ \ B has order 3

then an easy calculation reveals that x has Jordan form [J2
3 , I2] if p = 3, otherwise x is

G-conjugate to [I4, ωI2, ω
2I2], where ω ∈ K is a primitive cube root of unity. Therefore

|xG ∩H| ≤ 4q6 = a4 and |xG| > 1
2Qq

22 = b4.

Finally, suppose x ∈ H \ PGL(V ) is a field automorphism of prime order r. Then

|xG ∩H| < 2q9(1−r−1) and |xG| > 1
4q

36(1−r−1) = f(r), so fpr(x) < 8q−27(1−r−1) = g(r) and

the contribution to Q̂(G, 2) from field automorphisms is less than∑
r∈π

(r − 1) · h(r) < h(2) + 2h(3) + log3 q.q
36g(5)2,

where h(r) = f(r)g(r)2 and π is the set of prime divisors of logp q. We conclude that

Q̂(G, 2) <

4∑
i=1

bi(ai/bi)
2 + h(2) + 2h(3) + log3 q.q

36g(5)2 < q−1

for all q ≥ 3. �

Now assume H0 6= L2(q′). We consider the various possibilities for H0 in turn. To illus-
trate the general approach, suppose H0 = Lm(qi) and assume the underlying irreducible
representation ρ is self-dual. Again, [34, Proposition 5.4.6] implies that n = `i ≥ mi, where

` is the dimension of a nontrivial irreducible KĤ0-module, and recall that we may assume
n < 64. Suppose x ∈ H has prime order. By applying Theorem 2.12 and Propositions 2.6
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and 2.8 we deduce that

|H| ≤ |Aut(H0)| < 2i log2 q.q
i(m2−1), |xG| > 1

4
Qqα(n−α−1),

where α is the smallest integer greater than max{2, 1
2

√
n}. The possibilities for n can be

read off from the relevant tables in [40], and in the usual manner we deduce that b(G) = 2
and P (G, 2) → 1 (as n or q tends to infinity), with the exception of the following cases
(each with i = 1):

(m,n) ∈ {(3, 7), (3, 8), (4, 14), (4, 15), (6, 20)}.
These exceptional cases appear in Table 11 (see (D1), (D2) and (D3)).

Next suppose H0 = PSpm(qi)′, where m ≥ 4 is even. Once again we have n = `i ≥ mi,

where ` is the dimension of an irreducible KĤ0-module. Furthermore, ρ is self-dual and
we derive the bounds

|H| ≤ |Aut(H0)| < βi log2 q.q
1
2
im(m+1), |xG| > 1

4
Qqα(n−α−1),

where α is defined as before and β = 2 if (m, p) = (4, 2), otherwise β = 1. Using [40], and
applying Corollary 2.3, we quickly reduce to the cases

(m,n) ∈ {(4, 10), (4, 12), (6, 8), (6, 13), (6, 14), (8, 16), (8, 26), (8, 27), (10, 32)},
each with i = 1. The cases (m,n) ∈ {(4, 10), (6, 13), (6, 14), (8, 26), (8, 27)} appear in Table
11, while (6, 8) and (8, 16) correspond to the embeddings (B2) and (B3) in the collection
B (see Table 4). The two remaining cases can be handled in the usual way, using a
more accurate lower bound for |xG|. For example, if (m,n) = (4, 12) then the bound

ν(x) ≥ 3 implies that |xG| > 1
4q

27 for all x ∈ H of prime order, so Q̂(G, 2) < q−1 since

|H| < 2 log2 q.q
10.

Proceeding in this way, excluding any examples which already belong to the B or C
collections, we reduce to the specific cases listed in Table 11, which we refer to as the D
collection. As before, M(λ) denotes the unique irreducible FqĤ0-module of highest weight
λ (up to quasi-equivalence). In addition, we write Vadj for the nontrivial composition
factor of the adjoint module for H0.

Remark 6.3. Note that we exclude the case PΩ−8 (q0) < PΩ+
8 (q2

0) corresponding to the
restriction of an irreducible spin representation; the action here is equivalent to the C5-
action on the set of cosets of a subfield subgroup of type O−8 (q0) (see Table 2).

Proposition 6.4. If H ∈ D then b(G) = 2. Moreover, if (Gi, Hi) is a sequence of
primitive almost simple classical groups, with Hi ∈ D and |Gi| tending to infinity, then
P (Gi, 2) tends to 1.

Lemma 6.5. Proposition 6.4 holds for (D1).

Proof. Here H ∩ PGL(V ) 6 PGLε3(q).〈γ〉, where γ is an involutory graph automorphism.
In addition, if p 6= 3 then q ≡ ε (mod 3). If q = 3 then H is non-maximal, so we may
assume q > 3. Set H̄ = PSL3(K).

For now we will assume p = 3, so n = 7 and q ≥ 9. Let x ∈ H ∩ PGL(V ) be an
element of prime order r. If r = 3 then a straightforward calculation with the adjoint
module yields |xG ∩H| ≤ ai and |xG| ≥ bi, where ai and bi are defined as follows. Here
the partitions λ′ and λ encode the Jordan form of x on the natural H0- and G0-modules,
respectively (see Case i in the proof of [12, Lemma 2.20]).

i λ′ λ ai bi
1 (2, 1) (3, 22) (q + ε)(q3 − ε) 1

2q
2(q4 − 1)(q6 − 1)

2 (3) (32, 1) q(q2 − 1)(q3 − ε) 1
4q

3(q − 1)(q4 − 1)(q6 − 1)
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H0 G0 Remarks

(D1) Lε3(q)

{
PΩ+

8 (q) p 6= 3
Ω7(q) p = 3

Vadj, q > 2

(D2) Lε4(q)

{
Ω15(q) p 6= 2

Ωε′
14(q) p = 2

Vadj

(D3) Lε6(q)

{
PSp20(q) p 6= 2

Ωε′
20(q) p = 2

Λ3V6

(D4) L3(4) Lε9(2)
(D5) PSp4(q)′ PΩε

10(q) S2V4

(D6) PSp6(q) PSp14(q) M(λ3), p > 2

(D7) PSp6(q)

{
PΩε

14(q) p 6= 3
Ω13(q) p = 3

M(λ2)

(D8) PSp8(q)

{
Ω27(q) p 6= 2
Ωε

26(q) p = 2

(D9)

{
Ω11(q) p > 2
Sp10(q) p = 2

{
PSp32(q) p > 2
Ω+

32(q) p = 2
spin module

(D10) PΩ+
12(q)

{
PSp32(q) p > 2
Ω+

32(q) p = 2
spin module

(D11) F4(q)

{
PΩ+

26(q) p 6= 3
Ω25(q) p = 3

M(λ1)

(D12) F4(q) Ω+
26(q) M(λ4), p = 2

Table 11. The collection D: Defining characteristic subgroups

If r = 2 a similar calculation reveals that x is conjugate to [−I4, I3], so |xG| ≥ 1
2q

6(q6−1) =
b3 and we note that

i2(H ∩ PGL(V )) ≤ |GLε3(q)|
|GLε2(q)||GLε1(q)|

+
|PGLε3(q)|
|SO3(q)|

= q2(q2 + εq + 1) + q2(q3 − ε) = a3.

Now suppose r > 3. By Theorem 2.12 we have ν(x) ≥ 4 (there are no elements y ∈ G
of order r with ν(y) = 3). If ν(x) = 4 then a calculation with the adjoint module reveals
that r divides q − ε and CḠ(x) is of type O3 ×GL2, so

|xG| ≥ q7(q + 1)(q2 + 1)(q4 + q2 + 1) = b4

and we note that there are at most

(q − ε) |GLε3(q)|
|GLε2(q)||GLε1(q)|

= q2(q3 − ε) = a4

elements of this type in H. Similarly, if ν(x) = 5 then r divides q− ε and CḠ(x) is of type
GL2 ×GL1, so

|xG| ≥ q8(q + ε)2(q2 + 1)(q4 + q2 + 1) = b5

and H contains at most q3(q + ε)(q3 − ε) = a5 such elements. Finally, if ν(x) = 6 then

|xG| ≥ |SO7(q)|
(q + 1)3

= q9(q − 1)2(q2 + 1)(q3 − 1)(q2 − q + 1) = b6

and of course there are fewer than |PGLε3(q)| = a6 such elements in H.

If x ∈ H is an involutory field automorphism then |xG| ≥ q9/2(q+1)(q2+1)(q3+1) = b7.
Moreover, if ε = + then

|xG ∩H| ≤ |PGL3(q)|
|PGL3(q1/2)|

+
|PGL3(q)|
|PGU3(q1/2)|

= 2q3(q + 1),
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while we get

|xG ∩H| ≤ |PGU3(q)|
|SO3(q)|

= q2(q3 + 1) = a7

when ε = −. Finally, if x is a field automorphism of odd prime order r then |xG ∩H| <
2q8(1−r−1) and |xG| > 1

4q
21(1−r−1) = f(r), so fpr(x) < 8q−13(1−r−1) = g(r) and it follows

that the contribution to Q̂(G, 2) from these elements is less than∑
r∈π

(r − 1) · h(r) < 2h(3) + 4h(5) + 6h(7) + log3 q.q
21g(11)2,

where h(r) = f(r)g(r)2 and π is the set of odd prime divisors of log3 q. We conclude that
if p = 3 and q ≥ 9 then

Q̂(G, 2) <
7∑
i=1

bi(ai/bi)
2 + 2h(3) + 4h(5) + 6h(7) + log3 q.q

21g(11)2 < q−1/13,

so b(G) = 2, and P (G, 2) tends to 1 as q tends to infinity.

Now assume p 6= 3. The argument is similar and so for brevity we shall assume p = 2,
in which case q ≥ 4. Let x ∈ H ∩ PGL(V ) be an element of prime order r. If r = 2 then
we obtain the following bounds |xG ∩H| ≤ ci and |xG| ≥ di:

i x G0-class of x ci di
1 [J2, I1] c4 (q + ε)(q3 − ε) q2(q4 − 1)2(q6 − 1)
2 γ b3 q2(q3 − ε) q3(q2 + 1)(q4 − 1)(q6 − 1)

Next assume r > 2, so Theorem 2.12 gives ν(x) ≥ 4. If ν(x) = 4 then |xG| > 1
2Qq

18 = d3

and we have previously observed that there are at most q2(q3−ε) = c3 such elements in H.
It is easy to see that there are no elements x ∈ H with ν(x) = 5, while |xG| > 1

2Q
3q22 = d4

if ν(x) ≥ 6. Clearly, there are less than |PGLε3(q)| = c4 elements of odd prime order in
H ∩ PGL(V ).

If x is an involutory field or graph-field automorphism then q = q2
0, so ε = + (since

q ≡ 1 (mod 3)), |xG| > q14 = d5 and

|xG ∩H| ≤ |PGL3(q)|
|PGL3(q1/2)|

+
|PGL3(q)|
|PGU3(q1/2)|

= 2q3(q + 1) = c5.

Next fix a triality graph automorphism τ of G0 such that CG0(τ) = PGLε3(q). If x = τφ
is a triality graph-field automorphism, where φ is a field automorphism of order three and
[τ, φ] = 1, then xG ∩H ⊆ PGLε3(q)φ× 〈τ〉 and thus

|xG ∩H| ≤ 2
|PGLε3(q)|
|PGLε3(q1/3)|

< 4q16/3 = c6

and |xG| > q56/3 = d6. Similarly, if x is a triality graph automorphism then xG ∩ H ⊆
PGLε3(q)× 〈τ〉, so [36, Proposition 1.3] implies that

|xG ∩H| ≤ 2i3(PGLε3(q)) < 4(q + 1)q5 = c7 = c8.

Moreover, |xG| ≥ q6(q4 − 1)2 = d7 if x is a G2-type triality, otherwise |xG| ≥ q9(q4 −
1)2(q3 − 1) = d8.

Finally, if x is a field automorphism of odd prime order r then |xG ∩ H| < 2q8(1−r−1)

and |xG| > q28(1−r−1) = f ′(r), so fpr(x) < 2q−20(1−r−1) = g′(r) and it follows that the

contribution to Q̂(G, 2) from these field automorphisms is less than∑
r∈π′

(r − 1) · h′(r) < 2h′(3) + 4h′(5) + log2 q.q
28g′(7)2,

where h′(r) = f ′(r)g′(r)2 and π′ is the set of odd prime divisors of log2 q.
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We conclude that if p = 2 then

Q̂(G, 2) <
8∑
i=1

di(ci/di)
2 + 2h′(3) + 4h′(5) + log2 q.q

28g′(7)2,

which is less than q−1/2 for all q ≥ 8. Finally, if q = 4 then ε = + and a straightforward

calculation yields Q̂(G, 2) < 1 (note that i3(PGL3(4)) = 6368). �

Lemma 6.6. Proposition 6.4 holds for the remaining cases in D.

Proof. First consider (D2). Suppose x ∈ H ∩ PGL(V ) has prime order r. If r > 2
then Theorem 2.12 implies that ν(x) ≥ 4 and a straightforward calculation with the
adjoint module reveals that the same bound holds when r = 2, so Proposition 2.6 yields
|xG| > 1

4Qq
36 = b. By Proposition 2.8, this lower bound also applies if x ∈ H \ PGL(V ),

hence Q̂(G, 2) < a2/b < q−1, where a = 2 log2 q.q
15. The case (D3) is very similar. Here

an easy calculation with the relevant module yields ν(x) ≥ 6 for all x ∈ H ∩ PGL(V )
of prime order (see [10, p.337], for example), hence |xG| > 1

4Qq
78 and the result quickly

follows.

Next consider (D4). Suppose ε = − and let x ∈ H0 be an element of odd prime
order. By inspecting the 2-modular character table of H0 (see [32, p.54]) we compute the
following bounds:

H0-class of x |xG ∩H| ≤ |xG| >
3A 2240 250

5A, 5B 8064 262

7A, 7B 5760 265

Now, i3(Aut(H0))−i3(H0) = 2592 and Theorem 2.12 implies that |xG| > 234 if x ∈ H \H0

has order 3 (see Proposition 2.6). The same bound on |xG| applies for any involution

x ∈ H and we calculate that i2(Aut(H0)) = 1963. We quickly deduce that Q̂(G, 2) < 1 as
required. The case ε = + is entirely similar.

For (D5), an easy calculation with the symmetric square S2V4 reveals that |xG| > 1
4q

30 =

b1 for all x ∈ H of odd prime order, while |xG| > 1
4q

45/2 = b2 for any involution x ∈ H.

Now |H| < 2 log2 q.q
10 = a1 and [36, Proposition 1.3] yields i2(Aut(H0)) < 2(q+1)q5 = a2,

whence Q̂(G, 2) < a2
1/b1 + a2

2/b2 < q−1.

The cases (D6) and (D7) are very similar. For instance, in (D6), V is the wedge cube
of the natural module for H0, factored out by a copy of the natural module. It is easy to
check that |xG| > 1

2Qq
46 for all x ∈ H of odd prime order. For example, if x ∈ H0 is a

transvection then x has Jordan form [J5
2 , I4] and the bound on |xG| follows. Similarly, if

x ∈ H is an involution then |xG| > 1
2q

40 and we note that i2(Aut(H0)) < 2(q + 1)q11 by
[36, Proposition 1.3]. The desired result quickly follows.

For (D8), V is the nontrivial composition factor of the H0-module Λ2V8. A straightfor-
ward calculation establishes ν(x) ≥ 6 for all x ∈ H ∩PGL(V ) of prime order and it follows
that |xG| > 1

2q
114 for any x ∈ H of prime order. This is sufficient since |H| < log2 q.q

36.

The remaining cases are very easy. For (D9) and (D10) we note that [10, Lemma 7.2]
gives ν(x) ≥ 8 for all x ∈ H ∩PGL(V ), so |xG| > 1

2q
184 for all x ∈ H. Similarly, for (D11)

and (D12) we deduce that |xG| > 1
4q

108 for all x ∈ H. In all four cases, the desired result
follows in the usual manner, using a suitable upper bound for |H|. �

6.2. Non-defining characteristic. To complete the proof of Theorems 1 and 2 (for
n ≥ 6) we may assume that the simple group H0 is not of Lie type in the defining
characteristic.
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Lemma 6.7. Suppose H0 = L2(`), where (`, p) = 1. Then b(G) = 2, and P (G, 2) tends
to 1 as |G| tends to infinity.

Proof. Here G is symplectic or orthogonal, and the various possibilities are listed in [29,
Table 2]. Very similar arguments apply in each case, so we only provide details when

G0 = PSpn(q) with n = 1
2(`− 1), p > 2, ` ≡ 1 (mod 4) and Fq = Fp[

√
`]. Let x ∈ H be an

element of prime order and note that ` ≥ 13 since we are assuming n ≥ 6. By applying
Theorem 2.12, together with Propositions 2.6 and 2.8, we deduce that

|H| ≤ |Aut(H0)| ≤ log3 `.`(`
2 − 1), |xG| > 1

4
Qqα(n−α),

where α is the smallest integer greater than max{2, 1
2

√
n}. These bounds imply that

Q̂(G, 2)→ 0 as |G| → ∞, so the desired asymptotic result holds. In addition, the bounds

yield Q̂(G, 2) < 1 (hence b(G) = 2), unless (`, q) = (13, 3). Here H = H0, G = G0 and
using Magma it is easy to check that b(G) = 2. �

Now suppose H0 6= L2(`) and recall that we may assume 6 ≤ n < N , where N = 14
if G0 = Lεn(q), otherwise N = 64 (see Proposition 6.1). In [30], Hiss and Malle list all
the absolutely irreducible representations of quasisimple groups with degree at most 250,
excluding groups of Lie type in the defining characteristic. Frobenius-Schur indicators are
also recorded and further information is given which allows one to calculate the smallest
field over which each representation can be realized.

In order to illustrate how we apply these results, let us consider the case G0 = Lεn(q).
As previously remarked, we may assume n ≤ 13 and we note that Theorem 2.12 implies
that |xG| > 1

2Qq
6n−18 = b for all x ∈ H of prime order (see Corollary 2.7). Since |H| ≤

|Aut(H0)| = a we have Q̂(G, 2) < a2/b, and by examining [30] case-by-case, excluding any
examples which have already appeared in one of the A, B or C collections, we deduce that
b(G) = 2 unless G0 = U6(2) and H0 = A7. (In the same way, we also deduce that P (G, 2)
tends to 1 as |G| tends to infinity.) The same approach applies if G is a symplectic or
orthogonal group, and in this way we reduce to the specific list of cases in Table 12, which
we refer to as the E collection. (If G0 = PΩ+

8 (q) we use [33] to exclude any non-maximal
candidates for H.)

Proposition 6.8. If H ∈ E then b(G) = 2.

Proof. First consider (E6), where H = Co1 and G = PΩε
24(3). Suppose x ∈ H has prime

order r. Then [28, Table 1] implies that ν(x) ≥ 5, and thus ν(x) ≥ 6 since x ∈ G0.
Therefore |xG| > 1

163103 (by Proposition 2.6) and the trivial bound |xG ∩ H| ≤ ir(H)

yields Q̂(G, 2) < 1.

In each of the remaining cases the relevant modular character table is available in the
GAP Character Table Library [8], and by inspecting the values of the corresponding Brauer

character we quickly deduce that Q̂(G, 2) < 1. For example, consider the embedding
labelled (E12) and let x ∈ H be an element of prime order r. By inspecting the 2-modular
character table of M12 (see [32, p.74]) we can compute fpr(x) precisely when r > 2. We
can do the same for involutions by using the Web Atlas [48] and Magma to explicitly
construct M12.2 as a subgroup of the matrix group O−10(2). In this way we obtain the
results listed in Table 13, where ω ∈ K is a primitive r-th root of unity. The desired

bound Q̂(G, 2) < 1 follows immediately. The other cases are very similar and we leave the
details to the reader. �
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H0 G0

(E1) A7 U6(2)
(E2) Co3 Sp22(2)
(E3) Suz PSp12(3)
(E4) G2(4) PSp12(3)
(E5) J2 Sp6(4)
(E6) Co1 PΩε

24(3)
(E7) Co2 Ω+

22(2)
(E8) McL Ωε

22(2)
(E9) A10 Ω+

16(2)
(E10) G2(3) Ωε

14(2)
(E11) L3(3) Ω−12(2)
(E12) M12 Ω−10(2)
(E13) M12 PΩ+

10(3)
(E14) M11 Ω−10(2)
(E15) Sz(8) PΩ+

8 (5)
(E16) A10 PΩ+

8 (5)

Table 12. The collection E : Subgroups in non-defining characteristic

r H0-class of x O−10(2)-class of x |xG ∩H| |xG|
2 2A a4 396 706860

2B c4 495 21205800
2C b5 792 33929280

3 3A [I4, ωI3, ω
2I3] 1760 1072332800

3B [I2, ωI4, ω
2I4] 2640 107233280

5 5A [I2, ωI2, ω
2I2, ω

3I2, ω
4I2] 9504 27794866176

11A, 11B [ω, . . . , ω10] 17280 1516083609600

Table 13. Case (E12)

7. The low dimensional classical groups

Here we complete the proof of Theorems 1 and 2 by dealing with the remaining classical
groups with n < 6. The relevant subgroups are listed in Table 14, where as usual H0

denotes the socle of H (see [7]). Our main result is the following:

Proposition 7.1. Suppose H ∈ S and n < 6. Then either b(G) = 2, or (G,H, b(G)) is
one of the cases listed in Table 15.

Moreover, if (Gi, Hi) is a sequence of primitive almost simple classical groups, where
Hi ∈ S, |Gi| tends to infinity and the dimension of each natural Gi-module is less than 6,
then P (Gi, 2) tends to 1 unless there exists an infinite subsequence with

(Soc(Gi), Soc(Hi)) = (PSp4(q)′, Sz(q))

(with q even). For such a subsequence, P (Gi, 3) tends to 1.

Proof. First consider the case labelled (S13), so G0 = PSp4(q), H0 = Sz(q) and q ≥ 8 is
even. Here [13, Lemma 4.2] states that b(G) = 3, and the proof of this lemma also implies
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G0 H0 Conditions
(S1) L5(q) U4(2) q = p ≡ 1 (mod 6)
(S2) L2(11) q = p ≡ 1, 3, 4, 5, 9 (mod 11)
(S3) M11 q = 3
(S4) U5(q) U4(2) q = p ≡ 5 (mod 6)
(S5) L2(11) q = p ≡ 2, 6, 7, 8, 10 (mod 11)
(S6) L4(q) U4(2) q = p ≡ 1 (mod 6)
(S7) A7 q = p ≡ 1, 2, 4 (mod 7)
(S8) L2(7) q = p ≡ 1, 2, 4 (mod 7), q 6= 2
(S9) U4(q) U4(2) q = p ≡ 5 (mod 6)
(S10) A7 q = p ≡ 3, 5, 6 (mod 7)
(S11) L2(7) q = p ≡ 3, 5, 6 (mod 7), q 6= 3
(S12) L3(4) q = 3
(S13) PSp4(q) Sz(q) q = 22a+1 > 2
(S14) L2(q) p ≥ 5, q 6= 5
(S15) A6 q = p ≡ 1, 5, 7, 11 (mod 12), q 6= 7
(S16) A7 q = 7
(S17) L3(q) L2(7) q = p ≡ 1, 2, 4 (mod 7), q 6= 2
(S18) A6 q = p ≡ 1, 4 (mod 15), or

q = p2, p ≡ 2, 3 (mod 5), p 6= 3
(S19) U3(q) L2(7) q = p ≡ 3, 5, 6 (mod 7)
(S20) A6 q = 5 or q = p ≡ 11, 14 (mod 15)
(S21) A7 q = 5
(S22) L2(q) A5 q = p ≡ ±1 (mod 10), or

q = p2, p ≡ ±3 (mod 10)

Table 14. The collection S: Low dimensional groups (n < 6)

b(G) G0 H0 Conditions
4 U4(3) L3(4)

U3(5) A7

U3(3) L2(7) G = G0.2
3 PSp4(q) Sz(q) q = 22a+1 > 2

U4(3) A7

L3(4) A6

U3(5) A6

U3(5) L2(7) G = G0.2
U3(3) L2(7) G = G0

L2(19) A5

L2(11) A5

Table 15. H ∈ S, n < 6, b(G) > 2

that P (G, 3) tends to 1 as q tends to infinity. The cases (S3), (S12), (S16) and (S21) are
all easily checked with the aid of Magma.

Next consider case (S14). Here G0 = PSp4(q), H0 = L2(q) and p ≥ 5 (with q 6= 5).
This embedding arises from the irreducible representation of SL2(q) afforded by the module
S3V2, where V2 is the natural SL2(q)-module. For q ≤ 13, an easy Magma calculation

yields b(G) = 2, so let us assume q ≥ 17. Set G̃ = PGSp4(q).
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Let x ∈ H ∩PGL(V ) be an element of prime order r. If r = p then an easy calculation
with the module S3V2 reveals that x has Jordan form [J4], so |xG| ≥ 1

2q
2(q2−1)(q4−1) = b1

and there are q2 − 1 = a1 such elements in H. Similarly, if r = 2 then CG(x) is of type
GLε2(q), so |xG| ≥ 1

2q
3(q − 1)(q2 + 1) = b2 and we note that H ∩ PGL(V ) contains at

most q2 = a2 involutions. Also, if r = 3 then x is Ḡ-conjugate to [I2, ω, ω
2], whence

|xG| ≥ q3(q − 1)(q2 + 1) = b3 and |xG ∩H| ≤ q(q + 1) = a3. Finally, suppose r ≥ 5 and
r 6= p. Let i ≥ 1 be minimal such that r divides qi − 1, so i = 1 or 2. If i = 1 then

|xG̃ ∩H| ≤ |GL2(q)|
(q − 1)2

= q(q + 1) = a4, |xG| ≥
|Sp4(q)|
(q − 1)2

= q4(q + 1)2(q2 + 1) = b4

and we note that there are fewer than 1
2q log(q−1) = n4 distinct G̃-classes of such elements.

On the other hand, if i = 2 then

|xG̃ ∩H| ≤ |GL2(q)|
(q2 − 1)

= q(q − 1) = a5, |xG| ≥
|Sp4(q)|
(q + 1)2

= q4(q − 1)2(q2 + 1) = b5

and there are less than 1
2q log(q + 1) = n5 distinct G̃-classes in this case.

Finally, suppose x ∈ H \PGL(V ) has prime order r, so q = qr0 and x is a field automor-
phism. If r = 2 then

|xG ∩H| ≤ |SL2(q)|
|SL2(q1/2)|

= q1/2(q + 1) = a6, |xG| ≥
1

2
q2(q + 1)(q2 + 1) = b6.

Similarly, if r is odd then |xG ∩ H| < 2q3(1−1/r) and |xG| > 1
4q

10(1−1/r) = f(r), whence

fpr(x) < 8q−7(1−1/r) = g(r) and so the contribution to Q̂(G, 2) from field automorphisms
is less than∑

r∈π
(r − 1)h(r) < b6(a6/b6)2 + 2h(3) + 4h(5) + 6h(7) + log5 q.q

10g(11)2 = Γ,

where h(r) = f(r)g(r)2 and π is the set of odd prime divisors of logp q. We conclude that

Q̂(G, 2) <
5∑
i=1

nibi(ai/bi)
2 + αΓ < q−1/20

for all q ≥ 7, where n1 = n2 = n3 = 1 and α = 1− δp,q. Therefore b(G) = 2, and we also

see that Q̂(G, 2) tends to 0 as q tends to infinity.

In each of the remaining cases we proceed in the usual manner, using the relevant
character table to compute the precise fixed point ratios. As before, for small values of q
it is convenient to use Magma to determine the base size via random search. We leave
the reader to check the details. �

This completes the proof of Theorems 1 and 2.
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