Bases for algebraic groups

Tim Burness

University of Southampton

Joint work with Bob Guralnick and Jan Saxl

Groups and Geometries Workshop Banff International Research Station September 5th 2012

Introduction

Let $G \leq \text{Sym}(\Omega)$ be a permutation group.

A subset B of Ω is a **base** if the pointwise stabilizer of B in G is trivial.

The **base size** of G, denoted b(G), is the minimal size of a base for G.

Equivalently, if G is transitive with point stabilizer $H = G_{\alpha}$ then b(G) is the minimal size of a subset X of G such that

$$\bigcap_{g\in X}g^{-1}Hg=1$$

Examples

• G has a regular orbit on $\Omega \iff b(G) = 1$

•
$$G = S_n$$
, $\Omega = \{1, \ldots, n\} = [n] \implies b(G) = n - 1$

•
$$G = GL(V), \ \Omega = V \implies b(G) = \dim V$$

Finite permutation groups

A transitive group G is **primitive** if G_{α} is a maximal subgroup of G. Suppose G is primitive and $|\Omega| = n$.

- Bochert, 1889 If $G \neq S_n$ or A_n then $b(G) \leq n/2$
- Liebeck, 1984 If $G \neq S_n$ or A_n then there exists an absolute constant c such that $b(G) \leq c\sqrt{n}$
- Seress, 1996 If G is soluble then $b(G) \leq 4$

Theorem. If G is almost simple and **non-standard** then $b(G) \leq 7$, with equality if and only if $G = M_{24}$ and n = 24.

Here G is **standard** if $G_0 = A_n$ and Ω is an orbit of subsets or partitions of [n], or $G_0 = Cl(V)$ is classical and Ω is an orbit of subspaces of V.

Algebraic groups

Let G be an affine algebraic group over $\overline{K} = K$, char $K = p \ge 0$. Let Ω be a faithful G-variety.

We define three base-related measures for the action of G on Ω :

b(G): exact base size: Minimal *c* such that there exist *c* points in Ω with trivial pointwise stabilizer

 $b^0(G)$: **connected base size:** Minimal *c* such that there exist *c* points in Ω with finite pointwise stabilizer

 $b^1(G)$: generic base size: Minimal *c* such that there exists an open subvariety Λ of Ω^c and the pointwise stabilizer of any *c*-tuple in Λ is trivial

Clearly $b^0(G) \leq b(G) \leq b^1(G)$.

An example

Suppose $G = GL_n(K) = GL(V)$ and $\Omega = V$. Then $b^0(G) = b(G) = b^1(G) = n$

- b(G) = n: $B \subseteq V$ is a base if and only if it contains a basis of V
- b⁰(G) = n: The pointwise stabilizer of any d < n vectors contains a copy of GL_{n-d}(K)
- Fix a basis $\{e_1, \ldots, e_n\}$ for V. An *n*-tuple

$$(\sum_j a_{1j}e_j,\ldots,\sum_j a_{nj}e_j) \in V^n \cong K^{n^2}$$

is a base if and only if $det(a_{ij}) \neq 0$, so the set of such tuples is open in the Zariski topology on V^n . Therefore $b^1(G) = n$.

Simple algebraic groups

Let G be a simple algebraic group, let $H \leq G$ be a closed subgroup and set $\Omega = G/H$. The following hold:

- dim $G/\dim \Omega \leq b^0(G) \leq \dim H + 1$
- $b^0(G) \leqslant b^1(G) \leqslant b^0(G) + 1$
- If $H \neq 1$ is finite then $b^0(G) = 1$ and $b(G) = b^1(G) = 2$

Set $b^0(G) = c$ and $\Gamma = \Omega^c$, say $\bigcap_i G_{\alpha_i}$ is finite for $(\alpha_1, \dots, \alpha_c) \in \Gamma$.

Define a morphism $\phi: G \to \Gamma$, $\phi(g) = (g\alpha_1, \dots, g\alpha_c)$, so $\phi: G \to \overline{\phi(G)}$ is a dominant morphism of irreducible varieties. For $y \in \phi(G)$,

$$0 = \dim \phi^{-1}(y) \geqslant \dim G - \dim \overline{\phi(G)} \geqslant \dim G - \dim \Gamma$$

so dim $G/\dim \Omega \leq b^0(G)$.

Let G = Cl(V) be a simple classical algebraic group and set $\Omega = G/H$, where H is a maximal closed subgroup of G. Assume dim H > 0 and Hacts irreducibly on V. Then either $b^0(G) = b(G) = b^1(G) = 2$, or

G	Type of H	Conditions	$b^0(G)$	b(G)	$b^1(G)$
SL _n	$\operatorname{GL}_{n/2} \wr S_2$		3	3	3
	Sp _n	<i>n</i> = 6	4	4	4
	Sp _n	<i>n</i> ≥ 8	3	3	3
	SO _n	p eq 2	2	2	3
Sp _n	$\operatorname{Sp}_{n/2} \wr S_2$	<i>n</i> ≥ 8	3	3	3
	$\operatorname{Sp}_{n/3} \wr S_3$	<i>n</i> = 6	3	3	3
	$GL_{n/2}$	$p \neq 2$	2	2	3
	G ₂	(n, p) = (6, 2)	4	4	4
SO _n	$\mathcal{O}_{n/2} \wr S_2$	$n \ge 8, \ p \ne 2$	2	2	3
		$n \ge 8, \ p = 2$	2	?	3
	$GL_{n/2}$	$n \ge 10$	3	3	3
	G ₂	$n=7, p \neq 2$	4	4	4

Let $G = Cl(V) = Cl_n$ and set $\Omega = G/H$, where $H = G_U$ is the stabilizer of a *d*-space $U, d \leq n/2$. Assume H is maximal and set $k = \lfloor n/d \rfloor$.

• If $G = \text{Sp}_n$ then one of the following holds:

▶
$$b^0(G) = b(G) = b^1(G) = k$$

▶ $(n, d) = (6, 2)$ and $b^0(G) = b(G) = b^1(G) = 4$
▶ U is t.i., $d = n/2$ and $b^0(G) = b(G) = 4$, $b^1(G) = 5 - \delta_{2,p}$

• The case $G = SO_n$ is similar.

• If $G = SL_n$ and d divides n then

$$b^{0}(G) = b(G) = b^{1}(G) = \begin{cases} k+3 & \text{if } 1 < d = n/2 \\ k+2 & \text{if } 1 < d < n/2 \\ k+1 & \text{if } d = 1 \end{cases}$$

Otherwise, if $d \nmid n$ then

$$k+1 \leqslant b^0(G) = b(G) = b^1(G) \leqslant k+2+\delta_{3,k}$$

Let G be a simple exceptional algebraic group and set $\Omega = G/H$, where H is a maximal closed subgroup of G. Assume H is non-parabolic, $p \neq 2$ and dim H > 0. Then either $b^0(G) = b(G) = b^1(G) = 2$, or

G	H^0	$b^0(G) = b(G)$	$b^1(G)$
E_8	A_1E_7	3	3
	D_8	2	3
<i>E</i> ₇	A_1D_6	3	3
	T_1E_6	3	3
	A_7	2	3
E_6	F ₄	4	4
	D_5T_1	3	3
	<i>C</i> ₄	2	3
	A_1A_5	3	3
F_4	B ₄	4	4
	D_4	3	3
	A_1C_3	2	3
G_2	A_2	3	3
	A_1A_1	2	3

Let G be a simple exceptional algebraic group and set $\Omega = G/H$, where $H = P_i$ is a maximal parabolic subgroup of G.

Then

$$c-1\leqslant b^0(G)\leqslant b^1(G)\leqslant c,$$

where c is defined in the table and an asterisk indicates that

$$b^0(G) = b(G) = b^1(G) = c$$

	$H = P_1$	P_2	P_3	P_4	P_5	P_6	P_7	P_8
$G = E_8$	4*	3*	3*	3*	3*	3*	4	5*
E ₇	5*	4*	4	3*	3*	4*	6*	
E_6	6*	5	4*	4	4*	6*		
F_4	5	4	4	5				
G ₂	4	4						

Some corollaries

Let G be a simple algebraic group over $\overline{K} = K$, char $K = p \ge 0$. Let Ω be a primitive G-variety with point stabilizer H.

Assume G is not a classical group in a subspace action. Then $b^1(G) \leq 6$, with equality if and only if

$$(G, H) = (E_7, P_7), (E_6, P_1) \text{ or } (E_6, P_6)$$

Let G be a classical group in a non-subspace action. Then $b^1(G) \leq 4$, with equality if and only if

$$(G, H) = (SL_6, Sp_6)$$
, (SO_7, G_2) $(p \neq 2)$ or (Sp_6, G_2) $(p = 2)$

There are infinitely many non-standard finite almost simple primitive permutation groups G with b(G) = 6.

A key lemma

Let G be a simple algebraic group and set $\Omega = G/H$ with H^0 reductive. Then $b^1(G) \leq c$ if $\dim x^H < (1 - c^{-1}) \dim x^G$

for all $x \in H$ of prime order.

- We need H⁰ reductive since the proof requires x^G ∩ H to be a finite union of H-classes.
- To check the condition dim $x^H < (1 c^{-1}) \dim x^G$ we need information on the fusion of *H*-classes in *G*:

G classical: B. (2004) on non-subspace actions: Roughly speaking, dim $x^H \lesssim \frac{1}{2} \dim x^G$ in most cases.

G exceptional: Lawther (2008) on unipotent classes; Lawther, Liebeck, Seitz (2002) in general.

Involution-type subgroups

Suppose $p \neq 2$. A maximal subgroup H of G is an **involution-type** subgroup if $H = C_G(\tau)$ for some involution $\tau \in Aut(G)$.

e.g. if
$$G = SL_{2n}$$
 then H is of type $SL_n \wr S_2$, Sp_{2n} or SO_{2n}
e.g. if $G = E_8$ then $H = A_1E_7$ or D_8

Set $\Omega = G/H$, $H = C_G(\tau)$ an involution-type subgroup. Then

$$b(G) = 2 \iff \exists g \in G \text{ such that } C_G(\tau \tau^g) \text{ is inverted by } \tau$$

and contains no involutions

Lemma. There is a unique G-class C of involutions in Aut(G) that invert a maximal torus of G. Moreover, $G = C^2$.

In particular, if $\tau \in C$ then $u = \tau \tau^g$ is regular unipotent for some $g \in G$. Furthermore, τ inverts $C_G(u)$ and thus b(G) = 2. **Theorem.** Assume $p \neq 2$ and set $\Omega = G/H$, where $H = C_G(\tau)$ is an involution-type subgroup.

If τ inverts a maximal torus of G then

- *H* has a (unique) regular orbit on Ω , so $b^0(G) = b(G) = 2$; and
- the generic 2-point stabilizer has order 2^r , where $r = \operatorname{rank}(G)$, so $b^1(G) = 3$.

If τ does not invert a maximal torus then $b^0(G) \ge 3$.

e.g. if $(G, H) = (E_7, A_7.2)$ and $p \neq 2$ then $b^0(G) = b(G) = 2$, $b^1(G) = 3$.

Alternative methods are required when p = 2:

If $(G, H) = (E_8, D_8)$ then dim $x^H < \frac{1}{2} \dim x^G$ for all $x \in H$ of prime order, so $b^1(G) = 2$. However, if $(G, H) = (E_7, A_7, 2)$ then dim $x^H = \frac{1}{2} \dim x^G$ for certain involutions; the best we can do is $2 \leq b^0(G) \leq b^1(G) \leq 3$.

Finite groups of Lie type

Suppose *G* is simple, $K = \overline{\mathbb{F}}_p$ and *H* is σ -stable, where σ is a **Frobenius morphism** of *G*. Then $G_{\sigma} = \{g \in G \mid g\sigma = g\}$ is a finite group of Lie type over \mathbb{F}_q for some *p*-power *q*, and G_{σ} acts on G_{σ}/H_{σ} .

Let $\mathbb{P}(G_{\sigma}, c)$ be the probability that a randomly chosen *c*-tuple in G_{σ}/H_{σ} is a base for G_{σ} . Two related base measures:

 $b(G_{\sigma})$: exact base size of G_{σ} on G_{σ}/H_{σ}

 $b^{\infty}(G_{\sigma})$: asymptotic base size: Minimal *c* s.t. $\mathbb{P}(G_{\sigma}, c) \to 1$ as $q \to \infty$

Our earlier work applies. For example:

•
$$b^1(G) = b^\infty(G_\sigma)$$

- If q>2 then $b^0(G)\leqslant b(G_\sigma)$
- If q>>2 then $b(G_{\sigma})\leqslant b^1(G)$