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Introduction

Let n ∈ N. A group G is n-generated if it can be generated by n elements.

Set d(G ) = min{n ∈ N : G is n-generated}.

Examples

d(G ) = 1 ⇐⇒ G is cyclic

If G = (Z2)n = Z2 × Z2 × · · · × Z2 (n factors) then d(G ) = n

D2n and Sn are 2-generated, e.g.

Sn = 〈(1, 2, . . . , n), (1, 2)〉
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If N 6 G is a normal subgroup, then

d(G/N) 6 d(G ) 6 d(G/N) + d(N)

Subgroups may require many more generators, e.g. (Z2)n < S2n

If H 6 G is a finite-index subgroup, then

d(H) 6 [G : H] · (d(G )− 1) + 1

Example: Let p be a prime and take

G = Zn o Zp = (Zn)p o Zp H = (Zn)p

Then H < G is maximal, d(G ) = 2 and d(H) = p = [G : H].
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Simple groups

By CFSG, the nonabelian finite simple groups are as follows:

Alternating groups An, n > 5

Groups of Lie type (classical and exceptional)

26 sporadic groups

Theorem

Every finite simple group is 2-generated

Alternating groups: An =

{
〈(1, 2, 3), (1, 2, . . . , n)〉 n odd
〈(1, 2, 3), (2, 3, . . . , n)〉 n even

Groups of Lie type: Steinberg, 1962

Sporadic groups: Aschbacher & Guralnick, 1984
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Random generation

P(G , k) =
|{(x1, . . . , xk) ∈ G k : G = 〈x1, . . . , xk〉}|

|G |k

is the probability that k randomly chosen elements generate G .

Netto’s conjecture (1882): P(An, 2)→ 1 as n→∞

Theorem (Dixon, 1969)

Netto’s conjecture is true

Dixon’s conjecture (1969): If (Gn) is any sequence of finite simple
groups such that |Gn| → ∞, then P(Gn, 2)→ 1.

Theorem (Kantor & Lubotzky, 1990; Liebeck & Shalev, 1995)

Dixon’s conjecture is true
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Dixon’s conjecture

The proof of Dixon’s conjecture is based on an easy observation:

Let M be the set of maximal subgroups of G and let x , y ∈ G be
randomly chosen elements.

If G 6= 〈x , y〉 then x , y ∈ H for some H ∈M.

The probability of this event is [G : H]−2, so

1− P(G , 2) 6
∑
H∈M

[G : H]−2 =: Q(G )

By analysing M, one shows that Q(G )→ 0 as |G | → ∞.

Theorem (Menezes, Quick & Roney-Dougal, 2013)

P(G , 2) > 53/90 for every finite simple group G , with equality iff G = A6.
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Spread
G is 3

2-generated if for any x ∈ G \ {1} there exists y ∈ G s.t. G = 〈x , y〉

Theorem (Guralnick & Kantor, 2000)

Every finite simple group is 3
2 -generated

For x ∈ G and C = yG = {g−1yg : g ∈ G}, set

P(x ,C ) =
|{z ∈ C : G = 〈x , z〉}|

|C |

If P(x ,C ) > 0 for all x ∈ G \ {1}, then G is 3
2 -generated.

We have

1− P(x ,C ) 6
∑

H∈M(y)

|xG ∩ H|
|xG |

where M(y) is the set of maximal subgroups of G containing y .
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Spread
G is 3

2-generated if for any x ∈ G \ {1} there exists y ∈ G s.t. G = 〈x , y〉

Theorem (Guralnick & Kantor, 2000)

Every finite simple group is 3
2 -generated

Let k ∈ N. Then G has spread k if for any x1, . . . , xk ∈ G \ {1} there
exists y ∈ G such that G = 〈xi , y〉 for all i .

Theorem (Breuer, Guralnick & Kantor, 2008)

Every finite simple group has spread 2

Moreover, every finite simple group has spread 3, except for

A5, A6, Ω+
8 (2), Sp2m(2) (m > 3)
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Generating graphs

Let Γ(G ) be the generating graph of G : vertices G \ {1}, with x , y
adjacent iff G = 〈x , y〉.

Example. The generating graph of D8:

a

a2

a3

b

ab

a2b

a3b

D8 = 〈a, b | a4 = b2 = 1, ab = ba−1〉
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Generating graphs of simple groups

Let Γ(G ) be the generating graph of G : vertices G \ {1}, with x , y
adjacent iff G = 〈x , y〉.

Theorem

Let G be a nonabelian finite simple group.

Γ(G ) has no isolated vertices

Γ(G ) is connected and has diameter 2

Γ(G ) contains a Hamiltonian cycle if |G | is sufficiently large

Questions. What is the (co)-clique number of Γ(G )? What is its
chromatic number? etc.

For G = A5: Clique number = 8
Coclique number = 15 (note: |{x ∈ G : |x | = 2}| = 15)
Chromatic number = 9
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The generating graph of A5
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Generating subgroups of simple groups

Joint work with Martin Liebeck (Imperial College London)
and Aner Shalev (Hebrew University of Jerusalem)
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The main problem

Question: To what extent can certain generation properties of simple
groups be extended to their maximal subgroups?

Main problem. Is there a constant c such that d(H) 6 c for every
maximal subgroup H of any finite simple group?
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Theorem (B, Liebeck & Shalev, 2013)

Every maximal subgroup of a finite simple group is 4-generated.

This is best possible – there are infinitely many maximal subgroups of
simple groups that require 4 generators.

We establish stronger results for alternating and sporadic groups.

The maximal subgroups H of a given simple group are not completely
known, in general:

More precisely, either H is ‘known’, or H is almost simple, so

S 6 H 6 Aut(S)

for some nonabelian simple group S .

Key Observation: By a theorem of Dalla Volta & Lucchini (1995),
every almost simple group is 3-generated.
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Alternating groups

Let G = Sn or An, and let H be a maximal subgroup of G .

Theorem (O’Nan & Scott, 1979)

One of the following holds:

H = (Sk × Sn−k) ∩ G , 1 6 k < n/2 [Intransitive]

H = AGLd(p) ∩ G , n = pd , p prime [Affine]

H = (Sk o St) ∩ G , n = kt or kt [Imprimitive or product type]

H = (T k .(Out(T )× Sk)) ∩ G , T nonabelian simple, n = |T |k−1
[Diagonal type]

H is almost simple
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Alternating groups

Proposition

We have d(Sk × Sn−k) = d(AGLd(p)) = d(Sk o St) = 2

so d(H) 6 3 if H is non-diagonal.

Let H = T k .(Out(T )× Sk) be a diagonal-type subgroup.

Here T k is the unique minimal normal subgroup of H, so by a theorem of
Lucchini & Menegazzo (1997) we have

d(H) = max{2, d(Out(T )× Sk)} 6 4

Proposition

If H is a maximal subgroup of Sn or An, then d(H) 6 4, with equality only
if H is of diagonal-type.
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An example

Let H = T 2.(Out(T )× S2), where T = PΩ+
2m(p2f ) with m > 6 even and

p an odd prime. Then

d(H) = max{2, d(Out(T )× S2)} = d(D8 × Z2f × Z2) 6 4.

Now L = D8 × Z2f × Z2 has a normal subgroup N such that

L/N ∼= Z2 × Z2 × Z2 × Z2,

so d(H) = d(L) > d(L/N) = 4 and thus d(H) = 4.

Further, if m = 6 then H is a maximal subgroup of G = A|T | for all
possible p and f .

Conclusion. There are infinitely many pairs (G ,H), where G is simple,
H < G is maximal and d(H) = 4.
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Groups of Lie type

For groups of Lie type we use powerful reduction theorems of Aschbacher
and Liebeck & Seitz on the subgroup structure of these groups.

Parabolic subgroups require special attention:

Let G be a simple group of Lie type over Fq and let H = QL be a maximal
parabolic subgroup of G .

In general, Q/Q ′ is an irreducible L-module, so if L = 〈x1, . . . , xn〉 and
q ∈ Q \ Q ′, then H = 〈q, x1, . . . , xn〉 (since Q ′ 6 Φ(H)) and thus

d(H) 6 d(L) + 1.
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Further generation properties

M = {H : H < G is maximal}

mn(G ) = |{H ∈M : [G : H] = n}|

P(G , k) = probability that k randomly chosen elements generate G

v(G ) = min{k : P(G , k) > e−1}

The proof of Dixon’s conjecture yields the following result:

Theorem

There exists a constant c such that mn(G ) 6 nc and v(G ) 6 c for any
finite simple group G .

Question. Does this extend to maximal subgroups of simple groups?
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Theorem (B, Liebeck & Shalev, 2013)

There exists a constant c such that mn(H) 6 nc and v(H) 6 c for any
maximal subgroup H of a simple group.

However, Dixon’s conjecture does not extend to maximal subgroups:

Example. Let H = Sn−2 < An. The probability that k randomly chosen
elements of H lie in An−2 is 2−k , so P(H, k) 6 1− 2−k .

Theorem (B, Liebeck & Shalev, 2013)

Given any ε > 0 there exists a constant c = c(ε) such that
P(H, c) > 1− ε for any maximal subgroup H of a simple group.
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A key theorem

Recall that v(G ) = min{k : P(G , k) > e−1}.

Theorem (Jaikin-Zapirain & Pyber, 2011)

There exist constants 0 < α < β such that for any finite group G

α(d(G ) + δ(G )) < v(G ) < βd(G ) + δ(G )

where δ(G ) ∈ R+ is defined in terms of the chief factors of G .

Let H be a maximal subgroup of a simple group.

We have d(H) 6 4 and δ(H) < 1, so v(H) < 4β + 1 = c .

Given ε > 0 choose k ∈ N such that (1− e−1)k < ε. Then

1− P(H, kc) 6 (1− P(H, c))k 6 (1− e−1)k < ε.
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Applications and open problems
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Application: Second maximal subgroups

A second maximal subgroup of G is a maximal subgroup of a maximal
subgroup. Let m2

n(G ) be the number of second maximals of index n.

Question. Can we extend our results from maximal to second maximal?

Proposition

There is an absolute constant c s.t. m2
n(G ) 6 nc for any simple group G .

m2
n(G ) 6

∑
a|n

ma(G ) max{mn/a(H) | H ∈M, [G : H] = a}

6
∑
a|n

ac1(n/a)c2

6 nc1+c2+1
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Question. Is there an absolute constant c such that d(H) 6 c for every
second maximal subgroup H of a simple group?

Example

Suppose G = PSL2(2k) and 2k − 1 = r is a (Mersenne) prime.

Then H = (Z2)k has index r in a Borel subgroup of G , so H is a second
maximal subgroup and d(H) = k .

Answer. No, if there are infinitely many Mersenne primes!

More generally, the answer is no if there are infinitely many integers of the
form pk − 1 (p prime) with a prime factor r such that (pk − 1)/r = o(k).
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Application: Permutation groups

Let G 6 Sym(Ω) be a finite primitive permutation group. Then

Gα = {x ∈ G : x · α = α}

is a maximal subgroup of G , and

d(G )− 1 6 d(Gα) 6 [G : Gα] · (d(G )− 1) + 1.

Question. Is there a constant c such that

d(Gα) 6 d(G ) + c

for every primitive permutation group G?

Theorem (B, Liebeck & Shalev, 2013)

d(Gα) 6 d(G ) + 4
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Some open problems

Conjecture: d(H) 6 4 for any maximal subgroup H of an almost
simple group.

Is there a constant c such that d(H) 6 c for any second maximal
subgroup of a simple group, excluding a few known cases (only
involving groups of Lie type of rank 1 and 2)?

Is there a finite group with spread 1 but not spread 2?

Conjecture (Breuer, Guralnick & Kantor, 2008):
A finite group G is 3

2 -generated if and only if G/N is cyclic for every
nontrivial normal subgroup N of G .

Conjecture (Breuer, Guralnick, Lucchini, Maróti & Nagy, 2010):
Γ(G ) contains a Hamiltonian cycle if and only if G/N is cyclic for
every nontrivial normal subgroup N of G .
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