Generation and random generation of simple groups

Tim Burness

University of Bristol

Algebra & Combinatorics Seminar University of Auckland June 12th 2015



# Introduction

Let  $n \in \mathbb{N}$ . A group G is *n*-generated if it can be generated by *n* elements. Set  $d(G) = \min\{n \in \mathbb{N} : G \text{ is } n\text{-generated}\}.$ 

### Examples

• 
$$d(G) = 1 \iff G$$
 is cyclic

• If 
$$G = (Z_2)^n = Z_2 \times Z_2 \times \cdots \times Z_2$$
 (*n* factors) then  $d(G) = n$ 

•  $D_{2n}$  and  $S_n$  are 2-generated, e.g.

$$S_n = \langle (1, 2, \ldots, n), (1, 2) \rangle$$

• If  $N \leq G$  is a normal subgroup, then

$$d(G/N) \leqslant d(G) \leqslant d(G/N) + d(N)$$

• Subgroups may require many more generators, e.g.  $(Z_2)^n < S_{2n}$ 

If  $H \leq G$  is a finite-index subgroup, then

$$d(H) \leqslant [G:H] \cdot (d(G) - 1) + 1$$

**Example:** Let *p* be a prime and take

$$G = Z_n \wr Z_p = (Z_n)^p \rtimes Z_p \quad H = (Z_n)^p$$

Then H < G is maximal, d(G) = 2 and d(H) = p = [G : H].

# Simple groups

By **CFSG**, the nonabelian finite simple groups are as follows:

- Alternating groups  $A_n$ ,  $n \ge 5$
- Groups of Lie type (classical and exceptional)
- 26 sporadic groups

#### Theorem

Every finite simple group is 2-generated

Alternating groups: 
$$A_n = \begin{cases} \langle (1,2,3), (1,2,\ldots,n) \rangle & n \text{ odd} \\ \langle (1,2,3), (2,3,\ldots,n) \rangle & n \text{ even} \end{cases}$$

Groups of Lie type: Steinberg, 1962

Sporadic groups: Aschbacher & Guralnick, 1984

# Random generation

$$\mathbb{P}(G,k) = \frac{|\{(x_1,\ldots,x_k) \in G^k : G = \langle x_1,\ldots,x_k \rangle\}|}{|G|^k}$$

is the probability that k randomly chosen elements generate G.

**Netto's conjecture (1882):**  $\mathbb{P}(A_n, 2) \rightarrow 1$  as  $n \rightarrow \infty$ 

#### Theorem (Dixon, 1969)

Netto's conjecture is true

**Dixon's conjecture (1969):** If  $(G_n)$  is any sequence of finite simple groups such that  $|G_n| \to \infty$ , then  $\mathbb{P}(G_n, 2) \to 1$ .

### Theorem (Kantor & Lubotzky, 1990; Liebeck & Shalev, 1995)

Dixon's conjecture is true

# Dixon's conjecture

The proof of Dixon's conjecture is based on an easy observation:

Let  $\mathcal{M}$  be the set of maximal subgroups of G and let  $x, y \in G$  be randomly chosen elements.

If  $G \neq \langle x, y \rangle$  then  $x, y \in H$  for some  $H \in \mathcal{M}$ .

The probability of this event is  $[G : H]^{-2}$ , so

$$1-\mathbb{P}(G,2)\leqslant \sum_{H\in\mathcal{M}}[G:H]^{-2}=:Q(G)$$

By analysing  $\mathcal{M}$ , one shows that  $Q(G) \to 0$  as  $|G| \to \infty$ .

### Theorem (Menezes, Quick & Roney-Dougal, 2013)

 $\mathbb{P}(G,2) \ge 53/90$  for every finite simple group G, with equality iff  $G = A_6$ .

# Spread

*G* is  $\frac{3}{2}$ -generated if for any  $x \in G \setminus \{1\}$  there exists  $y \in G$  s.t.  $G = \langle x, y \rangle$ 

## Theorem (Guralnick & Kantor, 2000)

Every finite simple group is  $\frac{3}{2}$ -generated

• For 
$$x \in G$$
 and  $C = y^G = \{g^{-1}yg : g \in G\}$ , set
$$\mathbb{P}(x, C) = \frac{|\{z \in C : G = \langle x, z \rangle\}|}{|C|}$$

• If  $\mathbb{P}(x, C) > 0$  for all  $x \in G \setminus \{1\}$ , then G is  $\frac{3}{2}$ -generated.

• We have

$$1-\mathbb{P}(x,C) \leq \sum_{H\in\mathcal{M}(y)} \frac{|x^{G}\cap H|}{|x^{G}|}$$

where  $\mathcal{M}(y)$  is the set of maximal subgroups of G containing y.

Spread

*G* is  $\frac{3}{2}$ -generated if for any  $x \in G \setminus \{1\}$  there exists  $y \in G$  s.t.  $G = \langle x, y \rangle$ 

## Theorem (Guralnick & Kantor, 2000)

Every finite simple group is  $\frac{3}{2}$ -generated

Let  $k \in \mathbb{N}$ . Then G has spread k if for any  $x_1, \ldots, x_k \in G \setminus \{1\}$  there exists  $y \in G$  such that  $G = \langle x_i, y \rangle$  for all i.

### Theorem (Breuer, Guralnick & Kantor, 2008)

• Every finite simple group has spread 2

• Moreover, every finite simple group has spread 3, except for

 $A_5, A_6, \Omega_8^+(2), \operatorname{Sp}_{2m}(2) (m \ge 3)$ 

# Generating graphs

Let  $\Gamma(G)$  be the generating graph of G: vertices  $G \setminus \{1\}$ , with x, y adjacent iff  $G = \langle x, y \rangle$ .

**Example.** The generating graph of  $D_8$ :



$$D_8 = \langle a, b \mid a^4 = b^2 = 1, \ ab = ba^{-1} \rangle$$

# Generating graphs of simple groups

Let  $\Gamma(G)$  be the generating graph of G: vertices  $G \setminus \{1\}$ , with x, y adjacent iff  $G = \langle x, y \rangle$ .

#### Theorem

Let G be a nonabelian finite simple group.

- Γ(G) has no isolated vertices
- $\Gamma(G)$  is connected and has diameter 2
- $\Gamma(G)$  contains a Hamiltonian cycle if |G| is sufficiently large

**Questions.** What is the (co)-clique number of  $\Gamma(G)$ ? What is its chromatic number? etc.

For 
$$G = A_5$$
: Clique number = 8  
Coclique number = 15 (note:  $|\{x \in G : |x| = 2\}| = 15$ )  
Chromatic number = 9

# The generating graph of $A_5$



#### Generating subgroups of simple groups

Joint work with Martin Liebeck (Imperial College London) and Aner Shalev (Hebrew University of Jerusalem) **Question:** To what extent can certain generation properties of simple groups be extended to their maximal subgroups?

**Main problem.** Is there a constant *c* such that  $d(H) \leq c$  for every maximal subgroup *H* of any finite simple group?

## Theorem (B, Liebeck & Shalev, 2013)

#### Every maximal subgroup of a finite simple group is 4-generated.

- This is best possible there are infinitely many maximal subgroups of simple groups that require 4 generators.
- We establish stronger results for alternating and sporadic groups.
- The maximal subgroups *H* of a given simple group are not completely known, in general:

More precisely, either H is 'known', or H is **almost simple**, so

$$S \leq H \leq \operatorname{Aut}(S)$$

for some nonabelian simple group S.

• Key Observation: By a theorem of Dalla Volta & Lucchini (1995), every almost simple group is 3-generated.

# Alternating groups

Let  $G = S_n$  or  $A_n$ , and let H be a maximal subgroup of G.

## Theorem (O'Nan & Scott, 1979)

One of the following holds:

• 
$$H = (S_k \times S_{n-k}) \cap G$$
,  $1 \leq k < n/2$  [Intransitive]

• 
$$H = AGL_d(p) \cap G$$
,  $n = p^d$ , p prime [Affine]

- $H = (S_k \wr S_t) \cap G$ , n = kt or  $k^t$  [Imprimitive or product type]
- $H = (T^k.(\operatorname{Out}(T) \times S_k)) \cap G$ , T nonabelian simple,  $n = |T|^{k-1}$ [Diagonal type]
- *H* is almost simple

# Alternating groups

## Proposition

We have

$$d(S_k \times S_{n-k}) = d(\mathsf{AGL}_d(p)) = d(S_k \wr S_t) = 2$$

so  $d(H) \leq 3$  if H is non-diagonal.

Let  $H = T^k (Out(T) \times S_k)$  be a diagonal-type subgroup.

Here  $T^k$  is the unique minimal normal subgroup of H, so by a theorem of Lucchini & Menegazzo (1997) we have

$$d(H) = \max\{2, d(\operatorname{Out}(T) \times S_k)\} \leqslant 4$$

### Proposition

If *H* is a maximal subgroup of  $S_n$  or  $A_n$ , then  $d(H) \leq 4$ , with equality only if *H* is of diagonal-type.

## An example

Let  $H = T^2$ .(Out(T) ×  $S_2$ ), where  $T = P\Omega_{2m}^+(p^{2f})$  with  $m \ge 6$  even and p an odd prime. Then

$$d(H) = \max\{2, d(\operatorname{Out}(T) \times S_2)\} = d(D_8 \times Z_{2f} \times Z_2) \leqslant 4.$$

Now  $L = D_8 \times Z_{2f} \times Z_2$  has a normal subgroup N such that

$$L/N \cong Z_2 \times Z_2 \times Z_2 \times Z_2,$$

so 
$$d(H) = d(L) \ge d(L/N) = 4$$
 and thus  $d(H) = 4$ .

Further, if m = 6 then H is a maximal subgroup of  $G = A_{|T|}$  for all possible p and f.

**Conclusion.** There are infinitely many pairs (G, H), where G is simple, H < G is maximal and d(H) = 4.

# Groups of Lie type

For groups of Lie type we use powerful reduction theorems of Aschbacher and Liebeck & Seitz on the subgroup structure of these groups.

Parabolic subgroups require special attention:

Let G be a simple group of Lie type over  $\mathbb{F}_q$  and let H = QL be a maximal parabolic subgroup of G.

In general, Q/Q' is an irreducible *L*-module, so if  $L = \langle x_1, \ldots, x_n \rangle$  and  $q \in Q \setminus Q'$ , then  $H = \langle q, x_1, \ldots, x_n \rangle$  (since  $Q' \leq \Phi(H)$ ) and thus

 $d(H) \leqslant d(L) + 1.$ 

## Further generation properties

$$\mathcal{M} = \{H : H < G \text{ is maximal}\}$$
$$m_n(G) = |\{H \in \mathcal{M} : [G : H] = n\}|$$
$$\mathbb{P}(G, k) = \text{probability that } k \text{ randomly chosen elements generate } G$$
$$v(G) = \min\{k : \mathbb{P}(G, k) \ge e^{-1}\}$$

The proof of Dixon's conjecture yields the following result:

#### Theorem

There exists a constant c such that  $m_n(G) \leq n^c$  and  $v(G) \leq c$  for any finite simple group G.

Question. Does this extend to maximal subgroups of simple groups?

#### Theorem (B, Liebeck & Shalev, 2013)

There exists a constant c such that  $m_n(H) \leq n^c$  and  $v(H) \leq c$  for any maximal subgroup H of a simple group.

However, Dixon's conjecture does not extend to maximal subgroups:

**Example.** Let  $H = S_{n-2} < A_n$ . The probability that k randomly chosen elements of H lie in  $A_{n-2}$  is  $2^{-k}$ , so  $\mathbb{P}(H, k) \leq 1 - 2^{-k}$ .

#### Theorem (B, Liebeck & Shalev, 2013)

Given any  $\varepsilon > 0$  there exists a constant  $c = c(\varepsilon)$  such that  $\mathbb{P}(H, c) > 1 - \varepsilon$  for any maximal subgroup H of a simple group.

# A key theorem

Recall that  $v(G) = \min\{k : \mathbb{P}(G, k) \ge e^{-1}\}.$ 

### Theorem (Jaikin-Zapirain & Pyber, 2011)

There exist constants  $0 < \alpha < \beta$  such that for any finite group G

$$\alpha(d(G) + \delta(G)) < v(G) < \beta d(G) + \delta(G)$$

where  $\delta(G) \in \mathbb{R}^+$  is defined in terms of the chief factors of G.

Let H be a maximal subgroup of a simple group.

• We have  $d(H) \leq 4$  and  $\delta(H) < 1$ , so  $v(H) < 4\beta + 1 = c$ .

• Given  $\varepsilon > 0$  choose  $k \in \mathbb{N}$  such that  $(1 - e^{-1})^k < \varepsilon$ . Then

$$1-\mathbb{P}(H,kc)\leqslant (1-\mathbb{P}(H,c))^k\leqslant (1-e^{-1})^k$$

### Applications and open problems

# Application: Second maximal subgroups

A second maximal subgroup of G is a maximal subgroup of a maximal subgroup. Let  $m_n^2(G)$  be the number of second maximals of index n.

Question. Can we extend our results from maximal to second maximal?

#### Proposition

There is an absolute constant c s.t.  $m_n^2(G) \leq n^c$  for any simple group G.

$$m_n^2(G) \leqslant \sum_{a|n} m_a(G) \max\{m_{n/a}(H) \mid H \in \mathcal{M}, [G:H] = a\}$$
$$\leqslant \sum_{a|n} a^{c_1} (n/a)^{c_2}$$
$$\leqslant n^{c_1+c_2+1}$$

**Question.** Is there an absolute constant *c* such that  $d(H) \leq c$  for every second maximal subgroup *H* of a simple group?

#### Example

Suppose  $G = PSL_2(2^k)$  and  $2^k - 1 = r$  is a (Mersenne) prime.

Then  $H = (Z_2)^k$  has index r in a Borel subgroup of G, so H is a second maximal subgroup and d(H) = k.

Answer. No, if there are infinitely many Mersenne primes!

More generally, the answer is no if there are infinitely many integers of the form  $p^k - 1$  (p prime) with a prime factor r such that  $(p^k - 1)/r = o(k)$ .

# Application: Permutation groups

Let  $G \leq \text{Sym}(\Omega)$  be a finite primitive permutation group. Then

$$G_{\alpha} = \{ x \in G : x \cdot \alpha = \alpha \}$$

is a maximal subgroup of G, and

$$d(G)-1\leqslant d(G_{lpha})\leqslant [G:G_{lpha}]\cdot (d(G)-1)+1.$$

**Question.** Is there a constant *c* such that

 $d(G_{\alpha}) \leqslant d(G) + c$ 

for every primitive permutation group G?

Theorem (B, Liebeck & Shalev, 2013)

 $d(G_{\alpha}) \leqslant d(G) + 4$ 

# Some open problems

- Conjecture: d(H) ≤ 4 for any maximal subgroup H of an almost simple group.
- Is there a constant c such that d(H) ≤ c for any second maximal subgroup of a simple group, excluding a few known cases (only involving groups of Lie type of rank 1 and 2)?
- Is there a finite group with spread 1 but not spread 2?
- Conjecture (Breuer, Guralnick & Kantor, 2008):
  A finite group G is <sup>3</sup>/<sub>2</sub>-generated if and only if G/N is cyclic for every nontrivial normal subgroup N of G.
- Conjecture (Breuer, Guralnick, Lucchini, Maróti & Nagy, 2010):
  Γ(G) contains a Hamiltonian cycle if and only if G/N is cyclic for every nontrivial normal subgroup N of G.