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Abstract. Let G be a finite insoluble group with soluble radical R(G). In this paper we
investigate the soluble graph of G, which is a natural generalisation of the widely studied
commuting graph. Here the vertices are the elements in G\R(G), with x adjacent to y if they
generate a soluble subgroup of G. Our main result states that this graph is always connected
and its diameter, denoted δS(G), is at most 5. More precisely, we show that δS(G) 6 3 if G
is not almost simple and we obtain stronger bounds for various families of almost simple
groups. For example, we will show that δS(Sn) = 3 for all n > 6. We also establish the
existence of simple groups with δS(G) > 4. For instance, we prove that δS(A2p+1) > 4 for
every Sophie Germain prime p > 5, which demonstrates that our general upper bound of 5
is close to best possible. We conclude by briefly discussing some variations of the soluble
graph construction and we present several open problems.

1. Introduction

Let G be a non-abelian finite group and let Γ(G) be the commuting graph of G. Recall
that the vertices of this graph are the non-central elements of G and two distinct vertices
are adjacent if and only if they commute in G. Commuting graphs arise naturally in many
different contexts and they have been intensively studied by various authors in recent years.

For example, Segev and Seitz [29] studied the connectivity properties of the commuting
graphs of finite simple groups, which turned out to be a key ingredient in their work on the
Margulis-Platonov conjecture on the normal subgroup structure of simple algebraic groups
defined over number fields. Specifically, [29, Theorem 8] shows that if G is a finite simple
classical group over a field of order greater than 5, then either Γ(G) is disconnected (and
all such groups are determined), or the diameter of Γ(G) is at least 4 and at most 10. A
similar result for the commuting graphs of symmetric and alternating groups was established
by Iranmanesh and Jafarzadeh in [24]. Here they prove that if G = Sn or An and Γ(G) is
connected, then the diameter of Γ(G) is at most 5. More generally, they conjectured that if
the commuting graph of any finite group is connected, then its diameter is bounded above
by an absolute constant. This conjecture was subsequently refuted by Giudici and Parker in
[18], where an infinite sequence (Gn) of 2-groups of nilpotency class 2 is constructed with the
property that the diameter of Γ(Gn) tends to infinity. However, if G has trivial centre then a
theorem of Morgan and Parker [27] states that the diameter of each connected component of
Γ(G) is at most 10 (in [3], this has recently been extended to groups with G′ ∩ Z(G) = 1).
Although it is still not known whether or not an upper bound of 10 is optimal, it is worth
noting that Parker [28] has proved that Γ(G) has diameter at most 8 if G is soluble with
trivial centre and he has shown that this bound is best possible in this setting.

Here we view the commuting graph of a group through a different lens, which leads naturally
to some interesting generalisations that form the main focus of this paper. To do this, first let
A be the class of abelian groups and let ΛA(G) be the graph with vertex set G so that x and
y are adjacent if and only if the subgroup 〈x, y〉 of G is abelian. Clearly, every vertex in the
centre Z(G) is connected to every other vertex in this graph, so it makes sense to consider
the more restrictive graph ΓA(G), which is only defined on the non-central elements of G.
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Then ΓA(G) is the commuting graph of G as defined above. Note that in this setting, Z(G)
is precisely the set of isolated vertices in the complement of ΛA(G).

Motivated by this observation, let S be the class of soluble groups and define the graph
ΛS(G) with vertices G so that x and y are adjacent if and only if 〈x, y〉 is soluble. By a
theorem of Guralnick et al. [21, Theorem 1.1], the isolated vertices in the complement coincide
with the soluble radical R(G) of G and this leads us to the following definition.

Definition. Let G be a finite insoluble group with soluble radical R(G). The soluble graph
of G, denoted ΓS(G), has vertex set G \R(G), with distinct vertices x and y adjacent if and
only if 〈x, y〉 is a soluble subgroup of G.

Our main aim in this paper is to investigate the connectivity properties of this graph as we
range over the insoluble finite groups. Let δS(G) be the diameter of ΓS(G) (by convention,
we set δS(G) =∞ if ΓS(G) is disconnected). Note that δS(G) > 2 as a consequence of J.G.
Thompson’s celebrated classification of N -groups [31], which implies that a finite group is
soluble if and only if every 2-generated subgroup is soluble (see Flavell [15] for a direct proof).

A simplified version of our main result is the following.

Theorem 1. Let G be a finite insoluble group. Then ΓS(G) is connected and δS(G) 6 5.

This is an immediate corollary of the more detailed statement in Theorem 2 below. In part
(ii)(c), we refer to the following collections of simple groups:

A = {A11, A12,L
ε
5(2),M12,M22,M23,M24,HS, J3}

B = {An,Lε7(2), E6(2),Co2,Co3,McL,B}
where n ∈ {19, 20, 23, 24, 31, 43, 44, 47, 48, 59, 60}. Recall that a finite group is almost simple
if there exists a non-abelian simple group G0 (the socle of G) such that G0 P G 6 Aut(G0).

Theorem 2. Let G be a finite insoluble group.

(i) If G is not almost simple, then δS(G) 6 3.

(ii) If G is almost simple with socle G0, then δS(G) 6 5. In addition:

(a) If G0 = L2(q) and q > 8, then δS(G) = 2 if PGL2(q) 6 G, otherwise δS(G) = 3.

(b) If G0 = An and n > 7, then either δS(G) = 3, or G = An and n ∈ {p, p + 1},
where p is a prime with p ≡ 3 (mod 4).

(c) If G ∈ A ∪ B then δS(G) > 4, with equality if G ∈ A.

(d) If G = G0 is not isomorphic to a classical group, then δS(G) > 3.

Remark 1. As far as we are aware, the soluble graph of a finite group was first studied by
Bhowal et al. in [4], which includes results on the genus, girth and clique number of ΓS(G).
This initial investigation was extended by Akbari et al. in [2], where their main result states
that ΓS(G) is connected and δS(G) 6 11 (they also remark that they do not know an example
with δS(G) > 4). Therefore, Theorem 2 provides a significant strengthening of this earlier
work on the diameter of ΓS(G).

In view of part (ii)(a) in Theorem 2, we immediately obtain the following corollary.

Corollary 3. There are infinitely many finite simple groups G with δS(G) = 2.

Remark 2. Let G be a finite simple group with δS(G) = 2, so G is a classical group by part
(ii)(d) in Theorem 2. Up to isomorphism, the only known examples are the 2-dimensional
linear groups L2(q) with q > 4 even (or q = 7) and the unitary group U4(2); it would be
interesting to completely determine the simple groups with this property and we refer the
reader to the end of Section 6.3 for some additional results in this direction. For example,
if G = Ln(q) then Proposition 6.15 states that δS(G) = 2 if and only if G is isomorphic to
L2(q) with q > 4 even or q = 7.
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Remark 3. Part (ii)(c) in Theorem 2 establishes the existence of groups with δS(G) > 4.
In particular, it is worth noting that the Mathieu group G = M12 is the smallest finite
group with δS(G) > 4 (see Corollary 4.3). However, we do not know if there is a group with
δS(G) = 5 and thus determining the sharpness of our upper bound in Theorem 1 remains an
open problem. On the other hand, it is straightforward to show that the upper bound in part
(i) of Theorem 2 is best possible. Indeed, there are infinitely many groups G that are not
almost simple with δS(G) = 3 (see Corollary 3.4).

Recall that a prime p is a Sophie Germain prime if 2p + 1 is also a prime number; the
examples with p < 200 are as follows:

{2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191}.

It is conjectured that there are infinitely many such primes, but this remains a formidable
open problem in number theory. Modulo this conjecture, our next result establishes the
existence of infinitely many simple groups with δS(G) > 4 (see Theorem 5.5).

Theorem 4. If p > 5 is a Sophie Germain prime, then δS(A2p+1) ∈ {4, 5}.

Suppose R(G) = 1 and observe that the set of involutions in G forms a clique in ΓS(G)
since any two involutions generate a dihedral group. Therefore, the bound δS(G) 6 5 in
Theorem 1 will follow if we can show that for all nontrivial x ∈ G there is a path in ΓS(G) of
length at most 2 from x to an involution. For instance, such a path exists if we can find an
element y ∈ NG(〈x〉) such that |NG(〈y〉)| is even. With this observation in mind, our proof of
Theorem 2 will establish the following result (in the statement, δ(x, y) denotes the distance
in ΓS(G) from x to y).

Theorem 5. Let G be a finite insoluble group with R(G) = 1 and let x ∈ G be nontrivial.
Then either

(i) There exists an involution y ∈ G with δ(x, y) 6 2; or

(ii) G is the Mathieu group M23 and |x| = 23.

Remark 4. The special case in part (ii) of Theorem 5 is a genuine exception. Indeed, suppose
G = M23 and x ∈ G has order 23. Let B`(x) denote the ball of radius ` in ΓS(G) centred
at x. Since H = NG(〈x〉) = 23:11 is the unique maximal subgroup of G containing x, it
follows that B1(x) is the set of nontrivial elements in H. Suppose y ∈ B1(x) has order 11
and let J be a maximal subgroup of G containing y. Then either J = 23:11 is the normaliser
of a Sylow 23-subgroup of G, or J is a unique copy of M11 or M22. In the latter two cases,
NJ(〈y〉) = 11:5 is the unique maximal soluble subgroup of J containing y and this allows us
to conclude that every element in B2(x) has order 5, 11 or 23. Finally, if z ∈ G has order 5
then |NG(〈z〉)| is even and thus the shortest path from x to an involution has length 3.

Remark 5. As in Theorem 5, let G be a finite insoluble group with R(G) = 1 and let x ∈ G
be nontrivial. In the proof of [2, Theorem 4.2], it is shown that there exists an involution
y ∈ G with δ(x, y) 6 5, which is the key step in establishing the connectivity of ΓS(G) and
the bound δS(G) 6 11 in the main theorem of [2].

Remark 6. Let us also highlight a connection between Theorem 5 and earlier work of Hagie
[23]. Let G be a finite group and let π(G) be the set of prime divisors of |G|. Consider the
graph with vertex set π(G), where distinct vertices p and q are joined by an edge if G has a
soluble subgroup of order divisible by pq (note that this is a natural generalisation of the
widely studied prime graph of G, where “soluble” is replaced by “cyclic”). Let d(p, q) be the
distance between two vertices p and q in this graph. Then [23, Theorem 2] states that if G
has even order, then d(2, p) 6 3 for all p ∈ π(G). As an immediate corollary of Theorem 5,
we can strengthen this result as follows: if p ∈ π(G), then either d(2, p) 6 2, or G = M23,
p = 23 and d(2, p) = 3.
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In order to state our next result, let Pn be the path graph with n vertices and recall that
a graph Γ is a cograph if it has no induced subgraph isomorphic to the four-vertex path P4.
There are several equivalent characterisations of this property. For instance, Γ is a cograph if
any of the following conditions hold:

(a) Every induced subgraph of Γ has the property that any maximal clique intersects any
maximal independent set in a single vertex.

(b) Every induced subgraph of Γ with more than one vertex has at least two vertices
with equal neighbourhoods.

(c) Every connected induced subgraph of Γ has a disconnected complement.

The complement of the soluble graph ΓS(G) is the insoluble graph of G: the vertices are
once again labelled by the elements of G \ R(G), with x and y adjacent if they generate
an insoluble group. By [21, Theorem 6.4], the insoluble graph of a finite insoluble group is
connected with diameter 2 and as an immediate consequence (see (c) above) we obtain the
following result.

Theorem 6. Let G be a finite insoluble group. Then ΓS(G) is not a cograph.

Next let us recall the notion of a dual pair of graphs, which was recently introduced
by Cameron in [13, Section 12.1]. Let B be a bipartite graph with parts V1 and V2. The
corresponding halved graphs arising from B are the graphs Γ1 and Γ2 with respective vertex
sets V1 and V2, where two vertices are adjacent in the relevant graph if and only if they lie at
distance 2 in B. We then say that a given pair of graphs Γ1 and Γ2 is a dual pair if there
is a bipartite graph B without isolated vertices such that Γ1 and Γ2 are the halved graphs
of B. In this situation, Γ1 is connected if and only if Γ2 is connected. More generally, there
is a natural bijection between the connected components of Γ1 and Γ2 with the property
that the diameters of the corresponding components are either equal or differ by 1 (see [13,
Proposition 12.1]).

With this definition in hand, let G be a finite insoluble group and define the soluble
intersection graph IntS(G) of G to be the graph whose vertices are the nontrivial soluble
subgroups of G, where two vertices H and K are adjacent if and only if H ∩ K 6= 1. If
R(G) 6= 1, then R(G) is a universal vertex of IntS(G). On the other hand, if R(G) = 1 then
the graphs IntS(G) and ΓS(G) form a dual pair by [13, Proposition 12.2]. Therefore, we
obtain the following corollary as an immediate consequence of the bound in Theorem 1.

Corollary 7. Let G be a finite insoluble group. Then IntS(G) is connected, with diameter at
most 6.

Remark 7. Let G be a finite group and recall that the non-generating graph of G is a graph
on the nontrivial elements of G, where x is adjacent to y if and only if G 6= 〈x, y〉. Also recall
that the vertices of the intersection graph of G are the nontrivial proper subgroups of G,
with H and K adjacent if and only if H ∩K 6= 1. It is straightforward to show that these
two graphs form a dual pair as defined above. In recent work, Freedman [17] has proved
that the intersection graph of a finite non-abelian simple group is connected with diameter
at most 5 (this bound is tight for the Baby Monster sporadic group, for example), whence
the non-generating graph of a non-abelian finite simple group has diameter at most 6 by
[13, Proposition 12.1]. In fact, [16, Theorem 6.5.4] shows that the latter diameter is at most
4. Now, if G is a finite insoluble group with R(G) = 1, then the soluble graph ΓS(G) is a
subgraph of the non-generating graph and therefore it is natural to compare the diameters of
these two connected graphs. In Corollary 5.8 we prove that there exist finite simple groups G
such that δS(G) is strictly larger than the diameter of the non-generating graph of G (indeed,
we can take G = A2p+1 for any Sophie Germain prime p > 5).

We close with some comments on the organisation of this paper. In Section 2 we present
some preliminary results that will be needed in the proofs of our main theorems. This includes
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Lemma 2.2, which provides an immediate reduction to the groups with trivial soluble radical,
and Lemma 2.6 on a useful connection with bases for primitive permutation groups. In Section
2.2 we discuss some of our main computational methods (for example, we use Magma [5]
extensively in studying the soluble graphs of the almost simple sporadic groups). The main
result in Section 3 is Theorem 3.3, which establishes the bound δS(G) 6 3 whenever G is
an insoluble group that is not almost simple. This allows us to focus our attention on the
almost simple groups for the remainder of the paper and we consider the various possibilities
in turn. We begin in Section 4 by handling the groups with socle a sporadic simple group
(the main results are Theorems 4.1 and 4.9). Next we turn to the symmetric and alternating
groups in Section 5, establishing our main results in Theorems 5.1, 5.2 and 5.5. Finally, the
almost simple groups of Lie type are the focus of Section 6. Here the linear groups with socle
L2(q) merit special attention and they are handled separately in Section 6.1. The exceptional
groups are treated in Section 6.2, followed by the remaining classical groups in Section 6.3.
The main results in Section 6 are Theorem 6.1 and Corollaries 6.7 and 6.12. We conclude
with a brief discussion of some natural generalisations of the soluble graph in Section 7 and
we present a number of open problems in Section 8.

Acknowledgements. We sincerely thank an anonymous referee for their very careful reading
of an earlier version, which has helped us to improve the accuracy and presentation of the
paper. Burness thanks the Department of Mathematics at the University of Padua for their
generous hospitality during a research visit in autumn 2021.

2. Preliminaries

In this section we record some preliminary results, which will be useful in the proofs of our
main theorems.

2.1. The soluble graph. Let G be a finite insoluble group and let ΓS(G) be the soluble
graph of G. As defined above, the vertices of this graph are the elements in G \R(G), where
R(G) is the soluble radical of G, and two distinct vertices x and y are adjacent (denoted
x ∼ y) if and only if 〈x, y〉 is soluble. Let δ(x, y) denote the distance between the two vertices
x and y in this graph (if x and y are not connected by a path, then set δ(x, y) =∞). Then

δS(G) = max{δ(x, y) : x, y ∈ G \R(G)}
is the diameter of ΓS(G). For x ∈ G \R(G) and ` ∈ N we also define

B`(x) = {y ∈ G \R(G) : δ(x, y) 6 `},
which is the ball of radius ` in ΓS(G), centred at x.

Remark 2.1. Note that δS(G) > 3 if and only if there exist elements x, y ∈ G \R(G) such
that B1(x) ∩B1(y) is empty. Also observe that δS(G) > 4 if there exist x, y ∈ G \R(G) such
that 〈a, b〉 is insoluble for all a ∈ B1(x), b ∈ B1(y).

We begin by recording some preliminary observations. Since R(G/R(G)) = 1, the following
elementary result allows us to focus our attention on the groups with R(G) = 1.

Lemma 2.2. Let G be a finite insoluble group with soluble radical R(G).

(i) ΓS(G) is connected if and only if ΓS(G/R(G)) is connected.

(ii) In addition, δS(G) = δS(G/R(G)).

Proof. Clearly, if x, y ∈ G, then 〈x, y〉 is soluble if and only if 〈x, y〉R(G)/R(G) is a soluble
subgroup of G/R(G). Consequently, x and y are adjacent in ΓS(G) if and only if xR(G) and
yR(G) are adjacent in ΓS(G/R(G)). �

Lemma 2.3. Let H,K be nontrivial finite groups with R(H) = R(K) = 1.
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(i) We have δS(H ×K) 6 3.

(ii) If δS(H) = δS(K) = 2, then δS(H ×K) = 2.

(iii) If δS(H) > 3 then δS(H o S2) > 3.

Proof. First consider (i). Let x = (h1, k1) and y = (h2, k2) be nontrivial elements of H ×K.
Without loss of generality, we may assume h1 6= 1. If k2 6= 1, then

x = (h1, k1) ∼ (h1, 1) ∼ (1, k2) ∼ (h2, k2) = y

is a path in ΓS(H ×K). Now assume k2 = 1, in which case h2 6= 1. If k1 6= 1, then

x = (h1, k1) ∼ (1, k1) ∼ (h2, 1) ∼ (h2, k2) = y

is a path in ΓS(H ×K). Finally, if k1 = k2 = 1 then let k ∈ K be any nontrivial element and
observe that

x = (h1, 1) ∼ (1, k) ∼ (h2, 1) = y

is a path of length 2.

Next consider part (ii). Define x, y ∈ H ×K as above, with h1 6= 1. If h2 6= 1 then there
exists a ∈ H such that 〈h1, a〉 and 〈h2, a〉 are soluble and we deduce that x ∼ (a, 1) ∼ y.
Similarly, if h2 = 1 then k2 6= 1 and there exists b ∈ K such that 〈k1, b〉 and 〈k2, b〉 are soluble.
Therefore, x ∼ (1, b) ∼ y and we conclude that δS(H ×K) = 2.

Finally, let us turn to (iii). Let x, y ∈ H be nontrivial elements with δ(x, y) = 3 in ΓS(H)
and consider a = (x, 1)σ and b = (y, 1)σ in G = H o S2, where σ = (1, 2) ∈ S2. Suppose
c = (r, s)σi ∈ G is adjacent to a and b in ΓS(G), where r, s ∈ H and i ∈ {0, 1}. Then c is also
adjacent to a2 = (x, x) and b2 = (y, y). If i = 0 then either r 6= 1 and x ∼ r ∼ y in ΓS(H),
or s 6= 1 and we have x ∼ s ∼ y. This is incompatible with the condition δ(x, y) = 3. Now
assume i = 1. Here 〈x, rs〉 and 〈y, rs〉 are both soluble, so rs = 1 is the only possibility and
thus c = (r, r−1)σ. However, ac = (x, 1)σ · (r, r−1)σ = (xr−1, r) is adjacent to a2 = (x, x) and
thus 〈x, r〉 is soluble. Similarly, 〈y, r〉 is also soluble, so x ∼ r ∼ y in ΓS(H) and once again we
have reached a contradiction. We conclude that δ(a, b) > 3 in ΓS(G) and thus δS(G) > 3. �

Recall that an element in a group is real if it is conjugate to its inverse.

Lemma 2.4. Let G be a nontrivial finite group with R(G) = 1. If x, y ∈ G are nontrivial
and |NG(〈x〉)| and |NG(〈y〉)| are even, then δ(x, y) 6 3. In particular, if every element in G
is real, then δS(G) 6 3.

Proof. First observe that x ∼ z for all nontrivial z ∈ NG(〈x〉). Therefore, if |NG(〈x〉)| and
|NG(〈y〉)| are even, then there exist involutions z, z′ ∈ G such that x ∼ z and y ∼ z′. Since
〈z, z′〉 is soluble, it follows that x ∼ z ∼ z′ ∼ y is a path in ΓS(G) and thus δ(x, y) 6 3.
Finally, note that if x is real, then there exists an element g ∈ G of even order such that
g−1xg = x−1 and thus |NG(〈x〉)| is even. �

Remark 2.5. The main theorem of [32] completely determines the finite quasisimple groups
with the property that every element is real. By combining this result with Lemma 2.4, we
immediately deduce that δS(G) 6 3 when G is one of the following finite simple classical
groups:

(a) PSp2m(q)′, where m > 1 and q 6≡ 3 (mod 4).

(b) Ω2m+1(q), where m > 3 and q ≡ 1 (mod 4).

(c) PΩε
4m(q), where m > 2 (and q 6≡ 3 (mod 4) if ε = + and m > 3).

Let G be a finite group and let H be a core-free subgroup. Recall that the base size for the
natural action of G on the set of cosets G/H, denoted b(G,H) is defined to be the minimal
number b of conjugates Hg1 , . . . ,Hgb such that

⋂
iH

gi = 1. In particular, b(G,H) = 2 if and
only if H 6= 1 and H ∩Hg = 1 for some g ∈ G.
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Lemma 2.6. Let G be a nontrivial finite group with R(G) = 1 and suppose there exists a
nontrivial element x ∈ G that is contained in a unique maximal subgroup H of G. If H is
core-free and b(G,H) = 2, then δS(G) > 3.

Proof. First observe that if y ∈ G \H then 〈x, y〉 is equal to G, which is insoluble, and thus
B1(x) ⊆ H. Since b(G,H) = 2, there exists g ∈ G such that H ∩Hg = 1, which implies that
B1(x) ∩B1(xg) is empty. Therefore, δ(x, xg) > 3 and the result follows. �

Example 2.7. In order to demonstrate the utility of the previous lemma, let G = M be the
Monster sporadic simple group and let x ∈ G be an element of order 59. As explained in the
proof of [9, Theorem 4.1], x is contained in a unique maximal subgroup H = L2(59) of G and
by applying the main theorem of [11] we deduce that b(G,H) = 2. Therefore, Lemma 2.6
implies that δS(G) > 3.

2.2. Computational methods. In this section we discuss the computational methods that
play a key role in the proofs of our main results. All of our computations are performed
using Magma (version 2.26-6) [5] and we are mainly interested in the case where G is almost
simple. So for the remainder of this section, let us assume G is an almost simple group that
is amenable to direct computations in Magma.

Let x ∈ G be nontrivial and suppose we seek to determine B`(x), the ball of radius ` in
ΓS(G), centred at x. To do this, we first use the command AutomorphismGroupSimpleGroup

to construct G as a permutation group and we then identify x (up to conjugacy) as an element
of G in this representation (for example, via the ConjugacyClasses command, or by random
search). Next we use the function SolubleSubgroups to determine a set of representatives
of the conjugacy classes of soluble subgroups of G with order divisible by |x|. Given such a
subgroup H, we then compute the number n of conjugates of H containing x, noting that

n =
|xG ∩H|
|xG|

· |G : NG(H)|.

From here, we can then construct all the soluble overgroups of x and by taking the union of
these subgroups, excluding the identity element, we return B1(x).

Similarly, in order to construct B2(x) we first determine a set of representatives x1, . . . , xk
of the distinct conjugacy classes in G that meet B1(x). Set y = x1. As above, we construct
B1(y) and then for each conjugate yg ∈ B1(x) we obtain B1(yg) = B1(y)g and we take the
union of these sets. We can now construct B2(x) by repeating this process for x2, . . . , xk and
this approach can be extended to give B`(x) for any `.

Example 2.8. Let G be the Mathieu group M23 and let G# be the set of nontrivial elements
in G. We claim that δS(G) = 4.

Here the function AutomorphismGroupSimpleGroup returns G in its natural permutation
representation of degree 23. First we use ConjugacyClasses to determine a set of represen-
tatives of the conjugacy classes of G. Then for each representative x, we compute |NG(〈x〉)|,
which is even unless |x| ∈ {11, 23}. If we fix an element x of order 23, then B1(x) coincides
with the nontrivial elements in NG(〈x〉) = 23:11 and by random search we can find a conjugate
y = xg such that 〈a, b〉 is insoluble for all a ∈ B1(x), b ∈ B1(y). This implies that δ(x, y) > 4
and thus δS(G) > 4. Therefore, in order to conclude that δS(G) = 4 it suffices to show that
B4(x) = G# when |x| ∈ {11, 23} (see Lemma 2.4).

First assume |x| = 11. By applying the procedure described above, we compute

|B1(x)| = 1264, |B2(x)| = 135629, |B3(x)| = 9540519.

We now implement the following exhaustive process in order to show that B4(x) = G#. First
we express each element y ∈ B3(x) in the form xgi , where x1, . . . , xk represent the distinct
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conjugacy classes in G that meet B3(x). This allows us to express B3(x) as a disjoint union

B3(x) =

k⋃
i=1

{xgi : g ∈ Ti},

where the elements xi and the sets Ti are explicitly determined. Then starting with Y = G#,
we choose y ∈ Y at random and then we use random search to find i ∈ {1, . . . , k} and g ∈ Ti
such that 〈xgi , y〉 is soluble. It follows that 〈xhi , yg

−1h〉 is soluble for all h ∈ Ti and so we

redefine Y by removing all elements of the form yg
−1h with h ∈ Ti. We now repeat the process,

which eventually terminates when Y reaches the empty set. This allows us to conclude that
each y ∈ G# is adjacent to an element in B3(x) and thus B4(x) = G# as claimed. An entirely
similar argument applies when |x| = 23, noting that

|B1(x)| = 252, |B2(x)| = 23528, |B3(x)| = 1858031.

Example 2.9. There are variations of the computational approach outlined in Example 2.8,
which can be more efficient for certain groups. Specifically, the approach presented below
does not require the construction of any balls of radius 3, which can be expensive in terms of
time and memory.

For example, suppose we seek to show that δS(G) = 4 when G is the largest Mathieu group
M24. Here we work with the natural permutation representation of degree 24 and we first
check that if x ∈ G and |x| 6= 23 then |NG(〈x〉)| is even. Fix x ∈ G of order 23. By random
search we can find an element g ∈ G such that 〈a, b〉 is insoluble for all a ∈ B1(x), b ∈ B1(xg)
and thus δ(x, xg) > 4. Therefore, in order to conclude that δS(G) = 4 it suffices to show that
any two elements of order 23 are connected by a path of length at most 4.

To do this, we can proceed as follows. Let Y be the set of elements of order 23 in G, so
|Y | = 21288960 and Y is a union of two conjugacy classes, labelled 23A and 23B. Fix an element
x ∈ 23A and construct B2(x) as above (we find that |B1(x)| = 252 and |B2(x)| = 50093). We
now initiate the following process. Choose y ∈ Y at random and construct B1(y). By random
search, find a ∈ B2(x) and b ∈ B1(y) such that 〈a, b〉 is soluble. It follows that δ(x, z) 6 4 for
all

z ∈ {(yg)m : g ∈ CG(x), 1 6 m 6 22}.
We now remove this subset from Y and we continue to repeat this process until Y is empty.
This allows us to conclude that B4(x) = G# for all x ∈ 23A. Finally, since the Sylow
23-subgroups of G are cyclic, we immediately deduce that the same conclusion holds if
x ∈ 23B.

3. A reduction theorem

In this section, we reduce the proofs of Theorems 2 and 5 to almost simple groups.

Lemma 3.1. Let G be a finite group with R(G) = 1 and socle N1 × · · · ×Nk, where each
Ni is a non-abelian minimal normal subgroup of G. If k > 2 then ΓS(G) is connected and
δS(G) 6 3.

Proof. Let x, y ∈ G be distinct nontrivial elements. Then there exist nontrivial elements
s ∈ N1, t ∈ N2 such that [x, s] = [y, t] = 1 (see [19, Theorem 1.48], for example) and we
deduce that x ∼ s ∼ t ∼ y is a path in ΓS(G). �

Lemma 3.2. Let G = T k, where T is a non-abelian simple group and k > 2. Let

x = (x1, . . . , xk), y = (y1, . . . , yk)

be distinct nontrivial elements of G with x1 = 1. Then δ(x, y) 6 2.



ON THE SOLUBLE GRAPH OF A FINITE GROUP 9

Proof. If y1 6= 1, then x ∼ (y1, 1, . . . , 1) ∼ y is a path in ΓS(G). Similarly, if y1 = 1 then
we may consider the path x ∼ (t, 1, . . . , 1) ∼ y, where t ∈ T is an arbitrary nontrivial
element. �

We are now ready to establish the main result of this section.

Theorem 3.3. Let G be a finite insoluble group. If G is not almost simple, then ΓS(G) is
connected and δS(G) 6 3.

Proof. In view of Lemmas 2.2 and 3.1, we may assume G is monolithic with socle N = T k,
where T is a non-abelian simple group and k > 2. Let us identify G with a subgroup of
Aut(N) = Aut(T ) o Sk and let x, y ∈ G be nontrivial elements, say x = (x1, . . . , xk)σ with
xi ∈ Aut(T ) and σ ∈ Sk. Write σ = σ1 · · ·σd as a product of disjoint cycles (including cycles
of length 1). We may assume σ1 = (1, 2, . . . , u) with u > 1. Set a = x1 · · ·xu ∈ Aut(T ) and
define z = (t, 1, . . . , 1) ∈ N , where 1 6= t ∈ CT (a) (the existence of t follows from [19, Theorem
1.48]). Next observe that

Y = 〈z, zx, . . . , zxu−1〉 6 〈z〉 × 〈zx〉 × · · · × 〈zxu−1〉
is an abelian group normalised by 〈x〉, so 〈Y, x〉 is a soluble subgroup of G containing x and
z, whence 〈x, z〉 is soluble.

Now, if y ∈ N then δ(z, y) 6 2 by Lemma 3.2 and therefore δ(x, y) 6 3. If y /∈ N, then
as above we may construct a nontrivial element z′ ∈ N of the form z′ = (1, t′, 1, . . . , 1) for a
suitable t′ ∈ T with z′ ∼ y. This gives a path x ∼ z ∼ z′ ∼ y and the proof is complete. �

Corollary 3.4. Fix ` ∈ {2, 3}. Then there are infinitely many insoluble groups G that are
not almost simple with δS(G) = `.

Proof. This follows by combining Theorem 3.3 with Lemma 2.3 and part (ii) of Theorem 2.
First observe that the latter result shows that there are infinitely many finite simple groups
T with δS(T ) = `. If δS(T ) = 2 then Lemma 2.3(ii) implies that δS(T × T ) = 2. On the other
hand, if δS(T ) = 3 then Lemma 2.3(iii) yields δS(T oS2) > 3, which means that δS(T oS2) = 3
by Theorem 3.3. �

Remark 3.5. Let G be a finite monolithic group with socle T k for some non-abelian simple
group T and positive integer k > 2. Here we record the fact that there are examples with
δS(G) = δS(T )± 1.

(a) Theorem 2 demonstrates the existence of simple groups T with δS(T ) = 4, while the
bounds in Lemma 2.3(iii) and Theorem 3.3 show that δS(T o S2) = 3.

(b) Suppose T = U4(2), H = U4(2).2 and G = H oS2. Here one can check that δS(T ) = 2
and δS(H) = 3, whence δS(G) = 3 by combining Lemma 2.3(iii) with Theorem 3.3.

We can also reduce the proof of Theorem 5 to almost simple groups.

Proposition 3.6. Let G be a finite insoluble group with R(G) = 1 that is not almost simple
and let x ∈ G be nontrivial. Then there exists an involution y ∈ G with δ(x, y) 6 2.

Proof. Let N = T k be a minimal normal subgroup of G, where T is a finite non-abelian
simple group and k is a positive integer. It follows from the proof of Theorem 3.3 that there
exists 1 6= t ∈ T such that x is adjacent to n = (t, 1, . . . , 1) ∈ N. If k > 2, then n is adjacent
to (1, u, . . . , u) ∈ N , where u ∈ T is an arbitrary involution. And if k = 1 then G contains
another minimal normal subgroup M 6= N and n is adjacent to every involution in M . �

We close this section with the following result, which we will use to show that the Mathieu
group M12 is the smallest finite group G with δS(G) > 3 (see Corollary 4.3).

Proposition 3.7. Let G be a finite insoluble group with |G| < |M12|. Then δS(G) 6 3.
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Proof. In view of Theorem 3.3, we may assume G is almost simple with socle G0. By inspecting
the list of non-abelian simple groups of order less than |M12| = 95040, we deduce that

G0 ∈ {A7,L2(q),Lε3(3),Lε3(4),Lε4(2), 2B2(8),M11}
up to isomorphism, where 5 6 q 6 53. For the groups with socle L2(q), we refer the reader to
Theorem 6.1 where the precise diameter of ΓS(G) is determined. In each of the remaining
cases, we can use the computational approach outlined in Section 2.2 to calculate the precise
diameter of ΓS(G). In this way, we obtain

δS(G) =

{
2 if G = L3(3).2 or U4(2)
3 otherwise.

The result follows. �

4. Sporadic groups

In this section we prove Theorems 2 and 5 in the case where G is an almost simple group
with socle a sporadic group. Our main theorem for simple sporadic groups is as follows.

Theorem 4.1. If G is a simple sporadic group, then 3 6 δS(G) 6 5. In particular, the
following hold:

(i) If G ∈ {M11, J1, J2, Suz,He,Ru,Fi22,Ly, J4} then δS(G) = 3.

(ii) If G ∈ {M12,M22,M23,M24,HS, J3} then δS(G) = 4.

(iii) If G ∈ {Co2,Co3,McL,B} then δS(G) ∈ {4, 5}.

We will prove Theorem 4.1 in a sequence of lemmas. The arguments rely heavily on the
computational methods (using Magma [5]) discussed in Section 2.2.

Lemma 4.2. We have

δS(G) =

{
3 if G ∈ {M11, J1, J2, Suz,He,Ru,Fi22}
4 if G ∈ {M12,M22,M23,M24}.

Proof. If G is a Mathieu group, then we can use Magma to compute the precise diameter of
ΓS(G) (see Section 2.2). In the remaining cases, it is easy to check that |NG(〈x〉)| is even
for all x ∈ G and thus δS(G) 6 3 by Lemma 2.4. Moreover, we can use random search to
find two conjugate elements x, y ∈ G of order r such that B1(x) ∩B1(y) is empty, where r
is the largest prime divisor of |G|. Therefore δ(x, y) > 3 and we deduce that δS(G) = 3 as
required. �

By combining Lemma 4.2 with Proposition 3.7, we obtain the following corollary.

Corollary 4.3. The Mathieu group M12 is the smallest finite group G with δS(G) > 3.

Lemma 4.4. We have δS(G) > 4 if G ∈ {HS, J3,Co2,Co3,McL,B}.

Proof. For now let us assume G 6= B. In each of these cases we can proceed as in Examples
2.8 and 2.9. For example, suppose G = HS and let x ∈ G be an element of order 11. Then
B1(x) coincides with the set of nontrivial elements in NG(〈x〉) = 11:5 and by random search
we can find g ∈ G such that B1(x) ∩ B1(y) is empty, where y = xg. Moreover, we can find
such an element y with the property that 〈a, b〉 is insoluble for all a ∈ B1(x), b ∈ B1(y).
This means that δ(x, y) > 4 and thus δS(G) > 4. A very similar argument applies for the
remaining groups, working with elements of order 19, 23, 23 and 11 for G = J3, Co2, Co3

and McL, respectively.

Finally, let us assume G = B is the Baby Monster and recall the definitions of the
intersection graph and non-generating graph of G (see Remark 7 in Section 1). In [17],
Freedman proves that the intersection graph of G has diameter 5, noting that the shortest
path between two specific subgroups of order 47 has length 5. This implies that the soluble
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intersection graph of G has diameter at least 5 (see the paragraph preceding Corollary 7)
and thus δS(G) > 4 by [13, Proposition 12.2] since the soluble intersection graph and the
soluble graph form a dual pair in the sense of [13, Section 12.1]. �

Lemma 4.5. We have δS(G) = 4 if G = HS or J3.

Proof. In view of Lemma 4.4, it suffices to show that δS(G) 6 4 and in both cases we follow
the computational approach presented in Example 2.9.

First assume G = HS and let x ∈ G be nontrivial, noting that |NG(〈x〉)| is even unless
|x| = 11. Let Y be the set of elements of order 11 in G, so |Y | = 8064000 and we fix an
element x ∈ Y . It is sufficient to show that δ(x, y) 6 4 for all y ∈ Y . First we construct B2(x)
and B1(y) for some randomly chosen y ∈ Y . Then by random search we find a ∈ B2(x) and
b ∈ B1(y) such that 〈a, b〉 is soluble and thus x is connected by a path of length at most 4 to
every element in the set

{(yg)m : g ∈ CG(x), 1 6 m 6 10}.
We now redefine Y by removing the elements in this set and we repeat the process. Eventually,
we reduce Y to the empty set and the result follows.

The case G = J3 can be handled in an entirely similar fashion, working with the set of
elements of order 19 in G. �

Lemma 4.6. We have δS(G) > 3 if G ∈ {Co1,HN,O′N,Fi23,Fi′24,Th,Ly, J4,M}.

Proof. First assume G = Co1 and fix x ∈ G of order 26. Then H = (A4 × G2(4)):2 is the
unique maximal subgroup of G containing x (see [9, Table 1]) and thus B1(x) is contained in
H. With the aid of Magma, this observation allows us to construct B1(x) by working inside
H (we get |B1(x)| = 1871) and then by random search we can find an element g ∈ G such
that B1(x) ∩B1(xg) is empty. This implies that δ(x, xg) > 3 and the result follows. A very
similar argument applies when G = HN. Here we take x ∈ G of order 22, noting that x is
contained in a unique maximal subgroup H = 2.HS.2 of G and thus B1(x) ⊆ H. By working
in H, we can determine B1(x) and then conclude as in the previous case.

Next assume G = O′N and x ∈ G has order 31. Now x is contained in precisely two
maximal subgroups of G, which are non-conjugate copies of L2(31). So if H = L2(31) is a
maximal subgroup of G containing x, then NH(〈x〉) = 31:15 is a maximal subgroup of H
and we deduce that B1(x) ⊆ NG(〈x〉) = NH(〈x〉). By inspecting [11] we see that the base
size b(G,H) for the action of G on G/H is 2. This means that there exists an element g ∈ G
such that H ∩Hg = 1 and thus δ(x, xg) > 3.

In each of the remaining cases, we can proceed as in the proof of [9, Theorem 4.1] to find
an element in G of order r that is contained in a unique maximal subgroup H, where r and
H are as follows:

G Fi23 Fi′24 Th Ly J4 M
r 35 29 39 67 43 59
H S12 29:14 (3×G2(3)):2 67:22 43:14 L2(59)

Then by inspecting [11] we see that b(G,H) = 2 in each case and this allows us to conclude
via Lemma 2.6. �

Lemma 4.7. We have δS(G) = 3 if G = Ly or J4.

Proof. By the previous lemma, it suffices to show that δS(G) 6 3. Therefore, in view of
Lemma 2.4, it is sufficient to prove that |NG(〈x〉)| is even for all nontrivial x ∈ G and this is
how we proceed.

First assume G = Ly and let x ∈ G be nontrivial. Here |CG(x)| is even unless

|x| ∈ {15, 25, 31, 33, 37, 67}
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and so we may assume |x| is one of these possibilities. If |x| = 37 then NG(〈x〉) = 37:18 is a
maximal subgroup of G. Similarly, NG(〈x〉) = 67:22 is a maximal subgroup when |x| = 67. If
|x| ∈ {15, 25, 31} then we may embed x in a maximal subgroup H = G2(5) and with the aid
of Magma it is straightforward to check that NH(〈x〉) has even order. Finally, if |x| = 33
then we embed x in a maximal subgroup H = 3.McL.2 and we find that |NH(〈x〉)| = 330 is
even.

Now suppose G = J4. Here we first observe that |CG(x)| is even unless

|x| ∈ {23, 29, 31, 35, 37, 43}.
If |x| ∈ {29, 37, 43} then H = NG(〈x〉) is a maximal subgroup of G with even order. If |x| = 23
then x is contained in a maximal subgroup H = L2(23).2 and once again we deduce that
|NG(〈x〉)| is even. Similarly, if |x| = 31 then x ∈ H = L2(32).5 and NH(〈x〉) = 31:10. Finally,
let us assume |x| = 35. Here x is contained in a maximal subgroup H = 23+12.(S5 × L3(2))
and using Magma we deduce that |NH(〈x〉)| = 420 is even. �

To complete the proof of Theorem 4.1, and also the proof of Theorem 2 for sporadic groups,
it remains to show that δS(G) 6 5 for every almost simple sporadic group. Since we handled
the group M23 in Lemma 4.2, this is an immediate consequence of the following result, which
also establishes Theorem 5 in this setting.

Proposition 4.8. Let G be an almost simple sporadic group and let x ∈ G be nontrivial.
Then either

(i) There exists an involution y ∈ G such that δ(x, y) 6 2; or

(ii) G = M23 and |x| = 23.

Proof. Let G0 be the socle of G and observe that the conclusion in part (i) holds if for
all nontrivial x ∈ G, there exists z ∈ NG(〈x〉) with |NG(〈z〉)| even. This property is very
straightforward to verify using Magma in the following cases:

G0 ∈ {M11,M12,M22,M24, J1, J2, J3,He,McL, Suz,Ru,HS,Co2,Co3,Fi22,Fi23}.
The same property also holds if G = M23 and |x| 6= 23 and we refer the reader to Remark
4 in Section 1 for further comments on the special case recorded in part (ii), which is a
genuine exception. The desired result for G = Ly and J4 follows immediately from the proof
of Lemma 4.7.

Next assume G = Th and let x ∈ G be nontrivial. By inspecting the Web Atlas [34], we
see that |CG(x)| is odd only if |x| ∈ {9, 13, 19, 21, 27, 31, 39}. In particular, if xm has order
3, then |CG(xm)| is even and there is a path x ∼ xm ∼ y with y ∈ CG(xm) an involution.
Therefore, we may assume |x| ∈ {13, 19, 31}. By inspecting the list of maximal subgroups of
G (see [34]), we deduce that x is contained in a maximal subgroup H such that |NH(〈x〉)| is
divisible by 3 and so we can complete the argument as before. For example, if |x| = 13 then
x ∈ H = L3(3) and NH(〈x〉) = 13:3.

The remaining groups can be handled in a very similar fashion and we omit the details. �

We present the following result to conclude our analysis of sporadic groups, which can be
viewed as an extension of Theorem 2(ii).

Theorem 4.9. Let G be an almost simple sporadic group with socle G0. If G 6= G0 then
δS(G) = 3.

Proof. First assume G is one of the following groups:

M12.2, M22.2, HS.2, J2.2, McL.2, Suz.2, He.2, J3.2.

In each case, it is straightforward to check that |NG(〈x〉)| is even for all nontrivial x ∈ G and
thus δS(G) 6 3 by Lemma 2.4. Moreover, if x ∈ G has order r, where r is the largest prime
divisor of |G|, then B1(x) coincides with the set of nontrivial elements in H = NG(〈x〉) and
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by random search we can find g ∈ G such that H ∩Hg = 1. This implies that B1(x)∩B1(xg)
is empty and we conclude that δS(G) = 3. The same argument also applies when G = Fi22.2,
working with an element x ∈ G of order 21.

Next assume G = O′N.2. By inspection we see that |CG(x)| is odd if and only if |x| = 31.
But if x has order 31 then NG(〈x〉) = 31:30 and so in view of Lemma 2.4 we deduce that
δS(G) 6 3. In order to establish equality, let x ∈ G be an element of order 31 and observe that
H = NG(〈x〉) and G0 are the only maximal subgroups of G containing x. Suppose y ∈ B1(x).
If y 6∈ G0 then the previous observation implies that y ∈ H. On the other hand, if y ∈ G0

then y ∈ B1(x) ∩G0 = NG0(〈x〉), as noted in the proof of Lemma 4.6. Therefore, B1(x) is
the set of nontrivial elements in H. By the main theorem of [11], we know that b(G,H) = 2
and we conclude by applying Lemma 2.6.

Now suppose G = Fi24. Here one can check that |CG(x)| is even unless |x| ∈ {27, 29, 39, 45}.
But in each case, we can construct NG(〈x〉) and we find that this normaliser has even order.
This establishes the bound δS(G) 6 3. Now, if x ∈ G has order 29 then H = NG(〈x〉) = 29:28
and G0 are the only maximal subgroups of G containing x and as in the previous case we
deduce that B1(x) coincides with the nontrivial elements in H (note that NG0(〈x〉) = 29:14
is the unique maximal overgroup of x in G0, as recorded in the proof of Lemma 4.6). We now
complete the argument as before, noting that b(G,H) = 2 by [11].

Finally, let us assume G = HN.2 and note that |CG(x)| is even unless |x| ∈ {19, 25, 35}. If
|x| = 35 then we calculate that |NG(〈x〉)| = 840. Similarly, if |x| = 19 then we may embed x
in a maximal subgroup H = U3(8):6 and it is easy to check that |NH(〈x〉)| = 342. Finally,
suppose |x| = 25. There is a unique conjugacy class of such elements in G and we may embed
x in a maximal subgroup H = 52+1+2.4.A5.2. We can work with generators given in the Web
Atlas [34] in order to construct H and one can then check that |NH(〈x〉)| = 500. We conclude
that δS(G) 6 3. To show that δS(G) = 3, let x ∈ G be an element of order 22 and note that
x is contained in exactly two maximal subgroups of G, namely H = 4.HS.2 and G0. As noted
in [9, Table 1], H0 = H ∩G0 = 2.HS.2 is the unique maximal overgroup of x in G0 and we
deduce that B1(x) ⊆ H. We now construct H (using the generators in [34]) and we determine
the subset B1(x) by working inside H. We get |B1(x)| = 439 and by random search we can
find an element g ∈ G such that B1(x) ∩B1(xg) is empty. This implies that δ(x, xg) > 3 and
the result follows. �

5. Symmetric and alternating groups

In this section we establish Theorems 2 and 5 when G is almost simple with socle G0 = An.
Let us first observe that if n ∈ {5, 6} then it is straightforward to check that

δS(G) =

{
3 if G = A6, S6 or M10

2 otherwise
(1)

and the conclusion in part (i) of Theorem 5 holds. So for the remainder we may assume
n > 7.

Theorem 5.1. Let G = Sn with n > 7. Then δS(G) = 3 and every vertex in ΓS(G) is
adjacent to an involution.

Proof. First observe that every element in G is real (that is, x and x−1 are conjugate for
all x ∈ G), whence |NG(〈x〉)| is even for all x ∈ G and thus δS(G) 6 3 by Lemma 2.4. In
particular, every vertex in ΓS(G) is adjacent to an involution. To complete the proof, we
need to show that δS(G) > 3.

First assume n = p is a prime and let x ∈ G be a p-cycle. If H is a soluble subgroup of G
containing x, then [25, Theorem 1.2] implies that H 6 NG(〈x〉) = L, where L = AGL1(p).
Therefore, B1(x) coincides with the set of nontrivial elements in L and we note that b(G,L) = 2
by [8]. Therefore, Lemma 2.6 implies that δS(G) > 3, as required.
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Finally, suppose n > 8 is composite. The cases n ∈ {8, 9} can be handled directly with
Magma (also see the proof of Proposition 3.7). Now assume n > 10 and fix a prime p such
that n/2 < p < n − 2 (the existence of such a prime follows from Bertrand’s postulate).
Let x1 and y1 be p-cycles on {1, . . . , p} such that δ(x1, y1) = 3 in ΓS(Sp) (since p > 7, the
argument in the previous paragraph establishes the existence of such elements). If n is odd,
then let x2 and y2 be (n − p)-cycles on the remaining points {p + 1, . . . , n}. On the other
hand, if n is even then let x2 and y2 be (n− p− 1)-cycles on {p+ 1, . . . , n}, fixing n− 1 and
n, respectively. Set x = x1x2 and y = y1y2 as elements of G \G0.

We claim that δ(x, y) > 3. To see this, let H be a maximal subgroup of G containing
〈x, y〉. Note that H contains a p-cycle. Clearly, Sp × Sn−p (the stabiliser in G of the subset
{1, . . . , p}) is the only intransitive maximal subgroup with this property. If H is primitive,
then a classical theorem of Jordan implies that H = G0, which is not possible since neither x
nor y is contained in G0. Similarly, H is not transitive and imprimitive since it contains a
p-cycle with p > n/2. So we conclude that H = Sp × Sn−p is the unique maximal overgroup
of 〈x, y〉 and thus B1(x) and B1(y) are contained in H. As a consequence, we deduce that
δ(x, y) 6 2 in ΓS(G) only if δ(x1, y1) 6 2 in ΓS(Sp). Therefore, our choice of x1, y1 ∈ Sp
implies that δ(x, y) > 3 and the proof is complete. �

For the analysis of alternating groups, it will be convenient to define the following set:

P = {p, p+ 1 : p > 7 is a prime and p ≡ 3 (mod 4)}.

Theorem 5.2. Let G = An with n > 7.

(i) We have 3 6 δS(G) 6 5.

(ii) If n 6∈ P then δS(G) = 3.

In addition, if x ∈ G is nontrivial then there exists an involution y ∈ G with δ(x, y) 6 2.

Proof. Let x ∈ G be a nontrivial element and write x = x1 · · ·xt as a product of disjoint
cycles. Consider the abelian subgroup H = 〈x1, . . . , xt〉. It is easy to check that either

(a) NG(H) contains an involution z, or

(b) x is a q-cycle and n ∈ {q, q + 1}, where q is a prime power with q ≡ 3 (mod 4).

If (a) holds, then 〈x, z〉 6 〈H, z〉 and we deduce that x ∼ z in ΓS(G) since 〈H, z〉 is soluble.
Now assume (b) holds and write q = pm with p a prime. Let P be a Sylow p-subgroup of
G containing x. If m > 2 then P is non-cyclic and thus NG(P ) contains an involution z by
[22, Theorem 2.1]. But then 〈x, z〉 6 〈P, z〉 is soluble and so once again we conclude that x is
adjacent to an involution. It follows that if n 6∈ P, then every vertex in ΓS(G) is adjacent to
an involution and thus δS(G) 6 3.

Now assume n ∈ P and let p be the prime in {n − 1, n}. As noted above, if x is not
a p-cycle then it is adjacent to an involution. However if x is a p-cycle, then we have
NG(〈x〉) = AGL1(p) ∩G = Cp:C(p−1)/2 and every element in NG(〈x〉) \ 〈x〉 is adjacent to an
involution. So in this situation, we conclude that every vertex in ΓS(G) has distance at most
2 from an involution, which immediately yields the bound δS(G) 6 5.

To complete the proof, we need to show that δS(G) > 3 and we can essentially repeat
the argument in the proof of Theorem 5.1. First assume n = p is a prime. Then as noted
in the previous proof, there exist p-cycles x, y ∈ G such that δ(x, y) = 3 in ΓS(Sn) and thus
δ(x, y) > 3 in ΓS(G). Finally, suppose n > 8 is composite. The cases n ∈ {8, 9} can be checked
directly, so let us assume n > 10. As in the proof of Theorem 5.1, let p be a prime with
n/2 < p < n− 2 and fix p-cycles x1 and y1 on {1, . . . , p} such that δ(x1, y1) = 3 in ΓS(Sp),
noting that δ(x1, y1) > 3 in ΓS(Ap). Set x = x1x2 and y = y1y2 as elements of G, where x2

and y2 are (n − p)-cycles on the remaining points {p + 1, . . . , n} if n is even, otherwise x2

and y2 are (n − p − 1)-cycles on {p + 1, . . . , n}, fixing n − 1 and n, respectively. Then by
repeating the argument in the proof of the previous theorem, we deduce that δ(x, y) 6 2 in
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ΓS(G) only if δ(x1, y1) 6 2 in ΓS(Ap). Therefore, our choice of p-cycles x1, y1 ∈ Sp implies
that δ(x, y) > 3 and the proof of the theorem is complete. �

Lemma 5.3. Let G = An, where n = p+ 1 and p > 7 is a Mersenne prime. Then δS(G) = 3.

Proof. Write p = 2r − 1 and note that it suffices to show that every nontrivial x ∈ G is
adjacent in ΓS(G) to an involution. By arguing as in the proof of Theorem 5.2, we may
assume x is a p-cycle. Then x is contained in a maximal subgroup H = AGLr(2) and 〈V, x〉
is soluble, where V = (C2)r is the socle of H. We conclude that x is adjacent to an involution
and the result follows. �

Lemma 5.4. Let G = An, where n ∈ P and n 6 60.

(i) If n ∈ {7, 8, 32} then δS(G) = 3, whereas δS(G) = 4 if n ∈ {11, 12}.
(ii) If n 6∈ {7, 8, 11, 12, 32} then δS(G) ∈ {4, 5}.

Proof. By Theorem 5.2 we have 3 6 δS(G) 6 5. If n = 7 then Proposition 3.7 gives δS(G) = 3,
while Lemma 5.3 applies if n ∈ {8, 32}. So to complete the proof, we may assume n 6∈ {7, 8, 32}
and it suffices to show δS(G) > 4, with equality if n ∈ {11, 12}.

Write n = p or p+ 1, where p is a prime, and fix a p-cycle x ∈ G. As explained in Section
2.2, we can use Magma to determine B1(x), which in each case is simply the set of nontrivial
elements in NG(〈x〉) = AGL1(p) ∩G. Then by random search, we can find an element g ∈ G
such that 〈a, b〉 is insoluble for all a ∈ B1(x), b ∈ B1(xg) = B1(x)g. This immediately implies
that δ(x, xg) > 4 and thus δS(G) > 4.

Next assume G = A11. Let x ∈ G be nontrivial and recall from the proof of Theorem
5.2 that x is adjacent to an involution unless |x| = 11, so it suffices to show that any two
11-cycles are connected by a path of length at most 4. To do this, we proceed as in Example
2.9, working with the set Y of elements in G of order 11. Here |Y | = 3628800 and we note
that |B1(x)| = 54 and |B2(x)| = 29974 for all x ∈ Y . We leave the reader to check the
details. An entirely similar argument applies when G = A12, noting that |Y | = 43545600 and
|B1(x)| = 54, |B2(x)| = 61214 for all x ∈ Y . �

A prime number p is a Sophie Germain prime if 2p+ 1 is also a prime number. Recall that
a famous conjecture in number theory asserts that there are infinitely many such primes. If
we assume the validity of this conjecture, then our next result, which coincides with Theorem
4, establishes the existence of infinitely many finite simple groups G with δS(G) > 4.

Theorem 5.5. If p > 5 is a Sophie Germain prime, then δS(A2p+1) ∈ {4, 5}.

Proof. Set G = Aq, where q = 2p + 1 and p > 5 is a Sophie Germain prime. It suffices to
show that there exist two q-cycles x and y with δ(x, y) > 4. With this aim in mind, let A be
the set of q-cycles in G and fix an element x ∈ A. We are interested in estimating the size
of the set A ∩ B3(x), with the aim of establishing the bound |A ∩ B3(x)| < |A|. It will be
helpful to write

|A ∩B3(x)| = 1 + α1 + α2 + α3,

where α` = |{y ∈ A : δ(x, y) = `}|.
First consider B1(x). If p 6= 5, 11 then

NG(〈x〉) = AGL1(q) ∩G = Cq:Cp

is the unique maximal subgroup of G containing x (see the proof of [9, Theorem 3.1]) and
thus B1(x) coincides with the set of nontrivial elements in this subgroup. One can check that
the same conclusion holds when p ∈ {5, 11}. As a consequence, every element in B1(x) of
order p has cycle-shape (p, p, 1) and we let B be the set of all elements in G of this form.

Let y ∈ A. If δ(x, y) = 1, then y ∈ 〈x〉 and thus

α1 = q − 2. (2)



16 TIMOTHY C. BURNESS, ANDREA LUCCHINI, AND DANIELE NEMMI

Next suppose δ(x, y) = 2. Then there exists z ∈ B which normalises both 〈x〉 and 〈y〉. Now
NG(〈x〉) contains q subgroups of order p, each of which normalises p(p−1) Sylow q-subgroups
of G. This implies that

α2 6 pq(p− 1)(q − 1). (3)

Finally, let us assume δ(x, y) = 3. This means that there is a path x ∼ a ∼ b ∼ y in ΓS(G),
where a ∈ NG(〈x〉) ∩ B, b ∈ NG(〈y〉) ∩ B and 〈a, b〉 is soluble. Fix a ∈ B. By relabelling, we
may assume that

a = (1, 2, . . . , p)(p+ 1, p+ 2, . . . , 2p).

We will estimate the number of subgroups 〈b〉 in G, where b ∈ B and H = 〈a, b〉 is soluble.
There are four possibilities for the action of H on {1, . . . , q}, which we will consider in turn:

(i) H acts transitively on {1, . . . , q}.
(ii) H has an orbit of size 2p.

(iii) H has orbits of size p and p+ 1.

(iv) H has two orbits of size p.

First consider (i). Here H = Cq:Cp is the normaliser of a Sylow q-subgroup of G. As noted
above, the element a normalises exactly p(p− 1) Sylow q-subgroups of G, and each normaliser
of a Sylow q-subgroup contains q distinct subgroups of order p. It follows that there are at
most pq(p− 1) possible choices for 〈b〉.

Next let us turn to (ii), in which case we may view H as a transitive group on {1, . . . , 2p}.
Since we are assuming that H is soluble and 2p is not a prime power, it follows that H is
imprimitive. More precisely, since H is generated by two elements of order p, we deduce that
H 6 C2 oCp preserves a partition Λ of {1, . . . , 2p} into p blocks of size 2. Since H contains a,
the set of blocks comprising Λ is uniquely determined by the choice of j ∈ {p+ 1, . . . , 2p}
such that {1, j} is a block. Therefore, there are at most p choices for Λ. And once Λ has been
chosen, there are clearly at most 2p−1 possible choices for 〈b〉. All together, it follows that
there are at most 2p−1p choices for 〈b〉 in case (ii).

Now suppose (iii) holds, say X is an H-orbit of size p and Y is an orbit of size p + 1.
Here the permutation group L of degree p+ 1 induced by the action of H on Y is soluble,
transititive and contains a p-cycle. Moreover, L is primitive and by [25, Theorem 1.2], this
is only possible if p + 1 = 2k for some k > 1. But this would imply that p = 2k − 1 and
q = 2k+1 − 1 are both Mersenne primes, which can only happen if p = 3 and q = 7. Since
p > 5, we conclude that this case does not arise.

Finally, let us consider (iv). Given the form of a, it follows that the orbits of H are
{1, . . . , p}, {p+ 1, . . . , 2p} and {q}. In addition, the solubility of H implies that

b ∈ 〈(1, . . . , p), (p+ 1, . . . , 2p)〉

and so there are at most p− 1 possible choices for 〈b〉.

By bringing together the above estimates, we conclude that if p > 5 then there are at most

β = pq(p− 1) + 2p−1p+ p− 1

possible choices for 〈b〉 such that 〈a, b〉 is soluble. Since 〈x〉 is normalised by q subgroups of
order p, each of which normalises p(p− 1) Sylow q-subgroups, we deduce that

α3 6 pq(p− 1)(q − 1)β. (4)

Finally, by combining the bounds in (2), (3) and (4), we get

|A ∩B3(x)| 6 q − 1 + pq(p− 1)(q − 1)(β + 1).

It is routine to check that this upper bound is less than |A| = (q − 1)! for all p > 5. �
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Let G be a finite group and recall that the non-generating graph of G is a graph on the
nontrivial elements of G, where x is adjacent to y if G 6= 〈x, y〉. Note that if G is insoluble
and R(G) = 1, then the soluble graph ΓS(G) is a subgraph of the non-generating graph and
so it is interesting to compare the diameters of these two connected graphs.

We close this section by showing that these two diameters can be different. This relies on
the following lemma.

Lemma 5.6. Let G = Ap with p > 5 a prime. Then the diameter of the non-generating
graph of G is at most 3.

Proof. Let x, y ∈ G be nontrivial and let ∆(G) denote the non-generating graph of G. As
observed in the proof of Theorem 5.2, if neither x nor y is a p-cycle, then x and y are adjacent
to an involution in ΓS(G) and thus δ(x, y) 6 3 in ∆(G). So let us assume x is a p-cycle. If y
is also a p-cycle, then there exists 1 6= z ∈ NG(〈y〉) with at least one fixed point on {1, . . . , p}.
Similarly, if y is not a p-cycle, then some nontrivial power of y has at least one fixed point. So
in both cases, we can find a nontrivial element z ∈ NG(〈y〉) that fixes a point k ∈ {1, . . . , p}.
Since x is a p-cycle, there is also an element 1 6= z′ ∈ NG(〈x〉) fixing k and we conclude that
x ∼ z′ ∼ z ∼ y is a path in ∆(G). The result follows. �

Remark 5.7. Let G = Ap with p > 13 a prime. By the proof of [9, Proposition 3.8], there
exist two p-cycles x and y in G with the property that if z ∈ G is any nontrivial element,
then either G = 〈x, z〉 or G = 〈y, z〉. This immediately implies that δ(x, y) > 3 in the
non-generating graph ∆(G) and therefore the diameter of ∆(G) is precisely 3 by Lemma 5.6.

By combining Lemma 5.6 with Theorem 5.5, we obtain the following corollary.

Corollary 5.8. There exist finite simple groups G such that δS(G) is strictly larger than the
diameter of the non-generating graph of G.

6. Groups of Lie type

In this section we complete the proofs of Theorems 2 and 5 by handling the case where
G is an almost simple group of Lie type over Fq with socle G0. The two-dimensional linear
groups with G0 = L2(q) merit special attention and we deal with them separately in Section
6.1.

6.1. Two-dimensional linear groups. Here we determine the precise diameter of ΓS(G)
when G is an almost simple group with socle G0 = L2(q).

Theorem 6.1. Let G be an almost simple group with socle G0 = L2(q). Then

δS(G) =

{
2 if PGL2(q) 6 G or q ∈ {5, 7}
3 otherwise.

Proof. The groups with q 6 11 can be checked directly using Magma, so we will assume
q > 13. Let A and B be maximal subgroups of G of type GL1(q2) and P1, respectively, so A
is the normaliser of a nonsplit maximal torus of G0 and B is a Borel subgroup. Note that A
and B are soluble and we have

G =
⋃
g∈G

Ag ∪
⋃
g∈G

Bg (5)

(see [6, Corollary 4.3], for example).

First assume PGL2(q) 6 G. Here we observe that the intersection of any two subgroups
in the union (5) is nontrivial. Indeed, we have |B|2 > |G| and |A||B| > |G|, while any two
conjugates of A intersect nontrivially since b(G,A) = 3 (see [7, Lemma 4.8]). This immediately
implies that if x, y ∈ G are nontrivial, then B1(x) ∩B1(y) is nonempty and thus δS(G) = 2
as required.
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For the remainder, we may assume q is odd and G ∩ PGL2(q) = G0. Let x ∈ G0 be
an element of order (q + 1)/2, in which case H = NG(〈x〉) is the unique soluble maximal
subgroup of G containing x and thus B1(x) ⊆ H. Now H is conjugate to A and we note that
b(G,A) = 2 by [7, Lemma 4.8]. Therefore, δS(G) > 3 by Lemma 2.6.

It remains to verify the bound δS(G) 6 3. If q ≡ 1 (mod 4) then |A| and |B| are even,
so every nontrivial element is adjacent to an involution and the result follows. However,
if q ≡ 3 (mod 4) then |B| is odd and some additional argument is required. Let x, y ∈ G
be nontrivial and note that every involution in G is contained in G0. If both x and y are
contained in conjugates of A, then since |A| is even (and soluble), there exist involutions z1

and z2 such that x ∼ z1 ∼ z2 ∼ y is a path in ΓS(G). Similarly, if x and y are both contained
in conjugates of B, say B1 and B2, then δ(x, y) 6 2 since B1∩B2 6= 1. Finally, suppose x ∈ A
and y ∈ B. Let u ∈ B ∩G0 be an element of order (q − 1)/2 and let z ∈ A and w ∈ NG(〈u〉)
be involutions (note that NG0(〈u〉) = Dq−1). Now B ∩G0 acts regularly (by conjugation) on

the set of involutions in G, so z = wb for some b ∈ B and thus z ∈ NG(〈ub〉). Therefore, we
have a path x ∼ z ∼ ub ∼ y of length 3 and the proof is complete. �

Corollary 6.2. There are infinitely many simple groups with δS(G) = 2.

We can also establish Theorem 5 for the groups with socle L2(q).

Proposition 6.3. Let G be an almost simple group with socle G0 = L2(q) and let x ∈ G be
nontrivial. Then there exists an involution y ∈ G with δ(x, y) 6 2.

Proof. Define A and B as in the proof of Theorem 6.1 and recall that we may assume x is
contained in A or B (see (5)). Here A is soluble with even order and thus every element in A
is adjacent to an involution. The same conclusion holds if x ∈ B and q 6≡ 3 (mod 4). Finally,
suppose x ∈ B and q ≡ 3 (mod 4). Fix z ∈ B of order (q − 1)/2 and note that |NG(〈z〉)| is
even. Therefore, if y ∈ NG(〈z〉) is an involution, then x ∼ z ∼ y and the result follows. �

6.2. Exceptional groups. For the remainder of Section 6, we will assume G0 is a finite
simple group of Lie type over Fq. We begin by fixing some standard notation.

Write G0 = (Ḡσ)′, where Ḡ is a simple algebraic group of adjoint type defined over
the algebraic closure of Fq and σ is an appropriate Steinberg endomorphism of Ḡ. Let

G̃ = Ḡσ = Inndiag(G0) be the subgroup of Aut(G0) generated by the inner and diagonal
automorphisms of G0. In addition, write q = pf with p a prime.

Recall that a subgroup B of G0 is a Borel subgroup if B = NG0(P ), where P is a Sylow
p-subgroup of G0. The following elementary lemma will be useful.

Lemma 6.4. Let G0 be a finite simple group of Lie type over Fq and let B be a Borel subgroup
of G0. Then |B| is odd if and only if G0 is isomorphic to L2(q) with q ≡ 3 (mod 4).

Proof. We may assume q is odd. If G0 = L2(q) then |B| = q(q − 1)/2 and thus |B| is odd if
and only if q ≡ 3 (mod 4). If G0 = Lεn(q) with n > 3, then

|B| =
{

1
dq
n(n−1)/2(q − 1)n−1 if ε = +

1
dq
n(n−1)/2(q2 − 1)r if ε = −,

where d = (n, q − ε) and r > 1 is the twisted Lie rank of Un(q). In both cases we see that |B|
is even and it is straightforward to check that the same conclusion holds in all the remaining
cases. We omit the details. �

For the remainder of Section 6.2, we will assume G0 is a simple exceptional group of Lie
type. The following result is a key tool in our proof of Theorem 1. Recall that a prime divisor
r of qm − 1 is a primitive prime divisor if qi − 1 is indivisible by r for all 1 6 i < m.

Proposition 6.5. Let G0 be a simple exceptional group of Lie type and let x ∈ G be an
element of prime order r. Then either
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(i) x is adjacent in ΓS(G) to an involution; or

(ii) G0 = Eε6(q) and r is a primitive prime divisor of q9a − 1, where a = 1
2(3− ε).

Proof. Notice that (i) holds if |CG0(x)| is even or x is real, so we may assume r is odd. In
particular, we observe that (i) holds if CG0(x) is insoluble.

First assume x ∈ G \ G̃. Then either q = qr0 and x is a field automorphism, or r = 3,
G0 = 3D4(q) and x is a graph automorphism. In both cases, it is easy to see that |CG0(x)|
is even and thus x is adjacent to an involution. For example, if G0 = F4(q) and x is a
field automorphism, then CG0(x) = F4(q0). Similarly, if G0 = 3D4(q) and x is a graph
automorphism, then

CG0(x) ∈ {G2(q),PGLε3(q), [q5].SL2(q)} (6)

and the claim follows.

For the remainder, we may assume x ∈ G̃ is unipotent or semisimple. First assume x is
unipotent, so r = p and G0 6= 2B2(q), 2F4(q)′. Let P be a Sylow p-subgroup of G0 containing
x and consider the Borel subgroup B = NG0(P ). Then B is soluble and it contains an
involution z by Lemma 6.4. Therefore, 〈x, z〉 6 B is soluble and thus x ∼ z.

Finally, let us assume x is semisimple. Let W = NḠ(T̄ )/T̄ be the Weyl group of Ḡ, where
T̄ is a σ-stable maximal torus of Ḡ containing x. If G0 6= Eε6(q), then W contains a central

involution, which acts by inversion on every maximal torus of G̃. Therefore, every semisimple

element in G̃ is real.

So to complete the proof, we may assume G0 = Eε6(q). If x is non-regular, then it is easy
to see that |CG0(x)| is even, so we may assume x is a regular semisimple element that is

contained in a unique maximal torus T of G̃. In addition, we can assume |T | is odd.

Recall that there is a natural action of σ on W and the σ-class of s ∈ W is defined to
be the subset {wσsw−1 : w ∈W} (so if σ acts trivially on W , then this coincides with the
usual conjugacy class of s in W ). As a consequence of the Lang-Steinberg theorem, there is a

bijection from the set of G̃-classes of maximal tori in G̃ to the set of σ-classes in W (see [26,
Chapter 25], for example). Moreover, if T corresponds to the σ-class of s ∈W , then

|NG0(T )| = |T0||CW (s)| (7)

with T0 = T ∩ G0. As a consequence, if |CW (s)| is even then there exists an involution
z ∈ NG0(T ) and we deduce that x ∼ z since 〈x, z〉 is contained in the soluble subgroup

〈T, z〉 6 G̃. Now W has 25 conjugacy classes and one can check that |CW (s)| is even unless s
has order 9 (there is a unique class of such elements), in which case CW (s) = 〈s〉. In terms
of the above bijection, the σ-class of s corresponds to a cyclic torus T of order q6 + εq3 + 1
and it follows that r is a primitive prime divisor of q9a − 1, where a = 1

2(3− ε). This is the
special case arising in part (ii) of the proposition and so the proof is complete. �

Remark 6.6. The special case highlighted in part (ii) of Proposition 6.5 is a genuine

exception. For instance, let us assume G = G̃ = G0 = E6(q) and x ∈ G has order q6 + q3 + 1
(for example, we could take q = 2, in which case x has order 73). By Weigel [33, Section
4(g)], x is contained in a unique maximal subgroup of G, namely H = L3(q3).3, so B1(x) is a
subset of H. Moreover, by considering the subgroups of H, we deduce that x is contained in
a unique maximal soluble subgroup of H, namely L = NG(〈x〉) = Cq6+q3+1:9. This implies
that B1(x) coincides with the set of nontrivial elements in L and thus x is not adjacent to an
involution.

Corollary 6.7. Let G be an almost simple group with socle G0, an exceptional group of Lie
type. Then for all nontrivial x ∈ G, there exists an involution y ∈ G with δ(x, y) 6 2. In
particular, δS(G) 6 5.

Proof. Let x ∈ G be nontrivial and fix m ∈ N so that z = xm has prime order r. Then by
applying Proposition 6.5, we may assume G0 = Eε6(q), z is semisimple and r is a primitive
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prime divisor of q9a − 1, where a = 1
2(3− ε). Here T = C

G̃
(z) is a cyclic maximal torus of

order q6 + εq3 + 1. Since x commutes with z, we have x ∈ NG(〈z〉), which is a soluble group of
order divisible by 3 (note that NG0(T0) 6 NG(〈z〉) and NG0(T0) = T0:9, where T0 = T ∩G0).
Therefore, x is adjacent to an element of order 3 in G0, which in turn is adjacent to an
involution by Proposition 6.5. �

Although we do not know if the upper bound on δS(G) in Corollary 6.7 is tight, we can
demonstrate the existence of an exceptional group of Lie type with δS(G) > 4.

Lemma 6.8. If G = E6(2) then δS(G) ∈ {4, 5}.

Proof. We apply a computational approach, working with Magma [5] and a permutation
representation of G of degree 279006. Let x ∈ G be an element of order 73 = 26 + 23 + 1
and recall that B1(x) coincides with the set of nontrivial elements in NG(〈x〉) = 73:9 (see
Remark 6.6). By implementing a random search, we can find an element g ∈ G such that
〈a, b〉 is insoluble for all a ∈ B1(x), b ∈ B1(xg). This implies that δ(x, xg) > 4 and the result
follows. �

Finally, we complete the proof of the claim in part (ii)(d) of Theorem 2.

Proposition 6.9. Let G be a finite simple exceptional group of Lie type. Then either

(i) G = 2G2(3)′ ∼= L2(8) and δS(G) = 2; or

(ii) δS(G) > 3.

Proof. If G = 2G2(3)′ then we can appeal to Theorem 6.1, so for the remainder we may assume
G 6= 2G2(3)′. Following [9], let γu(G) be the uniform domination number of G. This is defined
to be the minimal size of a set of conjugate elements {x1, . . . , xk} such that for all nontrivial
y ∈ G, there exists i ∈ {1, . . . , k} such that G = 〈xi, y〉. Note that δS(G) > 3 if γu(G) = 2.
Indeed, if {x1, x2} has the given property, then G = 〈x1, x2〉 and there is no nontrivial element
y ∈ G with x1 ∼ y ∼ x2 because either 〈x1, y〉 or 〈x2, y〉 is equal to G. Therefore, in view of
[10, Theorem 4], we immediately deduce that δS(G) > 3 if G 6= 2F4(2)′, F4(q), G2(q)′, so it
remains to handle these three special cases.

The group G = 2F4(2)′ can be handled using Magma. If x ∈ G has order 13 then
|B1(x)| = 77 and it is easy to find an element g ∈ G such that B1(x)∩B1(xg) is empty, which
implies that δ(x, xg) > 3.

Next assume G = G2(q)′. If q = 2 then G is isomorphic to U3(3) and we note that
δS(G) = 3 (for example, see the proof of Proposition 3.7). Now assume q > 3 and let x ∈ G
be an element of order q2 − q + 1, so T = 〈x〉 is a maximal torus of G. If q ∈ {3, 4} then we
can use Magma to establish the existence of an element g ∈ G such that δ(x, xg) > 3. For
q > 5, the overgroups of T are described by Weigel [33, Section 4(d)] and we deduce that
B1(x) coincides with the set of nontrivial elements in L = NG(T ) = T.6. Since b(G,L) = 2
by [12], we deduce that δS(G) > 3 via Lemma 2.6.

Finally, suppose G = F4(q) and let x ∈ G be an element of order q4− q2 + 1. If q > 4, then
[33, Section 4(f)] implies that B1(x) is the set of nontrivial elements in L = NG(T ) = T.12,
where T = 〈x〉. Since b(G,L) = 2 (see [12]), the result now follows as in the previous case. The
same argument also goes through when q = 3. Indeed, as noted in [20, Table IV], x is contained
in a unique maximal subgroup of G, namely H = 3D4(3).3. In turn, L = NH(T ) = T.12 is the
unique maximal subgroup of H containing x and the desired result follows via [12]. Finally,
let us assume q = 2. Here we take T = 〈x〉 to be a maximal torus of order q4 + 1 = 17. Then
as recorded in [20, Table IV], we see that x is contained in precisely two maximal subgroups
of G, which are representatives of the two conjugacy classes of subgroups isomorphic to Sp8(2)
in G. By working in Sp8(2), we find that B1(x) coincides with the set of nontrivial elements in
L = NG(T ) = T.8 and once again we conclude by applying [12], which gives b(G,L) = 2. �
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6.3. Classical groups. Now let us assume G is an almost simple classical group over Fq with
socle G0. In view of Theorem 6.1, we may assume G0 is not isomorphic to a 2-dimensional
linear group. First we establish an analogue of Proposition 6.5.

Proposition 6.10. Let G0 6= L2(q) be a simple classical group and let x ∈ G be an element
of prime order r. Then one of the following holds:

(i) x is adjacent in ΓS(G) to an involution.

(ii) G0 = Lεn(q), n is odd and r is a primitive prime divisor of qan−1, where a = 1
2(3− ε).

(iii) G0 = Un(q), n is even and r is a primitive prime divisor of q2(n−1) − 1.

(iv) G0 = PΩ−n (q), n ≡ 2 (mod 4), n > 10 and r is a primitive prime divisor of qn − 1.

Proof. We may assume r is odd. If x ∈ G\G̃ then either q = qr0 and x is a field automorphism,
or G0 = PΩ+

8 (q), r = 3 and x is a triality graph or graph-field automorphism. In each of these
cases, it is easy to check that |CG0(x)| is even and thus (i) holds. For example, if G0 = PΩ+

8 (q)
and x is a triality graph automorphism, then the possibilities for CG0(x) are given in (6).
Similarly, if x is a triality graph-field automorphism then q = q3

0 and CG0(x) = 3D4(q0).

Now assume x ∈ G̃. If r = p then we can repeat the argument from the proof of Proposition
6.5, noting that the Borel subgroups of G0 have even order by Lemma 6.4 (recall that we are
assuming G0 6= L2(q)). For the remainder, we may assume r 6= p. If we exclude the following
two cases:

(a) G0 = Lεn(q) with n > 3; and

(b) G0 = PΩε
n(q) with n ≡ 2 (mod 4) and n > 10,

then the Weyl group of Ḡ contains a central involution and by arguing as in the proof of

Proposition 6.5 we see that every semisimple element in G̃ is real. This leaves us to handle
cases (a) and (b). If x is non-regular then |CG0(x)| is even, so we may assume x is regular

and is therefore contained in a unique maximal torus T = T̄σ of G̃, where T̄ is a σ-stable
maximal torus of Ḡ. Let W = NḠ(T̄ )/T̄ be the corresponding Weyl group. As in the proof of
Proposition 6.5, let us assume T corresponds to the σ-class of s ∈W , in which case (7) holds
with T0 = T ∩G0. Note that (i) holds if |NG0(T )| is even, so we may assume |NG0(T )| is odd.
We consider cases (a) and (b) separately.

Suppose G0 = Lεn(q) with n > 3 and note that W = Sn. The conjugacy classes in W
are parameterised by partitions of n, so we may assume s corresponds to the partition
λ = (nan , . . . , 2a2 , 1a1), where a` denotes the multiplicity of ` in the partition. Then

|T | = (q − ε)−1
n∏
`=1

(q` − ε`)a` , |CW (s)| =
n∏
`=1

a`!`
a`

and thus |CW (s)| is odd if and only if λ consists of distinct odd parts. Since x ∈ T is
regular and has prime order, we deduce that either n is odd and λ = (n), or n is even and
λ = (n− 1, 1). In other words, either n is odd and r is a primitive prime divisor of qan− 1, or

n is even and r is a primitive prime divisor of qa(n−1) − 1, where a = 1
2(3− ε). In particular,

(ii) holds if n is odd. Similarly, (iii) holds if n is even and ε = −, so we may assume n is
even and ε = +. Here dimCV (x) = 1, where V is the natural module, and so we may embed
x in a Levi factor L of a maximal parabolic subgroup H = QL of G0 (the stabiliser of a
1-dimensional subspace of V ), where the unipotent radical Q is elementary abelian of order
qn−1 and L is a subgroup of GLn−1(q) of index (n, q − 1). Now q is even since |T | is odd and
the subgroup 〈Q, x〉 of H is soluble. In particular, x is adjacent to every involution in Q.

Finally, let us assume G0 = PΩε
n(q) with n ≡ 2 (mod 4) and n > 10. Here W is an

index-two subgroup of S2 oSn/2 and we find that |CW (s)| is odd if and only if s corresponds to

an n
2 -cycle in Sn/2. In this situation, T is a cyclic torus of order qn/2 − ε and r is a primitive

prime divisor of qan/2 − 1, where a = 1
2(3 − ε). In particular, q is even. If ε = + then we
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may embed x in a Levi factor L of a maximal parabolic subgroup H = QL of G0, where the
unipotent radical Q is elementary abelian of order qn(n−2)/8 and L = GLn/2(q) (here H is the
stabiliser of a maximal totally singular subspace of the natural module for G0). Therefore, x
is contained in the soluble subgroup 〈Q, x〉 and thus x is adjacent to every involution in Q.
This leaves the case ε = −, which is recorded in part (iv). �

Remark 6.11. There are genuine exceptions that arise under the conditions recorded in
parts (ii), (iii) and (iv) of Proposition 6.10. For example, if G = L3(4) and x ∈ G has order
7, then B1(x) coincides with the nontrivial elements in NG(〈x〉) = 7:3 and thus x is not
adjacent to an involution. Similarly, if G = U3(4) and |x| = 13 then B1(x) ⊆ 13:3 and the
same conclusion holds. If G = U6(2) and |x| = 11 then B1(x) ⊆ 11:5. Similarly, if G = Ω−10(2)
and |x| = 11 then B1(x) ⊆ 11:15.

We are now in a position to complete the proof of Theorem 5.

Corollary 6.12. Let G be an almost simple classical group with socle G0. Then for all
nontrivial x ∈ G, there exists an involution y ∈ G with δ(x, y) 6 2. In particular, δS(G) 6 5.

Proof. Let x ∈ G be nontrivial and assume z = xm has prime order r. In view of Theorem 6.1
(and Proposition 6.3), we may assume that (G0, r) is one of the cases arising in parts (ii)-(iv)

of Proposition 6.10. In each case, z ∈ G̃ is a regular semisimple element and C
G̃

(z) = T

is a cyclic maximal torus of G̃ of odd order. In particular, q is even and (7) holds, where
T0 = T ∩G0 and |CW (s)| is odd.

First consider case (ii) in Proposition 6.10, so G0 = Lεn(q), n is odd and r is a primitive
prime divisor of qan − 1, where a = 1

2(3− ε). Note that r > 2n+ 1 and |CW (s)| = n. Now
NG0(T0) = T0:n is a subgroup of NG(〈z〉), which in turn is a soluble group containing x.
Therefore, x is adjacent to an element z′ ∈ G0 of order r′, where r′ is a prime divisor of n.
Since r′ 6 n, Proposition 6.10 implies that z′ is adjacent to an involution and we conclude
that x has distance at most 2 from an involution, as required.

A very similar argument applies in cases (iii) and (iv), noting that |CW (s)| = n− 1 in (iii)
and |CW (s)| = n/2 in (iv). In both cases, we find that x is adjacent to an element z′ ∈ G0 of
order r′, where r′ is a prime divisor of |CW (s)|, and the result follows. �

The following lemma shows that there exist finite simple classical groups with δS(G) = 4.

Lemma 6.13. If G = Lε5(2) then δS(G) = 4.

Proof. We use Magma to verify the result, working with the standard permutation represen-
tations of degree 31 (for ε = +) and 165 (for ε = −). First assume ε = +. Let x ∈ G be an
element of order 31. Then B1(x) is the set of nontrivial elements in H = NG(〈x〉) = 31:5 and
by random search we can find g ∈ G such that 〈a, b〉 is insoluble for all a ∈ B1(x), b ∈ B1(xg).
This implies that δ(x, xg) > 4 and thus δS(G) > 4. An entirely similar argument applies when
ε = −, noting that if |x| = 11 then B1(x) is the set of nontrivial elements in NG(〈x〉) = 11:5.

To complete the proof, we need to show that δS(G) 6 4. First assume ε = + and observe
that if y ∈ G is nontrivial, then |NG(〈y〉)| is even unless |y| = 31. Therefore, if we fix an
element x ∈ G of order 31, then it suffices to show that δ(x, y) 6 4 for all y ∈ Y , where Y is
the set of elements of order 31 in G. Here |Y | = 1612800, |B1(x)| = 154 and using Magma
we compute |B2(x)| = 106484. We now implement the process described in Example 2.9,
which allows us to conclude that Y ⊆ B4(x) as required.

We can apply a very similar argument when ε = −. First we observe that |NG(〈x〉)| is even
unless |x| ∈ {9, 11}. If |x| = 9 then x is contained in a soluble maximal subgroup of type
GU3(2)×GU2(2) (the stabiliser of a 2-dimensional nondegenerate subspace of the natural
module for G) and we deduce that x is adjacent to an involution in ΓS(G). Therefore, it
remains to show that any two elements of order 11 are connected by a path of length at



ON THE SOLUBLE GRAPH OF A FINITE GROUP 23

most 4 and we proceed as above, following the procedure presented in Example 2.9. Here we
work with the set Y of elements of order 11 in G, noting that |Y | = 2488320 and we have
|B1(x)| = 54 and |B2(x)| = 220549 for all x ∈ Y . �

We also record the following observation, which completes the proof of Theorem 2.

Lemma 6.14. If G = Lε7(2) then δS(G) ∈ {4, 5}.

Proof. By Corollary 6.12 we have δS(G) 6 5. First assume ε = + and let x ∈ G be an element
of order 127. Then B1(x) is the set of nontrivial elements in NG(〈x〉) = 127:7 and by random
search we can find an element g ∈ G such that 〈a, b〉 is insoluble for all a ∈ B1(x), b ∈ B1(xg).
This implies that δ(x, xg) > 4. An entirely similar argument applies when ε = −, noting that
if |x| = 43 then B1(x) is the set of nontrivial elements in NG(〈x〉) = 43:7. �

We close this section by considering the problem highlighted in Remark 2 in Section 1. Let
G be a non-abelian finite simple group and recall that we have shown that δS(G) > 3 if G is
not isomorphic to a classical group (this is part (ii)(d) in Theorem 2). For classical groups, we
have observed that δS(G) = 2 if G = L2(q) with q even (or q = 7) or if G ∈ {L3(2),U4(2)}. We
are not aware of any additional simple groups with δS(G) = 2, but a complete classification
remains out of reach.

In the next result, we classify the linear groups with δS(G) = 2.

Proposition 6.15. Suppose G = Ln(q) is a simple group. Then δS(G) = 2 if and only if
n = 2 and q is even or q ∈ {5, 7}, or (n, q) = (3, 2).

Proof. For n = 2 we refer the reader to Theorem 6.1. Next assume n > 3 is odd. If (n, q) = (3, 2)
then G ∼= L2(7) and δS(G) = 2 by Theorem 6.1. Similarly, the proof of Proposition 3.7 yields
δS(G) = 3 if (n, q) = (3, 4). In each of the remaining cases, [10, Theorem 6(ii)] states that
the uniform domination number of G is equal to 2 and we deduce that δS(G) > 3 as in the
proof of Proposition 6.9.

Now assume n > 4 is even. Let x ∈ G be a Singer element, so T = 〈x〉 is a maximal torus
of G of order (qn−1)/d(q−1), where d = (n, q−1). Then x is contained in a unique maximal
soluble subgroup of G, namely H = NG(T ) = T.n, and thus B1(x) coincides with the set of
nontrivial elements in H (for example, this is an easy consequence of Suprunenko’s structure
theory of primitive maximal soluble subgroups of linear groups, see [30]). By [12] we have
b(G,H) = 2 and thus δS(G) > 3 via Lemma 2.6. �

We can also easily eliminate odd-dimensional unitary groups.

Proposition 6.16. Let G = Un(q), where n > 3 is odd. Then δS(G) > 3.

Proof. If (n, q) = (3, 3) then δS(G) = 3 by the proof of Proposition 3.7. Similarly, the case
(n, q) = (3, 5) can be checked using Magma. In each of the remaining cases, the uniform
domination number of G is equal to 2 (see [10, Theorem 6(ii)]) and the result follows as in
the proof of the previous proposition. �

7. Some related graphs

Recall that the soluble graph of a finite group G is a natural generalisation of the widely
studied commuting graph. Indeed, the soluble graph encodes the pairs of elements that
generate a soluble subgroup of G, whereas the commuting graph is concerned with the pairs
generating an abelian group. Of course, there are many natural families of groups that lie
between soluble and abelian, including the supersoluble, nilpotent, metabelian and metacyclic
groups. For each of these families, by suitably modifying the definition of the soluble graph,
we can construct a graph associated to G.
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Let F be such a family of groups and consider the graph ΛF(G) on the elements of G,
where distinct vertices x and y are adjacent if and only if 〈x, y〉 is in F . As before, we would
like to define the related graph ΓF(G) on G \ IF(G), where IF(G) is the set of isolated
vertices in the complement of ΛF(G). Recall that if F = A is the class of abelian groups,
then IF (G) = Z(G) and ΓF (G) is the commuting graph. Similarly, if F = S is the class of
soluble groups, then [21, Theorem 1.1] implies that IF (G) = R(G) is the soluble radical and
ΓF (G) is the soluble graph of G. Notice that in both of these special cases, IF (G) is a normal
subgroup of G. In addition, if F = S, then ΓF (G) is connected if and only if ΓF (G/IF (G))
is connected and moreover, the diameters of these two graphs are equal (see Lemma 2.2).

These attractive properties provide further impetus for studying the soluble graph of a
finite group, compared with some of the other possibilities for F mentioned above. Indeed,
various difficulties arise when we switch our focus to one of the other families.

For example, suppose F =M is the class of metabelian groups. Here it is difficult to give
an efficient description of the isolated vertices IF (G), which need not even be a subgroup of
G (note that IF (G) is always a normal subset of G).

Example 7.1. Let p be a prime number and let G be a Sylow p-subgroup of GLn(p), where
n > 2. Notice that G is generated by its abelian normal subgroups. In addition, note that if
N is an abelian normal subgroup of G, then 〈x, y〉 is metabelian for all x ∈ N and y ∈ G.
Therefore, IM(G) is a subgroup of G if and only if IM(G) = G. However, if n is large enough,
then G contains 2-generated subgroups that are not metabelian and thus IM(G) is not a
subgroup (indeed, any given p-group embeds in GLn(p) for some n).

Let us assume IF (G) is a subgroup of G. The next problem is to determine whether or not
the connectivity of ΓF (G/IF (G)) implies the connectivity of ΓF (G). Working with the family
M of metabelian groups, we present the following example. Here IM(G) is a subgroup of G
and ΓM(G/IM(G)) is connected, but ΓM(G) is disconnected.

Example 7.2. Let G = SL2(3) = Q8:C3 and observe that IM(G) = Z(G) = C2. Then
G/IM(G) ∼= A4 is metabelian and ΓM(G/IM(G)) is the null graph (on zero vertices).
However ΓM(G) has 22 vertices and 5 connected components: one comprising the 6 elements
of order 4 and the remainder corresponding to the 4 elements of order 3 or 6 in each of the
four cyclic subgroups of G with order 6.

Although the previous example shows that ΓM(G) is not connected, in general, we can
establish the following result as an easy consequence of Theorem 1.

Proposition 7.3. Let G be a nontrivial finite group with R(G) = 1. Then the metabelian
graph ΓM(G) is connected and its diameter is at most 2δS(G).

Proof. Let x and y be two adjacent vertices in the soluble graph ΓS(G). If N is a minimal
normal subgroup of 〈x, y〉 and 1 6= n ∈ N, then 〈x, n〉 and 〈y, n〉 are metabelian, so x and y
have distance at most 2 in ΓM(G). The result now follows, noting that ΓS(G) is connected
by Theorem 1. �

A natural question that arises at this point is the following.

Problem 7.4. For which families F of finite soluble groups is it true that ΓF (G) is connected
for every finite group G 6∈ F?

Notice that the nilpotent and supersoluble graphs of G = A4 are equal and disconnected.
Indeed this graph has 11 vertices and 5 connected components: one comprising the 3 involu-
tions, and four more consisting of an element of order 3 and its inverse. So the answer to
Problem 7.4 is negative if F is the family of nilpotent groups or the family of supersoluble
groups. We expect it would be interesting to consider the same question for some larger
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families of groups, such as those with derived nilpotent subgroup, or with Fitting length at
most 2.

Even when the answer to Problem 7.4 is negative, it would be interesting to investigate
the following two questions.

Problem 7.5. Let F be a family of finite groups and define IF (G) and ΓF (G) as above.

(i) Does there exist an absolute constant c such that if G is a finite group, then every
connected component of ΓF (G) has diameter at most c?

(ii) Is there a positive answer to (i) if we only consider groups with IF (G) = 1?

Notice that if F = A is the family of abelian groups, then IF(G) = Z(G), ΓF(G) is
the commuting graph and the two previous questions have different answers. Indeed, as we
recalled in Section 1, if Z(G) = 1, then each connected component of the commuting graph
of a non-abelian finite group G has diameter at most 10 (this is a theorem of Morgan and
Parker [27]). However, Giudici and Parker [18] have constructed an infinite sequence (Gn)
of finite 2-groups such that the diameter of the corresponding commuting graphs tends to
infinity.

If we take F = N to be the family of nilpotent groups, then the following stronger result
holds.

Proposition 7.6. Let G be a finite non-nilpotent group. Then each connected component of
the nilpotent graph ΓN (G) of G has diameter at most 10.

Proof. First observe that IN (G) coincides with the hypercentre of G, denoted Z∞(G), which
is the final term in the upper central series of G (see [1, Proposition 2.1]). Moreover, for
all x, y ∈ G, we note that 〈x, y〉 is nilpotent if and only if 〈xZ∞(G), yZ∞(G)〉 is a nilpotent
subgroup of G/Z∞(G). This implies that there is a bijective correspondence between the
connected components of ΓN (G) and ΓN (G/Z∞(G)). Moreover, the corresponding components
under this bijection have the same diameter, so we are free to assume that Z∞(G) = 1.

Next observe that if x and y are adjacent vertices in ΓN (G), then they have distance at
most two in the commuting graph ΓA(G). Indeed, there is a path x ∼ z ∼ y in ΓA(G) for
every nontrivial element z ∈ Z(〈x, y〉). Therefore, ΓN (G) and the commuting graph of G have
the same connected components and the result now follows by applying the main theorem of
[27]. �

Finally, let C be the family of metacyclic groups. We conclude this section with the following
result on the metacyclic graph ΓC(G) of a finite simple group.

Proposition 7.7. Let G be a non-abelian finite simple group. Then either

(i) The metacyclic graph ΓC(G) is connected; or

(ii) G = L2(3f ) and f > 3 is odd.

Proof. First recall that any two involutions in G generate a dihedral group, which is metacyclic,
and thus the set of involutions in G form a clique in ΓC(G). In particular, there is a connected
component Ω that contains every involution in G.

We claim that if p is a prime and Ω contains an element x of order p, then it contains every
element in G whose order is divisible by p. To see this, suppose y ∈ G has order divisible
by p and write |y| = pam, where a > 1 and (p,m) = 1. Let P be a Sylow p-subgroup of G
containing ym and a conjugate xg of x. Let z be a nontrivial element of Z(P ). Since x ∈ Ω,
there exists a path

x1 ∼ x2 ∼ · · · ∼ xn
in ΓC(G), where x1 = x and xn is an involution. But then

y ∼ ym ∼ z ∼ xg ∼ xg2 ∼ · · · ∼ x
g
n
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is also a path in ΓC(G) and we conclude that y ∈ Ω. In particular, Ω contains every element
in G of even order.

Next let x ∈ G be a real element with |x| > 3, which means that xg = x−1 for some g ∈ G.
Since g must have even order and 〈x, g〉 is metacyclic, it follows that x ∈ Ω.

Finally, let us assume G 6= L2(3f ) with f > 3 odd. We claim that Ω contains at least one
element of order p for every odd prime divisor p of |G|. In view of our first claim above, this
immediately implies that ΓC(G) is connected as in (i). So it remains to establish this claim.

Suppose the claim is false and let p be the smallest prime divisor of |G| such that Ω
contains no element of order p. Then G does not contain a real element of order p and so the
possibilities for (G, p) are determined in [14, Theorem 2.1] by Dolfi et al. We consider each
possibility in turn.

First assume G 6= L2(q) with q = pf ≡ 3 (mod 4). Let P be a Sylow p-subgroup of G with
|P | = pn and note that P = 〈u〉 is cyclic by [14, Theorem 2.1]. Now P 66 Z(NG(P )) since G
is not p-nilpotent, so there exists an element v ∈ NG(P ) \ CG(P ). In particular, vCG(P ) is a
nontrivial element of NG(P )/CG(P ) 6 Aut(P ), so its order divides ϕ(pn) = pn−1(p− 1) and
is coprime to p (since P 6 CG(P )). But then there is a prime q dividing (|v|, p− 1) and so
the minimality of p implies that v is contained in Ω. However, 〈u, v〉 is metacyclic and thus
u ∼ v in ΓC(G), which means that u ∈ Ω and we have reached a contradiction.

Finally, let us assume G = L2(q) with q = pf ≡ 3 (mod 4). Then G contains a subfield
subgroup H = L2(p), which in turn contains a metacyclic subgroup of order p(p− 1)/2 (a
Borel subgroup of H). Therefore, if p 6= 3 then Ω contains an element of order p and the
proof of the proposition is complete. �

Remark 7.8. Let us observe that there exist groups G arising in part (ii) of Proposition 7.7
for which ΓC(G) is disconnected. For example, suppose G = L2(27) and let H be a maximal
subgroup of G with order divisible by 3. Then either H = 33:13 is a Borel subgroup or
H = A4. In particular, we deduce that ΓC(G) has 28 connected components, each containing 3
elements (one such component for each Sylow 3-subgroup of G), plus an additional connected
component comprising the remaining 743 elements in G.

8. Some related problems

In this final section, we present some open problems on the soluble graph of a finite group
that arise naturally from our work in this paper. Throughout this section, G denotes a finite
insoluble group with R(G) = 1.

Our first problem concerns the sharpness of the main bound in Theorem 1.

Problem 8.1. Is there a finite group with δS(G) = 5?

Problem 8.2. Are there infinitely many groups with δS(G) > 4?

By Theorem 4, we have shown that there are infinitely many alternating groups with
δS(G) > 4, modulo the conjectured existence of infinitely many Sophie Germain primes.
A positive solution to the following conjecture would resolve Problem 8.2 (note that the
condition p > 11 is necessary since δS(A7) = 3).

Conjecture 8.3. Let p > 11 be a prime with p ≡ 3 (mod 4). Then δS(Ap) > 4.

In part (ii)(d) of Theorem 2 we observe that δS(G) > 3 for every non-abelian finite simple
group G that is not isomorphic to a classical group. For G classical, we know that δS(G) = 2
if G = L2(q) with q even (or q ∈ {5, 7}) or if G ∈ {L3(2),U4(2)}. Are there any additional
simple groups with this property?

Problem 8.4. Determine all the simple groups with δS(G) = 2.
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Recall part (i) of Theorem 2, which states that δS(G) 6 3 if G is not almost simple. If G is
almost simple with socle G0, then we know that the same bound holds if G 6= G0 and G0 is
an alternating or sporadic group (see Theorem 4.9, (1) and Theorem 5.1). This observation
leads naturally to the following problem.

Problem 8.5. Do we have δS(G) 6 3 for every non-simple group G?

Let G be an almost simple group with socle G0. It is worth noting that there are examples
with δS(G) = δS(G0)± 1. For instance,

δS(M12.2) = 3 = δS(M12)− 1

δS(U4(2).2) = 3 = δS(U4(2)) + 1.

It appears that there are very few groups with δS(G) > δS(G0). Indeed, G = U4(2).2 is the
only example we are aware of.

Problem 8.6. Let G be an almost simple group with socle G0.

(i) Classify the almost simple groups with δS(G) > δS(G0).

(ii) Do we always have |δS(G)− δS(G0)| 6 1?

We can extend the previous problem to more general monolithic groups as follows.

Problem 8.7. Let G be a monolithic group with socle T k, where T is a non-abelian finite
simple group and k > 2.

(i) If δS(T ) > 4 then do we always have δS(G) = 3?

(ii) Do we always have |δS(G)− δS(T )| 6 1?

Note part (ii) of Problem 8.7 can only have a positive solution if Problem 8.1 has a negative
answer in the sense that δS(T ) 6 4 for every non-abelian finite simple group T .

References

[1] A. Abdollahi and M. Zarrin, Non-nilpotent graph of a group, Comm. Algebra 38 (2010), 4390–4403.
[2] B. Akbari, M.L. Lewis, J. Mirzajani, A.R. Moghaddamfar, The solubility graph associated with a finite

group, Internat. J. Algebra Comput. 30 (2020), 1555–1564.
[3] N.F. Beike, R. Carleton, D.G. Costanzo, C. Heath, M.L. Lewis, K. Lu and J.D. Pearce, Extending results

of Morgan and Parker about commuting graphs, Bull Aust. Math. Soc. 105 (2022), 92–100.
[4] P. Bhowal, D. Nongsiang and R.K. Nath, Solvable graphs of finite groups, Hacet. J. Math. Stat. 49

(2020), 1955–1964.
[5] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language, J. Symb.

Comput. 24 (1997), 235–265.
[6] D. Bubboloni and M.S. Lucido, Coverings of linear groups, Comm. Algebra 30 (2002), 2143–2159.
[7] T.C. Burness, Base sizes for primitive groups with soluble stabilisers, Algebra Number Theory 15 (2021),

1755–1807.
[8] T.C. Burness, R.M. Guralnick and J. Saxl, On base sizes for symmetric groups, Bull. Lond. Math. Soc.

43 (2011), 386–391.
[9] T.C. Burness and S. Harper, On the uniform domination number of a finite simple group, Trans. Amer.

Math. Soc. 372 (2019), 545–583.
[10] T.C. Burness and S. Harper, Finite groups, 2-generation and the uniform domination number, Israel J.

Math. 239 (2020), 271–367.
[11] T.C. Burness, E.A. O’Brien and R.A. Wilson, Base sizes for sporadic simple groups, Israel J. Math. 177

(2010), 307–333.
[12] T.C. Burness and A.R. Thomas, Normalisers of maximal tori and a conjecture of Vdovin, submitted

(arXiv:2207.09495), 2022.
[13] P.J. Cameron, Graphs defined on groups, Int. J. Group Theory 11 (2022), 53–107.
[14] S. Dolfi, G. Malle and G. Navarro, The finite groups with no real p-elements, Israel J. Math. 192 (2012),

831–840.
[15] P. Flavell, Finite groups in which every two elements generate a soluble subgroup, Invent. Math. 121

(1995), 279–285.



28 TIMOTHY C. BURNESS, ANDREA LUCCHINI, AND DANIELE NEMMI

[16] S.D. Freedman, Diameters of graphs related to groups and base sizes of primitive groups, PhD thesis,
University of St Andrews, 2022.

[17] S.D. Freedman, The intersection graph of a finite simple group has diameter at most 5, Arch. Math. 117
(2021), 1–7.

[18] M. Giudici and C. Parker, There is no upper bound for the diameter of the commuting graph of a finite
group, J. Combin. Theory Ser. A 120 (2013), 1600–1603.

[19] D. Gorenstein, Finite simple groups: An introduction to their classification, University Series in Mathe-
matics. Plenum Publishing Corp., New York, 1982.

[20] R.M. Guralnick and W.M. Kantor, Probabilistic generation of finite simple groups, J. Algebra 234 (2000),
743–792.
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