
ALMOST ELUSIVE PERMUTATION GROUPS

TIMOTHY C. BURNESS AND EMILY V. HALL

Abstract. Let G be a nontrivial transitive permutation group on a finite set Ω. An
element of G is said to be a derangement if it has no fixed points on Ω. From the orbit
counting lemma, it follows that G contains a derangement, and in fact G contains a
derangement of prime power order by a theorem of Fein, Kantor and Schacher. However,
there are groups with no derangements of prime order; these are the so-called elusive
groups and they have been widely studied in recent years. Extending this notion, we
say that G is almost elusive if it contains a unique conjugacy class of derangements of
prime order. In this paper we first prove that every quasiprimitive almost elusive group
is either almost simple or 2-transitive of affine type. We then classify all the almost
elusive groups that are almost simple and primitive with socle an alternating group, a
sporadic group, or a rank one group of Lie type.

1. Introduction

Let G 6 Sym(Ω) be a transitive permutation group on a finite set Ω with |Ω| > 2 and
point stabiliser H. By a classical theorem of Jordan [30], which is an easy consequence
of the orbit counting lemma, G contains elements that act fixed point freely on Ω. Such
an element is called a derangement and we note that x ∈ G has this property if and only
if xG ∩H is empty, where xG denotes the conjugacy class of x. In particular, the set of
derangements is closed under conjugation. Derangements arise naturally in a wide range
of contexts and Jordan’s theorem turns out to have interesting applications in several
different areas (see Serre’s article [39], for example).

The existence of derangements leads to a number of natural problems that have been
extensively studied by various authors. For example, there is a substantial literature on
the proportion of derangements in finite transitive permutation groups. Here one of the
main highlights is the sequence of papers [16, 17, 18, 19] by Fulman and Guralnick, which
shows that the proportion of derangements in a transitive simple group is bounded from
below by an absolute constant (this settles a conjecture of Boston and Shalev from the
1990s).

In this paper, we focus on the existence of derangements with prescribed properties,
noting that problems of this flavour have also attracted significant interest in recent years.
A landmark result in this direction is established by Fein, Kantor and Schacher in [15].
By applying the Classification of Finite Simple Groups, they prove that every nontrivial
finite transitive group contains a derangement of prime power order. Moreover, they also
observe that the conclusion does not extend to prime order derangements, in general. For
example, the 3-transitive action of the smallest Mathieu group M11 on 12 points has no
derangements of prime order (but it does contain derangements of order 4 and 8). Indeed,
M11 has unique conjugacy classes of elements of order 2 and 3, and both primes divide
the order of a point stabiliser L2(11).

Following [11], we say that a transitive group is elusive if it contains no derangements
of prime order. These groups have been the subject of several papers in recent years (see
[11, 20, 21, 22, 23, 44] for example), but a complete classification remains out of reach.
One of the main results towards a classification is a theorem of Giudici [21], which states
that if G is an elusive group with a transitive minimal normal subgroup, then there exists
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a positive integer k such that G = M11 oA in its product action on ∆k, where |∆| = 12 and
A 6 Sk is transitive. In particular, every elusive group with this property is primitive.

Further interest in elusive groups stems from an open problem in algebraic graph theory
from the early 1980s. In [35], Marušič conjectures that if Γ is a finite vertex-transitive
digraph, then Aut(Γ) contains a derangement of prime order (with respect to the action
on vertices). This was later extended by Klin (see [10, Problem 282 (BCC15.12)]), who
conjectures that the same conclusion holds for every nontrivial finite transitive 2-closed
permutation group (it is easy to see that Aut(Γ) as above is 2-closed, so this is a natural
generalisation). This is known as the Polycirculant Conjecture and although there has
been progress towards a positive solution, both problems remain open (see [6, Section
1.3.4] for further details and references). In particular, none of the known elusive groups
are 2-closed.

In this paper, we introduce and study a new family of permutation groups.

Definition. Let G 6 Sym(Ω) be a permutation group. Then G is almost elusive if it
contains a unique conjugacy class of derangements of prime order.

For example, if n = pa is a prime power then it is easy to see that the natural action of
the symmetric group Sn on n points is almost elusive (every derangement of prime order
is a product of n/p disjoint p-cycles, which form a single conjugacy class). In particular,
there are infinitely many almost simple primitive groups with this property, which is in
stark contrast to the situation for elusive groups, where Giudici’s theorem [21] implies that
the action of M11 on 12 points is the only example. We can also find affine type examples.
For instance, if q = 2f with f > 1 then the natural 2-transitive action of AGL2(q) on q2

points is almost elusive.

Remark 1. As noted above, Jordan’s theorem implies that every nontrivial finite transi-
tive group contains at least one conjugacy class of derangements. It turns out that there
are groups with a unique conjugacy class of derangements. Indeed, the main theorem of [8]
states that a primitive group G 6 Sym(Ω) with point stabiliser H has a unique class of de-
rangements if and only if G is sharply 2-transitive (that is, any pair of distinct elements in
Ω can be mapped to any other such pair by a unique element in G) or (G,H) = (A5, D10)
or (L2(8):3, D18:3). Further work by Guralnick [25] shows that the same conclusion holds
for all transitive groups. Note that all of these groups are almost elusive.

Remark 2. Let G 6 Sym(Ω) be a nontrivial finite transitive permutation group with
point stabiliser H and let r be a prime divisor of |Ω|. Following [7], we say that G is
r-elusive if G does not contain a derangement of order r, whence G is elusive if and only
if G is r-elusive for every prime divisor r of |Ω|. Similarly, G is almost elusive only if the
same conclusion holds for all but one prime r. In particular, note that G is almost elusive
only if |π(G) \ π(H)| 6 1, where π(X) denotes the set of prime divisors of |X|. We refer
the reader to [5, 6, 7] for results on r-elusive primitive groups.

Recall that a finite permutation group is quasiprimitive if every nontrivial normal sub-
group is transitive. In [37], Praeger establishes a version of the O’Nan-Scott theorem for
quasiprimitive groups, which describes the structure and action of such a group in terms of
its socle (recall that the socle of a group is the product of its minimal normal subgroups).
By applying this important theorem, we can prove the following result.

Theorem 1. Let G be a finite quasiprimitive almost elusive permutation group. Then
either G is almost simple, or G is a 2-transitive affine group.

Remark 3. It is worth noting that there exist almost elusive quasiprimitive groups that
are not primitive (once again, this differs from the situation for elusive groups). For
instance, suppose G = L2(q) and q = 2m − 1 is a Mersenne prime such that 2m−1 − 1 is
divisible by 9. For example, we can take

m ∈ {7, 13, 19, 31, 61, 127, 607, 1279, 2203, 2281, 3217, 4423, . . .}.
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G0 G H Conditions x

An Sn Sn−1 n = ra [rn/r]
Sn−2 × S2 n = 2m = r + 1 [r, 1]

n = 2m + 1 = r [r]

An An−1 n = ra, a > 2 [rn/r]

n = 2ra, r > 3 [rn/r]

A10 A10 (S7 × S3) ∩G [52]
A9 S9, A9 (S7 × S2) ∩G [33]

(S6 × S3) ∩G [7, 12]
A6 S6 S3 o S2 [5, 1]

A6 L2(5) [3, 13]
PGL2(9) D20 3
M10 5:4 3

32:Q8 5
A5 A5 D10 [3, 12]

Table 1. The primitive almost elusive groups with socle An, n > 5

Let H = Cq:C(q−1)/2 be a Borel subgroup of G and set Ω = G/K, where K = Cq:C(q−1)/6
is a subgroup of H. Then G is quasiprimitive (but not primitive) on Ω and we note that
|Ω| = 3.2m. Moreover, G has unique conjugacy classes of elements of order 2 and 3, and
our choice of q implies that |K| is divisible by 3. Therefore, G is almost elusive on Ω. We
do not know if there are infinitely many almost elusive quasiprimitive groups that are not
primitive.

With the reduction theorem in hand, our ultimate aim is to classify all the almost elusive
quasiprimitive groups. In this paper, we take a first step in this direction by establishing
Theorem 2 below on almost simple primitive groups (recall that G is almost simple if the
socle G0 of G is a nonabelian finite simple group, in which case G0 6 G 6 Aut(G0)). In
order to state this result, set

G = A ∪ B,
where A is the set of all alternating groups An with n > 5, and B is the set of all sporadic
simple groups (including the Tits group 2F4(2)′), together with all simple groups of Lie
type of the form L2(q) (with q > 7 and q 6= 9), U3(q) (with q > 3), 2G2(q) (with q > 27)
and 2B2(q) (with q > 8). Note that G contains every simple group of Lie type with
(twisted) Lie rank equal to 1.

Theorem 2. Let G 6 Sym(Ω) be a finite almost simple primitive permutation group with
socle G0 ∈ G and point stabiliser H. Then G is almost elusive if and only if (G,H) is one
of the cases recorded in Table 1 or 2.

Remark 4. Some comments on the statement of Theorem 2 are in order.

(a) If G0 is one of the 26 sporadic simple groups then by combining Theorem 2 with the
main result of [21] we deduce that either (G,H) = (M11,L2(11)) and G is elusive,
or G contains at least two conjugacy classes of derangements of prime order. In
particular, G is not almost elusive. Similarly, there are no primitive almost elusive
groups with socle 2G2(q) (with q > 27) or 2B2(q).

(b) In the fourth column of Table 1, r denotes a prime number and a is a positive
integer. For example, in the second row r = 2m − 1 is a Mersenne prime and thus
m is a prime. Similarly, in the next row r = 2m + 1 is a Fermat prime, which
implies that m is a 2-power.
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G0 Type of H G Conditions x
L2(q) P1 PGL2(q), G0 q = p = 2m − 1 2

G0 q = p, p+ 1 = 2.3a, a > 2 3
G0.f See Remark 4(f) r
G0.3, G0 q = 8 3

GL1(q) o S2 PGL2(q) q = p = 2m − 1 p
G0.3, G0 q = 8 3

GL1(q
2) PGL2(q) q = p = 2m + 1 p

G0.3 q = 8 7
U3(q) P1 G0.2 q = 3 7

GU2(q)×GU1(q) G0.4 q = 4 13
G0.6 q = 8 19

GU1(q) o S3 G0.4 q = 4 13
L2(7) G0.2, G0 q = 3 [J2, J1]

2F4(2)′ L2(25) G0.2, G0 2A

52:4A4 G0.2 13

Table 2. The primitive almost elusive groups with socle G0 ∈ B

(c) In the final column of Table 1 we record a representative x of the unique conjugacy
class in G of derangements of prime order; in the cases where G = Sn or An,
we give the cycle-shape of x in the form [rd, 1n−dr], which means that x is a
product of d disjoint r-cycles in its natural action on {1, . . . , n}. For the cases
with G = PGL2(9), we use 3 to denote a representative in the unique conjugacy
class of elements of order 3 in G. Similarly, we write 5 for the unique class of
elements of order 5 in M10.

(d) In Table 2 we list all the primitive almost elusive groups with socle G0 ∈ B.
Note that the conditions on q in the definition of B are justified in view of the
isomorphisms

L2(4) ∼= L2(5) ∼= A5, L2(9) ∼= A6,
2G2(3)′ ∼= L2(8),

together with the fact that the groups L2(2), L2(3), U3(2) and 2B2(2) are soluble.

(e) In the second column of Table 2 we record the type of H. If G0 is a classical group
with natural module V , then this gives an approximate description of the structure
of H ∩ PGL(V ) (our usage is consistent with [32, p.58]). Note that P1 denotes a
parabolic subgroup, which is the stabiliser in G of a 1-dimensional totally isotropic
subspace of V . For the cases with G0 = 2F4(2)′, the type of H coincides with the
structure of H ∩G0.

(f) Consider the case recorded in the third row of Table 2. First note that there
are two groups of the form G0.f , namely G0.〈φ〉 and G0.〈δφ〉, where φ is a field
automorphism of order f and δ is a diagonal automorphism. In addition we require
q = 2ra − 1, where r = 2m + 1 is a Fermat prime, m > 2 is a 2-power, a is
a positive integer and f = 2m−1. See Remark 4.6 for further comments on the
number-theoretic conditions arising in the second and third rows of Table 2.

(g) In the final column of Table 2 we describe the unique conjugacy class of derange-
ments of prime order in G. If G0 = U3(3) with H of type L2(7), then G0 contains
two G-classes of elements of order 3; as indicated in the table, the derangements
have Jordan form [J2, J1] on V , where Ji denotes a standard unipotent Jordan
block of size i. Similarly, if G0 = 2F4(2)′ and H is of type L2(25), then G0 has two
G-classes of involutions, labelled 2A and 2B with |2A| = 1755 and |2B| = 11700;
the derangements are in 2A. In each of the remaining cases, we use a prime ` to
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describe the unique class of derangements of prime order; in every case, this is the
unique G-class of elements of order ` in G0. In the first row, for instance, PGL2(q)
has two classes of involutions, with representatives labelled t1 and t′1 in [24, Table
4.5.1]; since q ≡ 3 (mod 4), the involutions of type t′1 are contained in G0 and they
are the only derangements of prime order in G.

The analysis of the primitive almost elusive permutation groups initiated in this paper
has recently been extended in [27], where the almost simple classical groups are handled.
A classification of the almost elusive primitive groups will be presented in [28], which will
play a key role in completing the full classification in the more general quasiprimitive
setting.

Notation. The notation we adopt in this paper is all fairly standard. Let A and B be
groups and let n be a positive integer. We write Cn, or just n, for a cyclic group of order n
and An is the direct product of n copies of A. An unspecified extension of A by B will be
denoted by A.B and we use A:B if the extension splits. We adopt the standard notation
for simple groups from [32]. For positive integers a and b, we write (a, b) for the greatest
common divisor of a and b.

Acknowledgments. Both authors thank Tim Dokchitser and Michael Giudici for helpful
conversations concerning the content of this paper. EVH also acknowledges the financial
support of the Heilbronn Institute for Mathematical Research.

2. A reduction theorem

In this section we prove Theorem 1. Let G 6 Sym(Ω) be a finite quasiprimitive almost
elusive group with point stabiliser H and socle N . By [37, Theorem 1] we have N =
T1× · · · ×Tk, where k > 1 and each Ti is isomorphic to a fixed simple group T . Note that
G = NH since N is transitive. Let πi : N → Ti, i = 1, . . . , k, be the natural projection
maps.

First assume N is abelian, so N = (Cp)
k for some prime p. Here N is regular and [37,

Theorem 1] implies that G is an affine group. Moreover, each nontrivial element in N
is a derangement, so the almost elusivity of G implies that H acts transitively on these
elements and thus G is 2-transitive.

For the remainder, we may assume N is non-abelian. If k = 1 then G is almost simple,
so we may assume k > 2. Let J be a minimal normal subgroup of G and note that
N = J ×CG(J) (see the proof of [37, Theorem 1]). If CG(J) 6= 1 then both J and CG(J)
are regular on Ω and thus every nontrivial element in J is a derangement. But |T | is
divisible by at least three distinct primes, which implies that G contains at least three
conjugacy classes of derangements of prime order. This is a contradiction. Therefore,
CG(J) = 1 and N = J is a minimal normal subgroup. In particular, H acts transitively
on the set {T1, . . . , Tk} and it follows that there exists a subgroup R 6 T such that
πi(H ∩N) ∼= R for all i. We now consider two separate cases.

First assume R = T . Here H ∩N = D1 × · · · ×Dl
∼= T l, where each

Di = {(x, xϕi,1 , . . . , xϕi,m−1) : x ∈ T} ∼= T

is a full diagonal subgroup of
∏
j∈Ii Tj and the Ii partition {1, . . . , k} (here each ϕi,j is

an automorphism of T ). Note that k = lm and m > 2. Clearly, we have T1 ∩ H = 1,
so each nontrivial element in T1 is a derangement on Ω and as above we deduce that G
contains at least three conjugacy classes of derangements of prime order. Once again, this
is a contradiction.

Finally, let us assume R < T . Here we are in Case 2(b) in the proof of [37, Theorem 1]
and it follows that G 6 L oSk in its natural product action on ∆ = Γk, where L 6 Sym(Γ)
is a quasiprimitive almost simple group with socle T and point stabiliser U (note that
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T acts transitively on Γ since L is quasiprimitive). In particular, G is a group of type
III(b)(i) in the notation of [37, Section 2], which means that the following hold:

(a) N = T k is the unique minimal normal subgroup of G.

(b) ∆ is a G-invariant partition of Ω.

(c) Fix γ ∈ Γ and δ = (γ, . . . , γ) ∈ ∆. If α ∈ Ω is contained in the part δ ∈ ∆,
then Nδ = (Tγ)k and Nα is a subdirect product of Sk for some nontrivial normal
subgroup S of Tγ .

In particular, there exist α ∈ Ω and γ ∈ Γ such that

Nα 6 (Tγ)k < T k = N.

If z ∈ T is a derangement of prime order with respect to the action of T on Γ, then
the elements (z, 1, . . . , 1) and (z, z, 1, . . . , 1) in N are derangements of prime order on Ω.
Moreover, these elements are not G-conjugate and thus G is not almost elusive.

Therefore, to complete the proof, we may assume that T is elusive on Γ. By applying
[21, Theorem 1.4] we see that L = T = M11 and U = L2(11). Since U is simple, property
(c) above implies that Nα is a subdirect product of Uk. If Nα = Uk then N is elusive
and by arguing as in the proof of [21, Theorem 1.1] we deduce that G = M11 oA for some
transitive subgroup A 6 Sk. But then G is elusive and we have reached a contradiction.
Finally, suppose Nα < Uk = U1 × · · · × Uk and write Nα = F1 × · · · × Fc, where each
Fi ∼= U is a full diagonal subgroup of

∏
j∈Ii Uj and the Ii partition {1, . . . , k}. Then by

arguing as above (the case R = T ) we deduce that G contains at least three classes of
derangements of prime order. This final contradiction completes the proof of Theorem 1.

3. Symmetric and alternating groups

In this section, we begin the proof of Theorem 2 by considering the almost simple groups
with socle an alternating group. Our main result is the following.

Theorem 3.1. Let G 6 Sym(Ω) be an almost simple primitive permutation group with
socle G0 = An and point stabiliser H. Then G is almost elusive if and only if (G,H) is
one of the cases recorded in Table 1.

It is straightforward to handle the cases with n 6 10.

Proposition 3.2. The conclusion to Theorem 3.1 holds if n 6 10.

Proof. This is an entirely straightforward Magma [2] calculation. In each case, we use the
functions MaximalSubgroups and CosetAction to construct G as a permutation group on
the set of cosets of H. Then by taking a set of conjugacy class representatives in G, we
can read off the derangements of prime order and verify the result. �

For the remainder, we may assume G = Sn or An with n > 11. We will divide the rest
of the proof into three parts, according to the action of H on {1, . . . , n}. We denote the
cycle-shape of an element g ∈ Sn of prime order r by writing [rd, 1n−dr], where d is the
number of r-cycles in the cycle decomposition of g.

3.1. Intransitive subgroups. We start by assuming H acts intransitively on {1, . . . , n}.
Therefore H = (Sk × Sn−k) ∩G and we may identify Ω with the set of k-element subsets
(k-sets for short) of {1, . . . , n} for some k in the range 1 6 k < n/2.

We will need some number-theoretic preliminaries on the prime factors of |Ω| =
(
n
k

)
.

Lemma 3.3. If |Ω| is divisible by a prime power pa, then pa 6 n.

Proof. See [13, Lemma, p.1084]. �

Lemma 3.4. Write |Ω| = UV , where U = pa11 · · · p
al
l , V = qb11 · · · qbmm and pi, qj are distinct

primes such that pi < k and qi > k for all i. Then either
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(i) U 6 V ; or

(ii) (n, k) = (8, 3), (9, 4), (10, 5), (12, 5), (21, 7), (21, 8), (30, 7), (33, 13), (33, 14), (36, 13),
(36, 17) or (56, 13).

Proof. This is [14, Theorem, p.258]. �

Lemma 3.5. Suppose n > 12 and k is a prime such that 5 6 k < n
2 . Then

(
n
k

)
> n4 if

k > 11, or if k = 7 and n > 24, or k = 5 and n > 130.

Proof. This is an easy exercise and we omit the details. �

A classical theorem of Sylvester and Schur (see [14, p.258]) states that |Ω| is divisible
by a prime r > k. For k > 4, we can now establish the following extension.

Proposition 3.6. For k > 4, either |Ω| is divisible by distinct primes r, s > k, or (n, k) =
(12, 5), (9, 4).

Proof. Write |Ω| = UV as in the statement of Lemma 3.4. Our aim is to show that V
has at least two distinct prime divisors q1 and q2 that are not equal to k. This is clear if
m > 3. Let us also note that the cases arising in part (ii) of the lemma can be checked

using Magma; the only exceptions are
(
12
5

)
and

(
9
4

)
. For the remainder, we may assume

U 6 V and m 6 2.
First assume m = 1, so V = qb11 . By Lemma 3.3 we have V 6 n and thus |Ω| = UV 6

V 2 6 n2. But this is a contradiction since |Ω| > n2 for n > 9.

Now assume m = 2, so V = qb11 q
b2
2 . Clearly, if k is composite then q1, q2 6= k and the

result follows. Similarly, if k is a prime and k does not divide |Ω|, then q1, q2 6= k and

we are done. Finally, suppose k is a prime divisor of |Ω|. Set q1 = k, so V = kb1qb22
and q2 > k. By Lemma 3.3 we have kb1 , qb22 6 n and so V 6 n2. Since U 6 V we have
|Ω| 6 n4 and thus Lemma 3.5 implies that either k = 7 and 15 6 n 6 23, or k = 5 and
11 6 n 6 129. This finite list of cases can be checked using Magma and we conclude that
(n, k) = (12, 5) is the only exception to the main statement of the proposition. �

We will also need the following number-theoretic result, which is [9, Lemma 2.6]. This
lemma will also be useful in Section 4.

Lemma 3.7. Let r and s be primes and let m and n be positive integers. If rm + 1 = sn

then one of the following holds:

(i) (r, s,m, n) = (2, 3, 3, 2).

(ii) (r, n) = (2, 1) and s = 2m + 1 is a Fermat prime.

(iii) (s,m) = (2, 1) and r = 2n − 1 is a Mersenne prime.

We are now ready to begin the proof of Theorem 3.1 in the case where G = Sn or An
and Ω is the set of k-element subsets of {1, . . . , n} with 1 6 k < n/2.

Lemma 3.8. If k > 4 then G is not almost elusive.

Proof. Suppose k > 4. The cases (n, k) = (12, 5) and (9, 4) can be handled directly. For
example, if (n, k) = (9, 4) then it is easy to see that G contains derangements of order 3
and 7. In each of the remaining cases, Proposition 3.6 implies that |Ω| is divisible by at
least two distinct primes r and s with r, s > k.

Since r > k, it follows that r divides n − t for some t ∈ {0, 1, . . . , k − 1} and we can

consider an element g ∈ G with cycle-shape [r(n−t)/r, 1t]. Since t < k, it follows that g is
a derangement. Therefore, in the remaining cases we see that G contains derangements
of order r and s, whence G is not almost elusive. �

Lemma 3.9. If k = 1 then G is almost elusive if and only if one of the following holds:

(i) n = ra, r prime, with a > 2 if G = An.
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(ii) G = An, n = 2ra, r > 3 prime.

Proof. If n is divisible by two distinct odd primes, say r and s, then G contains derange-
ments with cycle-shape [rn/r] and [sn/s], so G is not almost elusive. Therefore, for the
remainder we may assume n = 2mra, where r is an odd prime and m, a > 0.

Suppose m, a > 0. If G = Sn, or G = An with m > 2, then elements of the form [2n/2]

and [rn/r] are derangements. However, if G = An and m = 1, then n ≡ 2 (mod 4) and G

does not contain elements of the form [2n/2], so in this case G is almost elusive. If a = 0
then n = 2m and G is almost elusive since both Sn and An have a unique conjugacy class
of elements with cycle-shape [2n/2]. Finally, if m = 0 then n = ra and G is almost elusive
unless G = An and a = 1, in which case G has two classes of r-cycles. �

Lemma 3.10. If k = 2 then G is almost elusive if and only if n = 9, or G = Sn and
either n is a Fermat prime, or n− 1 is a Mersenne prime.

Proof. Let g ∈ G be an element of order r, with cycle-shape [rd, 1n−dr]. Clearly, if r = 2
or n− dr > 2, then g fixes a 2-set. Now assume r is odd and n− dr 6 1.

First assume n = 2ml is even, where m > 1 and l is odd. If r is a prime divisor
of n − 1 then every element with cycle-shape [r(n−1)/r, 1] is a derangement, so we may
assume n− 1 = ra for some a > 1. Similarly, if r is a prime divisor of l, then there exist
derangements with cycle-shape [rn/r], so we may also assume n = 2m. By Lemma 3.7 we
deduce that a = 1, so r = 2m − 1 is a Mersenne prime and |Ω| = 2m−1r. In particular,
every prime order derangement in G is an r-cycle and thus G is almost elusive if G = Sn,
but not if G = An (since there are two An-classes of r-cycles).

Now assume n = 2ml+ 1 is odd, where m > 1 and l is odd. If r is a prime divisor of n,
then elements of the form [rn/r] are derangements, so we may assume n = ra is a prime
power. Similarly, if l is divisible by an odd prime s, then we get derangements of the form
[s(n−1)/s, 1], so we can assume l = 1 and thus ra = 2m + 1. By Lemma 3.7, it follows that
either n = 9, or n = r = 2m + 1 is a Fermat prime.

If n = 9 then it is easy to see that every derangement of prime order has cycle-shape
[33], so G is almost elusive. Now assume n = r = 2m + 1 is a Fermat prime, so |Ω| = 2mr
and the only prime order derangements are r-cycles. We conclude that G = Sn is almost
elusive, but G = An has two conjugacy classes of prime order derangements. �

Proposition 3.11. The conclusion to Theorem 3.1 holds if H is intransitive.

Proof. We may assume k = 3 and our aim is to show that G is almost elusive if and only if
n = 9 or G = A10. Let g ∈ G be an element of prime order r with cycle-shape [rd, 1n−dr].
Visibly, g is a derangement if and only if r = 2 and n = 2d, or r > 5 and n − dr 6 2.
We divide the proof into two parts, according to the parity of n. Note that the condition
k < n/2 implies that n > 7.

Case 1. n even

First assume n is even, say n = 2ml with m > 1 and l > 1 odd. For now, let us also
assume that m > 2 if G = An. Then G contains derangements of shape [2n/2] and the
observation above implies that G is almost elusive only if n = 2m3b and n − 1 = 3c with
b, c > 0. Therefore n − 1 = 2m3b − 1 = 3c, so b = 0 and n − 1 = 2m − 1 = 3c. But now
Lemma 3.7 implies that n = 4, so this situation does not arise and we conclude that G is
not almost elusive.

Next assume G = An and n = 2l, where l > 5 is odd. If l is divisible by two distinct
primes r, s > 5, then G is not almost elusive since there are derangements of shape [rn/r]

and [sn/s]. So we may assume that l = 3arb, where r > 5 is a prime and a, b > 0.
Suppose b = 0, so l = 3a, a > 2 and we have

|Ω| =
(
n

3

)
= 3a−1(n− 1)(n− 2).
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Note that n − 1 is odd and indivisible by 3, so it is divisible by a prime s > 5 and thus
elements in G of shape [s(n−1)/s, 1] are derangements. If n − 2 = 2c, then 3a − 1 = 2c−1

and Lemma 3.7 implies that a = 2 and c = 4, so n = 18. But here G has two classes of
17-cycles, so G is not almost elusive. Therefore, we have reduced to the case where n− 2
is divisible by a prime t > 5; since s and t are distinct, we conclude that G is not almost
elusive.

Now assume b > 1, so G contains derangements of shape [rn/r]. If a > 1, then n − 1
is divisible by a prime s > 5 with s 6= r, which implies that G contains derangements of
shape [s(n−1)/s, 1] and thus G is not almost elusive. Now assume a = 0. Suppose G is
almost elusive. Then neither n− 1 nor n− 2 can be divisible by a prime s > 5, so we have
n − 1 = 3c and n − 2 = 2d3e for integers c, d and e. But n − 1 and n − 2 are not both
divisible by 3, so e = 0 and we have 3c = 2d + 1. By Lemma 3.7 we deduce that c = 2
and d = 3 is the only solution, so G = A10 and this is an almost elusive group (the only
derangements have cycle-shape [52]).

Case 2. n odd

Now assume n is odd, say n = 2ml+1 with m > 1 and l odd. First assume n is divisible
by 3 and G is almost elusive. Since n− 2 is odd and indivisible by 3, it must be divisible
by a prime r > 5 and thus G contains derangements of shape [r(n−2)/r, 12]. Therefore, we
must have n − 2 = ra. In addition, if n is divisible by a prime s > 5, then s 6= r and G
contains derangements of the form [sn/s], whence n = 3b. Similarly, n − 1 = 2c and thus
3b = 2c + 1, which has the unique solution (b, c) = (2, 3) by Lemma 3.7. Therefore, n = 9
and every prime order derangement is a 7-cycle, so both S9 and A9 are almost elusive.

Next assume n ≡ 1 (mod 3), so both n and n−2 are odd and indivisible by 3. Therefore,
there exist distinct primes r, s > 5 such that r divides n and s divides n − 2, whence G
contains derangements of the form [rn/r] and [s(n−2)/s, 12]. In particular, G is not almost
elusive.

Finally, suppose n ≡ 2 (mod 3) and G is almost elusive. Let r > 5 be a prime divisor of

n. Then G contains derangements of shape [rn/r], so n = ra. Similarly, if n−2 is divisible

by a prime s > 5, then G contains derangements of the form [s(n−2)/s, 12], so this forces
n− 2 = 3b. Similarly, n− 1 = 2c for some integer c and thus 2c = 3b + 1. By Lemma 3.7
it follows that (b, c) = (1, 2) and thus n = 5, which is a contradiction since n > 7. �

3.2. Imprimitive subgroups. Next we assume H acts transitively and imprimitively on
{1, . . . , n}, so n = ab with a, b > 2 and H = (Sa o Sb) ∩ G. In addition, we may identify
Ω with the set Ωb

a of partitions of {1, . . . , n} into b parts of size a. In view of Proposition
3.2, we will assume n > 11.

Lemma 3.12. Consider the action of G = Sn on Ω = Ωb
a, where n > 5. If r > a is a

prime divisor of |Ω|, then every r-cycle in G is a derangement.

Proof. Let H = Sa o Sb be a point stabiliser. If r > b then r does not divide |H| and thus
every element in G of order r is a derangement.

Now assume r 6 b and let x ∈ G be an r-cycle. Seeking a contradiction, suppose x fixes
a partition α = {X1, . . . , Xb} in Ω; let π be the permutation of {1, . . . , b} induced from
the action of x on the parts in α. Note that π 6= 1 since r > a. In fact, since x has order
r it follows that π also has order r and thus |supp(x)| > ra with respect to the action of
x on {1, . . . , n}. But this is a contradiction since x is an r-cycle and a > 2. We conclude
that x is a derangement. �

Recall Bertrand’s postulate: for every integer n > 4, there exists a prime number in the
interval (n/2, n). We will need the following extension, which is a special case of a result
due to Ramanujan [38].

Lemma 3.13. If n > 12, then there are at least two primes in the interval (n/2, n).
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Proposition 3.14. The conclusion to Theorem 3.1 holds if H is imprimitive.

Proof. As above, write n = ab, where a, b > 2, and identify Ω with the set of partitions of
{1, . . . , n} into b subsets of size a. By Proposition 3.2, we may assume n > 12. Applying
Lemma 3.13, fix primes r, s such that n/2 < r < s < n. Then r and s both divide |Ω|
and both primes are strictly larger than a, so Lemma 3.12 implies that every r-cycle and
every s-cycle in G is a derangement. Therefore, G is not almost elusive. �

3.3. Primitive subgroups. To complete the proof of Theorem 3.1, it remains to handle
the groups where H acts primitively on {1, . . . , n}.

Lemma 3.15. Let G 6 Sym(Ω) be a primitive permutation group with socle G0 = An
and point stabiliser H. Assume n > 7 and H acts primitively on {1, . . . , n}.

(i) If r is a prime divisor of |Ω|, then G contains a derangement of order r.

(ii) |Ω| is divisible by at least two distinct primes.

Proof. Part (i) is [7, Proposition 3.5], which follows by combining classical results of Jordan
[29] and Manning [34]. Now consider (ii). Seeking a contradiction, suppose |Ω| = ra for
some prime r.

First assume G = An. By [26, Theorem 1] we have n = ra and H ∼= An−1, so [42,
Lemma 2.2] implies that H is the stabiliser of a point in the natural action of {1, . . . , n}.
This is incompatible with the fact that H acts primitively on {1, . . . , n}.

Now assume G = Sn and set L = An. Since H is maximal we have H 
 L and thus
G = LH. Therefore, |L : H ∩L| = ra and so the result for alternating groups implies that
n = ra and H ∩ L = An−1 is a point stabiliser with respect to the natural action of L on
{1, . . . , n}. Write H ∩ L = Lk 6 Gk for some k ∈ {1, . . . , n}. Since |H : H ∩ L| = 2 we
have |H : Lk| = 2 and thus Lk is normal in H. In particular, Lk = Lkh for all h ∈ H, so
k = kh for all h ∈ H and thus H acts intransitively on {1, . . . , n}. So once again we have
reached a contradiction. �

Proposition 3.16. The conclusion to Theorem 3.1 holds if H is primitive.

Proof. By Proposition 3.2, we may assume n > 11. Then Lemma 3.15 implies that G is
not almost elusive. �

This completes the proof of Theorem 2 for symmetric and alternating groups.

4. Rank one groups of Lie type

As in Section 1, let B be the set of sporadic simple groups, together with the simple
groups of Lie type of the form L2(q) (with q > 7 and q 6= 9), U3(q) (with q > 3),
2G2(q) (with q > 27) and 2B2(q) (with q > 8); see Remark 4(d) for an explanation of
the conditions on q in each case. In this section we will prove the following result, which
establishes Theorem 2 in the cases where G0 ∈ B is a group of Lie type (the sporadic
groups will be handled in Section 5).

Theorem 4.1. Let G be an almost simple primitive permutation group with socle G0 ∈ B
and point stabiliser H, where G0 is a group of Lie type. Then G is almost elusive if and
only if (G,H) is one of the cases recorded in Table 2.

For the classical groups with socle G0 = L2(q) or U3(q), we follow [32] in referring to the
type of a maximal subgroup of G. Recall that this provides an approximate description
of the structure of H ∩ PGL(V ), where V is the natural module for G0. Throughout this
section, we set q = pf with p a prime and we write H0 = H ∩G0.

Recall that if n > 2 is an integer, then a prime divisor r of qn − 1 is a primitive prime
divisor if qi−1 is indivisible by r for all 1 6 i < n. By a well known theorem of Zsigmondy
[45], primitive prime divisors exist unless (n, q) = (6, 2), or if n = 2 and q is a Mersenne
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prime. Note that if r is such a prime and m is a positive integer, then r divides qm − 1
if and only if n divides m. Also note that Fermat’s Little Theorem implies that r ≡ 1
(mod n). In addition, it will be useful to observe that every primitive prime divisor of
pfn − 1 is also a primitive prime divisor of qn − 1.

Throughout this section, it will be helpful to recall that G is not almost elusive if
|π(G) \ π(H)| > 2, where π(X) denotes the set of prime divisors of |X| (see Remark 2).

4.1. Two-dimensional linear groups. In this section we prove Theorem 4.1 for the
groups with socle G0 = L2(q). Write q = pf with p a prime and set d = (2, q − 1). Fix a
basis {e1, e2} for the natural module V and recall that |G0| = 1

dq(q
2 − 1). As in [32], for

g ∈ Aut(G0) we write g̈ for the coset G0g ∈ Out(G0) = Aut(G0)/G0. By [32, Proposition
2.2.3] we have

Out(G0) =

{
〈δ̈〉 × 〈φ̈〉 = C2 × Cf if p > 2

〈φ̈〉 = Cf if p = 2.

With respect to the basis {e1, e2}, we may assume δ is the diagonal automorphism induced
by conjugation by

(
µ 0
0 1

)
, where F×q = 〈µ〉, and φ is the field automorphism of order f

corresponding to the Frobenius map (aij) 7→ (apij) on matrices. In particular, we may
assume φ acts on V by sending ae1 + be2 to ape1 + bpe2.

The maximal subgroups of G0 were originally determined by Dickson (see Dickson’s
book [12], first published in 1901) and the complete list of (core-free) maximal subgroups
of G (up to conjugacy) is conveniently reproduced in [3, Tables 8.1 and 8.2].

Proposition 4.2. Let G be an almost simple group with socle G0 = L2(q) and let H be a
core-free maximal subgroup of G. Then the type of H is one of the following:

P1, GL1(q) o S2, GL1(q
2), GL2(q0) (q = qk0 , k prime),

21+2
− .O−2 (2) (q = p > 3), A5 (q = p or p2).

Proof. See Tables 8.1 and 8.2 in [3], which record the precise structure of H0, together
with the exact conditions needed for maximality. For example, we see that

(G,H) =

 (G0, S4) q = p ≡ ±1 (mod 8)
(G0, A4) q = p ≡ ±3, 5,±13 (mod 40)
(PGL2(q), S4) q = p ≡ ±11,±19 (mod 40)

if H is of type 21+2
− .O−2 (2). �

Remark 4.3. Note that if H is of type GL1(q) o S2 or GL1(q
2), then H0 = D2(q−1)/d or

D2(q+1)/d, respectively.

Write PGL2(q) = GL2(q)/Z, where Z = Z(GL2(q)) is the centre of GL2(q). We will
need to recall some basic properties of certain conjugacy classes of prime order elements in
PGL2(q). For a general reference, we refer the reader to [6, Section 3.2]. Let x ∈ PGL2(q)
be an element of prime order r and recall that x is semisimple if r 6= p and unipotent if
r = p. Write x = Zx̂ with x̂ ∈ GL2(q).

(a) First assume x is semisimple, so r divides q2 − 1 and xG0 = xPGL2(q). Suppose r
is odd, which means that we may assume x̂ also has order r. If r divides q − 1
then x̂ is GL2(q)-conjugate to a diagonal matrix. On the other hand, if r divides
q+1 then the eigenvalues of x̂ are contained in Fq2 \Fq and thus x̂ acts irreducibly
on V . In both cases, it will be useful to note that G contains (r − 1)/2 distinct
G0-classes of semisimple elements of order r, so there are at least d(r − 1)/2fe
conjugacy classes in G of such elements.

(b) Next assume x is a semisimple involution, so q is odd. Here x is G0-conjugate to
either t1 or t′1 in the notation of [6, Section 3.2], which is consistent with [24, Table
4.5.1]. These elements are distinguished by the fact that t1 lifts to an involution in
GL2(q), while t′1 lifts to an irreducible element of order 4. It is worth noting that
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G0 has a unique class of semisimple involutions, with t1 ∈ G0 if and only if q ≡ 1
(mod 4). In addition, let us record that t1 and t′1 are non-conjugate in Aut(G0).

(c) Finally, suppose x is unipotent. Here we may assume x̂ has order p and Jordan
form [J2] on V . If p = 2 then G0 = PGL2(q) has a unique conjugacy class of
involutions. On the other hand, if p is odd then there are two classes of such
elements in G0, which are fused in PGL2(q).

We are now ready to begin the proof of Theorem 4.1 for G0 = L2(q). We start by
handling the groups where the underlying field is small.

Proposition 4.4. The conclusion to Theorem 4.1 holds if G0 = L2(q) and q 6 11.

Proof. This is an entirely straightforward Magma [2] calculation, using the standard com-
mands ConjugacyClasses, MaximalSubgroups and CosetAction. �

For the remainder, we may assume q > 13. The possibilities for the point stabiliser H
are recorded in Proposition 4.2 and we consider each one in turn.

Proposition 4.5. The conclusion to Theorem 4.1 holds if G0 = L2(q) and H is of type
P1.

Proof. Here H0 = (Cp)
f :C(q−1)/d is a Borel subgroup of G0 and we have |Ω| = q + 1. We

may identify Ω with the set of 1-dimensional subspaces of the natural module V . Notice
that if r is an odd prime divisor of q+1, then |H0| is indivisible by r and thus every element
in G0 of order r is a derangement. In particular, if q + 1 is divisible by two distinct odd
primes, then G is not almost elusive. So for the remainder, we may assume q + 1 = 2arb

if q is odd and q + 1 = rb if q is even, where r is an odd prime.
First assume q is even and q + 1 = rb. By Lemma 3.7, either q = 8, or b = 1 and r

is a Fermat prime (in which case, q = 2f and f > 4 is a 2-power). The case q = 8 was
handled in Proposition 4.4, so let us assume q + 1 = r > 17 is a Fermat prime. As noted
above, G0 has (r − 1)/2 = q/2 distinct conjugacy classes of elements of order r and thus
G contains at least q/2f > 2 such classes. Since each of these elements is a derangement,
we conclude that G is not almost elusive.

Now assume q is odd and q+1 = 2arb, where a > 1 and b > 0. If b = 0 then Lemma 3.7
implies that q = 2a−1 is a Mersenne prime, so |Ω| = 2a and G = G0 or PGL2(q). In terms
of the notation introduced above, each involution in G0 is of type t′1 (since q ≡ 3 (mod 4))
and these elements are derangements since they act irreducibly on V (alternatively, note
that |H0| is odd). On the other hand, every t1-type involution in PGL2(q) \ G0 visibly
fixes a 1-space and we conclude that G is almost elusive.

Finally, let us assume b > 1. As noted above, G contains derangements of order r.
In addition, if a > 2 then q ≡ 3 (mod 4) and we note that the involutions in G0 (which
are of type t′1) are derangements. Similarly, if a = 1 and PGL2(q) 6 G then G contains
involutions of type t′1 and these elements are derangements. So to complete the proof, we
may assume that a = 1 and G ∩ PGL2(q) = G0. Now if x ∈ G \ G0 has prime order,
then x is PGL2(q)-conjugate to a standard field automorphism of the form φi (see [24,
Proposition 4.9.1(d)], for example), where φ acts on V by sending ae1 + be2 to ape1 + bpe2.
In particular, φ fixes the 1-space 〈e1〉 and thus x has fixed points on Ω. As a consequence,
it follows that an element x ∈ G is a derangement of prime order if and only if x ∈ G0 has
order r.

By the theorem of Zsigmondy mentioned at the beginning of Section 4, there exists a
primitive prime divisor s of p2f − 1. Since we are assuming r is the unique odd prime
divisor of q+ 1, it follows that r = s and thus r ≡ 1 (mod 2f), so r > 2f + 1. If r > 2f + 1
then G has at least d(r − 1)/2fe > 2 distinct conjugacy classes of such elements, so G is
not almost elusive. Now assume r = 2f + 1. By arguing as in the proof of [9, Lemma
4.6] we deduce that f = 2m is a 2-power, so r = 2m+1 + 1 is a Fermat prime and thus
m+ 1 = 2l for some l > 0.
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If l = 0, then f = 1, r = 3 and G = L2(p) is almost elusive since it contains a unique
class of elements of order 3.

Now assume l > 1 and write G = G0.J with

J 6 Out(G0) = 〈δ̈〉 × 〈φ̈〉 = C2 × Cf .
Recall that G0 contains (r− 1)/2 = f distinct conjugacy classes of elements of order r. If

J does not project onto 〈φ̈〉, then G has at least two conjugacy classes of elements of order
r and thus G is not almost elusive. On the other hand, if this projection is surjective then
the condition G ∩ PGL2(q) = G0 implies that J = 〈φ̈〉 or 〈δ̈φ̈〉 and we see that G has a
unique class of elements of order r. We conclude that G is almost elusive if and only if
G = G0.f . �

Remark 4.6. Consider the case G0 = L2(q) in the proof of Proposition 4.5, where q+1 =

2ra, r = 22
l

+ 1 is a Fermat prime and q = pf with f = 22
l−1. If l = 0 then f = 1,

r = 3 and there exist primes p with p+ 1 = 2.3a for some a > 1. For example, the primes
p < 106 of this form are 5, 17, 53, 4373 and 13121. For l = 1 we have f = 2, r = 5 and
one checks that 3 and 7 are the only primes p < 106 with p2 + 1 = 2.5a. For l > 2, we are
not aware of any solutions to the equation q + 1 = 2ra with f and r as above.

Proposition 4.7. The conclusion to Theorem 4.1 holds if G0 = L2(q) and H is of type
GL1(q) o S2.

Proof. Here H0 = D2(q−1)/d and |Ω| = 1
2q(q+ 1). If r is an odd prime divisor of q+ 1 then

every element in G0 of order r is a derangement. Therefore, we may assume q+ 1 = 2arb,
where r is an odd prime and a, b > 0.

Suppose q = 2f is even, so 2f + 1 = rb and Lemma 3.7 implies that either q = 8,
or b = 1, f is a 2-power and q + 1 is a Fermat prime. In view of Proposition 4.4, we
can assume we are in the latter situation with f = 2m and m > 2. Here G has at least
q/2f > 2 conjugacy classes of elements of order r, whence G is not almost elusive.

Now assume q is odd and q+1 = 2arb, where a > 1 and b > 0. Here every element in G0

of order p is a derangement, so we may assume b = 0 and thus pf + 1 = 2a. By applying
Lemma 3.7, we deduce that q = 2a − 1 is a Mersenne prime and thus |Ω| = 2a−1q. If
G = G0, then G contains two conjugacy classes of elements of order q, so G is not almost
elusive. On the other hand, if G = PGL2(q) then there is a unique class of elements of
order q and we observe that both classes of involutions in G have fixed points. Indeed,
since q ≡ 3 (mod 4) it follows that the involutions in H0 = Dq−1 are of type t′1, while the
involution in the centre of H = D2(q−1) is of type t1. It follows that PGL2(q) is almost
elusive. �

Proposition 4.8. The conclusion to Theorem 4.1 holds if G0 = L2(q) and H is of type
GL1(q

2).

Proof. In this case we have H0 = D2(q+1)/d and |Ω| = 1
2q(q − 1). By arguing as in the

proof of the previous proposition, we may assume that q − 1 = 2arb, where r is an odd
prime and a, b > 0.

Suppose q = 2f is even, so 2f − 1 = rb and Lemma 3.7 implies that b = 1, so r = 2f − 1
is a Mersenne prime and f > 5 is a prime (the case f = 3 was handled in Proposition 4.4).
Since G contains at least d(r − 1)/2fe > 2 distinct classes of such elements, we conclude
that G is not almost elusive.

Now assume q is odd and q − 1 = 2arb with a > 1. Note that every element in G0

of order p is a derangement. If b > 1 then G also contains derangements of order r, so
we may assume pf = 2a + 1. Since the case q = 9 is excluded (recall that L2(9) ∼= A6),
Lemma 3.7 implies that q = 2a + 1 > 17 is a Fermat prime. If G = G0 then G has two
classes of elements of order q, so G is not almost elusive. Now assume G = PGL2(q) and
note that G has a unique class of derangements of order q. The involutions in H0 = Dq+1
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are of type t1 (note that q ≡ 1 (mod 4)), while the central involution in H = D2(q+1) is
of type t′1. Therefore, every involution in G has fixed points and we conclude that G is
almost elusive. �

Proposition 4.9. The conclusion to Theorem 4.1 holds if G0 = L2(q) and H is of type
GL2(q0), where q = qk0 with k a prime.

Proof. First assume k is odd, so H0 = L2(q0) and

|Ω| = qk−10

(
q2k0 − 1

q20 − 1

)
= qk−10

(
qk0 − 1

q0 − 1

)(
qk0 + 1

q0 + 1

)
.

As noted in [3, Table 8.1], the maximality of H requires q0 6= 2, so Zsigmondy’s theorem
[45] implies that there exist primitive prime divisors r and s of q2k0 − 1 and qk0 − 1, re-
spectively. Then r 6= s and both r and s divide |Ω|, but neither divide q20 − 1. Therefore,
every element in G of order r or s is a derangement and we conclude that G is not almost
elusive.

Now assume k = 2, so H0 = PGL2(q0) and |Ω| = 1
dq0(q + 1). Suppose q is odd, so

q ≡ 1 (mod 4) since q = q20. Here q + 1 is divisible by an odd prime r and we see that
every element in G0 of order r is a derangement. Let us also observe that the maximality
of H implies that G 6 G0.〈φ〉, where φ is a field automorphism of order f (see [3, Table
8.1]), so G has two conjugacy classes of unipotent elements of order p, whereas H has just
one. Therefore, G contains derangements of order p and we deduce that G is not almost
elusive.

Finally, let us assume k = 2 and q = 2f is even. If r is a prime divisor of q+1 then every
element in G0 of order r is a derangement and so we may assume that 2f + 1 = ra. Since
f is even, Lemma 3.7 implies that r = 2f + 1 is a Fermat prime with f > 4 a 2-power.
Finally, since G contains at least (r − 1)/2f > 2 distinct conjugacy classes of elements of
order r, we see that G is not almost elusive. �

Proposition 4.10. The conclusion to Theorem 4.1 holds if G0 = L2(q) and H is of type
21+2
− .O−2 (2).

Proof. Here we may assume q = p > 11 and by inspecting [32, Proposition 4.6.7] we see
that H0 = S4 if q ≡ ±1 (mod 8), otherwise H0 = A4. Every element in G of order p is a
derangement and there are two classes of such elements if G = G0, so for the remainder
we may assume G = PGL2(q) and thus the maximality of H implies that q ≡ ±3 (mod 8).
In particular, q is neither a Mersenne nor a Fermat prime, whence q2 − 1 is divisible by a
prime r > 5 and we deduce that G contains derangements of order r. In particular, G is
not almost elusive. �

Proposition 4.11. The conclusion to Theorem 4.1 holds if G0 = L2(q) and H is of type
A5.

Proof. Here H0 = A5, p > 7 and the maximality of H in G implies that either G = G0, or
q = p2 and G = G0.〈φ〉, where φ is an involutory field automorphism (see [3, Table 8.2]).
In both cases, G has two conjugacy classes of elements of order p and we deduce that G
is not almost elusive. �

4.2. Three-dimensional unitary groups. Next we turn to the groups with socle G0 =
U3(q), where q = pf > 3. Set d = (3, q + 1).

The cases with q 6 19 can be handled using Magma; as in the proof of Proposition 4.4,
this is a straightforward computation (here it is helpful to recall that G is almost elusive
only if |π(G) \ π(H)| 6 1, where π(X) is the set of prime divisors of |X|).

Proposition 4.12. The conclusion to Theorem 4.1 holds if G0 = U3(q) and q 6 19.
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In view of the proposition, for the remainder we may assume q > 23 and our goal is
to prove that G is not almost elusive. The maximal subgroups of G are recorded in [3,
Tables 8.5 and 8.6] and by inspection we obtain the following result (see the tables in [3]
for additional conditions on G and q that are needed for the maximality of H).

Proposition 4.13. Let G be an almost simple group with socle G0 = U3(q) and let H be
a core-free maximal subgroup of G. If q > 23, then the type of H is one of the following:

P1, GU2(q)×GU1(q), GU1(q) o S3, GU1(q
3), GU3(q0) (q = qk0 , k > 3 prime),

SO3(q) (q odd), 31+2.Sp2(3) (q = p ≡ 2 (mod 3)), L2(7) (q = p), A6 (q = p).

The following number-theoretic lemma will be useful.

Lemma 4.14. Let q = pf be a prime power with q > 3 and let P be the set of primitive
prime divisors of q6 − 1. If P = {r} then either r > 12f + 1, or q ∈ {3, 4, 5, 8, 19} and
r = 6f + 1.

Proof. Suppose P = {r}. Since P contains every primitive prime divisor of p6f − 1, it
follows that r = 6mf + 1 for some m > 1 and so we may assume r = 6f + 1. Note that
r divides q2 − q + 1. If s > 5 is a prime divisor of q2 − q + 1 then it is easy to check that
s does not divide q2 − 1 nor q3 − 1, so s is a primitive prime divisor of q6 − 1 and thus
s = r. Since q2 − q + 1 is odd and indivisible by 9, it follows that either q2 − q + 1 = re,
or q ≡ 2 (mod 3) and q2 − q + 1 = 3re for some positive integer e.

Suppose q ≡ 2 (mod 3) and q2 − q+ 1 = 3re. If we set x = −q and y = r, then we have
an integer solution (x, y) to the Diophantine equation x2 + x+ 1 = 3ye. By a theorem of
Nagell [36], if e > 3 then the only integer solutions are (x, y) = (1, 1) and (−2, 1), neither
of which are compatible since x = −q 6 −3. Therefore, e = 1 or 2 and thus

p2f − pf + 1 = 3(6f + 1) or p2f − pf + 1 = 3(6f + 1)2.

It is straightforward to check that q = 5, 8 are the only possibilities. Note that if q = 5
then r = 7 and q2 − q + 1 = 3r. Similarly, if q = 8 then r = 19 and q2 − q + 1 = 3r.

Finally, suppose q 6≡ 2 (mod 3) and q2 − q + 1 = re. Setting x = −q and y = r, we
get an integer solution to the equation x2 + x + 1 = ye. If e > 2, then by applying [1,
Proposition 1] we deduce that (x, y, e) = (−19, 7, 3) is the only solution. Here q = 19,
r = 7 and q2 − q+ 1 = r3. On the other hand, if e = 1 then p2f − pf + 1 = 6f + 1 and we
find that q = 3 or 4. Indeed, if q = 3 then r = 7 and q2 − q + 1 = r. Similarly, if q = 4
then r = 13 and q2 − q + 1 = r. The result follows. �

Proposition 4.15. The conclusion to Theorem 4.1 holds if G0 = U3(q) and H is of type
P1, GU2(q)×GU1(q), GU1(q) o S3 or SO3(q).

Proof. In view of Proposition 4.12,we may assume q > 23. Let r be a primitive prime
divisor of q6 − 1. In each case, we observe that |H0| is indivisible by r and thus every
element in G0 of order r is a derangement. Therefore, we may assume r is the unique
primitive prime divisor of q6 − 1. By applying Lemma 4.14 we get r > 12f + 1, where
q = pf as above, and we note that G0 contains (r − 1)/3 > 4f distinct PGU3(q)-classes
of such elements (see [6, Section 3.3.1]). Since |Aut(G0) : PGU3(q)| = 2f it follows that
there at least (r − 1)/6f > 2 such classes in G and we conclude that G is not almost
elusive. �

Proposition 4.16. The conclusion to Theorem 4.1 holds if G0 = U3(q) and H is of type
GU1(q

3).

Proof. Here H0 = Cm:C3 with m = 1
d(q2−q+1), so |Ω| = 1

3q
3(q2−1)(q+1). Since |H0| is

odd, it follows that every involution in G0 is a derangement. Similarly, if p > 5 then every
nontrivial unipotent element in G0 is a derangement. For p = 3, the unipotent elements
with Jordan form [J2, J1] are derangements (the elements of order 3 in H0 have Jordan
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form [J3] on the natural module for G0). Finally, suppose p = 2. In view of Proposition
4.12 we may assume q > 32, which implies that there exists a prime divisor r of q−1 with
r > 7. Since |H0| is indivisible by r, we conclude that every element in G0 of order r is a
derangement and the proof of the proposition is complete. �

Proposition 4.17. The conclusion to Theorem 4.1 holds if G0 = U3(q) and H is of type
GU3(q0), where q = qk0 and k > 3 is a prime.

Proof. By [32, Proposition 4.5.3] we have H0 = U3(q0).e, where e = 3 if k = 3 and q ≡ −1
(mod 9), otherwise e = 1. Let r and s be primitive prime divisors of q6k0 − 1 and qk0 − 1,
respectively. Then |H0| is indivisible by both r and s, so every element in G0 of order r
or s is a derangement and thus G is not almost elusive. �

Proposition 4.18. The conclusion to Theorem 4.1 holds if G0 = U3(q) and H is of type
31+2.Sp2(3), L2(7) or A6.

Proof. In each of these cases we have q = p and so in view of Proposition 4.12 we may
assume that p > 23. Then |H0| is indivisible by p and thus every element in G0 of order
p is a derangement. In particular, G is not almost elusive since it contains at least two
conjugacy classes of elements of order p. �

4.3. Ree groups.

Proposition 4.19. If G0 = 2G2(q) with q > 27, then G is not almost elusive.

Proof. Here q = 32m+1 with m > 1 and we have |G0| = q3(q3 + 1)(q − 1). The maximal
subgroups of G are recorded in [3, Table 8.43], which is reproduced from [31].

First assume H is a Borel subgroup, so |H0| = q3(q− 1) and |Ω| = q3 + 1. If r is an odd
prime divisor of q3 + 1 then every element in G0 of order r is a derangement (note that
(q3 + 1, q − 1) = 2). Now q3 + 1 is divisible by 7, and it is also divisible by a primitive
prime divisor r of 312m+6 − 1. Since r > 12m+ 7 > 19, we deduce that q3 + 1 is divisible
by at least two distinct odd primes and thus G is not almost elusive.

Next suppose H0 = 2×L2(q), so |Ω| = q2(q2−q+1) and H0 = CG0(x) for an involution
x ∈ G0. If r is a prime divisor of q2 − q + 1 then every element in G0 of order r is a
derangement. In addition, we observe that there exists an element y ∈ G0 of order 3 with
|CG0(y)| = q3 (see [33, Table 22.2.7], for example); since |CG0(y)| is odd, it follows that y
is a derangement and we conclude that G is not almost elusive.

Next assumeH0 = (22×D(q+1)/2):3. Let r and s be primitive prime divisors of 312m+6−1

and 32m+1 − 1, respectively. Then r, s > 5 and |H0| is indivisible by r and s, whence G
is not almost elusive. Similarly, if H0 = (q ±

√
3q + 1):6 and we take r to be any prime

divisor q ∓
√

3q + 1, then every element in G0 of order r or s is a derangement (with s a
primitive prime divisor of 32m+1 − 1 as above).

Finally, let us assume H0 = 2G2(q0), where q = qk0 and k is an odd prime. Let r and s
be primitive prime divisors of q6k0 − 1 and qk0 − 1, respectively. Then |H0| is indivisible by
r and s, whence G is not almost elusive. �

4.4. Suzuki groups.

Proposition 4.20. If G0 = 2B2(q) then G is not almost elusive.

Proof. This is similar to the proof of the previous proposition. We have q = 22m+1 and
|G0| = q2(q2 + 1)(q− 1) with m > 1. The maximal subgroups of G are conveniently listed
in [3, Table 8.16] (the original reference is [40]). It will be useful to observe that

q2 + 1 = (q +
√

2q + 1)(q −
√

2q + 1),

where both factors are odd and coprime. In particular, q2 + 1 is divisible by at least two
distinct odd primes.
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First assume H0 = q1+1:(q − 1) is a Borel subgroup, so |Ω| = q2 + 1. If r, s are distinct
prime divisors of q2 + 1, then neither prime divides |H0| and thus G is not almost elusive.
The same argument applies if H0 = D2(q−1). Next assume H0 = (q±

√
2q+ 1):4. Here we

take r and s to be prime divisors of q ∓
√

2q + 1 and q − 1, respectively, and we observe
that |H0| is indivisible by both primes. Finally, suppose H0 = 2B2(q0), where q = qk0 ,
q0 6= 2 and k > 3 is a prime, and let r and s be primitive prime divisors of q4k0 − 1 and
qk0 − 1, respectively. Then r 6= s and neither prime divides |H0|, whence all elements in
G0 of order r or s are derangements. �

This completes the proof of Theorem 4.1.

5. Sporadic groups

In this final section we complete the proof of Theorem 2 by handling the almost simple
groups with socle a sporadic group. As noted in Section 1, we also include the almost
simple groups with socle 2F4(2)′.

Proposition 5.1. The conclusion to Theorem 2 holds if G0 = 2F4(2)′.

Proof. This is a routine Magma computation, using a permutation representation of G
of degree 1755 from the Web-Atlas [43]. �

Theorem 5.2. Let G be an almost simple primitive permutation group with socle a spo-
radic group. Then G is not almost elusive.

Proof. Let H be a point stabiliser and first assume G 6= B,M, where B is the Baby Monster
and M is the Monster. In each of these cases we can use the GAP Character Table Library
[4] to show that G is not almost elusive. Indeed, the character tables of both G and H are
available in [4] (to access the character table of H, we use the Maxes function), together
with the fusion map from H-classes to G-classes. It is now a routine exercise to check
that H has at least two conjugacy classes of prime order derangements, with the single
exception of the elusive group G = M11 with H = L2(11).

Next assume G = B and let π(G) be the set of prime divisors of |G|. Define π(H) in the
same way. The complete list of maximal subgroups of G (up to conjugacy) is conveniently
presented in the Web-Atlas [43] and it is easy to check that |π(G) \ π(H)| > 2 in every
case. Therefore, we can find distinct primes that divide |G| but not |H|, so G contains at
least two conjugacy classes of derangements of prime order.

Finally, let us assume G = M. There are 44 known conjugacy classes of maximal
subgroups of G and it has been shown that any additional maximal subgroup has to be
almost simple, with socle L2(8), L2(13), L2(16) or U3(4) (see [41]). In every case, including
the list of candidate maximal subgroups, one checks that |π(G) \π(H)| > 2 and the result
follows as before. �
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